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ABSTRACT 

This dissertation presents a comprehensive study on the forward modeling methods, 

signal processing techniques, and image restoration techniques for two-dimensional eddy 

current nondestructive evaluation. The basic physical forward method adopted in this study 

is the volume integral method. We have applied this model to the eddy current modeling 

problem for half space geometry and thin plate geometry. To reduce the computational 

complexity of the volume integral method, we have developed a wavelet expansion method 

which utilizes the multiresolution compression capability of the wavelet basis to greatly 

reduce the amount of computation with small loss in accuracy. To further improve the speed 

of forward modeling, we have developed a fast eddy current model based on a radial basis 

function neural network. This dissertation also contains investigations on signal processing 

techniques to enhance flaw signals in two-dimensional eddy current inspection data. The 

processing procedures developed in this study include a set of preprocessing techniques, a 

background removal technique based on principal component analysis, and grayscale 

morphological operations to detect flaw signals. Another important part of the dissertation 

concems image restoration techniques which can remove the blurring in impedance change 

images due to the diffusive nature of the eddy current testing. We have developed two 

approximate linear image restoration methods - the Wiener filtering method and the 

maximum entropy method. Both linear restoration methods are based on an approximate 

linear forward model formulated by using the Bom approximation. To improve the quality of 

restoration, we have also developed nonlinear image restoration methods based on simulated 



xi 

annealing and a genetic algorithm. Those nonlinear methods are based on the neural network 

forward model which is more accurate than the approximate linear forward model. 
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CHAPTER 1. INTRODUCTION 

Overview of the Problem 

Eddy current nondestructive evaluation (NDE) is one of the most important NDE 

techniques. In an eddy current measurement, a coil driven by sinusoidal current is placed on 

a metal testpiece and the impedance change of the coil is measured as the coil is moved 

around the testpiece. By observing the change in impedance as a function of coil position, we 

can detect and characterize defects in the testpiece. Applicable types of defects of the eddy 

current technique vary from inclusions, voids to surface breaking cracks. Since eddy current 

testing only requires one side access to the testpiece, it can be used in complex test geometry 

where many other NDE techniques carmot be easily applied. Typical applications of eddy 

current testing includes the inspection of steam generator tubing in nuclear power plants and 

the inspection of surface structures of aircraft. The techniques developed in this dissertation 

were originally targeted for the tubing inspection application. However, they can be applied 

to many other two-dimensional eddy current testing applications as well. 

In a steam generator in a nuclear power plant there are thousands of heat exchanger 

tubes. These tubes are used to transfer heat energy from the nuclear reactor to the power 

generator. These tubes must also separate the primary water which is radioactive from the 

secondary water which is not radioactive. Therefore, the integrity of these tubes is critical to 

the safe operation of the nuclear power plant. Because of the relatively small size of the heat 
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exchanger tubes and the accessibility constraints of the steam generator, eddy current testing 

is widely used in the inspection of the heat exchanger tubes. 

Traditionally a bobbin coil probe is used to inspect steam generator tubing. During 

the inspection the bobbin coil is inserted inside the tube and then pulled out. While the probe 

is moving along the internal surface of the tube, the impedance change of the coil is 

monitored and recorded. From the one-dimensional impedance change data obtained from 

the bobbin coil, we can decide whether there are flaws and approximately how large the flaws 

are. Most flaws in steam generator tubing happen to be circumferential outside diameter 

(OD) cracks near tube support plates. Because of the one-dimensional nature of the bobbin 

coil, it has a limited sensitivity to circumferential cracks. Therefore, the use of Motorized 

Rotating Pancake Coils (MRPC) for eddy current inspection has become a more common 

practice in recent years, as utilities struggle to stay ahead of cracking steam generator tubes. 

In a MRPC inspection, a small pancake coil is placed on the internal surface of the tube and 

rotated while the MRPC probe is pulled out. Therefore, the trace of the pancake coil has a 

helical shape. MRPC probes can provide two-dimensional impedance change images over 

the tube internal surface which improve the probability of detection and enhance flaw 

characterization capability. 

Despite its performance improvement over the bobbin coil, the MRPC still has some 

disadvantages. One of its major disadvantages is sensitivity-limiting noise resulting from 

stray electromagnetic pickup and irregular probe motion. Another major disadvantage is the 

blurring of the impedance change image due the nonlinear interaction between the flaw and 

the probe coil. Therefore, to improve the quality of data analysis, signal and image 
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processing techniques must be developed to reduce noise and unwanted effects and to restore 

the actual flaw shape from the blurred impedance change image. 

The major objective of the study presented in this dissertation is to develop signal and 

image processing techniques for the two-dimensional eddy current data so that better flaw 

detection and characterization can be achieved. This includes signal processing techniques 

which enhance flaw signals and image restoration techniques which generate more accurate 

flaw images. Also, to have a better understanding of the problem, we must study the physical 

phenomenon involved in eddy current testing. This requires us to solve the eddy current 

forward modeling problem. 

Fundamentals of Eddy Current Testing 

Basic concept 

Fig. 1.1 illustrates the basic concept of eddy current nondestructive testing. A varying 

electric current flowing in a coil gives rise to a varying magnetic field. A nearby conductor 

resists the effect of the varying magnetic field, and this manifests itself by an eddy current 

flowing in a closed loop in the surface layer of the conductor to oppose the change causing a 

back electromotive force in the coil. Cracks and other surface conditions modify the eddy 

currents generated in the conductor so that the back electromotive force is altered. This leads 

to a change in the impedance of the coil. If the conductor is a metal testpiece with defects, 

we can detect these defects by moving the coil around the surface of the testpiece and 

measuring the impedance change of the coil. 
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Alternating Current 

Eddy Currents 

Crack 

Metal Testpiece 

Fig. 1.1. Basic concept of eddy current nondestructive testing. 

Practical considerations 

Penetration deptli 

Since the eddy current electromagnetic fields are diffusive fields, they have limited 

penetration into the metal testpiece. The rate of decay of the eddy currents is measured by the 

skin depth, which is dependent on the test frequency, the permeability of the testpiece, and 

the conductivity of the testpiece. Since the permeability and conductivity are material 

properties, in eddy current inspection we can only change the test frequency to control the 

penetration depth of eddy current testing. Because flaws deeper than two to three times of 

the skin depth usually lead to very small responses in the coil impedance change, we need to 

make the test frequency low enough so that all structures of interests are sensible by the coil. 
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However, because the resolution of eddy current testing is also dependent on the skin depth, 

we can only achieve high resolution of near surface structures. 

Multiple frequency inspection 

Due to the frequency dependent nature of eddy current testing, we can use multiple 

frequency channels to improve its flaw detection capability. Because high frequency 

channels are more sensitive to near surface structures and low frequency channels are more 

sensitive to structures deeper in the testpiece, we can combine their results to improve our 

capability of differentiating types of flaw. Furthermore, multiple frequency inspections 

enable the mixing process, which can be used to remove signals from permanent structures of 

the testpiece; so that, signals from flaws adjacent to these permanent structures are more 

distinguishable. 

Complex data display 

Due to the impedance change of the coil being a complex quantity, there is a phase 

component. The phase component of the impedance change is very important in eddy current 

testing because it is a function of flaw depth. By measuring the phase of the acquired data, 

we can differentiate near surface flaws and deep flaws. It is also possible to estimate the 

depth of a surface breaking flaw from the phase of its signal. In eddy current data analysis, 

the complex impedance change data is usually plotted as a Lissajous figure, with the 

horizontal axis being the real part of the impedance change and the vertical axis being the 

imaginary part of the impedance change. By observing the shape and the angle of the 
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Lissajous pattern of a signal, a human analyst can decide whether there is a flaw and 

approximately how large the flaw is. 

Tubing inspection 

Eddy current tubing inspection is different from the inspection of a flat surface 

testpiece because there are more uncertainties in the test. First, there could be changes in the 

diameter of the tube and vibrations of the probe when it is pulled out from the tube, causing 

large liftoff signals in the tube inspection data. Second, tube support plates (TSPs) in the 

steam generator create large signals that may obscure signals from flaws near the support 

plates. Third, many other changes of the tube over time, e.g., dents, deposits, and wear, can 

create signals that are similar to crack signals. This makes the analysis of the tubing 

inspection data even more difficult. 

In a tube, a flaw can be either on the internal surface of the tube, which is called an 

inside diameter (ID) flaw, or on the outside surface of tube, which is called an outside 

diameter (OD) flaw. The depth of the flaw is usually measured in percentages of tube 

through wall (TW) thickness. Most flaws in steam generator tubing happen to be OD 

circumferential cracks near tube support plates. 

Organization of the Dissertation 

Corresponding to the three major tasks of this study, the dissertation is divided into 

three major parts. In Chapters 3-6 we discuss eddy current forward modeling techniques for 

half space and thin plate geometry. The techniques discussed include an implementation of 
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the volume integral method for half space and thin plate geometry, a wavelet expansion 

method to reduce the computational complexity of the volume integral method, and artificial 

neural network based forward models to substantially speed up the forward computation. In 

Chapters 7-9 we discuss signal and image processing techniques to enhance flaw signals and 

to detect possible flaw indications. The processing techniques discussed in this part include 

preprocessing methods to remove the liftoff signal and to adjust the phase of the signal, a 

method based on principal component analysis to remove background signals in the data, and 

a detection method based on grayscale morphological operations to find circumferential 

cracks. In Chapters 10-13 we discuss eddy current image restoration techniques. The image 

restoration techniques discussed in this part include linear restoration techniques based on 

Wiener filtering and the maximum entropy method, and nonlinear image processing 

techniques based on simulated annealing and genetic algorithms. 

In Chapter 2 we review some of the modeling methods and signal processing 

techniques in the literature that are related to the processing and analysis of two-dimensional 

eddy current data. The review is divided into three major parts: (1) analytical and numerical 

methods to model the eddy current flaw-coil interaction and to predict coil impedance 

change; (2) signal processing techniques to enhance flaw signals; and (3) solutions of the 

eddy current inverse problem to obtain flaw characteristics firom impedance change 

measurements. 

In Chapter 3 we briefly review the mathematical formulation of the volume integral 

method. We focus the discussion on how to apply the volume integral method to half space 

geometry and thin plate geometry because these two geometry are sufficient to model most 
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eddy current applications, either precisely or approximately. The analytical solutions for the 

incident fields and the Green's functions for half space geometry and thin plate geometry are 

also discussed. 

In Chapter 4 we discuss a practical implementation of the volume integral method for 

half space geometry and thin plate geometry. The implementation of the volume integral 

method is difficult because it involves calculations of complex and numerically unstable 

integrations of Bessel functions. We applied fast Hankel transforms to efficiendy integrate 

many of the integrations used in the volume integral method. In this chapter we also discuss 

how to compute the volume integral of Green's function in the singular element which is 

critical to the accuracy of the forward model. 

In Chapter 5 we discuss a wavelet expansion method to reduce the computational 

complexity of the volume integral method. This method utilizes the multiresolution 

compression capability of the wavelet basis and the diffusive nature of eddy currents. By 

using a wavelet basis in a Galerkin method, we transform the system matrix to a very sparse 

matrix which can be inverted efficiently. The wavelet expansion method has been shown to 

greatly reduce the amount of computation involved in the volume integral method with only a 

small loss in accuracy. 

In Chapter 6 we discuss fast eddy current models based on artificial neural networks. 

Since numerical models are inherentiy computationally intensive, they cannot be used in 

situations where speed is the first concern and accuracy is a secondary concern. To improve 

the speed of forward modeling, we utilized the functional approximation capability of neural 

networks to create an approximate mapping firom the flaw image to the impedance change 
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image from a set of training samples. The neural network based forward models have shown 

to be able to provide speedup of several orders as compared to numerical models. 

In Chapter 7 we discuss preprocessing techniques to cleanup the two-dimensional 

eddy current data. The preprocessing techniques include background removal methods based 

on polynomial fitting and median filtering, and an automatic phase adjustment method based 

on a least squares criterion. 

In Chapter 8, a background removal method based on principal component analysis 

(PCA) is discussed. In this technique, PCA is used to extract major components of the 

background signals in the data. Flaw signals are considered as details of the image and can 

be separated from the background by using the result of the PCA processing. This technique 

has been shown to be effective in removing noise from ED variations and manufacturing 

induced conditions. 

In Chapter 9 we discuss a detection method for circumferential cracks based on 

grayscale morphological operations. This method is based on two shape characteristics of the 

signal from a circumferential crack: minimum horizontal extent and maximum vertical 

extent. These shape characteristics can be recognized by mathematically morphological 

operations. By using a serial combination of different morphological operations, 

circumferential cracks in the MRPC data can be enhanced and a crack map can be generated 

to indicate possible flaw locations. 

In Chapter 10, an eddy current image restoration technique based on Wiener filtering 

and an approximate linear eddy current forward model are discussed. The linear forward 

model is based on a reciprocity impedance change formula and the Born approximation. This 
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method has been tested using both synthesized and experimental data. Its sensitivity to noise, 

its strengths, and limitations are also discussed in Chapter 10. 

In Chapter 11, another linear eddy current image restoration technique - the maximum 

entropy method (MEM) is discussed. MEM has been successfiilly applied in many areas of 

image processing. The principle of maximizing the entropy has been shown to provide 

exceptional results in many applications. In this chapter, the concepts and the mathematical 

formulation of MEM for the eddy current image restoration problem are discussed. Test 

results on synthesized data, experimental data, and inspection data have all shown its superior 

performance over the Wiener filtering method in terms of both noise reduction and 

resolution. The major disadvantage of the MEM approach is its high computational 

complexity when compared with the Wiener filtering approach. 

To improve the quality of the restoration results, we have also developed nonlinear 

image restoration techniques which are based on the fast neural network forward model. In 

Chapter 12 we discuss a nonlinear image restoration technique based on simulated annealing. 

Although this method is more computationally intensive than the linear restoration methods, 

it can provide restoration results with better resolution and a higher signal-to-noise ratio. 

In Chapter 13 we discuss another nonlinear image restoration methods based on a 

genetic algorithm. Although the procedure of the genetic algorithm based approach is more 

complicated than the simulated annealing based approach, it can generate similar restoration 

results with a much faster convergence speed due to the parallel search property and the 

crossover operation of the genetic algorithm. This method provides a better tradeoff between 

the quality of the restoration and the execution dme. 
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The dissertation is summarized and concluded in Chapter 14. Major results of the 

study are reviewed and the strengths and weaknesses of each method are discussed and 

compared. In this chapter we also discuss what we have learned during the course of the 

study and some suggestions for future research. 
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CHAPTER 2. LITERATURE REVIEW 

Introduction 

In this chapter we briefly review modeling methods and processing techniques in the 

literature that are related to the processing and analysis of two-dimensional eddy current data. 

The review is divided into three major parts: (1) analytical and numerical methods to model 

the eddy current flaw-coil interaction and to predict coil impedance change; (2) signal 

processing techniques to enhance flaw signals; and (3) solutions of the eddy current inverse 

problem to obtain flaw characteristics from impedance change measurements. The first part 

of the review involves solutions of the eddy current forward problem which provide an 

understanding of the physical criteria associated with eddy current testing. The second part 

of the review involves signal enhancing techniques to improve the quality of experimental or 

inspection data; thus, flaws can be more easily located and better characterized. The third 

part of the review involves solutions of the eddy current inverse problem which are directly 

related to the flaw characterization capability of the eddy current nondestructive testing 

technique. The three parts of the problem are closely related: although the final results are 

generated by methods that solve the inverse problem, our understanding of the first two parts 

are critical to how well we can solve the inverse problem. Our objective of maximizing the 

inspection capability of the eddy current technique can only be achieved after we fully 

understand all the aspects associated with this problem. 
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Forward Modeling 

Overview 

The eddy current forward modeling problem has been an active research area for a 

relatively long time. Good understanding and accurate modeling of the forward problem 

have a significant impact on the design of new probes and inspection instruments as well as 

the solution of the inverse problem. 

The eddy current forward problem can be considered as the problem to solve the 

incident electromagnetic field distribution, which is the field when there is no flaw in the test 

object, and the total electromagnetic field distribution, which is the field when there is a flaw 

in the test object. This is based on Auld's well known reciprocity formula [1] for the 

impedance change of a coil placed above a metal testpiece 

where E" is the incident electric field, E is the total electric field, I is the current density in 

the coil, 5tT(r') is the conductivity change, and V is the flaw volume. 

At the firequency of typical eddy current mspection, the electromagnetic field in the 

metal testpiece is governed by a diffusion equation. If we choose the electric field as the 

unknown quantity, the diffusion equation can be expressed as [2] 

where /" = icona, and J° is the current density induced by the coil without the presence of 

the flaw. When the test geometry is simple and the flaw has a regular shape, it is possible to 

find an analytical solution for the total electric field. However, in most cases numerical 

V 

(2.1) 

(2.2) 
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methods must be used to solve for the total electromagnetic field. There are a number of 

numerical methods in the eddy current literature, e.g., the boundary element method [3,4], 

the volume integral method [2,5,6], and the finite element method [7]. Although these 

numerical methods give exact solution of the field, they are inherently computationally 

intensive. Therefore, in the literature there are also various approximate methods that are 

valid under certain flaw and test geometry configurations [8-13]. Besides the above 

mentioned methods which are solidly based on electromagnetic field theory, there is an 

imaging model by Groshong [14] which is based on a resistive loop approximation and the 

idea of layered nonlinear representation. 

The volume integral method 

The volume integral method [2, 5, 6] transforms the governing diffusion equation for 

eddy current into a volume integral equation which is more suitable for numerical solution. 

Consider a special solution of (2.2) when the current source is a point electric dipole placed 

in the layer containing the flaw 

V-G(r,r' (2-3) 

where the solution of the above equation G(r,r') is the Green's function, 5(r-r') is the 

three-dimensional Dirac delta function, and I is the unit dyad. Given the Green's fiinction 

for the test geometry, the solution of (2.2) can be expressed as a volume integral in the flaw 

region. To see this, rewrite (2.2) as 

V^E - iCD/icToE = /ffli^[J° + (cr - <7o )E] (2.4) 
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The term (cr -c7o)E can be considered as an effective current dipole density at the source 

point due to the variation of the flaw conductivity from the host conductivity. We can 

combine (2.3) and (2.4), and express the total field as 

E(r) = jG(r,r-) • )+Scii> )E(r' )W 

r - (2-5) 
= E°(r) + J Scix' )G(r, r') • £(1^ )dv', 

\r 

Given the Green's function and the incident field E°, we can solve the above volume integral 

equation for the total field E. This is usually done by discretizing equation (2.5). 

Compared with other numerical methods, the volume integral method is easy to 

implement and it can model three-dimensional flaws with arbitrary conductivity distribution. 

The disadvantage of the volume integral method is that it uses a large number of volume 

elements, and thus has high computational resource requirement. 

The boundary element method 

The boundary element method [3,4] is formulated by an application of Green's 

theorem to the unknown field and to a Green's function to obtain the solution. If the Laplace 

Green's function is used in solving a Helmholtz equation, the field at a point is expressed as a 

volume integral over the region of interest. This leads to the volume integral method. 

However, if a Helmholtz Green's function is used, the field at a point is expressed by 

integrals over a bounding surface. If we let the field point move to the surface, we obtain an 

integral equation over the surface for the unknown fields, where the kernels are the 

Helmholtz Green's functions and their normal derivatives. If we let H be the unknown field, 

then the boundary integral equation can be derived as [3] 
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f— <9H(S') 
AH(r) = jG(r,S' )A-^r^S', (2.6) 

where S' is the flaw region, and G(r,S') is the Helmholtz Green's function for the given 

geometry. Equation (2.6) can be discretized and solved numerically for the unknown H 

field, which can then be used in computing the impedance change. 

The major advantage of the boundary element method is that it reduces a three-

dimensional problem to a two-dimensional problem so that a lot of computation can be 

saved. However, the Helmholtz Green's function is more complex than the Laplace Green's 

function. For some test geometry, it may not be possible to solve the Helmholtz Green's 

function analytically. It is also more difficult for the boundary element method to model a 

complete three-dimensional problem than the volume integral method. 

The finite element method 

The finite element method is a general method of solving partial differential equations 

(PDEs). The basic idea of the finite element method is to use variational principles to 

transform a boundary value problem into a set of linear equations. A widely used method is 

the Galerkin method [7]. In the Galerkin method, the unknown field is expressed as a series 

expansion based on a set of basis functions. The basis functions are selected to satisfy the 

boundary conditions. By substituting the series expression of the unknown field into the 

partial differential equation and utilizing the orthogonality property of the basis functions, we 

can transform the boundary value problem into a set of linear equations which can be solved 

numerically. 
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The advantages of the finite element method are its high accuracy and its capability of 

modeling arbitrary test geometry and flaw configuration. The disadvantages of the finite 

element method are its high complexity and high computational resource requirement. 

The Groshong model 

The Groshong model is an eddy current imaging model based on a simple resistive 

loop approximation. This model maps a two-dimensional flaw image to a two-dimensional 

magnitude image of the impedance change of the coil. In this model, the interaction between 

the coil and the flaw is considered as a transformer where the coil is the primary of the 

transformer and the current filaments induced by the coil are considered the secondary of the 

transformer. A flaw in the metal testpiece changes the length of circuit path of the current 

filament, thus changing the resistance of the secondary and creating a voltage change in the 

primary. The mathematical formulation of the Groshong model uses the layered nonlinear 

representation. The first layer of the model is a directional first derivative of a Gaussian 

function 

in the rotated two-dimensional Cartesian coordinate system = 

{ x c o s d  + ^'sin^, - xsin0 + ycosS) at the angle 9 . The first term of the right hand side is 

the first derivative of a Gaussian function with spread parallel to the direction defined by 

(j:cos0 + 3'sin0) (xcosS + ysin©) 

(-xsin0 + ycosS) 
(2.7) 
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9, and the second is a Gaussian function with a much larger spread <jg perpendicular to 0. 

This function is used to reflect the fact that the coil impedance change is more sensitive to the 

flaw perpendicular to the current filaments, and less sensitive to the flaw parallel to the 

current filament. A number of H functions with different angles 9, are used to 

approximate the coil response in the fiill angle range. 

The second layer of the model is a nonliear point fiinction 

j(v) = Vl + v^ (2.8) 

which is used to estimate the local path length of filaments flowing in the direction of 9. 

The third layer is a linear Gaussion blurring function 

gxp( —^ (2.9) 
2O^ 2C70 

where a; is the standard deviation of the blur in the radial direction, and is the angular 

extent. This function is used to smooth out the effect of using a finite number of H  

functions to approximate the response in the full angle range. 

The Groshong model is relatively simple when compared to models based on 

electromagnetic theory and it is less computationally intensive. Also, because it uses a 

layered nonlinear form, we can easily obtain its derivative. Thus a gradient based inverse 

method can be used for this forward model. However, the Groshong model also has several 

disadvantages. First, there is no direct relationship between the coil parameters and the 

model parameters. Therefore, the model parameters can only be obtained by obtaining a lot 

of measurements, and then using a nonlinear optimization method to determine the estimates 

of model parameters. Second, the coil types and test geometry that can be modeled by this 
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method are limited. Third, because it is a real model, phase information is not used in the 

model. This is undesirable because in many applications phase information is critical. 

Signal Processing Teclmiques 

Overview 

The major task in signal processing of eddy current data is to remove noise from 

various sources, and unwanted signals from non-ideal test conditions and stmctural changes 

of the test piece other than the flaw of interest. Due to the complexity of the nonliear 

mteraction between the flaw signal and the unwanted signals, signal processing of eddy 

current data is a very challenging task. Many conventional signal processing techniques are 

not efficient in handling eddy current data Traditional eddy current signal processing is 

mainly based on the phase difference between the flaw signal and unwanted signals. For 

instance, the signal from an OD crack has a different phase from the liftoff signal. A process 

called mixing [15] is widely used in industry to separate the flaw signal from signals of 

unwanted effects. The mixing process utilizes the frequency dependent response of eddy 

currents to differentiate changes in the test piece. Recently, a spline smoothing technique 

[16] has been applied to remove random noise in experimental eddy current data. This 

method is rather effective in reducing electronic noise in experimental data. 

Mixing 

Mixing is based on the observation that the response of a eddy current probe to a 

defect in the test piece is frequency dependent. If we measure the same test piece using two 
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different frequencies, we can combine the signals from the two measurements and enhance 

the flaw signal. Suppose the flaw signal is larger at the higher frequency, and the unwanted 

signal is larger at the lower frequency. Let Xj (n) be the total signal from the higher 

frequency, and XjC/i) be the total signal from the lower frequency, thus we can enhance the 

flaw signal by generating a mixing signal 

X3(n) = Xi(n)-CX2(/z), (2.10) 

where the complex mixing constant, C, can be decided by minimizing the mean square error 

e = X|Xi(n)-CX2(«)|'. (2.11) 
n 

This minimization problem can be easily solved by letting the partial derivative of equation 

(2.11) with respect to C be zero and then solving for C. The result is 

XXi(n)X;(n) 

C = fT-. (2.12) 
Ilxzwr 
n 

The above mixing algorithm is called a two-charmel linear mixing algorithm. There 

are also three-chaimel mixing algorithms and nonlinear mixing algorithms. The mixing 

process is widely used in removing signals from support structures in tubing inspection. 

However, the mixing process is not very effective in separating the flaw signal and signals 

from structures with similar material property and depth as the flaw. 

Spline smoothing 

The spline smoothing method discussed in Reference 16 is an extension to the widely 

used spline smoothing process. Smoothing splines can be used to approximate a set of 
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discrete, noisy data. The optimal spline can be obtained by finding the spline coefficients 

that minimizes a cost function. Usually the cost function contains the average square error 

between the noisy data and the spline approximation, and a regularization term. The method 

presented in Reference 16 provides a practical, effective way for estimating the optimal 

amount of smoothing firom the data. AppUcations of this method have been shown to be very 

effective in removing the electronic noise in experimental measurements. 

The Inverse Problem 

Overview 

Contrary to the relative success of the forward problem, there have been few practical 

solutions to the eddy current inverse problem. The reason comes from the physical nature of 

the eddy current testing; the eddy current inverse problem is an ill-posed nonlinear inverse 

problem. Due to the diffusive nature of the electromagnetic fields in the frequency range of 

eddy current measurements, it is difficult to obtain a high-resolution flaw image from a high-

resolution measurement. 

There are a number of flaw inversion methods in the eddy current literature. Basically 

they can be classified as parametric methods [17-22], and nonparametric methods [23-27]. In 

the first class, the flaw shape or the testpiece shape is assumed to be known, and the inverse 

problem is modeled by several size parameters and material parameters. Usually a table is 

built from multiple solutions of the forward problem, either experimentally or theoretically, 

and the inversion is basically to look up the table and find the best match. The table merely 

represents a mapping from a flaw parameter space to an impedance change feature space. 
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Therefore, it may have many forms from a simple look-up table [17] to a fuzzy classifier or a 

neural network [18, 19]. 

In the nonparametric method class, there are methods [23,24] based on the Bom 

approximation which simplify the nonlinear inverse problem to a linear inverse problem. 

However, this approximation is valid only when the conductivity of the flaw is close to the 

host conductivity or when the aspect ratio of the flaw is within a certain range. More 

recently, attention has been turned to the nonlinear inverse problem. Groshong et al. [26] 

have developed an eddy current image restoration method based on constrained gradient 

descent and the layered nonlinear forward model they developed. Norton and Bowler [27] 

have derived the expression of the gradient of impedance change to the changes in the flaw 

conductivity distribution. This gradient expression is based on fundamental electromagnetic 

theory and requires the solution of a normal forward problem and the solution of a 

hypothetical forward problem. Based on this gradient expression, a class of gradient-based 

iterative inverse methods can be used to reconstruct the flaw shape or flaw conductivity 

distribution. However, because the eddy current inverse problem is highly ill-conditioned, 

gradient-based methods are very likely to stick to local minima even if regularization 

constraints are used. 

Constrained gradient descent based on the Groshong model 

This inversion method is an image restoration technique based on the Groshong 

forward model. The objective of the restoration is to determine the estimate of the flaw 

image which minimizes the squared error 
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lief = X{(^0-,y)-^a,y)(f))' +A(C(/(/,y)))-}, (2.13) 
' J  

where g i i , j )  is the impedance change measurement, f { i , j )  is the estimate of the flaw 

image, D(i,j) is the impedance change image given by the forward model, C(f(i,j)) is the 

constraint function, and A is the Lagrange multiplier. The constraint function can have 

various forms based on the prior knowledge about the flaw. For example, the constraint 

function can be defined to minimize the volume of the flaw or to make the flaw as smooth as 

possible. The minimization of this squared error can be solved iteratively by using a gradient 

descent method 

f (m+l) = f (m)-a-^, (2.14) 

where a is the step size. It is straightforward to apply the gradient descent method to the 

Groshong model because the gradient of the layered nonlinear representation can be easily 

obtained by using the chain rule. 

Besides the constraint term in the squared error, other regularization techniques may 

also be used to force the gradient descent method, which seeks a local minima of the squared 

error, into regions containing better solutions. One such technique is the so-called spectral 

magnitude clipping in which a masking function is defined to represent a desired limiting 

shape of the spectrum of the estimated flaw image. During each iteration, the spectrum of the 

updated flaw image is calculated and the spectrum is clipped according to the masking 

function. This technique is useful in removing the high frequency noise generated in the 

inversion process. 
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Although the image restoration method discussed above is relatively simple and not 

very computationally intensive, it is still limited by the disadvantages of its forward model 

and the fact that the gradient-based method is unlikely to be able to find the global minimum. 

Application of this method to real-world problems requires great effort in finding the optimal 

parameters for the forward model. Modeling errors introduced by inaccurate parameters may 

greatly deteriorate the restoration result. 

Gradient descent methods by Norton and Bowler 

Starting from basic electromagnetic theory of eddy current, Norton and Bowler [27] 

have derived an expression to compute the gradient of the impedance change to the flaw 

conductivity distribution. This gradient expression requires solving the total electric field for 

the normal forward problem and then solving the total electric field for another hypothetical 

forward problem with an adjoint Green's function [27], e.g., 

VZ(r)=-(ToE(r) - E (r), (2.15) 

where E(r) is the total electric field for the normal forward problem, and E(r) is the total 

electric field for the hypothetical forward problem with the adjoint Green's function. In the 

following we give a brief review of the key derivation of Norton and Bowler's result. 

For a unit current source, the reciprocity formula gives the impedance change of the 

coil as 

Z = -j5c7(r')E°(r')-E(r')Jr' 

^ „ (2-16) 
= -jEVr')P(r'Mr', 

V 
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where P(r') = c7ov(r')E(r'), and v(r') is the normalized conductivity change. Then it 

follows 

c/Z = -jE»(r')-^a»(r')c/r'. (2.17) 

And from the volume integral equation (2.5), we have a similar equation for the equivalent 

current density P(r) 

P(r) = P°(r) + v(r)/:^jG(r,r')P(r')Jr', (2.18) 
V 

where = ico^CQ. Taking the derivative of (2.18), we have 

cflP(r) = 5i/(r)<ToE(r) + v(r) A:" J G(r, r') • ^/P(r' )dT\ (2.19) 
V 

Now consider a hypothetical forward problem defined by 

E°(r') = E(r')-A:^jG(r',r)-E(r)v(r)i/r, (2.20) 

where E(r') is the total electric field for the hypothetical forward problem, and G is the 

adjoint of G; that is 

G(r',r) = GV,r'), (2.21) 

where ^ denotes the transpose of the dyad. For this hypothetical problem, we have a similar 

equation as (2.18) 

P(r) = P°(r) + v(r)fc^jG(r,r')P(r')£/r'. (2.22) 
V 

Now substituting (2.20) into (2.17), interchanging orders of integration and using (2.21) gives 

dZ = -JE(r') • ifl»(r' )dr'+k~\ v(r)E(r) [jG(r,r') • dP(T)dr\lT 
r .1 (2.23) 

= -J E(r) • [dPir) - v(r)it-J G(r, r') • dP(r' )^/r'}/r. 
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The quantity in brackets is seen from (2.19) to be ^(r)cr(,E(r), thus (2.23) reduces to 

dZ = -J croE(r) • E(r)5v(r)rfr. (2.24) 

But by definition, 

dZ = J VZ(r)5u(r) Jr. (2.25) 

Then it is clear that the functional gradient of the impedance change is 

VZ(r) = -<ToE(r) - E (r). (2.26) 

The gradient of the mean square error of the impedance change can be easily derived 

if the total electric fields E(r) and E(r) are known. The solution of the total fields can be 

best done by using the volume integral method because the Green's function appears directly 

in the formulation of the volume integral equation, and the solution of the hypothetical 

forward problem can be done in the same fashion as the solution of the normal forward 

problem. 

Based on equation (2.26), a number of gradient based inversion methods can be used 

to restore the flaw conductivity distribution. These methods include the steepest descent 

algorithm, the conjugate gradient descent algorithm, and the Levenberg-Marquardt algorithm 

[27]. Various constraints can also be used to regularize the ill-conditioned inversion. 

