On Accelerating Ultra-Large-Scale Mining

Ganesha Upadhyaya
Iowa State University
ganeshau @iastate.edu

Abstract—Ultra-large-scale mining has been shown to be
useful for a number of software engineering tasks e.g. mining
specifications, defect prediction. We propose a new research
direction for accelerating ultra-large-scale mining that goes
beyond parallelization. Our key idea is to analyze the interaction
pattern between the mining task and the artifact to cluster
artifacts such that running the mining task on one candidate
artifact from each cluster is sufficient to produce results for
other artifacts in the same cluster. Our artifact clustering criteria
go beyond syntactic, semantic, and functional similarities to
mining-task-specific similarity, where the interaction pattern
between the mining task and the artifact is used for clustering.
Our preliminary evaluation demonstrates that our technique
significantly reduces the overall mining time.

Keywords-Big Code, acceleration, clustering, Boa, analysis

I. INTRODUCTION

Mining open source software repositories such as GitHub
is valuable and can be leveraged to help software engineering
tasks, e.g. for defect prediction [1], bug fix suggestions [2],
specification inference [3], etc. The approaches that leverage
these open source repositories perform mining and analysis
that cuts across projects.

The current infrastructure support for ultra-large-scale
mining leverages parallelization techniques such as map-
reduce [4]-[6]. We propose a new direction for accelerating
ultra-large-scale mining based on artifact similarities. Our idea
is to use artifact similarities to cluster artifacts such that it is
sufficient to perform mining on one candidate in each cluster
and extrapolate the mining results to others. In this way, ultra-
large-scale mining can be accelerated.

Software source code is an important artifact that is
mined often. There exists many techniques to identify code
clones [7]. Syntactic clones identify codes that look alike.
Semantic clones identify semantically similar codes (control or
data flow similarities). Functional clones [8] detect codes that
are functionally similar by comparing inputs and outputs of
methods. Although syntactic and semantic clones may result
in the same output for a mining task and hence they can be
used to cluster and accelerate the ultra-large-scale mining, they
may be less beneficial. This is because in case of syntactic
clones, the amount of acceleration is limited by the amount
of copy-and-paste code and in case of semantic clones, only a
subset of analysis can accelerate, for instance control flow only
analyses. Functional clones may not result in the same output
for a mining task, hence they cannot be used to cluster. This
has led us to go beyond syntactic, semantic, and functional
clones to develop a notion of mining-task-specific similarity.

Hridesh Rajan
Towa State University
hridesh @iastate.edu

Given a mining task, a set of artifacts can be considered
similar, if the mining task has similar interactions with the
artifacts. When a mining task is run on an artifact, one
can observe the interaction between the mining task and the
artifact. The interaction is captured by the execution trace,
where the trace describes, what parts of the artifact are of
interest to the mining task, and whether such parts exists in
the artifact. The interaction (or the execution trace) can be
captured by running the mining task on the artifact, however
the challenge is to determine the interaction without running
the mining task on the artifacts.

Our observation is that, by analyzing the mining task, it is
possible to extract the parts of the artifacts that are of interest
to the mining task. By utilizing this knowledge, it is possible to
capture the interaction by performing a light-weight traversal
of the artifact. This traversal identifies the parts of the artifact
that are of interest to the mining task. Upon identifying these
parts, the parts that are not of interest to the mining task can
be removed, resulting in a reduced artifact that only contains
parts relevant for the mining task. This reduced artifact is used
to represent the interaction between the mining task and the
artifact.

Given a mining task that is required to be run on thousands
of artifacts, the artifacts with similar interactions are clustered
together, such that the mining task is required to be run on
only one candidate from each cluster to produce the mining
result and the results for other candidates in the same cluster
can be produced using extrapolation.

This paper makes the following contributions:

o« We propose a new research direction for accelerating

ultra-large-scale mining by task-specific clustering.

o We introduce the notion of interaction pattern graph
that represents the interaction between the mining task
and the artifact, however we leave the details of soundly
extracting the graph a subject of the future work.

o We present two case-studies that demonstrates the usage
of our technique.

II. APPROACH

An overview of our approach is shown in Figure 1. Given
a mining task and a large collection of artifact graphs', a
light-weight traversal is performed on each artifact graph that
identifies the parts relevant for the mining task and removes

An artifact graph represents the relation between parts in the artifact. For
instance, in case of source code artifact, a control flow graph represents the
control flow relation between program statements.