However, the application of constraints cannot guarantee that the global minima can be 

found. Also, due to the long execution time needed to numerically solve the two forward 

problems in each iteration, this method is not very feasible for practical use. 
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CHAPTER 3. THE VOLUME INTEGRAL METHOD 

FOR EDDY CURRENT MODELING 

Introduction 

To develop signal and image processing techniques for two-dimensional eddy current 

inspection data, we must have a deep understanding of the underlying physical nature of eddy 

current measurements. Such an understanding not only gives insight on what techniques are 

appropriate for the eddy current problem, but also provides a basis for evaluating various 

processing techniques. The solution of the eddy current forward problem is also important 

for quantitative characterization of the shape and the size of the defect under investigation. 

The eddy current forward problem can be formally defined as the problem to predict the 

impedance change of a coil given the test geometry, the properties of the testpiece, the coil 

parameters, and the conductivity distribution in the flaw. Analytical solutions of the eddy 

current forward problem exist for simple test geometry and flaws with good symmetry 

properties. However, for flaws with irregular shapes in a complex geometry, an analytical 

solution usually is not available, so we must find a numerical solution. There have been 

several numerical models in the literature, e.g., the finite element method [7], the boundary 

element method [3,4], and the volume integral method [2, 5, 6]. Among these models, the 

volume integral method has shown good potential due to its capability of modeling a three-

dimensional flaw with arbitrary shape. It is also straightforward to apply the volume integral 

method if the Green's function of the given geometry is known. 
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In this chapter, we briefly review the volume integral method used in eddy current 

modeling. The volume integral method was originally used in geophysical induction studies 

and was introduced to the field of eddy current NDE by Dunbar [2]. The volume integral 

method transforms the governing diffiision equation of the eddy current problem to an 

integral equation, which is more suitable for numerical solution by using the Green's function 

for the given geometry. This volume integral equation can be discretized and transformed to 

a linear matrix equation which can be solved directiy. In this chapter the volume integral 

method in half space geometry and thin plate geometry is discussed. 

Given a test geometry and the conductivity distribution in the flaw volume, the eddy 

current modeling problem is to find the impedance change of a coil driven by sinusoidal 

current and placed above the metal testpiece. We can derive the governing diffusion equation 

for this problem starting from the Maxwell equations 

where E is the electric field intensity, B is the magnetic flux density, H is the magnetic field 

intensity, and J is the current density. In the frequency range of eddy current testing, the 

displacement current is very small, and thus can be neglected (quasistatic assumption). 

Taking the curl of (3.1) and substituting (3.2) into (3.1) by using the relation B = /x H, we 

have the following equation 

The Eddy Current Modeling Problem 

(3.1) 

VxH = J, (3.2) 
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VxVxE = -/i4^. (3.3) 
a t 

The current density in (3.3) contains two components 

J = J»+oE, (3.4) 

where J° is the current density due to the source coil, and the second term is the current 

induced by the total electric field, E. Notice that in Cartesian coordinates 

V x V x E  =  V ( V - E ) - V ^ E .  ( 3 . 5 )  

Since V • E = 0 in metal (assume piece-wise continuous conductivity distribution in the flaw 

volume), we combine (3.5) and (3.3) with an time dependence to give the governing 

differential equation as 

V^E-Y^E = i(OiJj°, (3.6) 

where 7' = icona. This is a diffusion equation, and the diffusive nature of eddy currents 

determines the resolution limit of eddy current testing. The source current density in this 

equation can be obtained from the incident field distribution. Analytical solutions exist for 

the incident field for an air-core coil above a half space or layered metal [28]. The 

fundamental problem of eddy current modeling is to solve equation (3.6) for the total field 

given the flaw conductivity distribution and the incident field. 

Having solved for the total field, the impedance change of the coil next to a 

nonmagnetic metal can be obtained from the following reciprocity formula [1] 

AZ = —^J<5<y(r')E°(r')-E(r')i/v', (3.7) 
^ V 
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where I is the current in the coil, ScrCr') is the conductivity change, and V is the flaw 

volume. This equation is particularly useful because it only requires the incident field and the 

total field to be evaluated within the flaw volume. It is not necessary to numerically compute 

the fields in the region of the coil. 

The Volume Integral Method 

In the following discussion of the volume integral method, we assume the geometry is 

either a half space of homogeneous metal or layered metal in which the flaw region is 

constrained within one layer. Consider a special solution of equation (3.6) when the current 

source is a point electric dipole placed in the layer containing the flaw 

V^GCr.r" )-/£u;fc7"oG(r,t' ) = ttu//5(r-r' )I, (3.8) 

where the solution of the above equation G(r, r") is the dyadic Green's function, 5(r - r') is 

the three-dimensional Dirac delta function, and I is the unit dyad. Given the Green's 

function for the test geometry, the solution of equation (3.6) can be expressed as a volume 

integral in the flaw region. To see this, rewrite equation (3.6) as 

V^E-icofi(JoE = i(0/i[J° + {(J-aQ)E], (3.9) 

where ioofKjQE has been subtracted from both sides of the equation. The term 

(<T — (To)E = SdE can be considered as an effective current dipole density at the source point 

due to the variation of the flaw conductivity from the host conductivity. We can combine 

equations (3.8) and (3.9), and express the total field as 
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E(r) = J G(r, r') • [ (r') + Sair' )E(r' )W 

= E°(r) + J&r(r')G(r,r')-E(r'Mv', 
V 

where E° (r) = JG(r, r') • J° (r' )dV. Given the Green's function and the incident field E°, 

we can solve equation (3.10) for the total field E. This is usually done by discretizing 

equation (3.10). The flaw volume is divided into N smaller volume elements within which 

the electric field can be assumed constant. After discretization, equation (3.10) becomes 

E°(r) = E(r) + £ J G(r, r" )5c,dv, • E,, (3.11) 
i=l V, 

which can be fiirther reduced to the following linear system 

E°=(I-C)E, (3.12) 

where E° is incident field, E is the total field, I is the identity matrix and C is a matrix 

derived fi-om the conductivity change and the integration of the Green's function in each 

element. 

After equation (3.12) is solved and the total field is found, we can use a discretized 

version of equation (3.7) to compute the impedance change 

N 

AZ = X5<^/E?-EiC?v,.. (3.13) 
1=1 

The Volume Integral Method for Half Space Geometry 

To solve the volume integral equation (equation (3.11)), we must find the incident 

electric field and the Green's function for a given test geometry. The complexity of the 
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solutions for the incident field and the Green's function is dependent on the symmetry of the 

test geometry. One simple, but yet very usefiil geometry, is the half space geometry in which 

the flaw is located in a homogeneous metal half space. A thick metal plate can be modeled 

by the half space geometry if the thickness of the plate is much larger than the skin depth at 

the test frequency. The skin depth is defined as 

Incident field 

To solve the eddy current forward problem using the volume integral method, we 

must find the incident field distribution for a given coil and test geometry. The incident field 

for a cylindrical air-core coil with rectangular cross-section placed above a homogeneous half 

space has been derived by Dodd and Deeds [28]. Their solution for the incident electric field 

is 

(3.14) 

(3.15) 

where 

(^2 ~ h  )('2 ''i) 

- jco/jNI 
(3.16) 

I ( a )  =  [ '  r J i  { 0 0 r ) d r ,  
*1 

(3.17) 

and 

a ' = - y / a -  +  j c o f i a  (3.18) 
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In the above equations r, is the coil inner radius, is the coil outer radius, /, is the liftoff of 

the coil, /2 is the distance between the metal surface and the coil upper surface, N is the 

number of turns of wire in the coil, I is the current in the coil, (O is the test frequency, and 

(T is the conductivity of the testpiece. 

Green's function 

To solve equation (3.11), we must also know the Green's function for the given test 

geometry. The Green's function for a homogeneous half space has been obtained analytically 

by Raiche and Coggon [29], and Beissner [30]. It includes two components, the primary or 

infinite medium component, and the secondary component which satisfies the boundary 

condition at the metal-air interface 

(3.19) 

where the primary Green's tensor is given by 

-(l + j« + y^R=)5^ , 

(3.20) 

where cr is the host conductivity, 7 = ^ jcoiiG , i , j  e [x,y,z} , 5^ is the Kronecker delta 

function, andR  = - J i x - x ' ) ~  + ( y -  y ' ) ~  + ( z - z ' ) ~ .  From equation (3.20) it is clear that the 

primary Green's function is singular at r = r'. 

The nine terms of the secondary Green's function G,y are given by 
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4;roG^ = 
2ix-x'f 1 (JC-JC')" , 

(3.21) 

47toG^ = 2 
2 H i  

- H ,  (3.22) 

—  e  -)C 
4;roG^ =-^(x-x')a + z')(3 + 3iC + 72Q2), 

i2 

Go ^ /^O 
yx ~ xy » 

4;roGj,= 
2(>;-y)- 1 

H ,  
( y - y y  

• H . - y - H ^ ,  

(3.23) 

(3.24) 

(3.25) 

— e -jC 
4;roG^ =-^(y-y)(2 + z')(3 + 3)i2 + r'!2'). (3.26) 

/^S 
- ' ^ X Z '  

Go .J ?y =~^yz' 

(3.27) 

(3.28) 

— e -)C 
AkoGi. = , 

g3 (3  +  3^ + 7-(2^ (1  + + 7"G" ) (3.29) 

where r  =  y j ( x - x ' ) -  + ( y - y ' ) ^  ,  Q  =  ̂ j ( x - x ' ) '  + i y - y ' ) -  + ( z  +  z ' ) ^  , and 

(3.30) 

«2=j;A= r 
2- -

V Vj 
(3.31) 

'  V -
(3.32) 
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are functions of y and (z + z'), where v = + /" . The secondary Green's function is 

singular at z + z'=0. 

The Volume Integral Method for Thin Plate Geometry 

The half space geometry is appropriate for modeling surface breaking cracks or other 

near-surface flaws in a plate thick enough so that the second metal-air interface can be 

neglected, because in this case the diffusive fields cannot penetrate deep enough to the 

second surface. However, to model an OD crack on a steam generator tube, the half space 

geometry cannot be used. This is due to the test frequency usually being selected to make the 

skin depth comparable to the tube wall thickness so that the signal from an OD crack can be 

picked up by the coil. The direct modeling of the tube geometry is difficult because of lack 

of symmetry in the geometry. When the size of the coil is small compared to the tube, the 

tube internal surface near the coil is flat enough so that we can treat it as an infinite flat, thin 

plate. The thin plate geometry is also useful for many other applications of eddy current 

testing, e.g., the testing of hidden corrosion in lap-joints of aircraft. 

Incident field 

The incident field for a cyUndrical air-core coil with rectangular cross-section placed 

above an infinite flat thin plate can also be derived from Dodd and Deeds' results in [28]. 

The expression for the incident electric field is 
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.  T O O  / ( a ) y , ( o c r ) ( e ~ ' ^ ' +  
E\,z) = T\ ! p 4 Kla, (3.33) 

a [ ( a  +  a ' f - ( a ' - a ) e  - ° " ]  

where T ,  1 ( a ) ,  a '  are given in equations (3.16), (3.17) and (3.18), and H  is the thickness 

of the plate. 

Equation (3.33) reduces to equation (3.15) if we replace H  with +oo in (3.33). 

Apparently the half space geometry is a special case of the thin plate geometry when the plate 

thickness is infinite. 

Green's function 

The Green's function for the thin plate case is more complicated than the Green's 

function for the half space geometry due to reflection terms between the two metal-air 

interfaces of the thin plate. Weaver [31] derived the Green's function for the geometry 

containing two homogeneous layers, and the thin plate geometry is a special case of the two-

layer geometry. The Green's function for the thin plate geometry is based on the solution of 

two differential equations: the solution when the source is a vertical dipole and the solution 

when the source is a horizontal dipole. For the vertical dipole, the solution for the thin plate 

case can be derived by combining all the reflection terms of the Green's function for the half 

space geometry 

=  J , [ G ^ i x - x \ y - y ' , z - z ' + 2 n H )  +  G ' ^ ( x - x ' , y - \ z  +  z ' + 2 n H ) ] ,  (3.34) 

where and are terms of the primary Green's function and the secondary Green's 

function for the half space geometry, respectively. Similarly, 
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+<» 

=  ^ [ G ^ { x - x \ y - y \ z - z ' + 2 n H )  +  G l i x - x \ y - , z  +  z ' + l n H ) \  (3.35) 

and 

G % = ' ^ [ G ^ { x - x \ y - y \ z -  z ' + 2 n H )  +  G % { x - x ' ,  y - , z  +  z ' + 2 n H ) \  (3.36) 

The solution for the horizontal dipole can be considered as the combination of two 

terms: the term for the Green's function in the half space geometry and an additional term 

G|'=G| + G,J, (3.37) 

where i e {x, y,z\, j e , G° is the term for the Green's function in the half space 

geometry, and G,y is the additional term. The detail expressions for the additional terms can 

be found in Reference [31]. The computations of these additional terms require evaluations 

of integrations involving the zero order and the first order Bessel fiinctions of the first kind. 
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CHAPTER 4. IMPLEMENTATION OF THE 

VOLUME INTEGRAL METHOD 

Introduction 

In the last chapter we discussed the volume integral method for the eddy current 

forward modeling problem. We also discussed analytical solutions of the incident fields and 

the Green's functions for half space geometry and thin plate geometry. The material 

discussed in the last chapter is the fundamentals for the implementation of the volume 

integral method. However, the content covered in the last chapter is not self-sufficient for an 

efficient and reliable implementation of the volume integral method. To actually implement 

the volume integral method, several problems must be carefully studied. One of the more 

important problems is how to accurately compute integrations involving Bessel functions. 

Another important problem is how to compute the volume integral for the Green's function in 

each volume element. In both cases, the integrations may not be stable due to the singular 

nature of the Bessel functions and the Green's function. In each step of the calculation we 

must find a computation method that is numerically tractable and efficient. In this chapter we 

discuss the problems associated with a practical implementation of the volume integral 

method. To start, we summarize the major steps of the volume integral method as follows: 

1. Compute the incident field for a given test geometry and given coil parameters. 

2. Compute the Green's function for the test geometry. 
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3. Calculate the system matrix by computing the volume integral of the Green's function in 

each volume element. 

4. Invert the system matrix by LU decomposition. 

5. Solve for the total field by back substitution. 

6. Compute the impedance change by numerically integrating the impedance change volume 

To calculate the incident field (equation (3.15) or equation (3.33)), we need to 

compute integrations with the first order Bessei function (equations (3.15), (3.17) and (3.33)). 

Direct numerical integration of these formulas are computationally intensive and intractable 

due to the singular nature of the Bessei function. Instead of direct integration, we can 

formulate the integrations in the form of first order Hankel (Fourier-Bessel) transforms and 

use an algorithm for fast Hankel transform to compute the integrations. The n th order 

Hankel transform is defined as 

Comparing equations (3.15), (3.17) and (3.33) with equation (4.1), it is clear that these 

integrations are first order Hankel transforms. 

There are many fast algorithms for computing Hankel transforms [32-36]. In our 

implementation we use an algorithm [35, 36] which does not require direct computation of 

the first order Bessei function of the first kind. This algorithm is based on the fact that the 

integral. 

Computation of the Incident Field 

(4.1) 
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Hankel transform can be considered as a series combination of tlie Chebyshev transform and 

the Fourier transform 

//„(«) = rF{G„{/(r)}}, (4.2) 

where f{ } denotes the Fourier transform, and { } denotes the Chebyshev transform of 

order n, which is defined as [35] 

r- r \ f°°2r„(y/r)/(r)^r 

where 7^ (x) = cos(/icos~' (x)) is a Cheybshev polynomial of the first kind, order n. 

Based on equations (4.2) and (4.3), we can use die Simpson integration rule [37] to 

n u m e r i c a l l y  c o m p u t e  t h e  C h e b y s h e v  t r a n s f o r m  a f t e r  u s i n g  a  c h a n g e  o f  v a r i a b l e  s ~  =  r ~  -  y ~  

in (4.3) 

G„iy) = 2fj + (4.4) 

After the numerical integration for the Chebyshev transform is finished, a Fast Fourier 

Transform (FFT) is then performed on the result of the numerical integration to obtain the 

result of the Hankel transform. This method is computationally efficient and stable. Only a 

moderate number of integration data points are necessary for an accurate result. One limit of 

the method is that the number of integration data points must be a power of 2 so that it can be 

processed by the FFT algorithm. 

The incident field distribution for the half space geometry is computed using 

equations (3.15) - (3.18). The incident field distribution for the thin plate geometry is 

computed using equations (3.33) and (3.16) - (3.18). Notice that the incident field 



41 

expressions in equations (3.15) and (3.33) are two-dimensional functions of r  and z . 

Therefore, a two-dimensional table is used to store the result of incident field computation. 

A c c o r d i n g  t o  t h e  m o d e l i n g  p a r a m e t e r s ,  t h e  i n c i d e n t  f i e l d  i s  c o m p u t e d  f o r  c e r t a i n  r a n g e s  o f  r  

and z. The range for z is usually decided by the vertical extent of the flaw region. The 

range for r is usually given by a constant multiple of the radius of the flaw region. At a 

certain depth z, two Hankel transforms must be computed to obtain the radial incident field 

distribution. In later modeling steps, the stored incident field distribution is read fi-om the 

table and the vector electric field is transformed firom a cylindrical coordinate system to an 

Euclidean coordinate system. 

Computation of the Green's Function 

Half space geometry 

For half space geometry, the Green's function is comprised of two parts: the primary 

Green's function and the secondary Green's function. Computation of the primary Green's 

function for a given source point r' and a given field point r is straightforward by using 

equation (3.20). Computation of the secondary Green's function for a given source point r* 

and a given field point r is more compUcated since it involves integrations of Bessei 

functions (equations (3.30) - (3.32)). As shown by Raiche and Coggon [29], the Hankel 

transforms of equations (3.30) - (3.32) can be evaluated analytically. Details of the analytical 

integrations can be found in Reference [29]. The results of the analytical integrations require 

evaluations of the zero order and the first order modified Bessei functions of the first kind Iq , 

/,, and the second kind Kq, AT,. 
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The primary and secondary Green's function are computed using equations (3.20) -

(3.32) and the analytical integration results in Reference [29]. The modified Bessel functions 

Iq, , Kq, at, are approximated using power series expansions given in Reference [38], 

Since the primary Green's function is a function of x — x', y — y', and z — z', we compute it 

for various combinations of x — x', y-y', and z — z', and store the results in a three-

d i m e n s i o n a l  t a b l e .  D u e  t o  t h e  s e c o n d a r y  G r e e n ' s  f u n c t i o n  b e i n g  a  f u n c t i o n  o f  x  —  x ' ,  y  —  y ' ,  

and z + z', we compute it for various combinations of x-x', y-y', and z + z', and store the 

results in a three-dimensional table for later use. 

Thin plate geometry 

Computations for the Green's function in the thin plate geometry are more 

complicated. For a vertical dipole, we need to compute the summations in equations (3.34) -

(3.36) based on our results for the Green's function in half space geometry. Apparentiy the 

infinite summations in equations (3.34) - (3.36) are not feasible. For any practical 

implementation, we can only use finite sunmiations to approximate the infinite summations. 

The question is how to select a finite set of terms in the infinite summations to generate an 

accurate approximation, while minimizing the cost of computation. The answer to the 

question is based on the nature of eddy currents: the reflection terms in equations (3.34) -

(3.36) decrease exponentially with n. The rate of decrease is defined by the skin depth at the 

test frequency. Therefore, by examining the values of the skin depth and the plate thickness 

we can find a number N, such that when n> N or n< -N the reflection terms are 
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practically zero. Only the reflection terms between - N and N are used in the approximate 

finite summations. 

For a horizontal dipole, the Green' function in the thin plate geometry is a 

combination of the Green's function in the half space geometry and an additional term 

(equation (3.37)). The additional term involves integrations with the zero order and the first 

order Bessel functions of the first kind. Following the approach used for the incident field 

computation, these integrations are also computed using the fast algorithm for zero order and 

first order Hankel transforms. 

Computation of the System Matrix 

Computation of the system matrix requires evaluation of integrations of the Green's 

function in rectangular volume elements. For both half space geometry and thin plate 

geometry, the Green's function can be separated into two parts: the primary Green's function 

which is a function of x — x', y-y\ and z - z', and the secondary Green's function which is 

a function of x-x\ y-y', and z + z'. Due to the complexity of the secondary Green's 

function, its integration can only be performed numerically. The numerical integrations for 

the secondary Green's function are computed by using Gauss-Legendre quadrature [37]. The 

Legendre polynomial of order n is defined as 
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The abscissas x,, x,, • • •, J!:„ in Gauss-Legendre quadrature are zeros of the Legendre 

polynomial 

P „ ( X i ) = 0 ,  i  =  (4.6) 

The corresponding weights are given by 

2(1-X,.)-

To compute the abscissas and the weights, we need to find the zeros of the Legendre 

polynomial of order n. This is equivalent to solving a nonlinear equation which can usually 

be done by using the Newton's method. Details on numerical integrations with Gauss-

Legendre quadrature can be found in Reference [37]. 

The volume integrals for the primary Green's function need more consideration 

because the primary Green's function is singular at r = r'. For the singular element (the 

volume element contains the point r = r'), we carmot use a numerical integration to compute 

the volume integral because it will lead to divergence. To make the integration for the 

singular element accurate, we must analytically integrate the singular part of the primary 

Green's function. Our approach is to use a Taylor series expansion of the primary Green's 

function to separate the singular part and the non-singular part. First we notice that 

y - R -
+ (4.8) 
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Substituting equation (4.8) into equation (3.20), we see tiiat only the first and ttiird terms in 

equation (4.8) result in singular terms. Therefore, we can separate the primary Green's 

fiinction into two parts 

4KoGij =4KaGij'  +4KOGf, (4-9) 

where 

^ 3 2  V I  .,2 y 
4noGij = - y  Si j  

^dndrj 

1 Y 
R 2 

(4.10) 

contains singular terms in the primary Green's function, and G/f contains non-singular terms 

in the primary Green's function. For the non-singular terms, we can numerically integrate 

them using Gauss-Lengendre quadrature. For the singular terms in equation (4.10), we must 

integrate them into a rectangular volume element analytically. The analytical integrations 

associated with the term -7% — have been derived in Reference [6] as 
dTidrj 

jjj I   ̂ = /, ( x ,  y ,  z )  +  M y , Z , x )  +  / ,  (Z, JC, y )  + C, (4.11) 

- ^ x ~ + y  + z '  

where 

2 

f i ( x , y , z )  =  x y l o g i ^  +  y - + z '  +z)-—arctan—j=====, (4.12) 
^  x y ] x ~ + y ~ + z ~  

and 

JJJ ^ .smdxdydz = arctan . ^ +C, (4.13) 
^ [ x ~ + y - + z ' )  x ^ j x ' + y ' + z '  
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III n—' 2 2 = log( y ]x^ +y^ + Z ~  +z)  + C. (4.14) 
•yjx^ +y^ +Z^ 

We derived the analytical integrations associated with the term 
 ̂ d'-

[dr^drj 
•y% R as 

JJJ x^ + y^ + z^ dxdydz = xz logCy + yjx' +y^ +z') 
ax 

, (4.15) 
5  ~  -7 y z  

+  xy log ( z  +  ' \Jx  +y  + z") - x" arctan—j=^====^+C, 
xJx~  +y~  +z~  

n—2—2. , .  III •̂ ,4x-+ŷ +z-dxdydz = 2  ,  „ 2  Z'dx~+y  + z  

^ ' (4.16) 
X" + y ri ; 7 

+ — — l o g i z  +  y j x -  +  y -  + Z  ) + C. 

The analytical result for the integration JJJ-y/x^ + + z'dxdydz is not shown here because 

it is not singular and can be integrated numerically. 

Solution of the Linear System 

After the incident field is computed and the system matrix is obtained, we can form a 

system of linear equations as shown in equation (3.12). The vector containing the incident 

field is obtained by numerically integrating the incident field within each rectangular volume 

element. The solution of equation (3.12) is usually done by using LU decomposition with 

Gauss-Jordon elimination [37]. A square matrix A can be decomposed into a lower-

triangular matrix L and an upper-triangular matrix U if it is not singular 

A = LU. (4.17) 
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The Gauss-Jordon elimination algorithm for LU decomposition iteratively performs row 

operations to transform the original matrix into an upper-triangular matrix, while the lower-

triangular matrix is defined by the coefficients of the row operations. 

To improve numerical stability, an operation called pivoting is usually used in the 

Gauss-Jordon elimination. The pivoting operation finds the number with the largest absolute 

value in the current column of elimination and exchanges the current row with the row 

containing the largest pivot. By performing pivoting, ±e numbers used in the elimination are 

divided by the largest number available. This avoids divisions of small numbers which may 

lead to erratic results due to the limited accuracy of any practical computing device. 

Due to all quantities in equation (3.12) being complex numbers, a complex version of 

LU decomposition must be used. The complex version of the LU decomposition algorithm is 

basically the same as the real value LU decomposition algorithm presented in Reference [37] 

except all real operations are replaced with complex operations. 

Since many elements in the system matrix are very small, the system matrix can be 

considered a sparse matrix. Based on the sparse nature of the system matrix, we can use a 

sparse matrix implementation of the LU decomposition algorithm to reduce the 

computational complexity of inverting the matrix. The sparse matrix LU algorithm is based 

on a single Unk list data structure. Each row of the sparse matrix is stored in one single link 

list. The sparse matrix LU algorithm not only reduces the computations involved in matrix 

inversion, but also greatly reduces the memory requirement. 



48 

Computation of the Impedance Change 

After the system matrix is inverted by the LU decomposition, we can compute the 

total field by using back substitution. Details on the back substitution algorithm can be found 

in Reference [37]. If pivoting is used in the Gauss-Jordon elimination algorithm, components 

in the incident field vector must be reordered according to the pivoting sequence to ensure a 

correct result. Corresponding to the sparse matrix LU decomposition algorithm, we have 

implemented a sparse matrix back substitution algorithm which is also based on the single 

link list data structure. After the total field is solved for every volume element, the 

impedance change of the coil can be obtained using equation (3.13). This process is usually 

repeated for different offsets between the coil center and the flaw center. The number of 

offsets and the stepsizes are defined by the scan plan used in the modeling program. 
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chapter 5. wavelet expansion in 

the volume integral method 

Introduction 

In the last two chapters we discussed the theory and the implementation of the volume 

integral method in half space geometry and thin plate geometry. Although the volume 

integral method is capable of modeling three-dimensional flaws, the computation involved in 

modeUng large three-dimensional flaws is usually far beyond what can be achieved by 

conventional computing sources because a large number of volume elements must be used. 

If the number of volume elements is , the memory requirement for storing the system 

matrix is proportional to , and the number of operations required to invert the system 

matrix is on the order of . Also, the accuracy of the method is related to the size of the 

volume elements. In metal the electric field change is closely related to the skin depth; thus 

it is necessary for the dimension of each volume element to be much smaller than the skin 

depth to accurately model the field distribution. For a large three-dimensional flaw (in units 

of skin depth), the number of elements required will be on the order of thousands. Such a 

large number of elements causes a very high, sometimes almost unattainable computational 

requirement for the computing resource. Therefore, to apply the volume integral method to 

large flaws, we must find a way to reduce the computational complexity. 

In this chapter we apply a wavelet expansion to the volume integral method to reduce 

the computational complexity of the method. Part of the content in this chapter has been 
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presented in Reference [39] and [40]. Results from the wavelet method have been compared 

with results from a layer approximation and experimental results [12]. In this chapter we 

give a comprehensive discussion of the wavelet expansion method, with both theoretical 

derivations and implementation details. Utilizing this method, a new linear system is 

obtained by using wavelet expansion in a Galerkin method to solve the governing volume 

integral equation. By using a proper threshold, a sparse system matrix can be generated 

which results in a large savings in execution time and memory requirements. 

To evaluate the performance of the wavelet method, we present several numerical 

examples with the Haar wavelet [41] and the Daubechies' compactly supported wavelet [42] 

with a periodic extension. The numerical examples show how the wavelets change the 

sparsity of the system matrix. We also observed an interesting relationship between the 

physical nature of the eddy current problem and the structure of the system matrix. To 

evaluate the accuracy lost in the process of the wavelet transform and threshold, we 

conducted an experiment on a simulated corrosion pit underneath a thin aluminum plate. The 

experimental results are compared with results given by the wavelet method. We observed 

that a very high compression rate can be achieved with only a small loss in accuracy. 

Introduction to Wavelet Theory 

Based on a rigorous mathematical foundation, wavelets and multiresolution analysis 

have been widely applied in many engineering disciplines such as signal processing, data 

compression and pattern recognition. The unique time-frequency (or spatial-wave number) 

localization property of wavelets provides a new tool with which we can form a 
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multiresolution view of the signal under investigation. We give a brief introduction to 

wavelet theory and multiresolution analysis, with some emphasis on the orthonormal wavelet 

basis and periodic wavelets. The discussion is limited to the fundamental theory and the 

aspects of wavelets that are essential for the completeness of the discussion in this chapter. 

For detailed discussion on wavelet theory, one may refer to the books of Chan [41], 

Daubechies [42], and Chui [43], and the papers by Vetterli [44], Heil and Walnut [45], and 

Mallat [46]. 

Wavelets and multiresolution analysis 

Wavelets are the families of basis functions which are derived from a common 

function - the mother wavelet that is represented by 

X (5.1) 
a  

where a  and b  are the scaling and translation indices, respectively. The above expression of 

a wavelet basis suggests a multigrid representation. Unlike other basis functions, such as the 

Fourier basis, the wavelet basis has two indices in both time and frequency domains. It is 

well known that, because Fourier basis functions are periodic functions, they are localized 

only in the frequency domain, but not in the time domain. The uncertainty principle imposes 

limits on the simultaneous localization in both time and frequency domains. Therefore, for 

any single basis function, we cannot localize it in both time and frequency domains. 

Although we still have to follow the uncertainty principle for a wavelet basis, we are able to 

localize some basis functions in the time domain and others in the frequency domain by 

selecting proper values of the scaling index and translation index for each basis function. 
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Therefore, we are able to form a multiresolution representation of the linear space under 

investigation by using a wavelet basis. 

The mathematical foundation of the construction of multiresolution analysis starts 

from the definition of the scaling function, which is also called the father wavelet. A 

function <l)(x) in L~{R) (finite energy function) is called a scaling function if it generates a 

nested sequence of subspaces 

{0}<—-czK., CVQCV, cz--^L-{R) (5.2) 

and satisfies the dilation equation 

<(>M = '^Ci.<p(ax-k), (5.3) 
k  

with {c^} being a finite energy sequence and a  being any rational number. A common 

selection is a = 2 , which is the case for octave scales, and the subspaces Vj are generated by 

( t>j ,k^x) = 2^'~4>{2^x-k).  Since, for any scale y,wehave , there exists a unique 

orthogonal complementary subspace Wj of Vj in This subspace Wj is called "wavelet 

subspace" and is generated by n r =  x - k ) , ' w h s x t  y / ^ x )  is the mother wavelet. 

Based on this relationship, the mother wavelet can be derived from the corresponding scaling 

function using 

y/(x) = '^i-l)''ci^i,(pi2x-k). (5.4) 
k  

The scaling function exhibits low-pass filter characteristics in the sense that 0(0) = 1 , 

where denotes the Fourier transform of function (j){x). On the other hand, the wavelet 

function exhibits band-pass filter characteristics in the sense that i/(0) = 0. Because any 
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subspace Vy+i is tiie direct sum of the subspaces Vj and Wj , it follows that Vj contains the 

low resolution components in and Wj contains the high resolution components 

in . Since [Vj} is a nested sequence ranging from the subspace with the lowest resolution 

to the subspace with the finest detail, we therefore have a multiresolution decomposition of 

l}{R) in which Vj contains the smoothed part at resolution level y,and Wj contains the 

detailed part at resolution level j .  A multiresolution decomposition of l } {R)  also possesses 

the property that any function inl}{R) can be approximated as closely as possible by a 

function that belongs to at least one of the subspaces Vj. 

Orthonormal wavelet basis 

The wavelets (Vyjt} form ^ orthonormal basis if 

= for all j , k , l ,meZ  (5.5) 

where </, g) is the inner product operation of functions/(x) and g(x) in Lr{R),  and is 

defined by 

+» 

</. ̂ ) = J f i x )g {x )dx ,  (5.6) 

Z is the set of integers and Sp^ is the Kronecker delta function. 