Mining

Artifact

Interaction
Graphs

Pattern Graphs

Results

Pattern Not

Pattern

Running
Mining
Task

Generate
Output
Function (O)

,[

Database [«

Found
[Pat, O]

Persist [Pat, O]

Generate
output

OO,
O

A 4

Fig. 1.
the mining task and the artifacts.

the irrelevant parts to produce an interaction pattern graph?.
Upon generating the interaction pattern graph, we check if the

Results Fig. 2. Top three interaction pattern graphs

for the API Precondition Mining Task. Here,

Overview of the approach: accelerating ultra-large scale mining using the interaction pattern between S and E are start and end nodes, p is the node

with predicate expression, and c is the node
that calls an API method.

pattern graph is already seen before while mining other artifact P
graphs, if not then we run the mining task on the original /
artifact graph to generate the output. An output function that ,f'
provides expressions to generate the output is constructed. A predicate expression?,
simple output function is the mining task itself (as we see substringintint%’ ,"'
later in the realization of this model, we use the mining task l:',"," < colon>=0_ @
as the output function). We persist the pattern along with its il
output function, such that next time when a match happens, ~ ——— éf,j: || e <>
we extract and apply the output function to generate the result, é}: -
instead of running the mining task. ‘\\::\‘\T » ()
N A
1public void body(String namespace, String name, String text) ‘\‘ \\\
g gt:;vgs?i)r(’r??gsggeﬁri =null; ‘\‘ 4 |
5 int o rt):;}.%éee);tdf(':'); Pattern Graph
6 if (colon >=0) { Y
7 String prefix = text.substring(0,colon); 9
8 namespaceuri = digester.findNamespaceURI(prefix); Interaction
9 localpart = text.substring(colon+1); Boundary
1(1) ContextHandler contextHandler = (ContextHandler)digester.peek();
12 contextHandler.addSoapHeaders(localpart,namespaceuri);
13} Fig. 4. The interaction of the precondition mining task with the CFG of the

Fig. 3. Code snippet from Apache Tomcat GitHub project.

A. Interaction Pattern Graph

An interaction pattern graph is a reduced artifact graph
that retains only those nodes of the artifact graph that are
relevant for the given mining task. To illustrate, consider a
task of mining API preconditions. API preconditions are the
conditions that must be satisfied before calling an API method.
API preconditions can be inferred by looking at the guard
conditions at the API method call sites [3]. Input to the mining
task is a set of API methods whose preconditions are to be
mined and a large number of client projects that calls the API
methods. The technique builds the control flow graphs (CFG)
of the client methods and performs a dominator analysis to

2 An interaction pattern graph represents the interaction between the mining
task and the artifact graph.

code shown in Listing 3.

determine all control dependent nodes of the API method call
node in the CFG, that contains predicate expressions. The
output of the mining task is a set of predicate expressions
on which the API method call is control dependent (in a way
these predicate expressions guard the API method call).

Here, the artifacts are the client methods and the mining task
queries method statements that calls API methods and condi-
tional statements that guard the API method calls. To under-
stand the interaction between the mining task and the artifact,
consider the example code shown in Figure 3. This example
calls substring(int, int) API method from java.lang.String
at line 7. This API method call is guarded by the precondition
at line 6, whose predicate expression is colon >= 0. Now,
let us consider Figure 4 that shows the interaction between
the Precondition Mining task and the CFG of the method

shown in Figure 3. When the Precondition Mining task is
run on the CFG, it queries for predicate expressions and
substring(int,int) API method calls. Each node in the CFG
responds to the queries if they have predicate expressions or
substring(int,int) API method calls. For the CFG shown in
the figure, only node 6 and node 7 responds successfully as
node 6 contains predicate expression colon >= 0 and node
7 makes the substring(int,int) API method call. The inter-
action can be summarized using the interaction pattern graph
shown in Figure 4. The interaction pattern graph contains only
those nodes that successfully responded to the mining task
queries (START and END are two special nodes).

B. Generating The Interaction Pattern Graph

We briefly present the process of generating an interaction
pattern graph. For generating the interaction pattern graph, we
perform a static analysis of the mining task to extract a set of
rules that helps to identify nodes in the artifact graph that are
relevant for the mining task. We then perform a light-weight
traversal of the artifact graph, where at each node we execute
the rules, mark the nodes as relevant/irrelevant, and remove
the irrelevant nodes to produce an interaction pattern graph.

1) Extracting Rules To Infer Interaction Pattern Graphs:
Mining a software artifact requires traversing the artifact graph
and querying the nodes to extract some information. For
instance, in our API Precondition Mining task, the artifact
graph is the CFG of the method. The listing below shows
the pseudo code of the traversal in the mining task.