The significance of an orthonormal wavelet basis lies in the fact that it is a non-

redundant representation of the original signal. The construction of a multiresolution 
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decomposition of l } {R)  requires the subspaces {Wj }  be orthogonal to each other. Given any 

function /(x) in , we can approximate it by using the orthonormal wavelet basis 

j  k 

where c is a constant, and the expansion coefficients can be obtained by projecting 

/(x) onto the subspace expanded by and 

It is obvious that not every function that satisfies equation (5.3) can be used as the 

scaling function to construct an orthonormal wavelet basis. To construct an orthonormal 

wavelet basis, some additional conditions must be satisfied so that the form of scaling 

function is constrained. There are two fundamental conditions that define an orthonormal 

wavelet basis: the approximation condition and the orthogonality condition. The 

approximation condition comes from the question: To what degree p-l can the polynomials 

be reproduced exactly by the approximating functions, which, in our case, are 

the scaled and translated versions of the solution of equation (5.3)? If a polynomial of order 

p -1 can be approximated exactly, then the approximation error for an arbitrary function is of 

the order h ' ' ,  where h  is the grid separation. From approximation theory, we know that if (p  

has an approximation error  of  order  h ' ' ,  i t s  Fourier  t ransform $  must  have zeros  of  order  p  

at all points ^ = Irni, neZ (except at = 0) [42]. This gives us the following constraint on 

the recursion coefficients in equation (5.3), 

(5.7) 

aj,k ={fix),\ff  j^k^x)). (5.8) 
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5;(-l)^fc'"cfc=0, /n = 0,l,-,p-l. (5.9) 
k  

The orthogonality condition comes from the requirement that the wavelets defined in 

equation (5.4) must be orthogonal to each other. This gives another constraint on the 

recursion coefficients [42] of 

X (5.10) 
k  

The objective in constructing orthonormal wavelets is to satisfy conditions of 

equations (5.9)  and (5.10) .  The simplest  or thonormal  wavelet  is  the Haar  wavelet  with p  =  \ .  

The corresponding scaling function is the box function. Fig. 5.1 illustrates the Haar wavelet 

and the corresponding scaling function. The Haar wavelet has a very compact support - as 

small as the grid separation. This makes it the simplest wavelet that can be applied to 

function approximation and expansion. However, since it has /? = I, it is rather inefficient in 

approximating smooth functions. Another group of compactly supported orthonormal 

wavelets has been developed by Daubechies, which has an accuracy of p = 1,2,3, - • • and there 

are 2,4,6,-•• nonzero coefficients. Fig. 5.2 illustrates the Daubechies wavelet with p = 2 and 

the corresponding scaling function. The selection of p is a tradeoff resulting from the 

uncertainty principle: a large p gives better approximation of smooth functions as well as a 

larger support for the corresponding wavelet basis. In real applications a compromise must 

be made on p according to the nature of the problem under investigation. 
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(a) Haar wavelet 

1.00 -

0.00 

-0.50 0.00 0.50 1.00 1.50 

(b) The box function 

Fig. 5.1. Haar wavelet and its scaling function - the box function. 
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•1.00 0.00 1.00 2.00 
(a) The Daubechies compactly supported wavelet with p = 2 

1.00 -

0.00 

•1.00 

•1.00 0.00 1.00 2.00 

(b) The corresponding scaling function 

Fig. 5.2. The Daubechies compactly supported wavelet with p = 2 and its scaling 

function. 
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Periodic wavelets 

In the section above we discussed orthonormai wavelets on the real line. For the 

purpose of solving an integral equation in a bounded region, it is more convenient if we use 

wavelets that are periodic on the real line, as we will explain later. Given an orthonormai 

multiresolution analysis with scaling function 0(x) and wavelet i^(jc) on the real line, the 

periodic, orthonormai wavelets in [0,1] can be defined as [42] 

W = (5.11) 
neZ 

y^M^x) = ^\irj„(x + n) (5.12) 
neZ 

with 

= (5.13) 

\ l f  =  x-k)  (5.14) 

where j , k , n e Z .  It can be shown [42] that = 1 and y = 0,1,2, • • •, A: = I, • • •, 2-' -1} 

constitute a periodic, orthonormai basis in [0,1]. 

For any periodic function in l } (R)  [0,1], an approximation of this function can be 

defined as the projection at the resolution level j 

2'-l 
nx)^Pjnx)= X (5.15) 

it=0 

where is the inner product of f i x )  and in [0,1]. Pj  is called the projection 

operator onto the subspace Vf" '  -  the subspace formed by the linear combination of basis 

functions [<j)^'[ix)\keZ}. Since 0^^;^(-c) has a typical length scale of 2"-' , V/"" can be 
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referred to as the subspace of all the functions that have no detail with length scales smaller 

than 2~-'. Therefore, the subspace is a subset of the subspace Vf"'. According to 

wavelet theory, every function in L~(_R)[0,1] can be approximated to arbitrary resolution by 

i t s  p ro jec t ion  in  Vf" '  and  the  pro jec t ion  wi l l  converge  to  the  o r ig ina l  func t ion  as  j  

approaches 

If the orthonormal wavelet and scaling function in equations (5.13) and (5.14) are 

compactly supported, the infinite summations in equations (5.11) and (5.12) reduce to finite 

summations. The periodic, orthogonal wavelet constructed from the Daubechies 

compactly supported wavelet with p = 2 on the real line is shown in Fig. 5.3. 

2.00 -| 

1.00 -

0.00 -

-1.00 -

-2.00 -

0.00 0.20 0.40 0.60 0.80 1.00 

Fig. 5.3. The periodic wavelet basis constructed from the Daubechies 

compactly supported wavelet with p  =  2 .  
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Wavelet Expansion in the Solution of the Volume Integral Equation 

In this section we apply the wavelet basis discussed in the last section to the solution 

of the three-dimensional volume integral equation introduced in Chapter 3. Wavelets have 

been applied to the solutions of integral equations [47-49]. To simplify the mathematical 

derivation, we consider the one-dimensional case first and derive the new linear system 

equations by using the Galerkin method. Then we extend the result to the three-dimensional 

case. The discussion will be based on using the wavelet basis on the real line. The 

modification of the method when using periodic wavelets will also be considered. 

One-dimensional case 

Consider the following one-dimensional simplification of the problem defined in 

equation (3.10) 

where Q = [0, L] is the solution region which contains the flaw. The explicit boundary 

condition of equation (5.16b) is the result of using the wavelets on the real line, since some of 

the wavelet basis functions used for the expansion of the unknown total field E{x) in the 

solution region £2 do not vanish outside Q. Then we use the Galerkin method to approximate 

ECx) in Q with an orthonormal wavelet basis on the real line giving 

(5.16a) 

E(x) = 0, jc g Q, (5.16b) 

£"(Jc) = -^+X 
h ^.(i) 

(5.17) 
j=h  k=k , ( . j )  
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where QQ and aj^. are the expansion coefficients and VT is a normalization factor. The 

expansion of Eix) uses wavelets from resolution level y,, which corresponds to the lowest 

resolution component of £(jc), to the resolution level j2, which corresponds to the desired 

resolution for the solution. Notice that equation (5.17) is only satisfied when jc e £2. Letting 

P(J:) = ? (5.18) 
0  xgQ,  

we can express the total field on the real line as 

qPO 
VI 

_ h IhU) 
= (5.19) 

j=J \  k=K(J ' )  

To simplify the expression, we can combine the scaling index and translation index of 

the basis functions into one index. Let 

V.o(x) = -^ (5.20) 

and suppose the number of basis functions used in the summation of equation (5.19) is -1, 

the total field can be expressed as 

N-\ 

E{x) = Yj°i¥iMpix), (5.21) 
(=0 

where {a,}, {v/(^)} are derived from {cyi}, by combining the indices. Substituting 

equation (5.21) into equation (5.16a) gives 

A^-I  N- l  

E°(x) = '^aiy/i(x)pix) + j G{x,x')Saix')^ai\i/i{x')pix')dx'. (5.22) 
1=0 CI '=0 

Since Sa{x')  = 0 if x e Q , we can rewrite the right hand side of equation (5.22) as 
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N-l  N- l  

J]^a,-v/-,(x)p(x)+ ^a,<G(x,x')5CT(x'),v^,(x')>. (5.23) 
1=0 1=0 

Taking tlie inner product of both sides of equation (5.23) with y f  j { x ) ,  y = 0,1, • • •, -1 gives 

N-l  N- l  

{E° ix ) ,  y f j i x ) )  =  ̂a i { y / i i x )p (x ) ,  y r  j i x ) )  +  ̂ a i { {G{x ,x ' )S< j ix ' ) ,  y / i ( x ' ) ) ,  y / j ( x ) ) ,  (5.24) 
i=0 1=0 

j  = 0,1,- ,  N- l  

These Unear equations can be written in more compact form as 

N-l  

^ai iDi j+qj)  = bj ,  j  = 0,1,- ,  N- l  (5.25) 
1=0 

where bj = (£°(x), i{^j(x)) is the wavelet expansion coefficient of the incident field, 

Cjj ={{G(x,x')Sc(x'), v,(x')>, y/jix)) is the two-dimensional expansion coefficient of the 

function Gix,x')5a{x') ,  and Dy = Jy/i(x)yf  j (x)dx.  Given the Green's function for the test 
n 

geometry, the incident field distribution and the conductivity distribution in the flaw region, bj 

and C,y can be easily obtained by using the fast wavelet transform algorithm, and Dij is derived 

directly from the wavelet basis selected. 

Equation (5.25) is the general form of the linear system equations for the solution of 

equation (5.16a) after using an orthonormal wavelet basis on the real line. The reason why 

does not reduce to the Kronecker delta function is that the basis fiinctions {!//•, (x)} used to 

approximate the total field are not always orthogonal to each other in Q. Suppose the support 

of WiM is Si, and the support of y/jix) is Sj, then we have 
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if 5,n5yc£I (5.26) 

Therefore, if any part of the overlapped region of 5, and Sj are outside of Q, the value of 

must be calculated explicitly. This is another disadvantage of using wavelets on the real line in 

the solution of equation (5.16a) in a bounded region. A special case of equation (5.25) exists 

when we use the Haar wavelet to approximate the unknown total field. In this case, we are able 

to express the total field in by using basis functions all lying in Q because the Haar wavelet 

has a support as small as the grid separation, and D,y = 5,y because 5, c i2., / = 0,1, •••, /V -1. 

Therefore, in the case of the Haar basis, there is no problem at the boundary of the solution 

region and the boundary condition of equation (5.16b) is not necessary. However, since the 

Haar basis is not efficient in approximating smooth functions (p = 1), the resultant system 

matrix may not be as sparse as that from a smoother wavelet. 

Extension to the three-dimensional case 

The above result can be extended to the three-dimensional case by a similar, but 

somewhat lengthy derivation. The three-dimensional volume integral problem is given by 

We can construct an orthonormal basis for l}{R^) by using the tensor product 

functions generated by three one-dimensional orthonormal wavelet bases 

(5.27a) 
V 

E(r) = 0, r^V\ (5.27b) 

^ j^,kSy)v (5.28) 
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where the wavelets in x, 3* and z  directions are scaled independently. 

By a similar formulation and combination of indices as we used in the section above, 

we can express the total vector field as 

E(r) = X X %^ijk¥i-,j-.k^x,y,z)p^{x)py{y)p,(,z),  (5.29) 
,=0 y=o i=o 

where is the vector expansion coefficient for the three-dimensional total vector field 

E(r). 

Substituting equation (5.29) into equation (5.27a) and using the same procedure as in 

the section above, we can obtain the linear system equations for the three-dimensional case as 

X X -(Dyi/mn +C/yW/mi) = b/,^ (5.30) 
/=o  y=o  k=Q 

/ = 0,1, •••, -1, m = 0 , \ ,---,Ny- l ,  n = 0,l,---, 

where is the vector expansion coefficient for the incident vector field, Cijuimi is the 

expansion coefficient of the six-dimensional function G(r,r')5c7(r') and Dijiumn is a 3 by 3 

matrix with 9 identical elements, and each element can be expressed as 

dijidmn=l¥r,j-.k(x,y,z)\i/i.^„(.x,y,z)dv' (5.31) 
V 

Extension to the periodic wavelet case 

As seen before, using wavelets on the real line in the solution of integral equations 

like equation (5.16a) has two major disadvantages. First, the boundary condition of equation 

(5.16b) must be explicitly enforced. This is a very undesirable requirement in applying this 
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method since the total field generally does not vanish outside the flaw region. To satisfy 

(5.16b), we must enlarge the solution region Q so that outside the total field is very small 

and can be neglected. This may result in a solution region which is much larger than the flaw 

region, and thus reduce the usefulness of this method. Another major disadvantage is that 

because some of the wavelet basis fiinctions used to approximate the total field are not 

orthogonal in the solution region, the term does not reduce to delta functions and must be 

calculated before the solution of equation (5.25). These disadvantages arise from the fact that 

wavelet basis functions on the real line used to approximate the total field do not form an 

orthogonal set in the solution region £2. The periodic wavelet introduced in the last section, 

on the other hand, can be used to avoid these difficulties because it can be made orthonormai 

in a bounded region £2. Using an orthonormai, periodic wavelet basis (x)j defined in 

Q = [0, L], we can expand the total field in Q as 

by combining indices. Notice that the right hand side of equation (5.32) denotes a periodic 

function with a period equal to L and whose value is equal to the total field in region Q. 

Substituting equation (5.32) into equation (5.16a), we have 

£(x)=5]a,v/'r(jc), xefi (5.32) 
1=0 

(5.33) 
1=0 n 1=0 

Projecting both sides of equation (5.33) into the subspaces expanded by 

i/^"'(j:), y = 0,1, •••, -1, we have the following equations 
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AT-l N-l 
J E\x)w^'\x)dx = J J G{x,x')5a{x '^r(<^')wTix)dx'dx,  (5.34) 
Q 1=0 1=0 nn 

which can be rewritten in the form of a matrix equation 

N-\ 

^aii5i j+qj)  = bj ,  j  = 0, l , - ,N-l  (5.35) 
i=0 

where bj are the periodic wavelet expansion coefficients of the incident field and Cij are the 

periodic wavelet expansion coefficients of Gix,x')6a(x'). The use of periodic wavelets in 

the solution of equation (5.16a) gives a group of well formed linear equations: all coefficients 

in equation (5.35) can be obtained by using the fast wavelet transform algorithm of Mallat 

[46]. Also, since the boundary condition equation (5.16b) is not necessary, we can use a 

solution region which has the same size as the flaw region. 

Despite its advantage over the wavelet on the real line, a potential disadvantage of 

using periodic wavelets exists due to the fact that the periodizadon of the total field may 

introduce an edge effect. Since the values of the total field at the two ends of the solution 

region generally are not equal, there are discontinuous points at the boundaries of each 

period. This discontinuity introduces some large expansion coefficients for the total field and 

makes the system matrix less sparse. However, experience has shown that this edge effect 

generally does not have a large influence on the overall perforaiance of the wavelet method. 
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Numerical Results and Comparison with Experimental Results 

To evaluate the validity and performance of the wavelet method, we implemented the 

method and used the problem of hidden corrosion in an aluminum plate as a test case. In this 

section, we first describe the experimental setup for the model problem used as the test case 

for the wavelet method. Then we give some implementation considerations of the wavelet 

method. We also give the numerical results obtained by using the Haar wavelet and the 

periodic wavelet constructed from the Daubechies compactly supported wavelets with p = 2, 

and compare the results from the wavelet method with the experimental result. The 

experimental results presented in this chapter were obtained by John Moulder of the center 

for NDE at Iowa State University. 

The experiment 

The test case is to determine the change in the impedance of a right-cylindrical air-

core coil next to a aluminum plate that contains a right-cylindrical flat-bottom hole on the 

side opposite the coil. The half space below the coil can be considered as a two layer 

structure, where the first layer is the aluminum plate and the second layer is vacuum. A 

schematic drawing of the test is shown in Fig. 5.4. In the experiment, the impedance change 

of a precision wound coil of copper wire was measured at 20 frequencies, equally-spaced 

between 2.5 kHz and 50 kHz, with an HP 4194A impedance analyzer. Scans were repeated 

five times and the results averaged to produce the results reported herein. Measurements of 

the coil impedance were made as a function of frequency and position with respect to the 

center of the flat-bottom hole. 
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< 5.63 mm >| Eddy Current Probe 

mm 

Layer 2 (Vacuum) 

Fig. 5.4. Schematic drawing of the eddy current test problem of a flat bottom hole on 
the bottom side of a thin aluminum plate. 

The coil has a right-cylindrical cross-section and consisted of 504 turns of copper 

wire wound on an insulating nonmagnetic core. The inner radius of the coil is 3.8 mm, the 

outer radius is 5.63 mm, and the height of the coil is 2.42 mm. The liftoff is 0.23 mm. 

The test sample consists of a thin flat plate of 2024 aluminum alloy. The dimensions 

of the plate are 75 mm x 125 mm x 1.02 mm. A nominally right-cylindrical hole was drilled 

on the side of the plate opposite the coil. The diameter of the hole is 6.30 mm and the depth 

ranged between 0.28 mm at the center to 0.27 mm at the edge. This flaw is relatively large 

compared with the skin depth in the test frequency range and direct modeling by the volume 

integral method is not feasible due to the large computational resource requirement. 

Implementation of the wavelet method 

The modeling problem described above can be considered as the problem of 

determining the impedance change of the coil caused by a flaw in an infinite flat metal plate 

because the aluminum plate is very thin and the flaw is not close to the edges of the plate. 

Therefore, the problem is modeled using the thin plate geometry. The fast wavelet transform 
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algorithm used in our implementation is Mallat's pyramid algorithm for an orthonormal 

wavelet basis. It is worth mentioning that all the electric field quantities in the 

implementation are vectors with complex values. The wavelet transform of a complex 

function is obtained by transforming the real and imaginary parts independently and then 

combining the results. Also, to obtain and in equation (5.30), multi-dimensional 

wavelet transfonns must be used. Based on the approach we used to define the three-

dimensional wavelets in equation (5.28), the multi-dimensional wavelet transform can be 

obtained by transforming the data in each dimension sequentially, and the result is not 

dependent on the order of the dimensions used in the transforms. This is exactly the same as 

for the multi-dimensional Fourier transform. 

There exists another problem with the storage of the system matrix in the 

implementation of the wavelet method. The system matrix is the six-dimensional wavelet 

transform of the product of the Green's function and the conductivity distribution. The 

problem is how to compute the wavelet transform of the system matrix without fully storing 

it in the computer memory since this matrix could be very large when the number of volume 

elements used in modeling is sufficient for an accurate solution. To solve this problem, we 

utilized a property of Mallat's pyramid algorithm for the fast wavelet transform [46]. Notice 

that in the pyramid algorithm, the computation at any resolution level is solely based on the 

result of the immediately higher resolution level. Thus, we are able to compute a wavelet 

t rans form of  s ize  N f rom the  resu l t s  o f  wave le t  t r ans forms  wi th  a  smal le r  s ize  M i f  bo th  N 

and M are powers of 2. Based on this relationship, we can compute the wavelet transform of 

the whole system matrix in two steps. In the first step, we divide the system matrix into 
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many submatrices with identical sizes and compute the wavelet transform for each of them. 

The result is stored in a sparse matrix data structure. In the second step, the wavelet transform 

of the whole matrix is obtained by using the result of the first step. The result is then 

thresholded and stored back in the sparse matrix data structure. 

The steps used to implement the wavelet method are summarized as follows: 

1. Compute the incident field distribution by using Dodd and Deed's result [28]. See 

Chapter 4 for details. 

2. Compute the integral of the Green's function in each volume element. The Green's 

function for thin plate geometry is calculated by using the result of Weaver [31]. For 

singular elements, both analytical and numerical integrations are used to stabilize the 

result. For nonsingular elements, only numerical integration is used. Details on 

computing the Green's function for half space and thin plate geometry can be found in 

Chapter 4. 

3. Compute the wavelet transform of the system matrix by using the two-step algorithm 

mentioned above. Implementation details of the pyramid algorithm for computing 

wavelet transform can be found in Reference [37]. 

4. Invert the transformed system matrix by using the sparse matrix LU decomposition 

routine. 

5. Compute the wavelet transform of the incident field. 

6. Compute the wavelet coefficients of the total field by backsubstitution. 

7. Take the inverse wavelet transform to obtain the total field. 

8. Calculate the impedance change by using the reciprocity principle formula (3.13). 
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Comparison of the numerical result and the experimental result 

Based on the procedure discussed above, two numerical tests were performed for the 

test case. In the first numerical test, the aim was to compare the result obtained from the 

wavelet method by using the Haar basis and the periodic wavelet basis constructed from the 

Daubechies compactly supported wavelet with p = 2, which we will refer to as D AUB4P in 

later discussions for simplicity. In the first test, the test frequency was selected as 10 kHz, 

which corresponds to a skin depth of 1.17 mm in 2024 aluminum. The solution region was a 

rectangle with a length and a width equal to the diameter of the cylindrical flaw and a height 

equal to the height of the flaw. The solution region was modeled by 512 rectangular 

elements with 16 elements along each of the 2 horizontal directions and 2 elements in the 

vertical direction. In the first comparison, the system matrices were obtained by using a 

threshold of 0.005, which is relatively small, to ensure that a good result would be obtained. 

The matrix map for the sparse matrix obtained by using the Haar basis is shown in Fig. 5.5. 

After thresholding, only 4.36% of the total number of the matrix elements were nonzero 

elements. The matrix map for the sparse matrix obtained by using DAUB4P is shown in Fig. 

5.6. In this case, 5.05% of all the matrix elements were nonzero elements after thresholding. 

The matrix stmctures shown in Fig. 5.5 and Fig. 5.6 indicate some of the properties of the 

wavelet method. First, most nonzero elements are close to the diagonal of the matrix, which 

indicates that a large interaction exists between the basis functions with overlapped or 

adjacent supports. Second, many nonzero elements are located in the upper-left comer of the 

matrix where low resolution wavelets are located, and only a few are located in the bottom-

right comer where the high 
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Fig. 5.5. The system matrix map after transformation by using the Haar wavelet and 
thresholded using a value of 0.005. Black spots denote nonzero elements. 
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Fig. 5.6. The system matrix map after transformation by using DAUB4P and 
thresholded using a value of 0.005. Black spots denote nonzero element. 
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resolution wavelets are located. This implies that most interactions are between the low 

resolution components of the total field, and that the interactions between the two high 

resolution components that are not close to each other are very small. Third, the edge effect 

caused by periodization of the total field is obvious in Fig. 5.6, since there are many nonzero 

elements at the edges of the blocks at various resolutions. The impedance change results 

obtained by using the Haar basis and DAUB4P are compared with the experimental results in 

Fig. 5.7. The theoretical results are in good quantitative agreement with the experimental 

results. Also there is no significant difference between the result obtained using the Haar 

wavelet and the result obtained using the periodic wavelet in this case. 

To examine the effect of the threshold on the accuracy of the results, or in other 

words, to decide whether there is some range of the threshold within which the results remain 

almost unchanged, we recomputed the results for the numerical example above using a 

threshold of 0.05. The matrix map for the sparse matrix obtained by using the Haar basis is 

shown in Fig. 5.8. After thresholding, only 0.413% of the matrix elements were nonzero. 

The matrix map for the sparse matrix obtained by using the DAUB4P is shown in Fig. 5.9. 

In Fig. 5.9, only 0.254% of the matrix elements were nonzero after thresholding. One can see 

that after using a threshold of 0.05, most nonzero elements are on the diagonal of the system 

matrix. The impedance change results in this case are compared with the experimental 

results in Fig. 5.10. Although the threshold is ten times larger and the thresholded matrices 

are rather sparse, an overall correspondence between the theoretical results and the 

experimental result can still be observed. It can be seen from this example that the wavelet 

method does indeed have a good potential for reducing the redundancy of the problem. 
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Fig. 5.7. Comparison of experimental results and the results obtained by using the Haar 
wavelet and DAU64P with a threshold of 0.005. 
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Fig. 5.8. The system matrix map after transformation by using the Haar wavelet and 
thresholded using a value of 0.05. Black spots denote nonzero elements. 

Fig. 5.9. The system matrix map after transformation by using DAUB4P and 
thresholded using a value of 0.05. Black spots denote nonzero elements. 
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Fig. 5.10. Comparison of experimental results and the results obtained by using the 
Haar wavelet and DAUB4P with a threshold of 0.05. 
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The second numerical test was to examine the stability of the method over a relatively 

large frequency range. The theoretical impedance changes using DAUB4P and a threshold of 

0.005 were computed for the frequency range from 2.5 kHz to 50 kHz, with a stepsize of 2.5 

kHz, and for offsets from 0 mm to 8 mm, with a stepsize of 1 mm. The impedance change 

results as a function of frequency for offsets 0 mm, 4 mm and 8 mm are compared with the 

experimental results in Fig. 5.11. It is observed that the agreement between the results from 

the wavelet method and the experimental results are stable over this relatively large frequency 

range. 

Discussions 

In this chapter we have applied wavelet theory in the solution of the volume integral 

equation for the eddy current modeling problem. The new linear system equations after using 

the wavelet basis are obtained by applying a Galerkin method to the governing volume 

integral equation. The derivation is based on the result of the one-dimensional case, followed 

by the extension to the three-dimensional case and the extension to periodic wavelets. The 

wavelet method was tested using the problem of modeling hidden corrosion in a thin 

aluminum plate. Results obtained from both the Haar wavelet and the periodic wavelet 

constructed from the Daubechies compacdy supported wavelet were compared with 

experimental results. The numerical examples show that by using the wavelet expansion 

method, it is possible to reduce the computational complexity by one to two orders with small 

loss in accuracy. This makes the eddy-current modeling problem of large three-dimensional 

flaws solvable using modest computing resources. 
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Fig. 5.11. Comparison of experimental results and the results obtained by using 
DAUB4P and a threshold of 0.005 for the frequency range from 2.5 kHz to 50 kHz. 
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CHAPTER 6. FAST EDDY CURRENT FORWARD MODELS 

USING ARTIFICIAL NEURAL NETWORKS 

Introduction 

In the preceding chapters we have discussed the volume integral method for eddy 

current forward modeling and a wavelet expansion method used to reduce the computational 

complexity of the volume integral method. Although in some cases the wavelet method can 

reduce the execution time by a factor of ten or more, the resultant execution time is still much 

longer than what is acceptable in some applications. One important application which 

belongs to this category is the solution of the nonlinear eddy current image restoration 

problem in which a large number of forward solutions must be computed. Another 

application is fast eddy current forward models for educational purpose in which the user 

would like to generate the modeling results for many forward problems in a short time. 

In this chapter we apply artificial neural networks to the eddy current modeling 

problem in order to reduce the execution time of the forward model [50]. Our method is 

based on a two-dimensional imaging model in which an eddy current probe is considered as a 

black box transforming a flaw conductivity change image to a complex impedance change 

image. The nonlinear mapping from the flaw image to the impedance change image can be 

learned by using neural networks based on a training data set. After the learning process of 

the neural networks is finished, they can be used to generate outputs for new inputs. 

There are two major reasons to use a neural network forward model. First, the 

computational complexity of most numerical models is O(N^), compared with 0{N^) for 
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the forward computation of most neural networks, where N is the number of elements used 

in the forward model. This order of difference is significant when N is large. Second, the 

training data set for the neural network model can be obtained either theoretically or 

experimentally, which makes the neural network forward model capable of modeling 

complex geometry in which numerical models are hard to apply, but experimental 

measurements are still feasible. 

The structure of the neural network eddy current forward model is shown in Fig. 6.1. 

The flaw image in Fig. 6.1 represents the two-dimensional conductivity change distribution 

of the flaw. If only cracks and voids are considered, a binary image can be used for the flaw 

image to reduce the complexity of the forward model. To reduce the size of the input image, 

i.e., to reduce the number of input features of the neural network, we use a two-dimensional 

Haar transform to capture the major characteristics of the flaw image. The inputs to the 

neural network are the thresholded Haar transform coefficients of the flaw image. The Haar 

Real 

Neural 
Network 
(MLP or 
RBF) 

Haar 
Transform 
and Data 
Compression 

Inverse 

Imaginary 

Impedance Change 
Image 

Fig. 6.1. Diagram of the neural network eddy current forward model. 
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transform is a wavelet transform with the mother wavelet being the Haar wavelet. The 

multiresolution decomposition capability of the Haar transform makes it easy to separate the 

major features of the flaw image from less important details of the flaw image. To reduce the 

dimensionality of the output space, we use the low fi^quency components of the impedance 

change image in the Fourier domain as the outputs of the neural network. The complex 

impedance change image is then obtained by applying the inverse FFT to the neural network 

outputs. The validity of this compression approach comes from the fact that the impedance 

change image is usually smooth due to the diffusive nature of eddy current. 

Multilayer Perceptron 

The multilayer perceptron (MLP) is one of the most widely used neural network 

models. A comprehensive discussion on the multilayer perceptron can be found in Reference 

[51]. Here we simply review some of its fundamental features. A multilayer perceptron has 

an input layer of sensory nodes (source nodes), one or more hidden layers of computational 

nodes, and an output layer of computational nodes. Nodes in adjacent layers are connected 

by synaptic weights. By changing the synaptic weights, we can change the functional form of 

the perceptron, and thus it can be used to approximate an unknown function. The multilayer 

perceptron is a uniform approximator, which means it can be used to approximate any 

smooth function to arbitrary accuracy if enough hidden layer nodes are used. 

The forward computation of a multilayer perceptron is done on a layer-by-layer basis. 

First, for each hidden layer node or output layer node, an activation level is computed as 
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(n) = X wf («)>/' " (n), (6.1) 
j=0 

where («) is the activation level of node j  in layer I  at the time instant n ,  ( n )  is 

the  synaptic weight between node J in layer / and node i in layer / — 1 at time instant n, 

(/z) is the output of node i  in layer / -1 at time instant n , and P  is the number of 

nodes in layer Z — 1. Apparendy the activation level is the result of the innerproduct 

operation between the input vector (the vector containing all output values in layer / — 1) and 

the weight vector of node J in layer I. The output of a hidden layer node or an output layer 

node is a nonlinear function of its activation level, which is usually called sigmoidal 

nonlinearity. A particular form of the sigmoidal function is the logistic function 

y  ' (")  =  — T-ToTTT' (6.2) 
l + exp(-v)'(n)) 

which is a monotonic increasing function bounded in 0 to 1. 

The training of a multilayer perceptron is usually done by using the backpropagation 

learning algorithm. The backpropagation algorithm is a gradient based iterative algorithm in 

which the learning error is propagated backwards through the network. Accordingly, the 

synaptic weights of the output layer are updated first, and then the synaptic weights of the 

hidden layer next to the output layer, and so on. The synaptic weight update equation in the 

backpropagation algorithm is given by 

w f  ( n  +  l )  =  w f  (n) + 775)'^ (n), (6.3) 

where 77 is a learning rate parameter, and 5]'^ (n) is the local gradient for node j in layer I. 

For an output layer node, the local gradient is given by 
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(") = [dj (n) - Oj {n)]Oj (/z)[l - Oj (/z)], (6.4) 

where ( n )  is the desired output of output node J , and O j  ( n )  is the actual output of output 

node J, i.e., Oj (n) = (n). For a hidden layer node, the local gradient is given by 

Sj'^(n) = (6.5) 
k  

Equation (6.5) indicates that the local gradient for node j  in layer I  is related to the local 

gradients and synaptic weights for all nodes in layer / +1. Therefore, it can be computed 

only after the local gradients in the next layer have been computed. Consequently, the 

computation of the backpropagation algorithm is also on a layer-by-layer basis, starting from 

the output layer. 

One major disadvantage of the backpropagation algorithm is that it is slow in 

convergence, especially for large-scale problems. The slow convergence is a result of using 

the gradient based weight update formula since gradient based methods tend to stick to local 

minima [52]. To improve the convergence performance of the original backpropagation 

algorithm, we have used several modifications such as adding a momentum term, using an 

asymmetric sigmoidal function like hyperbolic tangent instead of a logistic function, and 

applied the Delta-Bar-Delta learning rule [51] to adaptively control the learning rate for faster 

convergence. Our experience has shown that these modifications, especially the Delta-Bar-

Delta learning rule, can significantly improve the convergence speed of backpropagation. 

However, due to its inherent local optimization property, the learning of the backpropagation 

algorithm is still too slow for problems like the eddy current forward modeling. Our 
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experience has shown that the learning time becomes impractical even when the training data 

set only contains several examples. 

Radial Basis Function Neural Networks 

The radial basis function (RBF) neural network is another important class of 

feedforward layered neural networks. Theories and applications of the RBF networks can be 

found in References [53-60]. An RBF network has one input layer, one hidden layer and one 

output layer. The nonlinearity of an RBF network is implemented in the hidden layer. The 

output layer of an RBF network is a linear layer, compared with the nonlinear output layer in 

a multilayer perceptron. The major application of an RBF network is functional 

approximation [57], i.e., to approximate an unknown function given the values of the 

function on some sample data points. This approximation problem is ill-posed because much 

of the information of the function is not available so there are many possible solutions. To 

deal with the ill-posedness of the approximation problem, regularization schemes must be 

applied to incorporate a priori information in the solution. The RBF network can be thought 

of as one solution of this regularization problem. It is also a uniform approximator. 

The output of a hidden layer node in an RBF network is given by 

«.,(X)=«J|X-C,||). (6.6) 

where X is the input vector, g  (|--|i) is a radial basis function, and Cj is the center vector of 

the radial basis function. Usually the norm used in equation (6.6) is the 2-norm, or the 

Euclidean distance. There are many possible forms for the radial basis function g. 

However, the most widely used is the multivariate Gaussian 
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G,(X) = exp -|(X-Cj)Z,-^(X-Ci) , (6.7) 

where Cj is the center of the Gaussian function, and Z, is the covariance matrix of the 

multivariate Gaussian fimction. It is clear that Cj determines the location of the Gaussian 

function and Z, determines the shape of the Gaussian function. 

As mentioned above, the output y j  of node j  in the output layer is a linear 

combination of the outputs in the hidden layer 

where Wj^ is the linear weight connecting node j  in the output layer and node i  in the 

hidden layer. 

The training of the RBF network finds the optimal values for C;, S,, w- so as to 

minimize the learning error. In general, a nonlinear optimization algorithm must be used for 

the training of the hidden layer parameters, and a linear optimization algorithm must be used 

for the output layer parameters. In the literature, there are various learning algorithms [51, 

58, 61, 62] proposed for the RBF network in different applications. For our particular 

problem, we considered two cases: 

Case 1 - small number of training samples 

In this case, we can simply use the training sample inputs as the centers for the radial 

basis functions, i.e.. 

(6.8) 

Ci=Xi, / = 1,-,M, (6.9) 
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where Xj are the input vectors of the training samples, and M is the number of training 

samples. The shape of the multivariate Gaussian function is decided by a diagonal 

covariance matrix 

i: = diag{Gl,al,--,ol\ (6.10) 

d  
where N  is the number of inputs, a,- = / = 1, •••, iV, and d  is the maximum 

distance between the centers of the Gaussian functions. In this case, the equal potential 

surface of each multivariate Gaussian function is a hypersphere. To decide the optimal 

output layer weights, we need to solve 

Y = GW, (6.11) 

where Y is a matrix containing the desired outputs given by the training samples, G is a 

matrix containing hidden layer outputs, and W is the matrix containing output layer weights. 

Since in this case the number of hidden layer nodes is equal to the number of training 

samples, equation (6.11) is well-defined (equal number of equations and unknowns) and can 

be solved directly by 

W = G"^Y, (6.12) 

where the matrix inversion can be done by using LU decomposition and back substitution. 

Case 2 - large number of training samples 

In this case, we cannot use training sample inputs as centers for RBFs because this 

will lead to a network with a large number of hidden layer nodes which is slow and difficult 

t o  t r a i n .  T o  r e d u c e  t h e  n u m b e r  o f  c e n t e r s ,  w e  u s e  t h e  K - M e a n  a l g o r i t h m  [ 5 1 ]  t o  f i n d  K  
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cluster centers in M  training samples with K  much smaller than M . For the K  

multivariate Gaussian functions, the diagonal covariance of equation (6.10) can still be used. 

is the maximum distance between the RBF centers in the i  th dimension. As a result of 

equation (6.13), the equal potential surface of each multivariate Gaussian function becomes a 

hyperellipse. In this case, the optimal output layer weights cannot be computed directly, 

because now there are more equations than unknowns in equation (6.11) so that the problem 

is overdetermined. We can use a Least Mean Square (LMS) algorithm to iteratively compute 

the optimal output layer weights [51] 

where Wj^ is the weight between output layer node j  and hidden layer node i , is the 

desired output of output layer node j, Oj is the actual output of the output layer node y , g, 

is the output of the hidden layer node i, and 77 is a learning rate parameter. A disadvantage 

of equation (6.14) is that it is much slower than the direct matrix inversion in equation (6.12). 

Therefore, in practice equation (6.12), the Case 1 algorithm, is more frequendy used. 

however, now we let C7,- = / = 1, • • •, iV, and 

max' 
J ,k  

(6.13) 

W j i  ( n  + 1 )  =  W j i  i n )  +  T ] ( y j  - O j  ) g ,  (6.14) 

Numerical Results 

To illustrate some properties of the neural network forward model, we numerically 

tested both the MLP and the RBF models. The first test was to examine the generalization 
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property of MLP. We used a short crack and a long crack, and the corresponding impedance 

change images as a training data set to train a three layer perceptron. After the learning 

process was finished, a crack with medium length was used to test the perceptron. The 

outputs of the neural network model were then compared with exact solutions obtained by 

using a volume integral model with wavelet expansion. The training data set and the test 

results for the first test are shown in Fig. 6.2. As can be seen in Fig. 6.2, the impedance 

change images given by the neural network model are rather close to the exact results, 

although some minor differences are still visible. 

(c) Im(Z) of (a) (d) Training sample 2 (a) Training sample 1 (b) Re(Z) of (a) 

(g) Test flaw (h) MLP output: Re(Z) (e)Re(Z)of(d) 

(i) MLP output: Im(Z) (j) Exact Re(Z) (k) Exact Im(Z) 

Fig. 6.2. Test results on the generalization capability of multilayer perceptron. 
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Although the test on the generalization property of MLP is rather satisfying, our 

experience indicates that it is not a practical method to our particular problem due to its 

extreme slow convergence speed. It is only useful when the number of training samples in 

the training data set is very small. On the other hand, our experience has shown that the 

learning process of the RBF network is faster even for a relatively large training data set. Fig. 

6.3 gives a training example of the neural network forward model based on an RBF net. In 

this training process, we used 36 slots with various length and width and 6 holes with various 

radius as training flaws. To find the impedance change images for the 42 flaws, we 

'V. 

m  

a « m  m  m  

m  m  m  

% i • m  m  

m  m  

(a) Training flaw images (b) Re(Z) images (c) Im(Z) images 

Fig. 6.3. Training example of the radial basis function neural network. 

used the volume integral method code. The computation of the 42 forward problems took 

about 10 hours of CPU time on a DEC 5000 workstation. Then we trained an RBF network 

using these 42 training samples. The learning process took about 45 seconds using the Case 

1 algorithm and it only took 30 seconds for the RBF forward model to regenerate the 42 

training samples. Compared with the 10 hours used by the numerical model, this is over one 
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thousand times of speed improvement. To test the generalization capability of this RBF 

forward model, we used an elliptical test flaw which was not used in the training data set. 

The output of the RBF forward model and the exact outputs are compared in Fig. 6.4. As can 

be seen in Fig. 6.4, it is very difficult visually to tell the difference between the ElBF outputs 

and the exact outputs from the images. Therefore, we made some quantitative comparisons. 

The normalized maximum error between the two results is 1.6%, and the normalized mean 

square error between the two results is only 0.32%. We judge this accuracy to be acceptable 

for most real world applications. 

(a) Test flaw (b) RBF Re(Z) (c) RBF Im(Z) (d) Exact Re(Z) (e) Exact Im(Z) 

Fig. 6.4. Test results of radial basis function neural network. 

Conclusions 

In this chapter we discussed how to use artificial neural networks to build fast eddy 

current forward models. Our numerical results showed that these models can give several 

orders of speed improvement over traditional numerical models. We found that one 

important step in applying this method is to create a proper training data set. For the two 

neural network models we studied, the RBF net is considered more practical due to its faster 

learning process, although the generalization property of MLP may be better. 
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CHAPTER 7. PREPROCESSING TECHNIQUES FOR 

TWO-DIMENSIONAL EDDY CURRENT INSPECTION DATA 

Introduction 

Inspection data obtained from two-dimensional eddy current inspection using a 

MRPC are usually distorted by noise and many other unwanted effects. Noise in the 

inspection data include electromagnetic interference from the driving motor of the MRPC 

probe, and quantization noise and thermal noise in the data acquisition circuit. Changes in 

probe liftoff, tube diameter, and tube wall thickness also create large background signals 

which make recognition and characterization of flaw signals difficult. Furthermore, due to 

variations in probe characteristics and instrumentation setup, a calibration procedure must be 

performed to align the phase and magnitude of the inspection data with a calibration standard. 

This calibration step is usually a time-consuming process. In this chapter we discuss several 

preprocessing techniques which can be used to remove some unwanted signals in the data 

and to prepare the data for fiirther signal and image processing procedures. The 

preprocessing techniques we have studied include background removal methods to remove 

liftoff signals and an automatic phase adjustment algorithm which can be used to simplify the 

calibration process in some situations. The preprocessing techniques discussed in this 

chapter are used only as the first step of the processing. Therefore, further processing must 

be performed to obtain good data analysis results. Due to space limit, processing results are 

not included in this Chapter. They can be found in Reference [63]. 
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Background Removal 

The first step of preprocessing is to remove the background signal in the raw data. 

Due to the diffusive nature of eddy current testing, the coil impedance change is very 

sensitive to liftoff and small variations on tube internal surface. Because the background 

signal is generally much larger than the flaw signal (especially for a MRPC probe), it must be 

removed from the raw data before any phase rotation can be applied to the data. We have 

tested three methods for background removal and they are described in this section. 

Background removal by polynomial fitting 

The first method uses a least-square polynomial fitting to obtain the background 

signal and then the background signal is subtracted from the original data [64]. The 

background removal of the horizontal and the vertical components of the raw data are 

performed independendy. Also, because the data is two-dimensional, the background 

removal is first performed on the horizontal direction, and then on the vertical direction. 

Given a data set /(x,), / = 1, • • •, n, the problem of fitting a m th order polynomial 

m 

g(x)  =  ̂ a jx^  
;=0 

(7.1) 

is to find the group of coefficients so that the least-square error 

2 
n m 

(7.2) 
1=1 

is minimized. Setting 
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— = 0, l  =  0 , - - - , m .  (7.3) 

we have the following m +1 equations for m +1 unknowns 

m n n 

(7.4) 

These linear equations can be solved by using Gauss-Jordon elimination and 

backsubstitution. 

Normally a second-order polynomial fitting is used for both horizontal and vertical 

directions. Higher order fitting generally is not necessary and may introduce artifacts in the 

result. Even with the second-order polynomial fitting, when there is a strong signal in the 

data, the background obtained is usually distorted by the presence of the large signal. This 

will generate some artifacts near the large signal in the background removal result. 

Background removal by median filtering 

The second method is to smooth the data by using median filtering [65] and then 

subtract the smoothed version from the original data. A nice property of the median filter is 

that it can remove spike-like noise without removing edges in the data. Therefore, the 

smoothed signal will not be distorted by a large, pulse-Uke signal if a median filter with the 

proper window size is used. Because our objective is to detect circumferential cracks, 

anything wider than the typical width of a crack signal (which can be decided by the 

characteristics of the probe because the crack itself is usually very narrow) can be considered 

as part of the background signal. Thus, we can use a median filter along the vertical direction 

with a window length larger than two times the typical width of a crack signal to obtain the 
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background. The disadvantages of median filtering are that it is relatively slow because at 

each pixel in the image a sorting of local data values must be performed, and it has an edge 

effect because a running window is used. 

Background removal by masked polynomial fitting 

Since both the polynomial fitting method and the median filtering method have 

disadvantages, we investigated a third method which somewhat combines the first two 

methods. This method is a modification of the polynomial fitting method, but it also uses the 

idea of order statistics. In this method, before the polynomial fitting, the data is sorted, and 

the parts of the data with the largest values and smallest values will not be used in the 

polynomial fitting. For example, if given a margin of 20%, the data points with values in the 

range of the largest 20% and the smallest 20% will not be used in polynomial fitting after 

sorting. Therefore, if there is a strong but localized signal, the data points from this signal 

will not be used in the polynomial fitting which results in fewer artifacts in the background 

removal result. Also, this method is almost as fast as the direct polynomial fitting method 

because in this case only one sorting operation is required for each line of data. We do not 

need to perform a sorting operation for each pixel. 

Automatic Phase Adjustment 

The second step of the preprocessing is to adjust the phase of the raw data so that in 

one channel the flaw signal is maximized and all other unwanted signals are minimized. This 

step is necessary because in later processing we want to deal with a real image, and we want 
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the signal-to-noise ratio (SNR) of this data to be maximized. When the SNR of the raw data 

is high, it is not hard to adjust the phase manually since the flaw signal is visible in the raw 

data. However, if the SNR of the raw data is low, it is almost impossible to see the flaw 

signal in the raw data and the phase adjustment is difficult and time consuming without a 

standard calibration procedure. To deal with this problem, we developed an automatic phase 

adjustment method which can find the optimal rotation angle without performing the 

calibration procedure. This method is based on the assumptions that there exists a phase 

difference between the signal and the noise, and the energy of the noise is much larger than 

that of the signal. The first assumption is valid because we are uiterested in OD cracks, and 

from eddy current theory they have a phase difference dependence upon the liftoff signal and 

ID noise. The second assumption simply means low SNR. 

To explain the method, let us consider a simple noisy signal which is the sum of two 

vectors, the signal vector and the noise vector, respectively 

where \ and there is a nontrivial difference between and . Now if we rotate 

this signal to make the SNR maximized for the vertical (or imaginary) component, then the 

best rotation angle is the one that rotates the noise vector exactly to the horizontal axis so 

there is no projection of the noise vector on the vertical axis. It can be proved in this case 

that the energy of the horizontal component is also maximized. From this simple example, 

we see that the problem of finding the rotation angle that gives the largest SNR in the vertical 

channel is equivalent to the problem of finding the rotation angle for maximizing the energy 

in the horizontal channel. 
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Without loss of generality, consider a one-dimensional data set 

(7.5) 

where the energy of the horizontal component of the data after rotating by a phase angle d  

can be expressed as 

E = J^[Rc{x,ej'}f. (7.6) 

To find the d  for maximizing E , set 

dE 

9 9  
= 0. 

Because 

Re|x,e-'®} = Rj cos9 — /, sin0, 

we have the following equation after differentiation, 

^ (Rj cosG — /, sin sin 6 — /, cos 0) = 0. 

After some manipulation, the above can be written as 

- i f )  sin 19 + RJi cos 19 = 0. 

Then it follows that 

1 
d = —arctan-v^—z — 

2 l i i f - R - )  

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

The above derivation can be easily extended to a two-dimensional case. The above equation 

can still be used, except now the summations are on all the data points in the image 
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1 
6 = —arctan 

2 
i y 

(7.12) 

'  j  

Test results [63] have shown that when the assumptions of the automatic phase 

rotation algorithm are satisfied, it can provide a result similar to that of the standard 

calibration procedure. However, when the data has relatively high SNR or when there are 

signals from OD tube variations which have very similar phase as the OD crack signal, the 

standard calibration process is still necessary. 
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CHAPTER 8. EDDY CURRENT IMAGE PROCESSING 

USING PRINCIPAL COMPONENT ANALYSIS 

Introduction 

In this chapter we present an eddy current image processing technique based on 

principal component analysis (PC A) [66-68]. PC A is a widely-used signal processing and 

image compression technique which has many applications in feature extraction, data 

compression, and noise reduction [51]. In our problem, it is used as a noise reduction method 

to remove the background signal in the two-dimensional eddy current inspection data. In 

eddy current measurements, liftoff and other ID variations create large background signals, 

which usually make small crack signals hard to be recognized. The background removal 

methods discussed in the last chapter can be used to remove global background signals in the 

data. However, for background signals that have similar spatial distributions as the flaw 

signals, these preprocessing techniques are very inefficient. The background signals with 

smaller spatial supports usually result from dents and other ED variations that are common for 

a heavily used tube. In order to remove these background signals, we developed the 

background removal method based on PCA. In our method, PCA is used to estimate the 

background of the image and then to subtract the estimate from the original image. We have 

finished some tests on the PCA method using MRPC data. The test results have shown the 

high potential of the method. It is hoped that this technique will be helpful to human analysts 

in detecting small crack signals. 
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Basic Theory of PCA 

What is PCA? 

Principal Component Analysis [66-68] is a statistical method which determines an 

optimal linear transformation 

Y=WX (8.1) 

to transform an input vector X e /?" of a zero-mean, wide-sense stationary stochastic process 

to a vector Ye R'",m<n so that the components of Y are uncorrected. PCA is also 

referred to as the Karhunen-Loeve or Hotelling transform. PCA has many important 

applications, such as spectral analysis, pattem recognition and image compression. It can be 

p r o v e n  t h a t  t h e  o p t i m a l  t r a n s f o r m  m a t r i x  W  c a n  b e  c o n s t r u c t e d  f r o m  t h e  f i r s t  m  

orthonormal eigenvectors {Wj jWj ,• • • >W^} of the covariance matrix of X 

Rxx = ^fxx"^}. (8.2) 

The eigenvectors are normalized so that 

(8.3) 

The eigenvectors and eigenvalues are solutions to the following eigenvalue problem 

RxxWj=A,.Wj, (8.4) 

and the first m  eigenvectors correspond to the m  largest eigenvalues. The first m 

eigenvectors are considered the principal eigenvectors, which are directions in the n -

dimensional vector space in which the input data have the largest variance. By projecting the 

input data through W, the n -dimensional input vector is mapped into the m -dimensional 

subspace spanned by the principal eigenvectors. In other words, the input data is 
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compressed, which means PCA can transform a large amount of correlated input data into a 

set of statistically decorrelated components. 

PCA using unsupervised Hebbian learning 

The application of the PCA method discussed above requires the solution of the 

eigenvalue problem for the covariance matrix of the input data. The direct solution of 

eigenvalue problems by matrix decomposition is complex and time-consuming. Therefore, a 

neural network approach, the Hebbian learning network [51], has been developed to solve the 

eigenvalue problem. Another advantage of the Hebbian learning neural network is that it 

does not require the computation of the covariance matrix, but directly obtains the principal 

eigenvectors from the input data. 

A Hebbian learning net is a simple two layer linear network where the first layer 

contains the elements of the input vector, and the second layer contains the elements of the 

output vector. An output of the network is given by 

(8.5) 
i  

where are the synaptic weights. Initially the weights of the network are set to random 

numbers. The network is then trained by feeding input data into it and the weights are 

iteratively modified. The objective is to force the weights to finally converge to the principal 

eigenvectors of the covariance matrix of the input data. By assuming that the input data is 

ergodic, the covariance matrix can be expressed as 

Rxx=Sx,X^ (8.6) 



101 

where the summation is taken over all the input data. To find the weight update equation 

which forces the weights to converge to the principal eigenvectors, we need to minimize the 

energy 

£(Wj)=i|X-^j (8.7) 

under the normalization condition 

W/Wj = 1, (8.8) 

where X = Wj3;y under the normalization condition. Notice that in the case of a single 

output node, the energy is minimized if the weight vector converges to the largest eigenvector 

of the covariance matrix of die input data. Minimization of the energy can be achieved by 

using a gradient descent optimization method. Taking the partial derivative of the energy, we 

have 

= -yj(X-W^yjl (8.9) 

which is the direction in which the energy has the fastest increase. We can reduce the energy 

by updating the weight vector along the opposite direction of the gradient, e.g., 

(fc +1) = ( k )  + iiik)y^ (^)(x,( k )  -  ( f c )y, ( k ) ) ,  (8.10) 

for the case of a single output node, where /lik) is the learning rate. The above weight 

update equation is called Oja's learning rule [66]. It can be extended to the case of m output 

nodes (m principal eigenvectors) as 

m 

W^(,k + l) = W,j(k) + nik)yjik)[x,ik)-J^Wi,(k)y,(k)]. (8.11) 
h=l 
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However, Oja's learning rule as given above does not converge to the first m  principal 

e i g e n v e c t o r s  o f  R ^ x .  b u t  r a t h e r  t o  a  n o n - u n i q u e  l i n e a r  c o m b i n a t i o n  o f  t h e  f i r s t  m  

eigenvectors of Rjx which still span the subspace of the m principal eigenvectors of Rxx-

T h e r e  i s  a  g e n e r a l i z e d  H e b b i a n  a l g o r i t h m  [ 6 8 ]  w h i c h  c o n v e r g e s  t o  e x a c t l y  t h e  f i r s t  m  

principal eigenvectors of R^x in descending eigenvalue order. The only difference in the 

generalized learning rule is the upper limit in the summation, i.e.. 

As mentioned above, PC A has been widely used in data compression, especially 

image compression applications. The power of the PCA method in data compression 

applications is its capability to decorrelate a large amount of data and find the principal 

components (or modes) of the data. In other words, by using PCA, we can reconstruct the 

image with only the expansion coefficients for several principal eigenvectors and the 

reconstruction will still be close to the original data. What will be lost is the detail of the 

image, which has a spatial variation different from the major trend (the principal components, 

or modes) of the image and corresponds to smaller eigenvalues. Because the eigenvalues 

corresponding to the detail are much smaller than the principal eigenvalues, they are 

associated with only a small portion of the total energy of the image. Therefore, even though 

J  
(8.12) 

Eddy Current Background Removal Using PCA 

Basic idea 
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this part of the data is not recovered in the reconstruction results, the mean square error of the 

reconstruction is still very small. 

But how does this relate to the processing of eddy current images? Recall that a 

major problem in eddy current signal processing is to remove the background signal caused 

by liftoff and ID variation. We can find a similarity between the problem of characterizing 

the background and the problem of compressing an image. The background signal mentioned 

here is not referred to as the overall background of the data, but rather the part of the 

background that has faster spatial variation and a more complex spatial pattern that may be or 

may not be periodic. These background signals usually have larger magnitude than signals 

from small cracks. Moreover, when the signal from a small crack is combined with the 

background signal, its shape is distorted by the slope of the background signal. This 

increases the difficulty of detecting small cracks. 

To apply PC A to this problem, we noticed that there is a difference between the 

spatial variations of the small crack signal and the background signal. Signals from small 

cracks tend to have faster spatial variations. Also, because the crack signal has a rather small 

support, its energy is only a small portion of the overall energy of the image. Therefore, we 

can consider the crack signals as details of the image which can be separated from the 

background by using the PCA method. 

Implementation of the PCA method 

Based on the idea discussed above, the implementation of the method includes the 

following steps: 
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1. Divide the image into equally sized blocks. Usually a square block shape is used. 

Rearrange the data within each block to form a one-dimensional vector. 

2. Use the vectors obtained from all the blocks as training data to train the Hebbian learning 

network. Before the training, the learning rate and the number of desired principal 

eigenvectors need to be decided. Either Oja's learning rule or the generalized learning 

rule can be used to update the weights. The network is said to have converged if the 

weights have very small changes during one epoch. 

3. Use the trained network to obtain the principal eigenvectors and compute the expansion 

coefficient for each block and each eigenvector. Then the background signal in each 

block is reconstructed by using the eigenvectors and the expansion coefficients [51]. The 

one-dimensional reconstruction results are rearranged into two-dimensional blocks. 

4. The reconstruction estabUshed up this step has a strong block effect due to the 

discontinuities at block boundaries. To remove the block effect, a moving-average 

smoothing is used. To save processing time, two one-dimensional smoothing operations 

(one in the horizontal direction, and the other in vertical direction) are used instead of one 

two-dimensional smoothing operation. The smoothing operations use rectangular 

smoothing windows and the window size is selected to be equal to the block size. 

5. The background is then subti:acted from the original data and another moving-average 

smoothing operation is applied to the subtraction result to remove spike-like noise. This 

noise usually comes from electronic interference and can be relatively large when 

compared to signals from small cracks. 
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Some further considerations 

The major processing procedure of the PCA method is given in the above section. 

However, to generate an optimal result, some details of the method need to be considered. 

The first thing to be considered is how to select the processing parameters. The most 

important parameters are the block size and the number of principal eigenvectors used in 

reconstruction. The block size is important because it determines the spatial resolution of the 

reconstructed image. Therefore, we need to select a block size within which the background 

signal can be considered as a slow variation and the crack signals can be considered as fast 

variations. Because a crack signal generally has a length greater than its width, the block size 

can be selected to be close to the width of the crack signal. This is feasible because the width 

of the crack signal is basically determined by probe characteristics and remains almost a 

constant. The selection of the number of principal components is not very critical because 

experimental results indicate that the background obtained is not very sensitive to it. To save 

learning time, a smaller number of eigenvectors is desired. However, if this number is too 

small a significant part of the background signal will be lost in the reconstruction. A good 

selection can be made by computing a relatively large number of eigenvalues and then 

selecting those which are significantly larger than the rest of the eigenvalues. 

Another problem that needs to be considered is that when there is a large crack signal 

in the data, the background signal may be distorted by the presence of a large flaw signal. 

This condition is shown by large expansion coefficients near the flaw position. To solve this 

problem, we used a statistical test to locate such points. First, for the expansion coefficients 

of each eigenvector, the difference between each pixel and the average of its eight neighbor 
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pixels is calculated. Then the mean and the standard deviation of this difference are 

calculated. Every expansion coefficient is then reexamined and those which differ from the 

mean by more than 3 times the standard deviation are considered as singular points. These 

singular points are considered to arise not as a result of the background signal, but as a result 

of some large crack signal. The value of the expansion coefficient at each singular point is 

then replaced by the average value of its eight neighbors. 

Processing examples 

The PCA method discussed above was tested by using inspection data obtained from 

an industrial standard MRPC probe. Due to space limit, we only give an example of the PCA 

background removal processing here. More processing results can be found in Reference 

[63]. The test sample in this example contains nine OD EDM slots in a tube with 

circumferential extent from 10 degrees to 90 degrees. The depth of the flaws is 20 percent of 

the tube wall thickness. The data was preprocessed using masked polynomial background 

removal and automatic phase adjustment. Fig. 8.1 shows the preprocessed data containing 

signals from the 10°, 20°, and 30° slots. The data was then processed by using the PCA 

method. The block size was selected as 16 by 16 and only three principal eigenvectors were 

used. The generalized learning rule was used to train the Hebbian learning neural network. 

After 20 epochs, the weight vectors of the network converged to the three principal 

eigenvectors of the covariance matrix of the input data. The three principal eigenvalues were 

3120155,932939,406210, respectively. Some statistics of the three principal eigenvectors 

are shown in table 8.1. 
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Fig. 8.1. MRPC data of the three artificial flaws after preprocessing. 

Table 8.1. Statistics of three principal eigenvectors. 

Mean Minimum Maximum 

Eigenvector 1 0.061165 0.010311 0.081576 

Eigenvector 2 0.014011 -0.081951 0.108136 

Eigenvector 3 0.007834 0.007834 0.088679 

The images of the three principal eigenvectors are shown in Figs. 8.2, 8.3, and 8.4. It 

is clear that eigenvector 1 contains most of the DC energy of the image. From the shapes of 

the eigenvectors, we can also see that eigenvectors 1 and 2 reflect the diagonal variations of 

the background signal in the input image. The eigenvalues of the three principal eigenvectors 

are much larger than the rest of the eigenvalues. This means that the three principal 

eigenvectors represent most of the energy in the input image. 
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Fig. 8.2. Image of eigenvector 1 obtained using generalized Hebbian learning. 

Fig. 8.3. Image of eigenvector 2 obtained using generalized Hebbian learning. 

Fig. 8.4. Image of eigenvector 3 obtained using generalized Hebbian learning. 
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After the three principal eigenvectors were obtained, the background image was 

generated by reconstructing the input image using only the three principal components. The 

processing result was then obtained by subtracting a smoothed version of the background 

image from the input image. Fig. 8.5 illustrates the processing result of the PCA background 

removal method. 

Fig. 8.5. Result image of the PCA background removal processing. 

To illustrate the effect of the PCA method on small crack signals, we plotted the one-

dimensional profiles of the signals for the 10°, 20° and 30° EDM slots before and after the 

processing. The three one-dimensional comparisons are shown in Figs. 8.6, 8.7, and 8.8, 

respectively. From these three comparisons we can see that the background signal has been 

significantly reduced, and the residue is constrained in a small dynamic range and is smaller 

than the signal from the 10° EDM slot. At the same time, the signal intensity remains almost 

unchanged for the 10° and 20° slots. However, there is a visible decrease in the signal 
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Fig. 8.6. Comparison of the horizontal profile of the signal for the 10° flaw before and 
after processing. 
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Fig. 8.7. Comparison of the horizontal profile of the signal for the 20° flaw before and 
after processing. 
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Fig. 8.8. Comparison of the horizontal profile of the signal for the 30° flaw before and 
after processing. 

intensity of the 30° slot. The reason for this is that the two peaks of the eddy current signal of 

the 30° slot are starting to merge, which increases the spatial support of the flaw signal. In 

other words, it is more like the background signal than the signals from the 10° and 20° slots. 

Therefore, the increase of the signal-to-noise ratio for the 30° slot is not as large as that of the 

10° and 20° slots. 

Since two-dimensional eddy current data can be more clearly visualized in a 

wireframe display, we plotted the three-dimensional wireframe display for the signal from the 

10° slot before and after processing as a comparison. Figs. 8.9 and 8.10 show the signal for 

the 10° slot before processing and after processing, respectively. As can be seen from these 

two plots, after processing the flaw signal is more symmetric because most of the 
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Fig. 8.9. Wireframe display of the signal for the 10° slot before processing. 
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Fig. 8.10. Wireframe display of the signal for the 10° slot after processing. 
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background signal has been removed. It is clear that the PCA processing has good potential 

to increase the detectability of small cracks. 

Conclusions 

In this chapter we presented the principal component analysis method as an image 

processing technique to remove background signals in eddy current inspection data and to 

enhance signals from small cracks. Processing results from MRPC data have shown the high 

potential of the method. The background removal by PCA can achieve large improvement in 

SNR with very small distortion in the shape of the flaw signals with small support. Since the 

PCA method does not distort flaw signals, it can be used as a flaw enhancement method for 

human analysts. It can also be used as a preprocessing step for flaw detection methods. The 

disadvantage of the PCA method is that it is relatively inefficient for signals from large flaws 

which have relatively large spatial supports. However, this should not be a serious problem 

because signals from large flaws are generally stronger than background signals. Those 

signals can be readily detected even without the PCA processing. 
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CHAPTER 9. CIRCUMFERENTIAL CRACK DETECTION 

USING GRAYSCALE MATHEMATICAL MORPHOLOGY 

Introduction 

In the preceding chapters we have discussed preprocessing techniques and a 

background removal method based on principal component analysis for improving the signal 

quality of two-dimensional eddy current inspection data. After the inspection data is 

processed by these techniques, the flaw signals are enhanced and the probability of finding a 

certain flaw is increased. Even though the data quality is improved by these processing 

procedures so that human analysts can find flaws more easily, in industrial practice we would 

still like to have an automatic crack detection method which can locate possible flaw 

indications in the inspection data without manual inspection by human analysts. As 

mentioned before, in heat exchanger tubes circumferential cracks are of special interest. 

Therefore, in our study we focused on the automatic detection of circumferential cracks. In 

this chapter we discuss a detection method for circumferential cracks based on grayscale 

mathematical morphological operations. This detection method is based on two important 

shape characteristics of the signal from a circumferential crack obtained using a MRPC: the 

maximum vertical extent of the signal and the minimum horizontal extent of the signal. In 

this detection method, grayscale morphological operations are used to remove features that 

do not have these two characteristics while keeping the crack signals almost intact. Test 

results have shown this method can be used to effectively locate possible crack signals. 
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Grayscale Mathematical Morphological Operations 

Mathematical morphology is an important area in nonlinear image processing [65,69-

76]. The fundamental philosophy of mathematical morphology is well explained in the 

following statement: what you see depends on what you want to look at. All the 

morphological operations involve the concept of a structuring element which relates the input 

and the output of the morphological operation. It is the structuring element that defines what 

you want to look at. Detailed discussions on grayscale morphology can be found in 

References [65], [69], and [70]. Here we give just a simple description on basic grayscale 

morphological operations. 

There are four basic grayscale mathematical morphological operations: erosion, 

dilation, opening, and closing. The latter two operations are built upon the first two 

operations. As the name implies, grayscale erosion erodes the input image and generates an 

output with smaller support and peak values. The extent of the erosion and its exact impact 

on the input image are decided by the shape of the structuring element used in the erosion. 

Dilation is a dual operation of erosion that extends the support and peak values of the input 

image. Opening is a combination of erosion and dilation. It is an erosion followed by a 

dilation with the same structuring element. Opening is usually used to remove small bright 

point-like features. Closing is the dual operation of opening, and it is a dilation followed by 

an erosion with the same structuring element. Closing is usually used to fill small holes in 

the input image. 

An important extension to standard mathematical morphological filtering is the so-

called soft morphological filtering, or rank-order filtering. In standard morphological 
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filtering, the concept of set comparison is crisp. For example, if we say a structuring element 

is below the input image, it means that all of the pixels in the structuring element have a 

value smaller than the value of the corresponding pixel in the input image. In the rank-order 

filtering, the concept of set comparison is fuzzy. That is, we say that the input image matches 

the structuring element if at least some number of pixels, or some percentage of pixels, in the 

structuring element match that of the input image. Rank-order filtering is useful when there 

is noise in the data and the shape of the object to be detected is somewhat incomplete. 