API_precondition_mining (ArtifactGraph G) {
output: {predicate expressions, APl method calls}
For each node in G
if (node is a predicate expression)
add predicate expression to output
else if (node is an APl method call)
add APl method call to output
return output

}

O©OO~N®OOTAWN =

Our claim is that it is possible to extract a set of rules
from the traversals. For instance, the pseudo code above has
two rules: Rule 0: node is a predicate expression and Rule 1:
node is an API method call. We deduce these rules as follows.
We analyze the body of the traversal and extract program
paths. These program paths have path conditions that must
be satisfied for that path to be taken. Our idea is to use the
conjunction of path conditions as rules to identify the relevant
nodes. The above pseudocode has two paths: one that takes the
if branch and other path that takes the else branch. The path
condition for the first path is (node is predicate))\ —(node is
an API method call). The path condition for the second path
is —(node is predicate) |\ (node is an API method call). In
this way, by enumerating the paths in the traversal body and
collecting the path conditions, one can construct a set of rules
that helps to infer the interaction pattern.

2) Generating Interaction Pattern Graph: Upon extracting
the rules from the traversals, we perform a light-weight
traversal of the CFG to generate the interaction pattern graph.
In this traversal we keep only those nodes for which the rules
evaluates to true. For instance, consider the CFG shown in

Figure 4. Only node 6 and node 7 are kept in the interaction
pattern graph, because for only these two nodes the rules
evaluates to frue.

3) Model Realization: In our realization of the model
shown in Figure 1, we have used the mining task itself as the
output generating function, where upon generating the pattern
graph, we run the mining task on the pattern graph to produce
output. Note that, running the mining task on the interaction
pattern graph has lower complexity than running it on the
original artifact graph, because the interaction pattern graph
contains fewer nodes that are of interest to the mining task.

III. PRELIMINARY RESULTS
In this section, we present two case studies that illustrate

the usage of our technique.

TABLE I
CASE STUDY RESULTS SUMMARIZED. IPA IS OUR APPROACH
(INTERACTION PATTERN ANALYSIS), G IS GAIN, R IS REDUCTION.

Analysis Time (s) Graph Size
Baseline IPA %G Baseline IPA %R
CS1 | 1555.579 | 309.731 80 | 52,475,484 | 17,945,817 | 66
CS2 | 235.524 131.160 | 45 | 52,475,484 | 21,631,192 | 59

A. Case Study 1. Mining API Preconditions

In this case study we use Mining API Preconditions, de-
scribed in §II-A, that mines API preconditions of a given API
method using the client methods that call the API method.
Here, the API preconditions are the predicate expressions
that guard the API method calls in the client methods. This
mining task traverses the CFG of each client method, identifies
nodes that have API method calls and collect the predicate
expressions on which the API method call node is control
dependent using a dominator analysis. The mining task outputs
the normalized predicate expressions as preconditions for a
given API method call.

We have used Boa [4] for writing the mining query and
we run the mining query on the Boa [4] SourceForge dataset
that contains over 7 million client methods. We compared our
approach with a baseline that runs the precondition mining task
on the client methods sequentially. The baseline took 1555.579
seconds to collect 5965 preconditions at 2240 client methods
of substring(int,int) API method. On the same dataset, our
approach also collected the same 5965 preconditions at 2240
client methods as baseline and the mining task took 309.731
seconds. In this case, our technique is able to reduce the
mining time by 80%. On further investigation we found that
the total number of CFG nodes in the CFGs were 52,475,484
and the total number of nodes in the interaction pattern graphs
of those CFGs were 17,945,817, that is, over 66% reduction in
terms of graph size. To summarize, our approach accelerates
the precondition mining task by running the mining task on
the interaction pattern graph that contained only API method
call nodes and predicate expression nodes.

Figure 2 shows top three interaction pattern graphs that ap-
peared in the client methods that calls the substring(int, int)

API method. We argue that candidates in each cluster shows
similar behaviors with respect to the mining task. Studying
the candidates in each cluster may itself be a new research
direction for exploring and answering mining task related
questions. For instance, we found that the interaction pattern
graph shown in Figure 2(a), almost all the time provides
predicate expressions that are generic to the API method and
not specific to the client method that calls the API method.

B. Case Study 2. Vulnerability Detection Using Taint Analysis

In this case study our mining task detects possible vulnera-
bilities using a light-weight taint analysis. If the source of the
value of a varible x is untrustworthy, we say that x is tainted.
For instance, line * = System.out.readLine() tells that z
is tainted. Taint Analysis attempts to identify the variables
that have been “rainted” with user controllable inputs and
traces them in the program. If a tainted variable gets passed
to a public sink without first being sanitized, it could cause
a vulnerability. A public sink could be an output buffer or a
console. For instance, in line System.out.printin(x), tainted
x is passed to the console. Given a method, this mining task
outputs the number of possible vulnerabilities in that method
by performing an intra-procedural taint analysis.