The Circumferential Crack Detection Method 

Characteristics of tlie signal from a circumferential crack 

A circumferential crack is considered a horizontal OD crack with a very small width 

(tight crack). The shape of the signal from a circumferential crack changes with the length of 

the crack. However, due to the tight opening of circumferential cracks and the axial 

symmetric geometry of the MRPC coil, signals from circumferential cracks share the 

following two important characteristics: 

Maximum vertical extent 

A circumferential crack signal has a limited vertical support. The signal is practically 

zero outside this vertical support. The actual length of this vertical Umit is decided by the 

size of the coil and the skin depth at the test frequency. Usually, the vertical limit is only 

slightly larger than the outside diameter of the coil. 
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Minimum horizontal extent 

A circumferential crack signal has a minimum horizontal extent. No signal from a 

circumferential crack can have a horizontal support smaller than a horizontal limit. The 

horizontal limit is decided by the size of the coil, the skin depth at the test frequency, and the 

minimum length of a physical circumferential crack. The horizontal minimum size is usually 

slighdy larger than the vertical maximum size. 

Procedure of the detection method 

Based on the two characteristics of signals from circumferential cracks, we have 

developed a detection method based on grayscale morphological operations. The detection 

method is described as follows 

1. Remove the null offset in the inspection data by using masked polynomial fitting or 

median filtering. 

2. Calibrate the phase of the preprocessed data by using a standard calibration procedure or 

the automatic phase adjustment. Use only the vertical channel signal in later processing. 

3. Remove background signals in the vertical chaimel data using the PC A method discussed 

in Chapter 8. 

4. Smooth the data using a rectangular moving average window. 

5. Open the data using a small flat structuring element. This step removes point-like noise 

in the data. 

6. Close the data using a horizontal flat structuring element with a small length. This step is 

used to fill the valley between the two peaks for signals from short cracks. 
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7. Open the data usmg a horizontal flat structuring element with the a length defined by the 

minimum horizontal extent. This step eliminates any feature that has a horizontal support 

smaller than the minimum horizontal support. 

8. Erode the data using a vertical flat structuring element with a length defined by the 

maximum vertical extent. This gives an image with all the signals firom circumferential 

cracks removed. Signals having a vertical support larger than the maximum vertical 

extent remain in the result image. 

9. Subtract the result image of step 8 from the result image of step 7. This gives an image 

which does not contain any signal with a small horizontal support or a large vertical 

support. In other words, all the signals remaining in this image must satisfy both the 

minimum horizontal extent requirement and the maximum vertical extent requirement. 

10. Open the data using a small flat structuring element. This step is used to remove point­

like noise that may result from the subtraction in step 9. 

11. Threshold the data to create a binary crack map. The threshold must be selected properly 

to ensure high probability of detection without many false alarms. The threshold can be 

decided by calibrating the probe using artificial flaws with various sizes and depths. A 

critical flaw size and depth should be set up to derive the threshold. 

Test Results 

To illustrate the procedure of the crack detection method and to demonstrate the result 

of processing, we selected the inspection data of a tube containing nine circumferential EDM 

slots. The depth of the slots is 20% TW, and the circumferential extents vary from 10 
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degrees to 90 degrees. After truncating entry and exit points and interpolating and aligning in 

each row, the size of the raw data is 193 by 1351 pixels. The first step of processing is 

background removal using second-order masked polynomial fitting. The background 

removal was first applied to the horizontal direction, and then to the vertical direction. The 

margins were 20% for the horizontal direction and 5% for the vertical direction. The data 

was then processed by automatic phase adjustment. Fig. 9.1 shows the vertical channel 

signal after the automatic phase adjustment. The next step of the processing is to remove 

background signals with smaller spatial periods using the PCA method. The result of PCA 

processing is shown in Fig. 9.2. From Fig. 9.2 we can see that most background signals have 

been successfully removed. The result of Fig. 9.2 was smoothed by using an 8 by 8 moving 

Fig. 9.1. Image of the vertical channel signal after preprocessing. 
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window, and the result is shown in Fig. 9.3. Then the data was opened with a 6 by 6 flat 

structuring element to remove point-like noise. Following this opening a closing with a 16 

by 1 flat structuring element was performed. This step was used to fill the valley between the 

two peaks in the signals of a short crack. A second opening with a 25 by 1 flat structuring 

element was used to remove all features smaller than the minimum horizontal extent. The 

resulting image is shown in Fig. 9.4. To enforce the maximum vertical extent requirement, 

the image in Fig. 9.4 was eroded by using a 1 by 16 flat structuring element and the resulting 

image was subtracted from the image in Fig. 9.4. The sizes of the structuring elements in all 

the morphological operations were derived from the sizes of the coil and the test parameters. 

Fig. 9.2. Result image after PCA background removal. 
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Fig. 9.3. Result image after smoothing by moving average. 

Fig. 9.4. Result image after the second opening. 
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Fig. 9.5 shows the result after using the subtraction and a further opening with a 6 by 

6 flat structuring element to remove point-like noise. It can be seen from Fig. 9.5 that most 

of the noise signals have been removed. However, there are some small artifacts due to 

repetitive morphological operations. To generate the crack map, the grayscale image in Fig. 

9.5 was then thresholded to create a binary image. The crack map is shown in Fig. 9.6. All 

nine EDM slots in the inspection data are shown clearly in the crack map, including the 10° 

slots which are hardly distinguishable in the original data. Due to the nonlinear nature of 

morphological operations and the diffusive nature of eddy current, the cracks shown in the 

crack map do not have the same shape as the physical flaws. However, the crack map still 

provides accurate positions of the cracks. The capability of locating potential flaws can be 

very helpful to human analysts when the quality of data is not very satisfying. 

Fig. 9.5. Result image after the subtraction. 
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Fig. 9.6. The binary crack map. 

Conclusions 

In this chapter we discussed a detection method for circumferential cracks based on 

grayscale mathematical morphological operations. This detection method is based on two 

important shape characteristics of the signal from a circumferential crack obtained using a 

MRPC: the maximum vertical extent of the signal and the minimum horizontal extent of the 

signal. Test results have shown this method can be effectively used to locate possible crack 

signals in low SNR inspection data. This method can provide significant assistance to human 

analysts in locating possible flaw indications. However, due to the distortion introduced by 

morphological operations, this method does not generate accurate flaw shape for the purpose 

of flaw characterization. In the following chapters we discuss image restoration methods 

which can be used to find the actual flaw shape from blurred impedance change images. 
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CHAPTER 10. LINEAR EDDY CURRENT IMAGE 

RESTORATION USING WIENER FILTERING 

Introduction 

In this chapter we discuss an image restoration method for two-dimensional eddy 

current data using the Wiener filtering technique. This method was originated from the 

understanding we obtained in studying the eddy current inverse problem for a small spherical 

flaw [77]. We based our inverse method on an approximate linear eddy current forward 

model. This forward model is based on the Bom approximation and the reciprocity 

impedance change formula (equation (2.1)). From this linear forward model, the point spread 

fiinction of the MRPC coil can be computed and the Wiener filtering method can be applied 

to restore the flaw image. We developed two approximation methods to compute the point 

spread function for the Wiener filtering method. Testing of the Wiener filtering restoration 

method included both synthesized and experimental data. We also studied the effect of noise 

on the restoration result and the limits of the linear approximation. Test results have shown it 

is possible to improve flaw characterization capability under certain conditions. 

Formulation of the Linear Deconvolution Model 

The linear forward model 

We used an approximate linear forward model for the Wiener filtering eddy current 

image restoration. Here we briefly describe the formulation of the linear forward model 
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based on the Bom approxunation. The impedance change of an air-core coil placed on a 

testpiece can be computed by using the following reciprocity formula (equation (2.1)) 

where / is the current in the coil, 5(T(r') is the conductivity change in a material caused by 

a defect, E° (r) is the incident electric field, and E(r) is the total incident field. The incident 

field is a function of the test coil, test frequency, and test geometry; but it is not a function of 

flaw conductivity distribution. The total field is a more complex function dependent on both 

the incident field, test parameters and the flaw conductivity distribution. The relationship 

between the incident field, the total field, and the flaw conductivity distribution can be 

expressed in the following volume integral equation (equation (3.10)) 

where G(r,r') is the Green's function for the test geometry. Since the total field is a 

function of both the incident field and the conductivity change, the impedance change AZ is 

a nonlinear fiinction of the conductivity change 5a(r'). To linearize the forward model for 

the purpose of image restoration, we can use the Bom approximation which lets the total field 

be equal to the incident field 

AZ = —-r / &T(r')£" (r-) • E(r')^v', 
/  y  

(10.1) 

(10.2) 

E(r) = E°(r). (10.3) 

Now the impedance change becomes 

AZ = --^j5(T(r)E»(r)-E"(r)rfv, 
^ V  

(10.4) 
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which is linear in the conductivity change. To build a two-dimensional image restoration 

model, we assumed that the conductivity change is uniform along the z direction, e.g., 

5G{T') = 5<J{x \y ) .  (10.5) 

Now the impedance change can be expressed as 

AZ = /s: f 5cr(x', y-) T' E° (r') E® (r' )dzds ' , (10.6) 
i 

where ds '=  dx 'dy '  and we use K to denote a constant before the integration which is not of 

much importance here. Letting 

g ix ' , y ' )=  f E» (r-). E" (r' )dz ' , (10.7) 
•'Zl 

we can express the impedance change at a given point as 

AZ(x, y )  = Arjj 8c(x ' ,  y '  ) g ix ' -x ,  y ' - y )dx '  dy '  

= k\\ 5a{x' ,y')g'{x-x\y-y' )dx' dy', 
(10.8) 

where g \x ,y )  =  g (—x, -y ) .  We see that the impedance change image is the result of a linear 

convolu t ion  o f  the  conduc t iv i ty  change  image  and  the  po in t  spread  func t ion  (PSF)  g '  (x ,  y) .  

The point spread function can be computed if the incident field distribution is known, and the 

incident field can be obtained either by using Dodd and Deeds' formula [28] or using 

photoinductive measurements. We also developed approximation methods to compute the 

point spread function for tube geometry. 

The Wiener filtering method 

Given the convolution formula above, it is straightforward to apply an inverse 

filtering to restore the flaw image from the impedance image since we all know that the 
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convolution in spatial domain is multiplication in Fourier domain. However, the simple 

inverse filtering approach does not work very well when the Fourier transform of the point 

spread function has some small values, and when there is additive noise in the input. In these 

cases, Wiener filtering [78] is a better approach which can restore images in the presence of 

blur as well as noise. With the presence of noise, the linear observation model can be 

rewritten as 

where i {x , y )  is the unpedance change image obtained from measurements, f ix , y )  is the 

flaw image, g'ix,y) is the point spread fiinction, and n(x,y) is the additive noise. 

To reduce the effect of noise on inversion, the Wiener filtering minimizes the mean 

square error between the restoration and the ideal result by 

where f { .x , y )  is an estimation of the flaw image. For a linear deconvolution model, we 

assume that this estimation is the result of the linear convolution of the impedance 

measurement and the Wiener filter by 

where h(x ,y )  is the impulse response of the Wiener filter. This linear mean square problem 

satisfies the well known orthogonality condition of 

Kx,y )  =  f (x , y )  *  g ' ix , y )+n(x ,y ) .  (10.9) 

(10.10) 

f {x , y )  =  h{x ,y )* i {x , y \  (10.11) 

(10.12) 
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Substituting the definition for f ( x , y )  into the above equation, and assuming that the noise is 

independent of the flaw image, we have 

R i i ( x , y ) * h i x , y )  =  R i f ( x , y ) .  (10.13) 

Where /ii,(x,y) is the autocorrelation function of /(x,y),and R,y(x,y) is the 

crosscorrelation function of i(x,y) and f(x,y). Transforming this to the Fourier domain 

gives 

(10.14) 

where Sif{u,v) and 5„(m,v) are the Fourier transforms of Rjj-(x,y) and Rfiix,y), 

respectively. From the definition of i{x, y), we know that 

S i f ( u , v )  =  G ' * i u , v ) S ^ { u , v ) ,  (10.15) 

where G'(«,v) is the Fourier transform of g ' { u , v ) ,  and 

5,, («, V) = |G' (m, V)|' Sff (M, V) + 5^ (M, V), (10.16) 

where { u ,  v) is the power spectrum of the flaw image, and ( u ,  v) is the power 

spectrum of the additive noise. Thus from equation (10.14) the general form of the Wiener 

filter is 

G ' * ( u , v ) S f f ( u , v )  
= - o . (10.17) 

|G'(w,v)| S f f ( u , v )  +  S ^ ( u , v )  

From this equation, we see that to apply the Wiener filter, we need to know the power spectra 

of the signal and the noise. In real applications, this information generally is not available. 
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But if we can assume that the noise is somewhat white, then we can use the following 

simplified form of the Wiener filter, 

H i u , v ) = -  ' , 2  ,  ( 1 0 . 1 8 )  
|G'(u,V)| +a 

where a is a parameter related to the signal-to-noise ratio of the input data. There is a 

tradeoff in the selection of a. For a large value of a, the noise is suppressed, but the 

reconstructed image will tend to be blurred. For a small value of a, the reconstructed image 

is sharp, but the noise will tend to be large. 

The point spread function 

It can be seen from the above discussion that the computation of the PSF requires 

knowledge of the incident field for the given coil and testpiece. For half space and thin plate 

geometry, the incident field distributions can be directly obtained using Dodd and Deeds' 

results [28]. However, in steam generator tubing inspections, the geometry is a pancake coil 

over the internal surface of the tube. The exact theoretical solution of the incident field for 

this geometry is not yet available. The difficulty with the analytical solution is mainly due to 

the lack of symmetry in this geometry. To deal with this problem, we developed two 

approximation methods to compute the point spread function for tube geometry. The two 

approximations are the flat plate approximation and the projection approximation. 



130 

The flat plate approximation 

The flat plate approximation replaces the tube wall with a flat plate with the same 

thickness and uses the incident field for the flat plate to approximate the incident field in the 

tube wall. The approximation is illustrated in Fig. 10.1 (dotted lines). In this approximation. 

Fig. 10.1. Flat plate approximation to estimate PSF in tube geometry. 

for a point B in tube wall, its incident field is estimated by using the incident field of a point 

C in the flat plate. Points B and C have the same depth under the tube wall internal surface 

and the flat plate top surface, respectively. Also, the arc length AB is equal to the distance 

AC. 

The incident field of a cylindrical air core coil at a point in a thin plate is given by 

Dodd and Deeds [28] as 

foo /(a)(e~"''-e '^)Ua + a')e~"'^+{a'-a)e 
E(r)  =  T\  f ^ ;  r-rrr j  ^a .  

«[(« + «')"-(a'-a)e J 
(10.19) 
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Detailed explanation of this equation and the numerical method for its calculation can be 

found in Chapter 4. 

Projection approximation 

From Fig. 10.1, it can be easily seen that the thin plate approximation is valid only if 

the coil is much smaller than the tube; thus, the tube surface near the coil can be considered 

as sufficiently flat. When the diameter of the coil is comparable to the inner radius of the 

tube, the flat plate approximation fails to give an accurate PSF. To deal with this problem, 

we considered another approximation - the projection approximation as shown in Fig. 10.2. 

Tube 

Coil 

Fig. 10.2. Projection approximation to estimate the PSF in tube geometry. 

In the projection approximation, the incident field of a point B in the tube wall is 

approximated by the incident field of a point C in the thin plate. The distance between B and 

tube internal surface is the same as the distance between C and the flat plate top surface. The 

difference of this approximation with the flat plate approximation is that point C is now on 
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the projection line of point B; thus, B and C have equal horizontal distances to the center line 

of the coil. 

The projection approximation is based on the observation that when the curvature of 

the tube intemal surface is large, the field intensity of a point in the tube wall is not 

proportional to the arc length between the point and the coil center line; but, more likely it is 

proportional to the horizontal distance between the point and the coil center line. However, 

our experience has shown that for most industrial standard tubes and coils, the flat plate 

approximation and the projection approximation give very similar results. Therefore, the 

projection approximation is necessary only when a relatively large coil or a relatively small 

tube is used. 

Test Results from Synthesized Data 

The effect of noise 

To investigate the feasibility of the Wiener filtering method and to find some 

qualitative properties of the eddy-current inverse problem, we first applied the method to 

synthesized impedance change data given by the volume integral method code. The flaw 

used was an 8 mm long, 0.5 mm wide and 0.5 mm deep slot on the bottom side of a 1 mm 

thick aluminum plate. When the radius of the probe is much smaller than the tube inner 

radius, the thin plate setting is a good approximation for testing a circumferential OD flaw 

with a MRPC probe. The probe used was a 504-tum air-core coil with an inner radius of 3.8 

mm and an outer radius of 5.635 nmi. The height of the coil was 2.4 mm and the liftoff was 

0.229 mm. The first test used a frequency of 10 kHz which corresponds to a skin depth of 
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(a) Real part (b) Imaginary part 

Fig. 10.3. Point spread function for the synthesized data. 

1.17 mm. The real part image and the imaginary part image of the point spread function are 

given in Fig. 10.3(a) and Fig. 10.3(b), respectively. The point field function was computed 

using equation (10.7) and the incident field was computed using equation (3.33). All the 

images shown have 64 by 64 pixels with a grid separation of 0.5 mm. The real part image 

and the imaginary part image of the synthesized impedance change obtained using the 

volume integral method with wavelet expansion are shown in Fig. 10.4(a) and Fig. 10.4(b). 

Using equation (10.18), the flaw image was restored and is shown in Fig. 10.4(c). Due to an 

(a) Re(Z) (b) Im(Z) 

Fig. 10.4. Test results for the no noise case. 

(c) Restoration result 
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error introduced by the linearization, the restored flaw image is not uniform in intensity. 

However, it still gives a rather sharp image of the original flaw. To test the effect of the noise 

in the inverse process, white Gaussian noise was added to the impedance change image. A 

test image with 20 dB SNR and a test image with 10 dB SNR were used. The SNR used here 

is defined as the ratio of the total power of the signal and the total power of the noise in the 

whole image. The real part images and imaginary part images of these two data sets are 

shown in Fig. 10.5(a), Fig. 10.6(a), Fig. 10.5(b), and Fig. 10.6(b), respectively. The result 

images from the Wiener filtering are shown in Fig. 10.5(c) and Fig. 10.6(c), respectively. 

(a) Re(Z) (b) Im(Z) 

Fig. 10.5. Test results for the 20 dB case. 

(c) Restoration result 

(a) Re(Z) (b) Im(Z) 

Fig. 10.6. Test results for the 10 dlB case. 

(c) Restoration result 
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Notice tiiat here a has been adjusted according to the signal-to-noise ratio to obtain a good 

result. For both cases in the result images the flaw region is still visible. However, due to the 

presence of noise, the reconstructed image has more noise and there is more distortion in the 

flaw shape as SNR decreases. 

Result for compactly spaced flaws 

To verify the applicability of this method in the case of multiple flaws, we tested it 

with different flaw settings. In this case, two horizontal cracks were placed one next to the 

other in the vertical direction. Each flaw had a length of 8 mm, width of 0.5 mm, and depth 

of 0.5 mm. Other test settings were the same as before. The firequency was 10 kHz, which 

corresponds to a skin depth of 1.17 mm. The distance between the edges of the two cracks 

was 1.5 mm. The SNR was 10 dB. The real part impedance change image, the imaginary 

part impedance change image, and the result image are shown in Fig. 10.7. We can see that 

the two cracks are well separated in the restoration result. Our other tests [63] on multiple 

flaws restoration have revealed the fact that the resolution capability of eddy current testing is 

;• ^ •,,  

(a) Re(Z) (b) Im(Z) 

Fig. 10.7. Test results for the two cracks case. 

(c) Restoration result 
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limited by the skin depth. Therefore, flaws with a distance several times smaller than the 

skin depth cannot be separated successfully. 

Limitations of tlie approximate linear deconvolution model 

We performed other tests to evaluate the limitations of the approximate linear 

deconvolution model. Due to space limit, results of those tests are not included. Interested 

readers can find details on these tests in Reference [63]. Here we only sunmiarize several 

observations from those tests: 

1. The resolution of eddy current testing is proportional to the skin depth of the test. 

2. The intensity of the restored flaw is not uniform due to the approximation error of the 

linear forward model. 

3. When the flaw is large as compared to the coil or when the flaw has high aspect ratio, the 

linear approximation model fails to give good results due to its incapability of modeling 

the strong nonlinear interaction between the flaw and the coil in those cases. 

Test Result for Experimental Data 

To verify the validity of using this method in real applications, we tested it with 

experimental data. In this test, a 2-D scan was taken on a sample of a 4.204 mm long, 0.210 

mm wide, and 0.916 mm deep crack on the surface of a thick A16061 plate. The plate was 

thick enough to be considered as a half space. The probe used was an air-core coil with an 

inner radius of 3.8 mm, outer radius of 5.635 mm, and a height of 2.4 mm. The liftoff was 

0.379 mm. The test frequency was chosen as 50 kHz which corresponds to a skin depth of 
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(a) Re(Z) (b) Iin(Z) 

Fig. 10.8. Test results for the experimental data. 

(c) Restoration result 

0.449 mm. The 2-D scan was taken on a grid of 64 by 64 data points, with grid separation of 

0.4 mm in both horizontal and vertical directions. The crack was laid in the horizontal 

direction. Before the linear deconvolution processing, the experimental data were 

preprocessed to remove the background signal introduced by the change of liftoff during 

scanning. Since the surface of the aluminum plate is not perfectly flat, there is a rather large 

liftoff change along the vertical direction. The real part image and the imaginary part image 

of the preprocessed impedance change measurement and the reconstruction result are shown 

in Fig. 10.8. In the reconstructed image, a horizontal flaw is clearly visible. The horizontal 

extent of the reconstructed flaw is about 20% smaller than the exact length of the crack. The 

reconstructed flaw is somewhat blurred along the vertical direction. But overall there is no 

significant difference between the actual flaw shape and experimental result. This means that 

the linear deconvolution method can be used to process real-world inspection data as well, if 

the quality of the data is carefully controlled. 
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Conclusions 

In this chapter we developed a two-dimensional linear approximate observation 

model for the interaction between the flaw image and impedance change image based on the 

Bom approximation. With this linear imaging model, we applied the Wiener filter method to 

restore the flaw image from a noisy measurement of the impedance change image. The linear 

model and the restoration method were tested and evaluated by using both synthesized and 

experimental data. The effect of the noise and the skin depth was analyzed by using 

synthesized data. It was found that the Wiener filter method is relatively robust even when 

the SNR of the test data is as low as 10-20 dB. Based on the observation of several test 

cases, we found that the theoretic resolution limit of the eddy-current testing is basically 

determined by the skin depth. The method has also been tested for the case of compactly 

distributed flaws. The results indicate that it is capable of separating flaws which are not 

extremely close together in terms of skin depth. Testing of the method under an extreme 

condition revealed the limit where the linear approximation breaks down. The experimental 

results also proved the validity of the method under the assumption that the SNR of the 

measurement data is acceptable. 
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chapter 11. linear eddy current image 

restoration using maximum entropy method 

Introduction 

One important problem in MRPC data processing is restoring a flaw image from a 

measured impedance change image. In the previous chapter, we applied the Wiener filter 

method to the MRPC image restoration problem. In this chapter we present a new technique 

- the maximum entropy method (MEM) for eddy current image restoration. Part of the 

content discussed in this chapter has been presented in Reference [79]. MEM has been 

successfully applied to many problems, such as spectral analysis, image restoration, and 

image reconstruction from projections [80-84]. In the area of image restoration, MEM has 

found many applications in radio astronomy [82]. Many studies of MEM have shown its 

superior performance over other image restoration techniques in both resolution, dynamic 

range, and noise reduction. In this chapter we discuss how to apply MEM to the eddy 

current image restoration problem. We will also give some test results of MEM and compare 

the results of MEM and the Wiener filter method. 

The Maximum Entropy Method 

Based on the linear forward model developed in the last chapter, we can restore the 

flaw image by using simple inverse filtering which is basically a linear deconvolution. 

However, for MRPC eddy current inspection data, the direct deconvolution by inverse 
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filtering is not practical due to its sensitivity to noise. To model the effect of noise in the 

restoration process, we can use the following noisy linear observation model 

i i x ,  y )  = /(jr, y ) *  g '  ( x ,  y ) + n ( x , y ) ,  ( 11. 1)  

where i ( x , y )  is the noisy impedance change measurement, f ( x , y )  is the flaw image, 

g' (x, y) is the point spread function, and n(x, y) is the additive noise. The additive noise 

n(x, y) is usually considered to be white and Gaussian. In the case of Wiener filtering, the 

objective of image restoration is to find an estimate of f{x,y) so that the mean square error 

(MSE) between the true flaw image and the estimated flaw image is minimized. However, 

because of the ill-posedness of the eddy current inverse problem, the MSE criterion of 

Wiener filtering does not guarantee an optimal result. In MEM, the entropy of the restored 

flaw image is also used to regularize the ill-posed inverse problem. The entropy function of 

the restored flaw image can be expressed as [80] 

5  =  - S  %  f { x , y ) \ o g { f { x , y ) l m { x , y ) ) ,  (11.2) 
x=0 y=0 

where 

f { x , y )  =  f { x , y ) l  I Z f { x , y ) ,  (11.3) 
x=0 y=0 

is the normalized positive input image, and 

yv,-i N,- \  

m ( x , y ) = m i x , y ) /  Z  t . m ( x , y ) ,  (11.4) 
x=0 y=0 

is a normalized version of /n(x,y) which represents our prior information about the 

restoration. The principle of maximum entropy requires maximizing the entropy of the 

restored image. If we have no prior information about the flaw image, then from equation 
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(11.2) we can see that the image which maximizes the entropy is a constant image. 

Therefore, the MEM principle is actually a smoothing constraint which forces the restored 

image to contain a smaller noise component. Besides maximizing the entropy function, we 

also want to minimize the mean square error between the impedance change measurements 

and the predicted impedance change from an estimate /(x, y) of the unknown flaw image, 

which is given by 

E =  X  J , \ K x , y ) - i f * g ' ) { x , y ) \  .  (11.5) 
jr=0 y=Q 

The objective of MEM is to minimize the cost function 

Q = E-oiS, (11.6) 

where a is a regularization constant which controls the smoothness of the result. Since the 

entropy function is a nonlinear function, nonlinear optimization algorithms must be used to 

minimize the cost function. In this work we use the modified Newton-Raphson method [83], 

which iteratively updates the restoration based on the equation 

d Q I ^ ( x , y )  Y "  "  
f ^ " \ x , y )  =  f ^ ' ' - ' \ x , y ) - r „  (11.7) 

d ' Q I ^ ( x , y ) -

where is the step size used to control the convergence speed. The restoration result is 

initialized to a constant image using a small positive constant. To apply the Newton-

Raphson method, the first and second derivatives of Q must be known. The first and second 

derivatives of the mean square error can be shown to be 

d E  

^ ( x ,  y )  
= -2 Re{((/ )(jc, y)}, (11.8) 
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and 

;}2 r. /v.-i N,-l  ̂

= 2 1  I k e . " " ) !  
^ ( x , y )  1=0 m=0 

The first and second derivatives of the entropy function can be shown to be 

d S  

^ ( x ,  y )  

/(fOO+_!_ 
m(x, y )  In 10 

^ i x , y )  

^ ( x , y )  

and 

^ ( x , y )  

^ix,yf /(.r,3;)hilOl ,^(x,y) 

\ 2  
f U - y ) ,  1 

log-z: 1 
m { x , y )  In 10 

^ d ~ f { x , y )  

^ { x , y y  

where 

1 ^ { x , y )  ̂  

^ { x , y )  ' L Y . f { x , y )  
jc y 

f i x , y )  

(  - ' 
X I / ( ^ ,  y )  

v-r y y 

and 

d ~ f { x , y )  

^ ( x , y ) -

2 f i x , y )  

i m f ( x , y )  
r . 

V-f y / 

(11.9) 

(11.10) 

(11.11) 

(11.12) 

(11.13) 

Due to the maximum entropy method being an iterative method, it has a much higher 

computational complexity than the Wiener filter method. In each iteration, the most time 

consuming computation is to find the first derivative of the mean square error. The direct 

computation of convolutions in the spatial domain is very inefficient. When the size of the 

flaw image is a power of 2, we can speed up the calculation by using the FFT and the 

frequency domain equivalent of the convolutions in equation (11.8) to obtain 
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P£(",V) = [l(M,v)-/(M,V)g'(M,v)]g'' ( u , V ) .  (11.14) 

Implementation of the MEM Image Restoration Method 

For the eddy current image restoration problem, the implementation of the MEM 

approach can be summarized as: 

1. Initialize ±e flaw image to a constant image by using a small positive integer for each 

p i x e l .  T h i s  i s  t h e  i n i t i a l i z e d  f { x , y ) .  

2. Compute the Fourier transforms of i { x ,  y )  and g '  ( x ,  y )  by using a 2-D FFT. 

3. Compute the second derivative of the mean square error by using equation (11.9). 

4. Compute the Fourier transform of / i x , y )  by using a 2-D FFT. 

5. Compute the Fourier transform of the first derivative of the mean square error by using 

equation (11.14) and then using a 2-D inverse FFT to obtain the first derivative of the 

mean square error. 

6. Compute the first derivative of the entropy function by using equations (II. 10), (11.3), 

and (11.4). 

7. Compute the second derivative of the entropy function by using equations (11.11) and 

(11.13). 

8. Select a proper and update the estimated flaw image by using equation (11.7), where 

the first derivative and the second derivative of the cost function are the sum of the first 

derivatives of the mean square error and the entropy function and the sum of the second 
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derivatives of the mean square error and the entropy function, respectively. The 

smoothing constant a should be selected according to the SNR of the data. 

9. If the iteration number is larger than a predefined value or the change in cost function is 

smaller than a predefined value, stop and output the estimated flaw image. Otherwise, 

increment the iteration number and go to 4. 

Test Results 

Test results for synthesized data 

The maximum entropy method shown above has been tested using both synthesized 

data obtained from a volume integral forward model and experimental data from a surface-

breaking crack on an aluminum slab. For all of the tests presented in this section, the step 

size 7„ was 0.001 and the smoothing constant a was 0.1. For synthesized data, a few cases 

were tested. In the first test, the effect of white Gaussian noise on the restoration result was 

studied. A rectangular flaw with a length of 8 mm, a width of 1 mm, and a depth of 1 mm 

was used in this test. Three cases were tested: no noise, SNR=20 dB, and SNR=10 dB. The 

real part image and the imaginary part image of the impedance change for the no noise case 

are shown in Fig. 11.1(a) and Fig. 11.1(b), respectively. The restoration result of the no noise 

case is shown in Fig. 11.1(c). The real part image and the imaginary part image of the 

impedance change for the 20 dB case are shown in Fig. 11.2(a) and Fig. 11.2(b), respectively. 

The restoration result of the 20 dB case is shown in Fig. 11.2(c). The real part image and the 

imaginary part image of the impedance change for the 10 dB case are shown in Fig. 11.3(a) 
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m H 
(a) Re(Z) (b) Im(Z) (c) Restoration result 

Fig. 11.1. Test results for the no noise case. 

(a) Re(Z) (b) Im(Z) (c) Restoration result 

Fig. 11.2. Test results for the 20 dB case. 

(a) Re(Z) (b) Im(Z) 

Fig. 11.3. Test results for the 10 dB case. 

(c) Restoration result 
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and Fig. 11.3(b), respectively. The restoration result of the 10 dB case is shown in Fig. 

11.3(c). Comparing these results with the results from Wiener filtering (Fig. 10.4 - Fig. 

10.6), it is clear that the MEM restoration has a better noise reduction capability and better 

resolution than the Wiener filtering restoration. 

Test result for closely spaced flaws 

The second test smdied the capability of the restoration techniques to separate two 

closely spaced cracks. The flaw configuration for this test was two flaws with the same size 

as the one used in the first test, but with a separation of 4 mm between the two flaws. The 

SNR of the impedance change data is 10 dB. The real part image and the imaginary part 

image of the impedance change are shown in Fig. 11.4(a) and Fig. 11.4(b), respectively. The 

restoration result from MEM is shown in Fig. 11.4(c). Comparing the result from MEM with 

the result from Wiener filtering (Fig. 10.7), MEM again shows better performance over the 

Wiener filtering method. There is much smaller noise and a clearer gap between the two 

restored flaws. 

(a) Re(Z) (b) Im(Z) (c) Restoration result 

Fig. 11.4. Test results for the two cracks case. 
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Test Result for Experimental Data 

The experimental data is the 2-D impedance change of an air-core coil over a surface-

breaking crack with a length of 4.204 nmi, a width of 0.210 mm, and a depth of 0.916 mm. 

The real part image and the imaginary part image of the impedance change measurement after 

background removal and smoothing are shown in Fig. 11.5(a) and Fig. 11.5(b), respectively. 

The restoration result from MEM is shown in Fig. 11.5(c). The restoration result from the 

Wiener filtering method (Fig. 10.8) is more blurred due to the strong background noise in the 

result image. It can be seen that the restoration result of MEM is much better, although 

the width of the crack is expanded due to experimental error and the error introduced by the 

linear approximation. 

(a) Re(Z) (b) Im(Z) 

Fig. 11.5. Test result for the experimental data. 

(c) Restoration result 

Conclusions 

In this chapter we applied the maximum entropy method to the eddy current image 

restoration problem. The MEM image restoration technique developed here is based on an 

approximate linear forward model obtained using the reciprocity impedance change formula 
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and the Bom approximation. The cost function of MEM comprises of two parts: the first part 

is, the mean square error which requires the estimated flaw image to be close to the true flaw 

image; and, the second part, is the entropy function which requires the estimated flaw image 

to be smooth. We used a modified Newton-Raphson method to minimize the cost fiinction 

and derived the first and second derivatives of the mean square error and the entropy 

function, which are necessary in the iterative updates of the estimated flaw image. We also 

discussed how to use the FFT to speed up the execution of the method and how to implement 

the method. The MEM approach was tested using both synthesized data, experimental data 

and inspection data, and the results were compared with those of the Wiener filter. Test 

results have shown that MEM has better resolution and noise reduction than the Wiener filter. 

Therefore, it can provide restoration results with a cleaner background and sharper edges. 

The major disadvantage of the MEM approach is that it is much more computationally 

intensive than the Wiener filter due to its iterative nature. On a DEC 5000 workstation, the 

Wiener filter took about 1-2 seconds of CPU time while the MEM approach took several 

minutes of CPU time. 
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chapter 12. eddy current image restoration 

using simulated annealing 

Introduction 

In the preceding two chapters we discussed linear eddy current image restoration 

techniques based on Wiener filtering and the maximum entropy method. Both linear 

restoration methods are based on an approximate linear forward model derived using the 

Bom approximation. Therefore, the accuracy of the linear restoration methods are dependent 

on the validity of the Bom approximation for the test geometry and the flaw configuration. 

From our test results we observed that although the linear restoration methods can provide 

reasonably good results for flaws that are much smaller than the coil, they generally break 

down when the flaw is larger than the coil or when the flaw has a high aspect ratio. To 

improve restoration results for these cases, we must study nonlinear image restoration 

methods which take the nonlinear nature of eddy current into consideration. The nonlinear 

image restoration methods must be based on forward models which can accurately model the 

nonlinear interaction between the flaw and the coU. In this chapter, we discuss a nonlinear 

eddy current image restoration method based on simulated aimealing and the fast eddy 

current forward model discussed in Chapter 6. The neural network based fast forward model 

provides an efficient way to accurately evaluate a candidate flaw image. Based on the 

forward model, the nonUnear image restoration problem can be formulated as a combinatorial 

optimization problem which can be solved by using the simulated annealing algorithm. We 
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tested the simulated amiealing based approach using both synthesized impedance change data 

and laboratory data. Test results have shown that the nonlinear image restoration method 

based on simulated annealing can generate restoration results with better resolution, better 

regularity, and a higher signal-to-noise ratio than the linear restoration methods, although it 

has higher computational complexity. 

The Simulated Annealing Algorithm 

Basic concept 

Simulated annealing [85, 86] is one of the most widely used combinatorial 

optimization methods. Since a lot of problems in our world can be formulated as a 

combinatorial optimization problem, there have been numerous applications of the simulated 

armealing algorithm in the literature. Applications of the simulated armealing algorithm 

include image reconstruction and restoration [87, 88], solution of an inverse problem [89], 

binary code and sequence synthesis [90,91], synthesis of unequally spaced arrays [92], finite 

impulse response (FIR) and infinite impulse response (IIR) filter design [93], and placement 

in the physical design of Very Large Scale Integration (VLSI) circuits [94]. A detailed 

discussion of the simulated annealing algorithm can be found in Reference [85]. 

Simulated annealing borrows its idea from the physical annealing process in which a 

metal piece is heated to high temperature and then cooled slowly so that the crystal structure 

in the metal can reach a configuration state with minimum energy. The basic idea of 

simulated annealing is instead of always going downhill on the cost surface as in gradient 

descent based methods (e.g., steepest descent, conjugate gradient, and the MEM algorithm 
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discussed in Chapter 11), try to go downhill most of the time. In other words, there is a 

nonzero probability of the acceptance of new states which increases the cost or the energy. 

Such probability is controlled by a temperature parameter, which becomes smaller and 

smaller towards the end of the annealing process. As a result of this principle, two properties 

of simulated annealing make it different from conventional iterative optimization algorithms 

[51]. 

1. The simulated annealing algorithm need not get stuck at a local minimum, since there is 

always a nonzero probability of transition out of a local minimum when the temperature 

is not zero. 

2. Simulated annealing exhibits a divide-and-conquer feature that is adaptive in nature. In 

other words, gross features of the final state of the system are seen at higher temperatures, 

while fine details of the state appear at low temperatures. 

Metropolis algorithm 

The Metropolis algorithm, based on Monte Carlo techniques, is a method to simulate 

the evolution of a physical system in a heat reservoir to thermal equilibrium. In each state 

transition a new state is generated based on a perturbation to the current state, and the new 

state is accepted if it has a smaller cost than the current state. If the new state has a larger 

cost, it is accepted with a probability given by the following Metropolis function 

p(D = e-̂ "". (12.1) 

where T is the current temperature, and Ac is the cost difference. If the temperature is kept 

constant, after a large number of state transitions the system will reach its thermal 
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equilibrium. At thermal equilibrium, the probability that the system is in a state X  with cost 

is given by the Boltzmann distribution [51] of 

^Ar=;̂ exp(-̂ ), (12.2) 

where Z is the partition function, defined by 

Z = £exp(-̂ ), (12.3) 
Y ^  

where the suimnation is taken over all states Y  with cost Cy at temperature T .  From 

equation (12.2) we can see that at high temperatures the Boltzmaim distribution exhibits a 

uniform preference for all states, while at very low temperature, only the states with 

minimum cost have a nonzero probability of occurrence. 

Asymptotic convergence 

The simulated annealing algorithm can be modeled using a Markov chain since the 

distribution of the new states generated from the current state is only dependent on the 

current state. A Markov chain is described in terms of transition probabilities which in 

simulated annealing are given by the Metropolis function. Since the Metropolis function is 

controlled by the temperature, the simulated annealing algorithm must be modeled using an 

inhomogeneous Markov chain when temperature changes. The asymptotic convergence to 

the global minimum of the simulated annealing algorithm has been proven by Geman and 

Geman [95]. However, in practice, due to limited execution time, only near-optimal 

solutions can be guaranteed. The trade-off between execution time and the optimality of 

solution is problem dependent and can only be decided experimentally. 
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Convergence speed 

Since the simulated annealing algorithm is a very computationally intensive 

algorithm, there has been a lot of work in optimizing its convergence performance. Most of 

these works fall within the following three categories: careful perturbation [96], optimizing 

cooling schedule [97], and parallel simulated annealing [98]. Methods based on careful 

perturbation use range-limiting or heuristics in generating the new state so as to minimize the 

probability of rejection. Studies on optimizing a cooling schedule [97] indicate that a change 

in cooling schedule does not improve both the solution quality and execution by a large 

amount. More recently there have been studies on various parallel simulated annealing 

algorithms [98] that parallelize a single Markov chain or implement multiple Markov chains. 

It has been shown that these parallel implementations can significantly improve the 

convergence speed of simulated annealing, if a parallel computer is used. 

Implementation of the Simulated Annealing Algorithm for the 

Eddy Current Image Restoration Problem 

The nonlinear forward model 

As discussed in Chapter 6, the nonlinear forward model is based on a radial basis 

function neural network. The neural network forward model learns the nonlinear mapping 

from a binary flaw image to a complex impedance change image from training samples 

obtained through numerical computations or experiments. To simplify the generation of the 

training data set, we require that there be only one flaw in the flaw image. With this 

restriction, we can form the training data set by using impedance change images of flaws with 
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various shapes and sizes. The reason to use the neural network based model instead of a 

numerical model is due to the dramatic speed improvement of the neural network model over 

the numerical models. Since in the simulated annealing algorithm a large number of forward 

computations must be performed, the speed of the forward model is critical to the practicality 

of the nonlinear image restoration method. 

To generate the fast forward model, we first create a set of flaw images based on our 

prior information on flaw shape and size. For instance, if we know that the flaw is a crack, 

we can use rectangular flaws with various lengths and widths. If we have very little 

information about the flaw shape, we may need to create a training set that contains flaws 

with different shapes and sizes. The number of training flaws is dependent on the 

dimensionality of the solution space and the desired reconstruction error. Theoretical bounds 

on the approximation error and the guidelines for training data set selection can be found in 

Appendix B. After a set of training flaws is created, we can use a numerical model (e.g., the 

volume integral model with wavelet expansion discussed in Chapter 5) to compute the 

corresponding impedance change images. If there is no numerical model available for the 

test geometry, experiments can be made to obtain the training data set. 

New state generation 

The implementation of a new state generation step is critical to the convergence 

performance of the simulated armealing algorithm. In this step, a new state is obtained by 

applying a perturbation to the current state. The new state should be close enough to the 

current solution to preserve the stability of the convergence (range-limiting). Also, sufficient 
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randomness must be incorporated into the new state generation step so that the asymptotic 

convergence can be guaranteed. Despite the randomness requirement, applying some prior 

information to the solution in new state generation may improve convergence speed and the 

probability of generating a better solution. 

In our problem, a solution is a binary image representing die shape of a flaw. Since 

we assume that there is only one flaw in the region of interest, in a valid solution all the 

white pixels representing the flaw should be connected together. In the new state generation 

step we must ensure that a valid new state is generated from a valid old state. This cannot be 

accomplished by using a simple random pixel flip scheme because it may generate an invalid 

state. To deal with this problem, we developed a new state generation algorithm in which a 

new state is obtained by randomly expanding or shrinking the old state. We have also 

incorporated a heuristic based on the energy of the impedance change image to guide the flaw 

growth along the correct direction. The algorithm is described as follows: 

1. Randomly decide whether to add a pixel to or to remove a pixel from the current state. 

The probability of adding a pixel is , which is adaptively adjusted according to the 

energy of the impedance change image corresponding to the current state. The energy of 

a complex impedance change unage is defined by 

Let Eq be the energy of the impedance change measurement and E, be the energy of the 

impedance change image corresponding to the current solution (which is computed in the 

cost evaluation step by using the forward model). Then if Eq > , set 

(12.4) 
J  
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P„,+AP, if P,,+AP<l-P^ 

1-P^i„, otherwise. 
(12.5) 

and if Eq <E ,̂ set 

P  -AP i f  P  - A P > P  '^ar ^ » 'J ^ ar ^ ^min, 

P^, otherwise. 
(12.6) 

where AP is a small probability increment and P  ̂is the minimum probability for 

adding or removing a pixel. A typical value we used for AP is 0.05, for P^^  ̂ is 0.2, and 

P^  ̂ is usually initialized as 0.5. The purpose of the above algorithm is to create a new 

state which is likely to be close to the correct solution. If the current solution corresponds 

to an impedance change image with an energy smaller than desired, then it is very Ukely 

that the actual flaw is larger than the flaw in the current solution, and vice versa. In most 

cases, we can utilize this relationship between the size of the flaw and the energy of the 

impedance change image to create a new state that is closer to the optimal solution. 

However, this relationship is not always true due to the nonlinear nature of eddy current 

measurements. Due to this, we used a minimum probability of add/remove to ensure that 

the correct solution will not be missed. If P^„ is not zero, the asymptotic convergence of 

the simulated armealing algorithm can still be guaranteed. 

2. If a pixel needs to be added, the black boundary of the flaw (the set of pixels with value 0 

that are neighbors of the white boundary (pixel value equal to 1) of the flaw region) in the 

current solution is generated using an 8-neighbor boundary search algorithm [78]. 

Among all the pixels on the black boundary, one is randomly selected and added to the 

flaw. 
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3. If a pixel needs to be deleted, the white boundary of the flaw in the current solution is 

generated using an 8-neighbor boundary search algorithm [78]. Among all the pixels on 

the white boundary, one is randomly selected and removed from the flaw. The selected 

pixel must not change the coimectivity of the flaw (i.e., removing it will not let the flaw 

region be separated into two discoimected flaw regions). If this condition is not satisfied, 

the random selection is repeated until a pixel satisfying the condition is found and 

removed. 

Cost evaluation 

Cost evaluation is the process of evaluating how close a solution is to the ideal 

solution. It is the objective function of the simulated annealing algorithm. For our problem, 

we can use a simple cost function based on the mean square error between the predicted 

impedance change and the measured impedance change 

measured impedance change. AZ,y is obtained using the neural network fast forward model. 

To deal with the ill-posedness of the eddy current problem, in addition to the mean square 

error, we added a smoothing term to the cost function 

(12.7) 
J  

where AZ,y is the impedance change obtained from the current solution, and AZ° is the 

(12.8) 
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where A is a regularization constant which controls the relative importance of the smoothing 

term and the mean square error, and m is the number of direction changes on the flaw 

boundary (number of comers of the flaw). The value of A is related to the signal-to-noise 

ratio of the data. To obtain m, first we initialize m to be zero and then find the boundary of 

the flaw by using the 8-neighbor boundary tracking algorithm. Then starting from an 

arbitrary pixel on the boundary we check if its two neighbor boundary pixels are along the 

same durection. If they are not along the same direction, m is incremented by 1. After the 

current pixel is checked, we go to one of its neighbor boundary pixels and repeat the check. 

The process is finished when we return back to the starting pixel. Use of this smoothing term 

forces the solution to have a smooth boundary, or, in other words, to have a small number of 

comers. By changing the regularization constant, we can control the smoothness of the 

solution. The selection of the regularization constant is usually decided by the signal-to-noise 

ratio of the data. When the data has low SNR, one should use a large A to reduce the effect 

of noise. 

Cooling schedule 

A cooling schedule consists of the initial high temperature, the end low temperature, 

the number of transitions per temperature, and a function for updating the temperature. A 

cooling schedule must make a trade-off between two conflicting requirements - fast speed 

and convergence to optimal or near-optimal results. The selection of the high temperature 

and the low temperature is related to the maximum and minimum values of the cost function 

which are generally not available before the armealing process. We used a heuristic based on 
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the energy of the measurement data to guide the selection of the high temperature and the low 

temperature. The energy of the measured impedance change is defined by 

£o = SS|̂ «f- (12-9) 
J 

Comparing equations (12.8) and (12.9) we know that Eq  is equal to the cost when the 

candidate flaw image does not contain any flaw region (in this case AZ  ̂= 0 and m = 0). 

Therefore, Eq gives a rough estimate of the maximum cost. Also, if noise in the impedance 

change measurement is not correlated to the ideal impedance change, then the minimum cost 

(12.10) 

where is the noise power and SNR is the signal-to-noise ratio of the data. We can then 

define the high temperature as 

'^high ~ ^high^tiax — ^high^O^ ( 12. H) 

and define the low temperature as 

= = (12-12) 

where and Kig„ are constants. A typical value we used for is 10 and for is 

0.1. 

The rate of decrement in temperature is dependent on the regularity of the cost 

surface. If the temperature is decreasing too fast, we may lose the global optimum. 

Generally, the regularity of the cost surface is also not known, so we must experimentally 

decide the optimal rate of decrement. Since the exact form of the temperature decrement is 

not critical to the convergence performance, we use an exponential decrement function 
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(12.13) 

where 0 < a < I is a cooling constant which must be decided experimentally. 

Summary of the algorithm 

The simulated annealing based nonlinear eddy current image restoration method can 

be summarized as: 

1. Select the training flaw set by using our prior information about flaw shape. 

2. Use a numerical model or experimental measurements to obtain the impedance change 

images for the training flaw set. 

3. Establish the fast forward model using the training data set and training algorithms 

discussed in Chapter 6. 

4. Select the parameters for the cooling schedule as discussed above. 

5. Generate a random initial flaw image. Since at high temperature simulated annealing 

searches over a large space, the selection of the initial state is not crucial to the 

performance of the algorithm. 

6. From the current state, generate a new state using the adaptive growth algorithm. For the 

new state, calculate its corresponding impedance change image using the fast forward 

model and then compute its cost. Accept this new state if it has a lower cost than the 

current state. Otherwise, generate a random number that is uniformly distributed in 0 to 1 

and compare it with the probability given by the Metropolis function. If the random 

number is smaller, accept this new state. Otherwise, repeat the above process until a 

transition occurs. 
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7. After a certain number of transitions, update the temperature using equation (12.13). 

8. Stop if the temperature is smaller than the low temperature and return to the state with the 

smallest cost found in the annealing process. 

Further considerations for laboratory data and inspection data 

To apply the simulated annealing method to laboratory data and inspection data, we 

need to consider several practical issues. The first issue is how to build the training data set 

for the neural network forward model. If a numerical model is available for the test 

geometry, then we can use it to create a set of training samples. If a numerical model is not 

available, then we must make laboratory measurements on flaws with various sizes and 

shapes to create a training data set. The impedance change measurements used for this 

purpose must have high SNR to minimize modeling error. There are also two other problems 

associated with inspection data. 

Alignment with forward model 

The impedance change measurements obtained from field inspection must be aligned 

to be in position with the training data set so that a correct comparison can be made. This 

aligimient problem is difficult because inspection data are usually noisy and distorted. A 

simple center-of-gravity computation may not give the correct center of the flaw in the 

impedance change image. To solve this problem, we used an approach which does not 

directly solve for the center of the acmal flaw. In this approach, the position of the flaw is 

also one of the parameters to be optimized. In each cost evaluation step, we compute the 

center of the flaw region in the current solution by using the equations 
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Xc = » (12.14) 

i J  

and 

ye = . (12.15) 

' J  

where /y- is the current flaw image. According to the center position obtained above, we 

shift the center of the flaw to the center of the image, which is the default center for the 

training data set. Then the forward model is used to find the impedance change image for the 

shifted flaw. We can obtain the impedance change image for the original flaw by simply 

shifting the result of the forward model in the opposite direction. This impedance change 

image is then compared with the impedance change measurement to compute the mean 

square error. This approach allows the annealing process to find the correct flaw position 

because the minimum cost can only be reached when the flaw is centered correctly. 

Calibration 

For inspection data, calibration is another problem that needs to be considered. If the 

data is collected using a probe that is of the same type but different from the probe used to 

obtain the training data set, the impedance change of the inspection data may have different 

phase and amplitude than the training sample set due to variations in probe characteristics. 

Therefore, such inspection data must be calibrated before we can use the simulated annealing 

method. Calibration of the data can be accomplished by using the probe to collect data for a 

standard calibration tube and then comparing the data with calibration data obtained using the 
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probe that generates the training data set. According to differences in the two tubes' 

responses to some artificial flaws on the calibration tube, we can derive a calibration constant 

which is then multiplied with the inspection data. 

Test Results 

Test results for synthesized data 

We have tested our simulated annealing restoration method using synthesized 

impedance change data. The test was based on synthesized impedance change images for a 

EDM slot with different SNR obtained using a volume integral method forward model. The 

neural network fast forward model was trained by using the training data set shown in Fig. 

6.3(a). The test data set consists of synthesized impedance-change data with signal-to-noise 

ratios of 20 dB, 10 dB and 0 dB. The real and imaginary parts of the impedance change, and 

the restoration for the 20 dB case are shown in Fig. 12.1. A smoothing constant (A in 

equation (12.8)) of 1 was used in this case. The real and imaginary parts of the impedance 

change, and the restoration result for the 10 dB case are shown in Fig. 12.2. A smoothing 

constant of 5 was 

(a) Re(Z) (b) Im(Z) (c) Restoration result 

Fig. 12.1. Test results for the 20 dB data. 



(a) Re(Z) (b) Iin(Z) 

Fig. 12.2. Test results for the 10 dB data. 

(c) Restoration result 

(a) Re(Z) (b) Im(Z) (c) Restoration result 

Fig. 12.3. Test results for the 0 dB data. 

used in this case. The real and imaginary parts of the impedance change, and the restoration 

result for the 0 dB case are shown in Fig. 12.3. A smoothing constant of 10 was used in this 

case. 

As can be seen from the results shown above, in the 10 dB and the 0 dB case, the 

restoration result is identical to the ideal flaw image. For all test results presented above, the 

initial high temperature (equation (12.11)) was 1000, the final low temperature (equation 

(12.12)) was 0.1, the cooling constant (equation (12.13)) was 0.8, the number of transitions 

per temperature was 10, AP was 0.05, and was 0.2. Fig. 12.4 illustrates the change of 

the cost as a function of the number of state transitions in a typical test of the simulated 

annealing based nonlinear image 
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Fig. 12.4. The change in cost as a function of the number of state transitions. 

restoration method. As can be seen from Fig. 12.4, when the temperature is high (the first 

part of the curve), the change in cost is less regular and there are many transitions to states 

with higher cost. As the temperature decreases to a certain point, the cost tends to decrease 

monotonically. The cost becomes almost a constant when the temperature is sufficiently low. 

At this time, the simulated annealing algorithm has reached the optimal solution or a near-

optimal solution. Notice that the number of states evaluated in the simulated annealing 

algorithm is much larger than the number of state transitions that occurred. This is due to the 

very small probability of accepting a new state with higher cost at a low temperature. On 

average, a state transition occurring at a low temperature requires a large number of cost 

evaluations, or in other words, a large number of forward computations. Therefore, the 

selection of the low temperature is more difficult than the selection of the high temperature 
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and a tradeoff must be made between the convergence to good solution and the convergence 

speed. 

Test results for laboratory data 

To evaluate the performance of the simulated annealing method on experimental data, 

we tested it using laboratory data derived from a two-dimensional impedance change 

measurement for a surface crack on a thick aluminum plate. The crack had a length of 4.04 

mm, a width of 0.21 mm, and a depth of 0.916 mm. The aluminum plate was thick enough to 

be considered as a half space. The coil used had an inner radius of 3.8 mm, an outer radius of 

5.63 mm, and a height of 2.64 mm. A two-dimensional scan was made on a 64 by 64 grid, 

with a grid separation of 0.4 mm. Before restoration, the data were preprocessed using 

polynomial background removal and spline smoothing. 

To generate the training data set for the neural network forward model, we created 36 

artificial flaws with various lengths and widths. The impedance change images for those 

O o o 
0 o o 0 & 

0 o n m # 
e m m 

0 • 9 • m 

(a) Flaw images (b) Re(Z) images (c) Im(Z) images 

Fig. 12.5. The training data set for creating the neural network forward model. 
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artificial flaws were then computed by using the volume integral model. The training flaw 

images and the real and imaginary impedance change images are shown in Fig. 12.5. 

After the training data set was created, we generated a fast forward model by using 

the radial basis function neural network model. Then we applied the simulated annealing 

method to the laboratory data using this forward model. For this test, the initial high 

temperature was 10000, the final low temperature was 5, the cooUng constant was 0.8, the 

number of transitions per temperature was 10, AP was 0.05, was 0.2, and the 

smoothing constant was 20. 

The real part and imaginary part impedance change images of the laboratory data and 

the restoration results from simulated annealing are shown in Fig. 12.6. As a comparison. 

Fig. 12.6 also gives the restoration results from Wiener filtering and the maximum entropy 

(a) Re(Z) 05) Im(Z) (c) Result from simulated annealing 

(d) Result of Wiener filtering (e) Result of MEM 

Fig. 12.6. Test results from the laboratory data. 
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method. In the restoration results from all the three methods, the restored flaw is shorter than 

the actual flaw. This is thought to be a result of the background noise in the laboratory data 

and the distortion introduced to the data during preprocessing. From Fig. 12.6 we can see 

that the restoration result from the simulated annealing method is better than that of Wiener 

filtering and MEM in term of resolution and signal-to-noise ratio. Another advantage of the 

simulated annealing method is that in its restoration result there is no distortion due to a 

linear approximation, which can usually be found in the results of the two linear methods for 

relatively long cracks. The major disadvantage of the simulated annealing approach, 

however, is its high computational complexity. A typical execution of the simulated 

annealing image restoration requires performing several thousands of forward computations, 

which takes about 20-30 minutes on a DEC 5000 workstation. Apparently this speed is not 

practical for most real-world applications. 
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chapter 13. eddy current image restoration 

using genetic algorithms 

Introduction 

In the last chapter we discussed a nonlinear eddy current image restoration technique 

based on the simulated annealing algorithm. Test results showed that the simulated annealing 

based approach has good potential for achieving high quality restoration results compared 

with the linear restoration methods. However, test results have also revealed that the method 

is computationally slow for practical applications. The convergence of this method to a near-

optimal solution usually requires several thousand forward computations which consumes a 

large amount of computer time even when the neural network based fast forward model is 

used. To improve the speed performance of the nonlinear image restoration method, we need 

to develop a method that is more efficient in the search for a near-optimal result. In this 

chapter we discuss a nonlinear image restoration method based on genetic algorithms. More 

detail on this method can be found in Appendix B. Methods based upon genetic algorithms 

have been shown to have faster convergence speed than that of the simulated annealing 

algorithms in many apphcations [99-109]. We tested the genetic algorithm based approach 

using both synthesized impedance change data and laboratory data. We also compared the 

test results with the results of the simulated annealing based approach. Our test results 

showed that the genetic algorithm based approach can generate a near-optimal result in a 
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much shorter computational time than the simulated annealing based approach. In all the 

tests we made the speed improvement was larger than a factor of ten. 

Background of Genetic Algorithms 

Basic concept 

Like the simulated annealing algorithm, genetic algorithms are used for solving 

combinatorial optimization problems. Genetic algorithms were developed originally in the 

field of artificial intelligence by John Holland [101] more than 20 years ago. But only 

recendy has it been widely used in solving the combinatorial optimization problem. 

Applications of genetic algoritlims include configuration of radial basis function networks 

[102], image reconstruction [105], design and analysis of control systems [106], solution of 

electromagnetic inverse problems [107], optimal design of digital filters [108], and image 

segmentation [109]. 

Genetic algorithms simulate the natural evolution process. More specifically, they 

involve the following steps: 

1. Encode the candidate solutions of a problem in binary strings or arrays of numbers. This 

encoded representation is called a chromosome. 

2. Defme a fitness function for the candidate solutions. For an optimization problem, the 

fitness function is related to the objective function to be optimized. 

3. Define a selection process to generate an intermediate population from an initial 

population based on the fitness of each individual. 
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4. Define a mutation operation which brings random changes to the chromosome of each 

individual. 

5. Define a crossover operation to exchange the genetic material of two individuals. 

6. Perform an evolution process which is based on the above defined operations. 

In many applications, genetic algorithms have been found to be more efficient than 

the simulated annealing algorithm. This is mainly due to the crossover operation used to 

create new candidate solutions from the current population. The crossover operation can 

extend the region of search to be much larger than the region of search for the random 

perturbation used in simulated annealing. This increases the probability of finding a good 

candidate and improves convergence performance. 

Schema theorem 

Holland [101] has derived a formula for the average number of instances for a set of 

individuals based on the average fitness of the individuals. The formula, called schema 

theorem, applies to binary string encoded genetic algorithms with a one-point crossover 

operation and bit-flip mutation operation. A schema is a binary string with some don't-care 

bits. There may be many different binary strings belonging to the same schema. The schema 

theorem can be stated as 

5(h) 
(13.1) 

f i t )  

where iV(h,r) is the expected number of instances of schema h in generation t, is the 

crossover probability, is the mutation probability, /(h,r) is the average fitness value of 
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schema h in generation t ,  f { t )  is the average fitness value of the population in generation 

t, I is the length of the binary string, 5(h) is the defining length of h (the distance between 

the outermost fixed positions), and o(h) is the order of h (the number of fixed positions). 

The schema theorem has some important implications. First, it means that the 

algorithm will converge to a uniform population of the best individual if no crossover and 

mutation are performed. Therefore, we should incorporate a sufficient amount of crossovers 

and mutations to create new individuals which might have higher fitness level. Second, 

because the expected number of instances is related to a schema, not a string, genetic 

algorithms actually implement an implicit parallelism because a string simultaneously 

represents 2' different schemata (for each bit of the string, the schema can have either the 

same value as the string or a don't-care bit). 

For applications where the assumptions (binary string encoding, one point crossover, 

simple bit-wise mutation) of the schema theorem are not satisfied, the general principle of the 

schema theorem can still apply. However, the definition of the crossover operation and the 

mutation operation should follow the concepts of the basic binary genetic algorithm. 

Implementation of Genetic Algorithm Based 

Eddy Current Image Restoration Method 

Encoding of the solution 

The individuals in the genetic algorithm are the candidate solutions of the 

optimization problem. The first step of the genetic algorithm is to encode the candidate 
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solutions in a convenient form so that the mutation and crossover operators can be efficiently 

defined. In our image restoration problem, the candidate solutions are images containing 

possible flaw shapes. According to the neural network forward model we developed, the 

flaw image is defined as a binary image for the conductivity distribution in the flaw region. 

The binary flaw image can also be considered as a binary string if we map the two-

dimensional array of binary numbers into a one-dimensional array of binary numbers by 

rearranging the indices. The candidate solution can then be expressed as 

where P  =  M x N  for a Af by iV image. Because in the fast forward model we have 

assumed that there is only one flaw region in the flaw image, not every binary string given by 

equation (13.2) is a valid candidate solution. This adds extra complexity to the definitions of 

the mutation operation and the crossover operation as we need to make sure the results of 

these operations are also valid solutions. 

Fitness function 

The fitness function defines how well an individual is able to survive in the evolution. 

In an optimization problem, the fitness fiinction defines how close a solution is to the optimal 

solution. In our image restoration problem, we can define the fitness fiinction as the 

reciprocal of the cost function we used for the simulated annealing algorithm as 

where X is the binary string representation of the candidate flaw image, and the cost 

function is given by 

(13.2) 

/(X) = 1/C(X), (13.3) 



174 

C(X) = X S |AZ, - AZj ' + Am, (13.4) 
I J 

where A is a regularization constant which controls the relative importance of the smoothing 

term and the mean square error, and m is the number of directional changes on the flaw 

boundary (number of comers in the flaw). Details of equation (13.4) can be found in Chapter 

12. 

Population selection 

The most widely used selection scheme is the proportionate selection scheme in 

which the number of offspring for a given candidate is proportional to its fitness. However, 

because of the noise in the impedance change measurement, the minimum cost has a nonzero 

value, equation (12.10). Also, because the fitness defined in equation (13.2) introduces a 

nonlinear scaling of the cost function, the fitness difference between a good solution and a 

bad solution can be very small compared to the base value of the fitness. If the proportionate 

selection scheme is used, the number of offspring generated by the good solution is only 

slightly larger than that of the bad solution. This means that the selection process has a very 

small impact on the fimess distribution of the intermediate population. As a result of this, the 

convergence of the genetic algorithm is very slow. To avoid this situation, we used the rank-

based selection scheme [99]. In the rank-based selection, the expected number of offspring 

for a candidate solution is dependent on its fitness rank, not the absolute value of its fitness. 

Therefore, rank-based selection can guarantee that the good solution has much more 

offspring than the bad solution. 
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The rank-based selection is implemented as follows: 

1. Define a probability for the rank-based selection. 

2. Sort the candidate solutions according to a descending order of fitness. 

3. Start with the candidate solution with the highest fitness. 

4. Generate a uniformly distributed random number between 0 to 1. If this number is 

smaller than , choose the current candidate, otherwise go to the next candidate and 

repeat the process. 

5. Repeat step 3 and step 4 until all individuals in the intermediate population are generated. 

Crossover 

The crossover operation is a very important operation in genetic algorithms. The 

crossover operation should randomly incorporate the genetic materials of the two parents to 

generate offspring without any preference towards either one of the parents. In an 

optimization problem with solutions encoded as short binary strings, the crossover operation 

can be simply defined as exchanging part of the binary strings between ±e two parents. The 

crossover operation in our problem is harder to define, because not all binary images are valid 

flaw images. In our forward model we require that there be only one single flaw region in the 

flaw image. If we simply exchange part of two binary images for two parents, we may end 

up with an invaUd flaw image which contains two or more unconnected flaw regions. For 

this problem, we must define a crossover operation that generates a valid flaw image from 

two valid flaw images with a different flaw location and flaw shape. We developed an 

algorithm for the crossover operation that is based on examining the intersection and union of 
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the flaw regions of the two parents. The intersection of the two flaw regions contains genetic 

material common to the two parents, which is likely to be an important part of the optimal 

solution. Therefore, we initialize the offspring with the intersection and then randomly grow 

it in the union of the two flaw regions. By letting the parents be X, and Xj, I = Xj n Xj, 

and U = Xj u X2 , we can use the following algorithm to create an offspring Y. 

1. IfI = 0,Y = X[ with probability 0.5 and Y = X, with probability 0.5. In this case, we 

do not need to perform a crossover between the two parents because at least one of them 

is not a good solution. The reason for this is that the optimal solution must have both the 

correct flaw shape and flaw location since the two parents have different flaw locations. 

We can conclude that at least one of them is not a good solution so that it will be soon 

eliminated from the population. 

2. If I has only one connected flaw region, then the offspring are generated in the following 

way: 

(1)Set Y = I. 

(2) While A(Y) < —(A(X,) + ACXj)), where A(X) is a function which returns the flaw 

area of a flaw image X, 

a. Let B be a binary image containing the white boundary (pixel value equal to 0) of 

Y ,  B ,  =  B  n  X [ ,  a n d  B j  = 6 0 X 3 .  

b. Y = Yu B, with probability 0.5 and Y = Y uBj with probability 0.5. 