We wrote the mining task in Boa and we ran it on the Boa’s
SourceForge dataset, which contains over 7 million methods.
The baseline that runs the mining task on methods sequentially
took 235.524 sec. and our approach took 731.160 sec. We
were able to match all the 74309 possible vulnerabilities
identified by both the approaches. The speed up that our
technique achieved is close to 45%. On further investigation,
we found that baseline CFGs contained 52,475,484 nodes
and the corresponding interaction pattern graphs contained
21,631,192 nodes, that is, 59% reduction in terms of graph
size. We verified several of these 714309 possible vulnerabili-
ties, however it is impossible to verify them all.

In summary, our two case studies suggest that our technique
of clustering based on the interaction between the mining
task and the artifact can significantly accelerate the ultra-
large scale mining. However, the acceleration that can be
obtained depends both on the reduction in the graph size from
artifact graph to interaction pattern graph, and complexity of
the analysis.

IV. RELATED WORKS

Accelerating Software Analysis. Kulkarni et al. [9] ac-
celerates program analysis in Datalog by running the analysis
offline on a corpus of training programs to learn analysis
facts over shared code and then reuses the learnt facts to
accelerate the analysis of other programs that share code
with the training corpus. When compared to their approach,
our approach does not require programs or artifacts to share
code or other artifacts. Reusing analysis results to accelerate
interprocedural analysis by computing partial or complete
procedure summaries [10] is also studied. However, to best to
our knowledge there is no technique that can benefit analysis
across programs and cluster programs specific to analysis.

Clustering or Detecting Similar Code. Similar code or
code clones includes “look alike” codes that are textually, syn-
tactically, structurally similar and codes that are behaviorally
or functionally similar. Existing approaches of identifying code
clones can be categorized based on the types of interme-
diate representations they use [7]: token-based, AST-based,
and graph-based. There are also other approaches that goes
beyond structural similarity: code fingerprints [11], behavioral
clones [8], [12], and run-time behavioral similarity [13]. Clone
detection techniques are agnostic to the mining task that is
performed on the artifacts. Our technique groups artifacts that
produces similar result for the given mining task. Artifacts pro-
duce similar results, if they show similar interaction patterns
for the given mining task.

V. CONCLUSION AND FUTURE WORK

This emerging result shows that task specific clustering
can cluster behaviorally similar artifacts for the given mining
task, and can help to accelerate ultra-large-scale mining. We
have shown usefulness of task-specific clustering for two
representative tasks, but more work is needed to understand the
characteristics of the mining tasks that can benefit from task-
specific clustering. Other avenues of the future work includes:
i) producing an efficient output function for extrapolating the
output, ii) efficiently persisting the interaction pattern graph
and the output function, and iii) efficient graph comparison.

VI. ACKNOWLEDGMENTS

This research has been supported in part by the US National
Science Foundation (NSF) under grants CCF-15-18897, CNS-
15-13263, and CCF-14-23370.

REFERENCES

[1] Marco D’Ambros, Michele Lanza, and Romain Robbes. Evaluating
defect prediction approaches: a benchmark and an extensive comparison.
ESE’11.

[2] Benjamin Livshits and Thomas Zimmermann. DynaMine: finding
common error patterns by mining software revision histories. In
ESEC/FSE’13.

[3] Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan.
Mining Preconditions of APIs in Large-scale Code Corpus. In FSE’14.

[4] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen.
Boa: A Language and Infrastructure for Analyzing Ultra-Large-Scale
Software Repositories. In ICSE’13.

[5] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An
Infrastructure for Large-scale Collection and Analysis of Open-source
Code. Sci. Comput. Program. 2014.

[6] Georgios Gousios. The GHTorrent dataset and tool suite. In MSR ’13.

[7] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A Qualitative
Approach. Sci. Comput. Program. 2009.

[8] Rochelle Elva and Gary T. Leavens. Semantic Clone Detection Using
Method IOE-behavior. In IWSC’12.

[9] Sulekha Kulkarni, Ravi Mangal, Xin Zhang, and Mayur Naik. Acceler-

ating Program Analyses by Cross-program Training. In OOPSLA’16.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural

dataflow analysis via graph reachability. In POPL’95.

Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. Detecting

Similar Software Applications. In ICSE’12.

F. H. Su, J. Bell, and G. Kaiser. Challenges in Behavioral Code Clone

Detection. In SANER’16.

[13] John Demme and Simha Sethumadhavan. Approximate Graph Cluster-

ing for Program Characterization. TACO’12.

(10]
(11]
[12]