In this case, the offspring is first initialized using the intersection region of the flaw 

regions of the two parents, and then it randomly grows in the union of the flaw regions 
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until it reaches a reasonable size (in this case, the average size of the two flaw regions in 

the two parents). 

3. If I has more than one flaw region, Y = Xi with probability 0.5 and Y = X, with 

probability 0.5. In this case, a meaningfiil and valid crossover operation is very hard to 

define due to the complexity of possible combinations of intersection regions. Since this 

case is rare, we can ignore the crossover operation for this case and let the mutation 

operation take over. As a result of the mutation operation, even if the two individuals are 

paired off again in later generations, a case 1 or case 2 situation will finally be reached so 

that there is no danger of deadlock. 

The mutation operation in the genetic algorithm is very similar to the new state 

generation step in the simulated armealing algorithm. It also applies a random perturbation to 

a candidate solution. The implementation of the mutation operation is also based on the 

random expanding or shrinking of the flaw region in the flaw image. The only difference is 

that now the accumulative update of P^r (12.5, 12.6) is no longer used because there are 

multiple candidate solutions in the population. Instead, is decided on a per individual 

basis as 

Mutation 

1-Pn^_, Otherwise, 
(13.5) 
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where Eq is the energy of the impedance change measurement and is the energy of the 

impedance change image corresponding to the current solution. Details on the mutation 

operation can be found in the descriptions of the new state generation step in Chapter 12. 

Summary of the algorithm 

1. Select the training flaw set by using prior information about the flaw shape. 

2. Use a numerical model or experimental measurements to obtain the impedance change 

images for the training flaw set. 

3. Establish the fast forward model using the training data set and training algorithms 

discussed in Chapter 6. 

4. Select the crossover probability the mutation probability P^, the probability for the 

rank based selection the population size N, and the maximum number of population 

K .  

5. Initialize a population of N  candidate flaw images using random guesses or results 

obtained from linear eddy current image restoration methods. 

6. For each generation: 

(1) Evaluate the fitness of each individual. 

(2) Create an intermediate population using the rank based selection with the probability 

Pr-

(3) Randomly pair off individuals and perform crossover with the probability P^. 

(4) Perform mutations to individuals with the probability P^. 
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3. Stop if the evolution reaches steady state or after K  generations. Return the best 

individual found in the evolution process. 

Test Results 

Test results for synthesized data 

We tested the genetic algorithm based approach using the set of 20, 10 and 0 dB 

synthesized impedance change data which we used to test the simulated annealing based 

approach. All common parameters used in this test were the same as that used in the test of 

the simulated annealing algorithm. The real and imaginary parts of the impedance change 

and the restoration result for the 20 dB case are shown in Fig. 13.1. A smoothing constant of 

1 was used in this case. The real and imaginary parts of the impedance change and the 

restoration result for the 10 dB case are shown in Fig. 13.2. A smoothing constant of 5 was 

used in this case. The real and imaginary parts of the impedance change and the restoration 

(a) Re(Z) (b) Im(Z) 

Fig. 13.1. Test result for the 20 dB data. 

(c) Restoration result 
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(a) Re(Z) (b) Im(Z) 

Fig. 13.2. Test result for the 10 dB data. 

(c) Restoration result 

(a) Re(Z) (b)Im(Z) (c) Restoration result 

Fig. 13.3. Test result for the 0 dB data. 

result for the 0 dB case is shown in Fig. 13.3. A smoothing constant of 10 was used in this 

case. 

The above results were obtained with a crossover probability of 0.9, a mutation 

probability of 0.7, a probability for rank-based selection of 0.3, a population size of 10, and a 

maximum number of generations of 10. The initial population for the above tests was 

generated using rectangles with random widths and lengths. As can be seen from the above 

results, for the 10 dB case and the 0 dB case the restoration result is identical to the ideal flaw 

image, the same as the results of the simulated annealing based approach. Fig. 13.4 

illustrates the maximum fitness in the population as a function of the number of generations 
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Fig. 13.4. Maximum fltness as a fimction of the nmnber of generations. 

for a typical execution of the algorithm. As can be seen from Fig. 13.4, the maximum fitness 

increases almost monotonically in the evolution process. Comparing Fig. 13.4 with Fig. 12.4, 

we can conclude that the genetic algorithm based approach could be more efficient in term of 

convergence speed if proper parameters and initial population are used. For all the test 

results shown above, the genetic algorithm based approach reached a near-optimal solution 

within 10 generations. Therefore, the above tests requires about 100 forward computations 

each, compared with 2000 - 3000 forward computations in the simulated armealing 

algorithm. We also observed the following properties of the algorithm from the tests: 

1. The diversity of the initial population is very important to the convergence speed. Higher 

diversity leads to faster convergence. Since the nature of the crossover operation is as an 

X 10 
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interpolation between the two parents, it is useful only when the two parents are not very 

similar. Therefore, if the initial population contains similar individuals, only the mutation 

operation is initially useful. Due to the local search nature of the mutation operation, it 

takes a long time for the algorithm to converge to a near-optimal solution. If the 

individuals are scattered randomly in the solution space, then the search by the genetic 

algorithm is more effective and a faster convergence speed can be achieved. 

2. High crossover probability and high mutation probability leads to fast convergence. 

Although this is not always true for all problems, in our appUcation we observed that high 

crossover probability and high mutation probability increase search activity within a fixed 

number of generations; thus, increasing the probability of finding a good solution. 

3. The probability for the rank-based selection should be set so that the bottom half of the 

population is rarely selected. This is used to ensure that most individuals in the 

intermediate population have high fitness. 

Test results for laboratory data 

To evaluate the performance of the genetic algorithm based method on experimental 

data, we tested it using the same laboratory data used to test the simulated annealing 

algorithm. Details of the laboratory data and the training of the neural network fast model 

can be found in Chapter 12. The test was performed with a crossover probability of 0.9, a 

mutation probability of 0.7, a probability for rank-based selection of 0.3, a population size of 

10, and a maximum number of generations of 10. The real part and imaginary part 

impedance change images of the laboratory data and the restoration result from the genetic 
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algorithm are shown in Fig. 13.5. From Fig. 13.5 we can see that the restoration result from 

the genetic algorithm is the same as that from the simulated annealing method. However, the 

execution time of the genetic algorithm based approach is less than one-tenth of the execution 

time of the simulated annealing based approach. The speed performance of the genetic 

algorithm based approach can be further improved if we use restoration results from linear 

restoration methods in the initial population. Considering the rapid progress in computer 

performance, we believe that the genetic algorithm based approach will become a practical 

solution of the eddy current image restoration problem in the near future. 

(a) Re(Z) (b) Im(Z) (c) Restoration result 

Fig. 13.5. Test results from the laboratory data. 
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chapter 14. conclusions 

Summary of Major Results 

Eddy current forward modeling 

In this study we have developed an efficient implementation of the volume integral 

method for half space geometry and thin plate geometry. Based on careful considerations of 

numerical efficiency and stability, especially the stability of the integrations for the singular 

element, this implementation provides a solid basis for our understanding of the forward 

problem and the development of other forward models. To improve the speed of the volume 

integral method, we developed a wavelet expansion method which transforms the system 

matrix to a very sparse matrix. The wavelet expansion method can significandy reduce the 

computation involved in the volume integral method with only a small loss in accuracy. To 

further improve the speed of the forward model for applications in which the speed of the 

forward computation is critical, we also developed fast forward models based on artificial 

neural networks, especially the radial basis fiinction neural networks. After being trained 

using training samples obtained from experiments or numerical modeling, the neural network 

based forward model can closely approximate an ideal numerical model in a subspace of the 

whole modeling space at an extremely high speed. The major disadvantage of the neural 

network forward model is that the training data set must be carefuUy selected so that the 

targeted subspace can be fully covered and the average approximation error is minimized. 
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The above mentioned three forward models can be selectively used to handle different 

modeling problem. The direct implementation of the volume integral method is the most 

accurate model, but it is also the most time consuming model. It should be used when the 

flaw volume is small so that the number of volume elements is limited. The volume integral 

method with wavelet expansion can be used to model relatively large flaws when the number 

of volume integral elements required makes the direct implementation method impractical. 

The neural network based forward models are used for applications where the modeling 

speed is the most important thing, and a certain amount of modeling error can be tolerated. 

Such applications include forward models used to solve the nonlinear inverse problem and 

forward models used for educational purposes. 

Signal processing and flaw detcotio" 

hi this study we developed signal processing techniques to enhance flaw signals and a 

detection method to find circumferential cracks. The set of signal processing techniques 

includes preprocessing techniques to remove background signals from liftoff and changes in 

tube diameter and to adjust the phase of the data so as to enhance signals from OD flaws. We 

also developed a background removal method based on principal component analysis to 

suppress signals from dents and scratches on the tube. The circumferential crack detection 

method is based on the shape characteristics of a circumferential crack signal and grayscale 

mathematical morphological operations. 

The above mentioned processing techniques are usually used in series combination. 

Firstiy, the inspection data is processed by preprocessing techniques to remove the null offset 
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and to rotate the OD flaw signals to the vertical channel. Then the vertical channel is 

processed by the background removal method based on principal component analysis to 

ftirther reduce signals from other unwanted effects. Finally, the set of morphological 

operations are performed and a binary crack map is generated. Once the possible flaw 

indications are located, we can use image restoration methods to recover the correct flaw 

shape so that better flaw characterization can be achieved. 

Eddy current image restoration methods 

Another major part of this study was the image restoration methods to restore the flaw 

image from the blurred impedance change image. We developed two Unear image restoration 

methods - the Wiener filter method and the maximum entropy method, and two nonlinear 

image restoration methods - the simulated annealing based method and the genetic algorithm 

based approach. The two linear image restoration methods are based on an approximate 

linear forward model derived using the reciprocity impedance change formula and the Bom 

approximation. The Wiener filter method is a straightforward method. It can be easily 

applied when the point spread function is available. It involves a small amount of 

computation and generates less than ideal results. The maximum entropy method is an 

iterative method with higher computational complexity than the Wiener filter method. 

However, it generally provides restoration results with higher signal-to-noise ratio and 

resolution. Due to the error introduced in the Unear approximation, both linear restoration 

methods may generate erratic results in some cases. To remedy this problem, the nonlinear 

image restoration methods are based on the neural network forward model which is more 
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accurate than the approximate linear forward model. Although the nonlinear image 

restoration methods are more time consuming than the linear methods, they can generate 

better restoration results and are reliable under various flaw and coil configurations. 

Generally the genetic algorithm based approach has much faster convergence than the 

simulated annealing based approach. 

Whether to use the linear restoration methods or to use the nonlinear restoration 

methods in a specific application depends on the tradeoff between the quality of the 

restoration results and the speed of the restoration. Usually linear restoration methods can be 

used as a first-cut to process a large amount of data in a short time. For flaws that are of 

critical size, the nonlinear restoration methods can then be used to generate more accurate 

results. 

Future Research 

Although in this dissertation we presented a comprehensive study on many aspects of 

the processing and analysis of two-dimensional eddy current inspection data, there are still 

many problems to be investigated so that we can improve the performance of our processing 

techniques for practical applications. Two of these problems have special importance for 

industrial applications. The first problem is how to develop numerical forward models that 

accurately model tube geometry and industrial standard coils. The second problem is how to 

improve the speed of the nonlinear image restoration methods developed in this study so that 

they can be used in practical data analysis. 
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The numerical models currently available in the study of eddy current testing, 

including the volume integral method adopted in this study, usually simplify the modeling 

problem of tube inspection with thin plate geometry and an air-core coil. Although this 

simplification is valid in some cases, we would like to have a more accurate model that takes 

the tube geometry and the non-ideal nature of industrial standard coils into consideration. In 

industrial standard coils ferrite cores are usually used to increase the magnitude of the coil 

response. Due to the nonlinear nature of the ferrite core, the incident field of the coil cannot 

be analytically computed. Instead, complex numerical methods are necessary to compute the 

incident fields of industrial standard coils. The tube geometry brings another complication -

because the lack of symmetry in this case, there is by far no analytical solutions for the 

incident field of a pancake coil placed above the tube internal surface and for the Green's 

function in tube geometry. Therefore, the volume integral method cannot be used. The finite 

element method may be able to model the complete tube geometry. However, the complexity 

of the finite element method prevents it firom being widely used in industrial practice. It can 

be predicted that advances in this practical modeling problem can lead to better 

understanding of the tubing inspection problem and improvements in processing techniques 

for tubing inspection data. 

To increase the practicality of the nonlinear image processing restoration techniques, 

we need to further improve their speed performance. Although it is believed that the rapid 

progress in computer performance wUl ultimately fill up the speed gap, in the near future we 

still have to study methods for reducing the amount of computation involved in the nonlinear 

restoration. Two approaches are possible: (1) improve the speed performance of the neural 
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network forward model, and (2) reduce the number of forward computations required to 

reach a near-optimal solution. To use the first approach, we need to reduce the size of the 

radial basis function (RBF) neural network since the complexity of the forward computation 

for an RBF network is dependent on the number of nodes in each layer. To reduce the 

number of nodes in the input layer and output layer, we can compress the input and the output 

as discussed in Chapter 6. To reduce the number of nodes in the hidden layer, we need to 

study better clustering methods so that the approximation capability of the radial basis 

fiinction neural network can be preserved even when the number of cluster centers is small. 

To use the second approach, we need to further investigate the convergence properties of the 

combinatorial optimization algorithms, especially the genetic algorithm. Since the 

performance of the genetic algorithm is dependent on a number of parameters used in the 

algorithm, and because there are many variations in the genetic algorithm, this investigation 

requires a large amount of testing and performance tuning. However, once the above two 

approaches have been carefully studied, we should be able to significandy improve the speed 

performance of the genetic algorithm based nonlinear image restoration method. 
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Abstract 

There is growing interest in the applications of wavelets as basis functions in solutions of 

integral equations, especially in the area of electromagnetic field problems. In this paper we 

apply a wavelet expansion to the solution of the three-dimensional eddy current modeUng 

problem based on the volume integral method. Although this method shows promise for 

eddy current modeling of three-dimensional flaws, it is restricted by the computing power 

required to solve a large linear system. In this paper we show that applying a wavelet basis to 

the volume integral method can dramatically reduce the size of the linear system to be solved. 

In our approach, the unknown total field is expressed as a twofold summation of shifted and 

dilated forms of a properly chosen basis function, which is often referred to as the mother 

wavelet. The wavelet expansion can adaptively fit itself to the total field distribution by 

distributing the localized functions near the flaw boundary, where the field change is large, 

and the more spatially diffused functions over the interior of the flaw where the total field 

tends to be smooth. The approach is thus best suited to modeling large three-dimensional 

flaws where the large number of elements used in the volume integral method requires 

extremely large memory space and computational capacity. The feasibility of the wavelet 

method is discussed in the context of the physical nature of eddy current modeling problems. 

Numerical examples using both Haar wavelets and Daubechies compactly supported wavelets 

with periodic extension are given. The results of the wavelet method are also compared with 

experimental results from a cylindrical flat-bottom hole in an aluminum plate. These 

numerical examples and comparisons indicate that the wavelet method can gready reduce the 

numerical complexity of the problem with negligible loss in accuracy. 
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1. Introduction 

Eddy current testing is a widely used nondestructive evaluation (NDE) technique in 

which flaw information is extracted from the impedance change of a coil placed above a 

metal testpiece. Two common applications of eddy current NDE are the inspection of heat 

exchanger tubes in steam generators of nuclear power plants and detection of hidden 

corrosion in the lap-splices of aircraft skins. To obtain quantitative information about flaw 

size and shape, we would like to have a theoretical model which is able to predict the 

impedance change of a coil for different flaws in the test geometry. Analytical solutions exist 

for simple test geometry and flaws with good symmetry properties. However, for flaws with 

irregular shapes in complex geometry, an analytical solution usually is not available so we 

must find a numerical solution. There have been several numerical models in the literature, 
I "Y 

e.g., the finite element method , the boundary element method , the volume integral 

method^"'*'^ and methods based on variational formulas.® The finite element method is a 

general method which can be used in various flaw and geometry settings. However, it is very 

complex and inherently computationally intensive. The boundary element method reduces 

the computation by using only elements on the boundary of the flaw, but it cannot be used 

easily to model irregular flaws. Variational methods can also reduce the computation time, 

but their convergence is not guaranteed. The volume integral method has shown good 

potential due to its capability of modeling a three dimensional flaw with arbitrary shape. It is 

also straightforward to apply the volume integral method if the Green's fiinction of the given 

geometry is known. A limitation of the volume integral method is that it requires a large 

number of volume elements to accurately model a large three-dimensional flaw. This usually 

results in the inability of the volume integral method to model large flaws with conventional 

computing resources, such as PCs and workstations. 

To solve an integral equation numerically, variational formulas are used to discretize the 

integral equation and change it into linear equations by using a set of basis functions. It is 

well known that the selection of basis functions in the solution of integral equations plays an 
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important role in the sparsity of the resultant system matrix. Recently there has been growing 

research interest in the application of wavelets as basis functions in the solution of integral 

equations. Wavelets, which are constructed from a rigorous mathematical foundation, were 

shown by Steinberg and Leviatan^, and by Wang® to have great promise of success in 

converting an integral equation into a sparse matrix equation. These authors used wavelets to 

solve Fredholm integral equations of the first kind for electromagnetic scattering problems. 

In this paper, we apply a wavelet expansion to the volume integral equation for eddy 

current modeling using a Fredholm integral equation of the second kind derived from the 

diffusion equation. A preliminary study of this problem was presented by Wang et al.^ 

Results from the wavelet method were compared with results from a layer approximation and 

with experimental results by Satveli at al.'° In this paper, we give a comprehensive 

discussion of the wavelet expansion method with both theoretical derivations and 

implementation details. A new linear system of equations is obtained using the wavelet 

expansion in a Galerkin method to solve the governing volume integral equation. By using a 

proper threshold, a sparse system matrix can be generated which results in a large savings in 

execution time and memory requirements. Both wavelets on the real line and periodic 

wavelets were used. We also provide some implementation details which are important when 

applying this method to reai-world problems. 

To evaluate the performance of the wavelet method, we present several numerical 

examples with the Haar wavelet" and the Daubechies' compactly supported wavelet" with a 

periodic extension. Numerical examples show how wavelets change the sparsity of the 

system matrix. We also observed an interesting relationship between the physical nature of 

the eddy current problem and the stmcture of the system matrix. To evaluate the accuracy 

lost in the process of applying the wavelet transform and thresholding, we conducted an 

experiment on a simulated corrosion pit underneath a thin aluminum plate. The experimental 

results are compared with results given by the wavelet method. We observed that a very high 
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compression rate can be achieved with only a small loss in accuracy, which is often 

negligible. 

The organization of the paper is as follows: In Sec. 2 we briefly review the volume 

integral method for eddy current modeling. In Sec. 3, we apply wavelet expansions to the 

eddy current modeling problem and derive a new system of linear equations after using a 

wavelet basis in the Galerkin method. In Sec. 4, we discuss important implementation details 

for applying the method, give numerical examples and then compare the theoretical result 

from the wavelet method with experimental results. Finally, the paper is concluded with a 

summary in Sec. 5. 

2. The Volume Integral Method for Eddy Current Modeling 

In this section, we briefly review the volume integral method used in eddy current 

modeling. The volume integral method was originally used in geophysical induction studies 

and then introduced to the field of eddy current NDE by Dunbar.^ This method transforms 

the governing eddy-current diffiision equation to an integral equation suitable for numerical 

solution using a Green's function for the given geometry. This volume integral equation can 

be discretized and transformed to a linear matrix equation for solving directly. 

It is well known that in the frequency range of eddy current testing, the displacement 

current is very small and can be neglected (quasistatic assumption). In this case Maxwell's 

equations reduce to a diffusion equation. The volume integral method uses the following 

volume integral equation^ 

(1) 
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for solving the diffusion equation where r' is the source coordinate, r is the field coordinate, 

V is the flaw volume, and ^crCr') is the conductivity change between the flaw and the host 

material. E® (r) is the incident electric field, when there is no flaw in the test piece. 

Analytical solutions exist for the incident field for an air-core coil above a half-space or 
I 

layered metal. E(r) is the total electric field in the presence of a flaw. G(r,r'), the 

Green's function for the given test geometry, is a special solution of the governing diffusion 

equation 

G(r, r") - /(OjUCTo G(r, r") = io)fj.5(r - r' )I, (2) 

where CQ is the host conductivity, 5(r-r') is the three-dimensional Dirac delta function, and 

I is the unit dyad. 

Having solved for the total field using (1), the impedance change of the coil next to a 

non-magnetic metal can be obtained fi'om the reciprocity formula'^ 

AZ = -4-j«5cT(r')E°(r')-E(r'Mv', (3) 
^ V 

where I is the current in the coil, and AZ is the change in impedance caused by the change 

in conductivity 5<7(r'). This equation is particularly useful because it only requires the 

incident field and the total field to be evaluated within the flaw volume. It is not necessary to 

numerically compute the fields in the region of the coil. 

Given the Green's fiinction and the incident field E°, the solution of the total field E is 

usually accomplished by discretizing (1). The flaw volume is divided into N smaller volume 

elements within which the electric field can be assumed constant. After discretization, (1) 

becomes 
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E°(r) = E(r) + | G(r, r" )&r,.i/v,. • E,, (4) 
1=1 Vt 

which can be further reduced to the following linear system 

E°=(I-C)E, (5) 

where E° is incident field, E is the total field, I is the identity matrix and C is a matrix 

derived from the conductivity change and the integration of the Green's function in each 

element. 

The solution of the above linear system can be obtained by using LU decomposition and 

bac k  s u b s t i t u t i o n .  H o w e v e r ,  c o m p u t a t i o n a l  d i f f i c u l t i e s  a r i s e  w h e n  t h e  n u m b e r  o f  e l e m e n t s  N  

is large. It is easy to see that the memory requirement for storing the system matrix is 

proportional to , and the number of operations required to invert the system matrix is on 

the order of . Also, the accuracy of the method is related to the sizes of the volume 

elements. Because in metal the electric field change is closely related to the skin depth, it is 

necessary for the dimension of each volume element be much smaller than the skin depth to 

accurately model the field distribution. For a large (in units of skin depth) three-dimensional 

flaw, the number of elements required wUl be on the order of thousands. Such a large 

number of element causes a very high, sometimes almost unattainable, computational 

requirement for the computing resource. Therefore, to apply the volume integral method to 

large flaws, we must find a way to reduce the space and time requirements. It is in this sense 

that wavelet analysis provides an ideal tool for us to reduce the redundancy in the 

computation and compress the size of the computational burden. 
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3. Wavelet Expansions in the Solution of Volume Integral Equations 

In this section we apply a wavelet basis to the solution of the three-dimensional volume 

integral equation introduced in Section 2. Before discussing the wavelet expansion method, 

we briefly introduce orthonormal wavelet basis and periodic wavelet basis. To simplify the 

mathematical derivation, we consider the one-dimensional case first and derive the new 

linear system equations by using the Galerkin method. Then we extend the result to the 

three-dimensional case. The discussion will be based on using a wavelet basis on the real 

line. We will consider the modification of the method when using periodic wavelets. 

3.1 Orthonormal Wavelet Basis and Periodic Wavelet Basis 

This discussion of the orthonormal wavelet basis and the periodic wavelet basis is 

limited to the fundamental definitions and aspects of wavelets that are essential for the 

completeness of this paper. For detailed discussions on wavelet theory, refer to the books by 

Daubechies," Chui''^ and Meyer,and the papers by Strang"^ and Mallat.'^ 

Given a mother wavelet \ ( r (x ) , the wavelets 

y / j i^  (x )  =  \ i f {V  x -k )  (6) 

form an orthonormal basis if 

= for all j , k , l ,meZ (7) 

where </, g)  is the inner product operation of functions f (x )  and g(x )  in Lr{R) , and is 

defined by 
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</. ̂ > = J f {x )g {x )dx .  (8) 

Z is the set of integers and 5p^ is the Kronecker delta function. The simplest orthonormal 

wavelet, the Haar wavelet, and its corresponding scaling function are shown in Fig. 1. 

Another orthonormal wavelet, the Daubechies compactly supported wavelet with four 

coefficients, and its corresponding scaling function are shown in Fig. 2. 

Given any function /(x) in we can approximate it by using an orthonormal 

wavelet basis 

where c is a constant, and the expansion coefficients can be obtained by projecting 

f{x) onto the subspace expanded by as 

Given an orthonormal wavelet on the real line, the periodic, orthonormal wavelets 

in [0,1] can be defined as'' 

(9) 
j  k. 

AJ,K (10) 

¥J!K(^) =  ̂ ¥J,K(^ + N) ( I I )  

where j , k ,neZ .  It can be shown that {1} and y = 0,1,2, •••, A: = 0, •••, 2-' — 1} 

constitute a periodic, orthonormal basis in [0,1]." 
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If the orthonormal wavelet in equation (6) is compactly supported, the infinite 

summation in equation (11) reduces to finite summations. The periodic, orthogonal wavelet 

Vo,o^(^) constructed fi:om the Daubechies compactly supported wavelet with four coefficients 

is shown in Fig. 3. 

3.2 One Dimensional Case 

Consider the following one dimensional simplification of the problem defined in equation 

(1) 

E\x) = E{x) -  f G{x,:d )5G{^ )E{X' )(B!, (12a) 
JQ 

E(x)  =  0 ,  xen ,  (12b) 

where Q = [0, L] is the solution region which contains the flaw. The explicit boundary 

condition of equation (12b) is the result of using the wavelets on the real line, since some of the 

wavelet basis functions used for the expansion of the unknown total field £(x) in the solution 

region fit do not vanish outside Q. Now we use the Galerkin method to approximate E(x) in 

Q with an orthonormal wavelet basis on the real line giving 

H 
^(-t) = -7=+X (13) 

j=j,  k=k,(j)  

where QQ and A jt. are the expansion coefficients and -JZ is a normalization factor. The 

expansion of £(x) uses wavelets from resolution level , which corresponds to the lowest 

resolution component of E{x), to the resolution level 72 > which corresponds to the desired 

resolution for the solution. Notice that equation (13) is only satisfied when x e Q. Setting 
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pW = |J. (14) 
0 xg£2. 

we can express the total field on the real line as 

_ H FHIJ) 

E(x)= j  aji,\irjj ,{x)p(x). (15) 
j=j\ k=k,U) 

To simplify the expression, we can combine the scaling index and translation index of the 

basis functions into one index. Let 

(1« 

and suppose the number of basis functions used in the summation of (15) is -1, the total 

field can be expressed as 

N-L 
E(x)=^ai\fri(x)p{x), (17) 

/=0 

where {a,}, {v/',(j:)} are derived from {oyyt}' {v^y.jt(^)} by combining the indices. Substituting 

equation (17) into equation (12a) gives 

N-l S-l 
E°{x) = i{x)p(x) + j  G(x,x')5G(x')Y^ai\if iix')pix')dx'. (18) 

1=0 Q 1=0 

Since 5a(x ' )  = 0 if e Q, we can rewrite the right hand side of equation (18) as 
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A^-l N-l 
£°(j:)= J^AIITR,IX)PIX)+'^AI{G(X,X')SO(X'),  VA,-(X')>. (19) 

1=0 1=0 

Taking the inner product of both sides of equation (19) with Y F J ( X ) ,  y = 0,1, • • -1 gives 

N-l N-l 

(E° (x ) ,  y / j i x ) )  =  '^a i {y / i (x )p (x ) ,  V^y(x ) )+  ]^ f l j«G(x ,x ' )5o- ( j : ' ) ,  V^,  ( j : ' )> ,  y / j {x ) ) ,  (20) 
1=0 1=0 

y=o,  i , - ,yv- i .  

These linear equations can be written in more compact form as 

N-l 

^aiiDij+qj) = bj, y = 0,l,-,yV-I (21) 
1=0 

where bj = <£°(x), Yjix)) is the wavelet expansion coefficient of the incident field, 

Cj j  =  ( {Gix ,x ' )5o{x ' ) ,  y / j (^x ' ) ) ,  y / j i x ) )  is the two-dimensional wavelet expansion coefficient of 

the function G{x ,x ' )6< j ( ,x ' ) ,  and D,y =jy / i (x ) \ i / j {x )dx .  Given the Green's function for the test 
n 

geometry, the incident field distribution and the conductivity distribution in the flaw region, bj 

and Cjj can be easily obtained by using the fast wavelet transform algorithm, and Djj is derived 

directly from the wavelet basis selected. 

Equation (21) is the general form of the linear system equations for the solution of 

equation (12a) after using an orthonormal wavelet basis on the real line. The reason why D,j 

does not reduce to the Kronecker delta function is that the basis functions {v^, (j:)} used to 

approximate the total field are not always orthogonal to each other in Q. Suppose the support 

of ^i{x) is Si, and the support of jix) is Sj, then we have 
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if 5,.n5y££I (22) 

Therefore, if any part of the overlapped region of 5, and Sj are outside of Q, the value of Dfj 

must be calculated explicitly. This is another disadvantage of using wavelets on the real line in 

the solution of equation (12a) in a bounded region. A special case of (21) exists when we use 

the Haar wavelet to approximate the unknown total field. In this case, we are able to express 

the total field in by using basis functions all lying in Q because the Haar wavelet has a 

support as small as the grid separation, and D,y = 5^ because 5,- e Q., / = 0,1, • • •, -1. 

Therefore, in the case of the Haar basis, there is no problem at the boundary of the solution 

region and the boundary condition of equation (12b) is not necessary. However, since the Haar 

basis is not efficient in approximating smooth functions, the resultant system matrix may not be 

as sparse as that from a smoother wavelet. 

3.3 Extension to the Three-Dimensional Case 

The above result can be extended to the three-dimensional case by a similar, but 

somewhat lengthy derivation. The three-dimensional volume integral problem is given by 

We can construct an orthonormal basis for by using the tensor product functions 

generated by three one-dimensional orthonormal wavelet bases 

(23a) 
v  

E(r) = 0, r«V'. (23b) 

^ >'•2) = V' j. .k, (-^)V' j„kSyW j.x (2)> (24) 
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where the wavelets i n  x ,  y  and z  directions are scaled independently. 

By a similar formulation and combination of indices as what we used in the section 

above, we can express the total vector field as 

1^,-1 N.-L 

E(r)= ̂  ̂  ̂^ijk¥ijjcix,y,z)p^{x)py{y)p^{z) (25) 
1=0 y=o i=o 

where is the vector expansion coefficient for the three-dimensional total vector field 

E(r). 

Substituting equation (25) into equation (23a) and using the same procedure as in the 

section above, we can obtain the linear system equations for the three-dimensional case as 

_ _ 
^ ' (^ijklmn + CijUmn ) = b/nm (26) 
i=0 j=0 k=0 

/  =  0 , m  =  0 , 1 , - - - ,  - 1 ,  «  =  0 , 1 ,  • • • ,  y v . - I ,  

where bi^ is the vector expansion coefficient for the incident vector field, CijUmn is the 3 by 

3 matrix expansion coefficient of the six-dimensional function G(r,r')5o"(r') and D,ywmn is a 

3 by 3 matrix with 9 identical elements, and each element can be expressed as 

dijkimn = j¥r,r,k(x,y,z)yfi;n»,(x,y,z)dv' 
v  

(27) 



204 

3.4 Extension to the Periodic Wavelet Case 

As we have seen in Section 3.2, using wavelets on the real line in the solution of integral 

equations like equation (12a) has two major disadvantages. First, the boundary condition of 

equation (12b) must be explicitly enforced. This is a very undeskable requirement in 

applying this method since the total field generally does not vanish outside the flaw region. 

To satisfy equation (12b), we must enlarge the solution region £2 so that outside £2 the total 

field is very small and can be neglected. This may result in a solution region which is much 

larger than the flaw region and thus reduce the usefulness of this method. Another major 

disadvantage is that because some of the wavelet basis functions used to approximate the 

total field are not orthogonal in the solution region, the term D,y does not reduce to delta 

functions and must be calculated before the solution of equation (21). These disadvantages 

all arise because the fact that wavelet basis functions on the real line used to approximate the 

total field do not form an orthogonal set in the solution region £2. The periodic wavelet 

inU-oduced in Section 3.1, on the other hand, can be used to avoid these difficulties because it 

can be made orthonormal in a bounded region £2. Using an orthonormal, periodic wavelet 

basis (•^)} defined in £2 = [0, L], we can expand the total field in £2 as 

by combining indices. Notice that the right hand side of equation (28) denotes a periodic 

function with period equal to L and whose value is equal to the total field in region £2. 

Substituting equation (28) into equation (12a), we have 

E(jc)=Xa,V^r(j:), ;c€£2 (28) 
1=0 

£:°(a:)= + (29) 
1=0 a 1=0 
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Projecting both sides of equation (30) into the subspaces expanded by 

y = 0,1, •••, -1, we have the following equations 

J E\x) \ i f f ' {x )dx  =  +  £aJJ G{x ,x ' )5a{x '^r  {x )dx 'dx ,  (30) 
Q 1=0 1=0 Qn 

7=0,1,-,yv-i, 

which can be rewritten in the form of a matrix equation 

N-\ 

= j  =  0 , l , - ,N- l  (31) 
1=0 

where bj are the periodic wavelet expansion coefficients of the incident field and C,y are the 

periodic wavelet expansion coefficients of Gix,x')S(7{x'). The use of periodic wavelets in 

the solution of equation (12a) gives a group of well formed linear equations: all coefficients 
17 in equation (31) can be obtained by using the fast wavelet transform algorithm of Mallat. 

Also, since the boundary condition of equation (12b) is not necessary, we can use a solution 

region which has the same size as the flaw region. 

Despite its advantage over the wavelet on the real line, a potential disadvantage of using 

periodic wavelets exists due to the fact that the periodization of the total field may introduce 

an edge effect. Since the values of the total field at two ends of the solution region generally 

are not equal, there are discontinuous points at the boundaries of each period. This 

discontinuity introduces some large expansion coefficients for the total field and makes the 

system matrix less sparse. However, experience shows that this edge effect generally does 

not have a large influence on the overall performance of the wavelet method. 
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4. Numerical Results and Comparison with Experimental Results 

To evaluate the validity and performance of the wavelet method discussed in Section 3, 

we implemented the method and used the problem of hidden corrosion in an aluminum plate 

as a test case. In Section 4.1, we describe the experimental setup for the model problem used 

as the test case for the wavelet method and in Section 4.2 we give some implementation 

considerations of the wavelet method. In Section 4.3, we give the numerical results obtained 

by using the Haar wavelet and the periodic wavelet constructed from the Daubechies 

compactly supported wavelets with four coefficients and compare the results from the 

wavelet method with the experimental result. In Section 4.4, we discuss some relationships 

between the physical nature of the eddy current problem and the selection of wavelet basis in 

the solution of the volume integral equation. 

4.1 The Experiment 

The test case is to determine the change in the impedance of a right-cylindrical air-core 

coil next to an aluminum plate that contains a right-cylindrical flat-bottom hole on the side 

opposite the coil. The half space below the coil can be considered as a two layer structure, 

where the first layer is the aluminum plate and the second layer is vacuum. A schematic 

drawing of the test is shown in Fig. 4. In the experiment, the impedance change of a 

precision wound coil of copper wire was measured at 20 frequencies, equally-spaced between 

2.5 kHz and 50 kHz, with an HP 4194A impedance analyzer. The position of the coil was 

held fixed, while the position of the sample was varied by a precision x-y scanning table that 

translated the sample perpendicular to the axis of the coil. Scans were repeated five times 

and the results averaged to produce the results reported herein. Measurements of the coil 

impedance were made as a frinction of frequency and position with respect to the center of 

the flat-bottom hole. 

The coil has a right-cylindrical cross-section and consisted of 504 turns of copper 
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wire wound on an insulating nonmagnetic core. The inner radius of the coil is 3.8 mm, 

the outer radius is 5.63 mm, and the height of the coil is 2.42 nmi. The distance between the 

bottom of the coil and the top of the plate is called "lift-off" and is 0.23 mm, 

The test sample consists a thin flat plate of 2024 aluminum alloy. The dimensions of the 

plate are 75 mm x 125 mm x 1.02 mm. A nominally right-cylindrical hole was drilled on the 

side of the plate opposite the coil. The diameter of the hole was 6.30 mm and the depth 

ranged between 0.28 mm at the center to 0.27 mm at the edge. This flaw is relatively large 

compared with the skin depth in the test frequency range and direct modeling by the volume 

integral method is not feasible due to the large computational resource requirement. 

4.2 Implementation of the Wavelet Method 

The modeling problem described in Section 4.1 can be considered as the problem of 

determining the impedance change of the coil caused by a flaw in an infinite flat metal plate 

because the aluminum plate is very thin and the flaw is not close to the edges of the plate. 

The analytical solution for the incident field of an air-core coil in an infinite thin plate has 

been given by Dodd and Deeds.'" The Green's function for the thin plate geometry has also 

been derived by Weaver.'^ The fast wavelet transform algorithm used in our implementation 

is MziUat's pyramid algorithm for an orthonormal wavelet basis.It is worth mentioning that 

all the electric field quantities in the implementation are vectors with complex values. The 

wavelet transform of a complex function is obtained by transforming the real and imaginary 

parts independently and then combining the results. Also, to obtain and in 

equation (26), multi-dimensional wavelet transforms must be used. Based on the approach 

we used to define the diree-dimensional wavelets in equation (24), the multi-dimensional 

wavelet transform can be obtained by transforming the data in each dimension sequentially. 

The result is independent of the order of the dimensions used in the transforms. This is 

exactly the same as for the multi-dimensional Fourier transform. 
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There exists another problem with the storage of the system matrix in the 

implementation of the wavelet method. The system matrix is the six-dimensional wavelet 

transform of the product of the Green's function and the conductivity distribution. The 

problem is how to compute the wavelet transform of the system matrix without fully storing 

the matrix in the computer memory since it could be very large when the number of volume 

elements used in modeling is sufficient for an accurate solution. To solve this problem, we 

utilized the property of Mallat's pyramid algorithm for the fast wavelet transform'^ that the 

computation at any resolution level is solely based on the result of the immediately higher 

resolution level. Thus, we are able to compute a wavelet transform of size N from the 

results of wavelet transforms with a smaller size M if both N and M are powers of 2. 

Based on this relationship, we can compute the wavelet transform of the whole system matrix 

in two steps. In the first step, we divide the system matrix into many submatrices with 

identical sizes and compute the wavelet transform for each of them. The result is stored in a 

sparse matrix data structure. In the second step, the wavelet transform of the whole matrix is 

obtained by using the result of the first step. The result is then thresholded and stored back in 

the sparse matrix data structure. 

The steps used to implement the wavelet method are summarized as follows: 

1. Compute the incident field distribution by using Dodd and Deed's result. 

2. Compute the integral of the Green's function in each volume element. The Green's 

fiinction for thin plate geometry is calculated by using the result of Weaver. For singular 

elements, both analytical and numerical integrations are used to stabilize the result. For 

nonsingular elements, only numerical integration is used. 

3. Compute the wavelet transform of the system matrix by using the two-step algorithm 

mentioned above. 

4. Invert the transformed system matrix by using a sparse matrix LU decomposition routine. 

5. Compute the wavelet transform of the incident field. 

6. Compute the wavelet coefficients of the total field by backsubstitution. 

7. Take the inverse wavelet transform to obtain the total field. 
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8. Calculate the impedance change by using the reciprocity principle formula (equation 7). 

4.3 Comparison of the Numerical Result and the Experimental Result 

Based on the procedure introduced in Section 4.2, two numerical tests were performed 

for the test case. In the first numerical test, the aim was to compare the result obtained from 

the wavelet method by using the Haar basis and the periodic wavelet basis constructed from 

the Daubechies compactly supported wavelet with four coefficients, which we will refer to as 

DAUB4P in later discussions for simplicity. In the first test, the test frequency was selected 

as 10 kHz, which corresponds to a skin depth of 1.17 mm in 2024 aluminum. The solution 

region was a rectangle with a length and a width equal to the diameter of the cylindrical flaw 

and a height equal to the height of the flaw. The solution region was modeled by 512 

rectangular elements with 16 elements along each of the two horizontal directions and 2 

elements in the vertical direction. In the first comparison, the system matrices were obtained 

by using a threshold of0.005, which is relatively small, to ensure that a good result would be 

obtained. The matrix map for the sparse matrix obtained by using the Haar basis is shown in 

Fig. 5. After thresholding, only 4.36% of the total number of the matrix elements were 

nonzero elements. The matrix map for the sparse matrix obtained by using DAUB4P is 

shown in Fig. 6. In this case, 5.05% of all the matrix elements were nonzero elements after 

thresholding. The impedance change results obtained by using the Haar basis and D AUB4P 

are compared with the experimental results in Fig. 7. The theoretical results are in good 

quantitative agreement with the experimental results. Also there is no significant difference 

between the result obtained using the Haar wavelet and the result obtained using the periodic 

wavelet in this case. 

To examine the effect of the threshold on the accuracy of the results, or in other words, 

to decide whether there is some range of the threshold within which the results remain almost 

unchanged, we recomputed the results for the numerical example above using a threshold of 

0.05 for zeroing the matrix elements. The matrix map for the sparse matrix obtained by using 
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the Haar basis is shown in Fig. 8. After thresholding, only 0.413% of the matrix elements 

were nonzero. The matrix map for the sparse matrix obtained by using the DAUB4P is 

shown in Fig. 9. In Fig. 9, only 0.254% of the matrix elements were nonzero after 

thresholding. One can see that after using a threshold of 0.05, most nonzero elements are on 

the diagonal of the system matrix. The impedance change results in this case are compared 

with the experimental results in Fig. 10. Although the threshold is ten times larger and the 

thresholded matrices are rather sparse, an overall correspondence between the theoretical 

results and the experimental result can still be observed. It can be seen from this example 

that the wavelet method does indeed have a good potential for reducing the redundancy of the 

problem. 

The second numerical test was to examine the stability of the method over a relatively 

large frequency range. The theoretical impedance changes using DAUB4P and a threshold of 

0.005 were computed for the frequency range from 2.5 kHz to 50 kHz, with a stepsize of 2.5 

kHz, and for coil-flaw offsets from 0 nun to 8 mm, with a stepsize of 1 mm. The impedance 

change results as a function of frequency for offsets 0 mm, 4 mm and 8 mm are compared 

with the experimental results in Fig. 11. It is observed that the agreement between the results 

from the wavelet method and the experimental results are stable over this relatively large 

frequency range. 

4.4 Selection of Wavelet Basis 

The matrix structures shown in Fig. 5 and Fig. 6 indicate some interesting relationships 

between the physical nature of the eddy current problem and the properties of the wavelet 

method. First, because the eddy current problem is governed by a diffijsion equation, the 

diffusive incident field and total field are generally smooth over the solution region. This 

means they have larger low-resolution components than high-resolution components. The 

use of the wavelet basis can separate the more important low-resolution components from the 

less important high-resolution components, and thus achieve high compression with small 
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loss in accuracy. This property of the wavelet method is clearly shown in Fig. 5 and Fig. 6, 

as there are more nonzero elements located in the upper-left comer of the matrix where low 

resolution wavelets are located, and fewer located in the bottom-right comer where the high 

resolution wavelets are located. Second, because the Green's function for the eddy current 

problem generally decreases exponentially with a rate defined by the skin depth at the test 

firequency, we expect that the interaction between two basis functions with supports far away 

from each other be small so that it can be neglected without much loss in accuracy. This is 

clearly verified in Fig. 5 and Fig. 6, as most nonzero elements are close to the diagonal of the 

matrix, which indicates a large interaction exists only between the basis functions with 

overlapped or adjacent supports. The above two observations indicate that the unique spatial-

frequency localization property of the wavelet basis provides a significant reduction to the 

complexity of the eddy current problem which can hardly be achieved by using other basis 

functions. 

The above observations can also be useful in guiding the selection of the mother wavelet 

to achieve optimal compression. The diffusive nature of the unknown total field requires us to 

use a smooth wavelet so that the total field can be approximated efficiently. On the other hand, 

the exponential decay of the Green's function requires us to use a wavelet with small support 

so that the interaction between basis functions far away from each other can be kept small. 

However, from wavelet theory, smoothness and compact support are contradictory for 

orthonormal wavelets." In other words, we are unable to build a smooth orthonormal wavelet 

with compact support. Therefore, in practice, a tradeoff on smoothness and compact support 

must be made based on the size of the problem and the model parameters. 

5. Summary 

We have applied wavelet theory in the solution of the volume integral equation of the 

eddy current modeling problem, which is a Fredholm integral equation of the second-kind. 
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The new linear system equations after using the wavelet basis are obtained by applying a 

Galerkin method to the governing volume integral equation. The derivation is based on the 

result of the one-dimensional case, followed by the extension to the three-dimensional case 

and the extension to periodic wavelets. The wavelet method was tested using the problem of 

modeling hidden corrosion in a thin aluminum plate. Results obtained from both the Haar 

wavelet and the periodic wavelet constructed from the Daubechies compactly supported 

wavelet were compared with experimental results. The numerical examples show that by 

using the wavelet expansion method, it is possible to greatly reduce the computational 

complexity of the solution of the volume integral equation with about 5-10% loss in 

accuracy. This makes the eddy-current modeling problem of large three-dimensional flaws 

solvable using modest computing resources. 

Although the wavelet expansion method discussed in this paper has been developed in 

the context of eddy current nondestructive evaluation, it is directly applicable to other 

problems which require the solution of a Fredholm integral equation of the second-kind, such 

as electromagnetic prospecting of the subsurface structure of the earth in geophysics. 
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Figure Captions 

Fig. 1. Haar wavelet and its scaling function, the box function. 

Fig. 2. The Daubechies compactly supported wavelet with four coefficients and its scaling 

function. 

Fig. 3. The periodic wavelet Wo'^ix) constructed from the Daubechies compactly supported 

wavelet with four coefficients. 

Fig. 4. Schematic drawing of the eddy current test problem of a flat bottom hole on the 

bottom side of a thin aluminum plate. 

Fig. 5. The system matrix map after transformation by using the Haar wavelet and 

thresholded using a value of 0.005. Black spots denote nonzero elements. 

Fig. 6. The system matrix map after transformation by using DAUB4P and thresholded 

using a value of 0.005. Black spots denote nonzero elements. 

Fig. 7. Comparison of experimental results and the results obtained by using the Haar 

wavelet and DAUB4P with a threshold of 0.005. 

Fig. 8. The system matrix map after transformation by using the Haar wavelet and 

thresholded using a value of 0.05. Black spots denote nonzero elements. 

Fig. 9. The system matrix map after transformation by using DAUB4P and thresholded 

using a value of 0.05. Black spots denote nonzero elements. 

Fig 10. Comparison of experimental results and the results obtained by using the Haar 

wavelet and DAUB4P with a threshold of 0.05. 

Fig. 11. Comparison of experimental results and the results obtained by using DAUB4P and 

a threshold of 0.005 for the firequency range from 2.5 kHz to 50 kHz. 
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Fig. 1. Haar wavelet and its scaling function, the box function. 
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a. The Daubechies compactly supported wavelet with four coefficients 
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Fig. 2. The Daubechies compactly supported wavelet with four coefficients and its scaling 

function. 
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Fig. 3. The periodic wavelet basis constructed from the Daubechies compactly 

supported wavelet with four coefficients. 



218 

< 5.63 mm >\ Eddy Current Probe 

^ 3.80 mm 
0.23 mm 

z = 0.0 mm 
z = -0.74 mm 
z =-1.02 mm. 6.30 mm 

L^er 2 (Vacuum) 

Fig. 4. Schematic drawing of the eddy current test problem of a flat bottom hole on 

bottom side of a thin aluminum plate. 
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Fig. 5. The system matrix map after transformation by using the Haar wavelet and 

thresholded using a value of 0.005. Black spots denote nonzero elements. 
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I 

Fig. 6. The system matrix map after transformation by using DAUB4P and thresholded 

using a value of 0.005. Black spot denotes nonzero element. 
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Fig. 7. Comparison of experimental results and the results obtained by using the Haar 

wavelet and DAIJB4P with a threshold of 0.005. 
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Fig. 8. The system matrix map after transformation by using the Haar wavelet and 

thresholded using a value of 0.05. Black spots denote nonzero elements. 
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Fig. 9. The system matrix map after transformation by using DAIJB4P and thresholded 

using a value of 0.05. Black spots denote nonzero elements. 
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Fig. 10. Comparison of experimental results and the results obtained by using the Haar 

wavelet and DAUB4P with a threshold of 0.05. 
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Fig. 11. Comparison of experimental results and the results obtained by using DAUB4P and 

a threshold of 0.005 for the frequency range from 2.5 kHz to 50 kHz. 
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Abstract 

In this paper we present a nonlinear image restoration method based on radial basis 

function networks and genetic algorithms. Two-dimensional measurements made with 

nonlinear sensors, especially those involving diffusive fields, such as eddy current testing and 

thermal wave imaging, are usually a blurred and distorted version of the physical distribution 

to be measured. The underlying physical transformations in these sensors are usually smooth 

nonlinear mappings which generally can only be solved by numerical models. The image 

restoration problem for these applications is difficult because of the slow speed of available 

numerical models and the ill-posedness of the inverse mappings. Gradient based methods 

usually are not suitable because they tend to stick to local minima due to the ill-posedness of 

the problem. Combinatorial optimization methods, such as simulated annealing and genetic 

algorithms, are also difficult to apply because of the slow speed of the numerical models. In 

this paper we use radial basis fiinction networks to approximate these forward mappings in a 

compact subset of the input space by learning from a set of training samples. The radial basis 

function networks can be made much faster than the numerical models so that we can use 

genetic algorithms to find the optimal restoration image which minimizes the forward 

prediction error. We discuss how to build the radial basis function network forward model 

and give the upper bound for the approximation error. We also discuss how to formulate the 

genetic algorithms to find the optimal restoration image. Application of this method to the 

eddy current image restoration problem is discussed and numerical restoration results are 

given for experimental measurement data from a surface-breaking crack on an thick 

aluminum plate. 
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1. Introduction 

An image represents the distribution of a physical quantity within a certain region. To 

measure the distribution, we use sensors which transform one physical quantity to another 

physical quantity (usually electrical signals) so that the distribution can be easily measured 

and recorded. Depending on the physical process involved in the transformation, the sensor 

output can be a nonlinear function of the sensor input. Also, many sensors are not focused 

and they generate blurred representations of the physical distributions to be measured. Most 

of these blurring sensors can be modeled as a smooth nonlinear mapping from the input 

distribution to the output distribution. Typical examples include sensors involving diffusive 

fields, such as sensors used in eddy current testing and thermal wave imaging. In complex 

test geometries, the forward modeling problems of these sensors usually cannot be solved 

analytically and numerical models must be used. Since most numerical models require the 

inversion of a large system matrix, they have high computational complexity in both time and 

space. 

To recover the original distribution from the blurred measurement, we need to 

develop image restoration methods for these applications. This nonlinear image restoration 

problem is more difficult than traditional nonlinear image restoration problems that can be 

found in photochemical or photoelectric systems. First of all, for this problem we do not 

have an analytical representation for the forward mapping. Therefore, it is very difficult to 

derive an analytical expression for the gradient of the restoration error. As a result, many 

image restoration methods that require knowledge of the gradient, such as the steepest 

descent method and the conjugate gradient method, cannot be used. Furthermore, the inverse 

mapping for these measurements is generally highly ill-posed due to averaging introduced in 

the forward mapping (changes in details of the input distribution lead to very small changes 

in the output distribution). Even if we can use gradient based methods, for these applications 

we will not be able to obtain good restoration results because gradient based methods can 

easily stick to local minima, and there are a lot of local minima in the error surface of an ill-

posed problem. To find the global minima for an ill-posed problem, we can use 

combinatorial optimization methods, such as simulated annealing and genetic algorithms. 
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However, both simulated annealing and genetic algorithms are computationally intensive 

algorithms which require solving the forward problem many times. Due to the slow speed of 

the numerical models, it is not practical to apply these combinatorial optimization methods to 

the solution of the nonlinear image restoration problem if any numerical model is used. 

To speed up the forward computation, we use radial basis function networks to 

approximate the forward mapping in a compact subset of the whole input space. The radial 

basis function network is an approximation neural network that can be used to find a surface 

in a multi-dimensional space that provides a best fit to training data obtained from a unknown 

fiinction. Radial basis functions were first introduced in the solution of the real multivariate 

interpolation problem by PoweU [1] and were later extended to the design of neural networks 

by Broomhead and Lowe [2]. Studies of the theory, design and application of the radial basis 

function network have been presented in [2, 3,4]. Poggio and Girosi [3] developed 

regularization networks from approximation theory with the radial basis function network as 

a special case. It has been proven that a radial basis function neural network is a uniform 

approximator [4]. In this paper, we establish approximate forward models for the nonlinear 

image restoration problem using radial basis function networks. The training data set of the 

radial basis function network can be obtained from numerical models or from experimental 

measurements. We derived the upper bound of the approximation error. Guidelines on the 

selection of the training data set can be observed from this derivation. The radial basis 

fiinction network based forward model can be made much faster than numerical models if the 

dimensionality of the subspace to be approximated is limited, and if the unknown forward 

mapping is sufficiently smooth. 

Based on the fast approximate forward model, we developed genetic algorithms to 

solve the nonlinear image restoration problem. Genetic algorithms [5, 6] are a set of 

powerfial heuristic search algorithms which can be used to solve large scale combinatorial 

optimization problems, including many that are NP-hard. The original development of 

genetic algorithms was done by Holland [7] in the field of artificial intelligence more than 20 

years ago. But only recently have genetic algorithms been extensively studied and applied to 

many problems. Discussions on the concept and theory of genetic algorithms can be found in 
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Reference [8]. Applications of genetic algorithms include image reconstruction [9], solution 

of an electromagnetic inverse problem [10], optimal design of digital filter [11], and image 

segmentation [12], among many others. By formulating the nonlinear image restoration 

problem as a cost minimization problem, genetic algorithms can be used to find the optimal 

restoration image. We applied this method to eddy current image restoration and tested it 

using experimental data obtained from a crack on a thick aluminum plate. Numerical 

restoration results from the experimental data have shown that the nonlinear image 

restoration method developed in this study can provide better results than methods based on a 

linear approximation while keeping a reasonable execution time. 

The rest of the paper is organized as follows: in Section 2 we give a formal definition 

of the nonlinear image restoration problem to be solved in this study; in Section 3 we give a 

brief review of the radial basis function network and discuss how to build the fast forward 

model using the radial basis function network. We also derive the upper bound of the 

approximation error and give guidelines on the selection of a training data set. In Section 4 

we discuss how to use genetic algorithms to solve the nonhnear image restoration problem. 

We also discuss the encoding, fitness computation, selection, mutation and crossover 

operations of the genetic algorithms developed for the nonlinear image restoration problem. 

In Section 5 we discuss the application of the nonlinear image restoration method to the eddy 

current image restoration problem and present numerical results for both synthesized data and 

numerical data. The paper is sunmiarized and concluded in Section 6. 
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2. The Nonlinear Image Restoration Problem 

To measure physical quantities or distributions, we use various kinds of sensors. 

Sensors transform physical quantities or distributions into electrical signals which can be 

easily measured and recorded. The exact form of the transformation from the sensor input to 

the sensor output is dependent on the underlying physical process in the sensor 

transformation process. To measure a distribution, we want a sensor which is linear and 

focused so that the measurement is an accurate representation of the unknown distribution. 

Unfortunately, most sensors are nonlinear in nature and have limited resolution. 

Measurements made with these sensors are blurred and distorted representations of the 

unknown distributions. Nonlinear image restoration techniques must be used to restore the 

original distribution. In many applications, we have a certain amount of prior information 

about an unknown distribution and only need to consider the problem in a compact subset of 

the whole input space. 

Consider the nonlinear mapping from a digital image of size /?, by to another 

digital image of size by • By transforming the two-dimensional images into one-

dimensional vectors, we can change the original mapping to a map , where 

M = and N = p^qz • This representation is also applicable to mappings between 

higher dimensional images. Based on our prior knowledge about an unknown distribution, 

we only need to consider input vectors that fall within a compact subset P of the whole input 

space . We also define the set Q = {5(X)IX e p} as the corresponding output subset for 

the input subset P. In this paper we consider smooth nonlinear mappings whose underlying 

physical process may involve diffiisive fields. We are interested in smooth mappings that are 

continuous and have continuous and bounded first derivatives in P. That is, if 

X  =  [ x i , - - - , X i ^ Y  e P  and Y = [y,,•••, e 2, then 

dY 
0 < A , <  —  < B , ,  1 = 1 , 2 , - ,  M ,  (1) 
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where ||---| is the I2 norm. 

Assume Xq e P is the unknown distribution, Yq = j(Xq) e 2 is the corresponding 

ideal sensor output. A noisy measurement of Yq is 

Y = Yo + No, (2) 

where Nq is a vector containing the noise image. We can define the nonlinear image 

restoration problem as to find a restoration X of Xq such that the mean square restoration 

error 

e = E X ;-X(,f} (3) 

is minimized. Based on this definition, we need to have knowledge about the inverse 

mapping t = s~^:R^ R'^ and statistics on Xq and Nq to solve the minimization problem. 

However, in most applications, this information is unavailable or difficult to obtain. 

Alternatively, we can define the nonlinear image restoration problem as to find a restoration 

X of Xq such that the forward prediction error ||j(X) - \^| is minimized. Due to the ill-

posedness of the inverse mapping, minimization of the forward prediction error usually does 

not guarantee the minimization of the restoration error. To regularize the solution, we define 

the problem as to find a restoration X of Xq to minimize the cost function 

e(X)=kX)-Y +A£,(X), (4) 

where A is a regularization constant, and e^-CX) is a regularization function which represents 

our prior knowledge on the restoration. Generally this regularization function is a 

smoothness constraint which requires the restoration to have smooth transitions. 
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Due to the nonlinearity in the forward mapping, usually we need to use iterative 

methods to solve the minimization problem defined in equation (4). Many algorithms for 

finding the minima of a nonlinear cost function require knowledge of the gradient of the cost 

fiinction. However, for the nonlinear image restoration problem defined in equation (4), we 

generally cannot find an analytical expression for the gradient because the forward problem 

can only be solved numerically. Therefore, gradient based methods are not applicable to the 

solution of this minimization problem. Combinatorial optimization algorithms, such as 

simulated annealing and genetic algorithms do not require knowledge about the gradient, but 

require solving the forward problem many times. Therefore, they are applicable only if a 

sufficiently fast forward model is available. 

3. Approximation of the Forward Mapping Using a Radial Basis Function 

Neural Network 

3.1 The Radial Basis Function Network 

A radial basis function (RBF) network consists of an input layer, a hidden layer and 

an output layer. The input vector of the network is passed to the hidden layer nodes via unit 

connection weights. The input-output relationship of a hidden layer node is defined by a 

radial basis fiinction. Generally the same type of radial basis functions are used for all the 

hidden layer nodes. Associated with each hidden layer node is a center m, in the input space. 

The input to a radial basis function is the Euclidean distance between the input vector and the 

center m,. The output of a hidden layer node can be defined as 

<i(X) = «(||X-m,i|), (5) 

where X is the input vector, and g (||- • 1) is the radial basis function. There are many 

different types of radial basis functions, and it has been shown, by theoretical investigations 

and practical results that the performance of the radial basis function network is not crucially 

dependent on the selection of the type of radial basis function [3]. However, as shown by 
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Light [4], there is a class of radial basis functions which gives a positive definite N hy N 

interpolation matrix from a set of N distinctive input vectors. Since our objective is to use 

the radial basis fianction network to approximate an unknown smooth mapping, we only 

consider radial basis functions which belong to this class. As indicated by Light, two of the 

radial basis functions in this class are: 

(i) The Gaussian function: 

where r, a non-negative number, is the distance from the input vector X to the radial basis 

function center m,-, CT is the width of the Gaussian function, and c is the width of the 

inverse multiquadric function. 

The output yj of node j in the output layer is a linear combination of the outputs in 

the hidden layer 

where Wy, is the linear weight connecting node j in the output layer and node i in the 

hidden layer. 

It has been proven that a radial basis function neural network is a uniform 

approximator [4]; it can approximate arbitrarily well any multivariate function on a compact 

domain if a sufficient number of radial basis function units are used. Therefore, it is suitable 

(6) 

(ii) The inverse multiquadric function: 

(7) 

(8) 



235 

for being used as an interpolator to approximate an unknown smoothing mapping based on a 

set of training samples. 

3.2 Approximation of the Forward Mapping Using a Radial Basis Function Network 

To solve the minimization problem in equation (4), we need to compute the forward 

mapping s many times since the inverse problem is nonlinear and some type of iterative 

method must be used to solve the problem. In many applications, computation of the forward 

mapping mvolves the solution of a partial differential equation (PDE) with certain boundary 

conditions. For complex test geometry, an analytical solution of the PDE is generally not 

available and numerical models must be used. Most numerical models divide the solution 

region into volume elements or surface elements and transform the PDE into a set of linear 

equations which can then be solved directly. The solution of a linear system involving a 

matrix inversion operation is basically an operation, where Af is the number of 

elements used in the forward model. For the nonlinear image restoration problem, the 

number of elements used in the model are usually on the order of thousands which leads to a 

long execution time. The slow execution speed of those numerical models becomes the 

major barrier to the applications of combinatorial optimization methods, such as simulated 

annealing and genetic algorithms, to the solution of the nonlinear image restoration problem. 

To speed up the forward computation, we can use an RBF network to learn the 

forward mapping s in the input subset P based on a set of training samples. The training 

samples can be obtained by using a numerical model or by performing experimental 

measurements on calibration test samples. The benefit of using the RBF network is that we 

can reduce the computational complexity of the forward computation to a large extent if the 

dimensionality of the subset P is Umited and the forward mapping is smooth enough. If the 

radial basis function network has M input layer nodes, L hidden layer nodes and N output 

layer nodes, then the complexity of the forward computation is 0{ML + NL), or OiML) if 

N and M are on the same order. The number of hidden layer nodes L necessary for 

approximating the forward mapping is dependent on the dimensionality of the subset P, the 

smoothness of the forward mapping, and the maximum approximation error allowed in the 
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subset P, as we shall see in the next section. If the forward mapping is smooth enough and 

if we can limit the dimensionality of P by our prior information about the unknown 

distribution, it is possible to bound L with 0{M). Thus, we obtain an approximation of the 

numerical models. The one-order difference in computational complexity can be significant 

when the number of elements M is large, as in the nonlinear image restoration problem. 

To build the fast forward model, we are interested in factorizable radial basis 

functions for the ease of implementation. The only factorizable radial basis function is the 

multivariate Gaussian function [3] which is given by 

where mj is the center of the Gaussian function, and L, is the covariance matrix of the 

multivariate Gaussian function. If the covariance matrix is not diagonal, the function is 

factorizable only after a similarity transformation which transforms Z to a diagonal form. 

For ease of implementation, we only consider the direct factorizable Gaussian function when 

forward mapping in P with a complexity O(M^), which is one order faster than the 

^,.(X)=exp '(X-m,) , (9) 

the covariance matrix is a diagonal matrix, i.e., L. = diag\af^ > <^/2 >'"" > ^his case the 

multivariate Gaussian function can then be expressed as 

(10) 

and the output y j  of node j  in the output layer becomes 

( 1 1 )  



237 

The training of the RBF network is to find the optimal values for mj, , w.y so as 

to minimize the learning error. In general, a nonlinear optimization algorithm must be used 

for the training of the hidden layer parameters, and a linear optimization algorithm must be 

used for the output layer parameters. For our problem of approximating the smooth mapping 

s, we considered two cases: 

(1) Interpolation network 

In this case, we have a set of L training samples [x,, Y; ], i = 1, • • •, L about the 

unknown smooth nonlinear mapping. We can use the training sample input vectors as the 

centers for the radial basis functions, i.e., 

111;= Xj, /=1, •••,£, (12) 

and the RBF network becomes a nonlinear interpolator. Furthermore, we assume equal 

generalization capability in all the dimensions for each center, i.e., 

cr,, = (To, i = 1, • • •, L, Z = 1, • • •, Af. Based on this assumption, contours of each multivariate 

Gaussian function are hyperspheres around the center of the Gaussian fiinction. To decide 

the optimal output layer weights, we need to solve 

Y = WG, (13) 

where Y = [Yj, Yj,---, Y^] is an N by L matrix containing the desired output vectors given 

by the training samples, G is an L by L matrix containing the hidden layer outputs for the 

L input vectors, and W is an iV by L matrix containing output layer weights. Since the 

multivariate Gaussian belongs to the class of radial basis function as defined by Light, the 

matrix G is positive definite and thus invertible. Then the weight matrix can be solved 

directly by 
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W = Y.G-^ (14) 

(2) Self-organizing of centers 

In case we have a large sample of training samples and there is redundancy in the 

training data set, we cannot use as many hidden layer nodes as the number of training 

samples because this will lead to a large size RBF network which is slow for the purpose of 

building a fast forward model. To reduce the number of centers, we use the K-Mean 

algorithm to find L cluster centers in W training samples widi L much smaller than W. In 

this case, the optimal output layer weights carmot be computed directly because there are 

more equations than unknowns so that the problem is overdetermined. One way to compute 

the linear output layer weights is to use a Least Mean Square (LMS) algorithm to iteratively 

compute the optimal output layer weights [3] 

Wji (n +1) = Wji (n) + r]{yj - Oj )g(15) 

where w -  is the weight between output layer node j  and hidden layer node /, y j  is the 

desired output of output layer node j, Oj is the actual output of the output layer node y, g, 

is the output of the hidden layer node /, and 77 is a learning rate parameter. 

3.3 Bound of the Approximation Error 

One important problem in using the RBF network to approximate the unknown 

smooth nonlinear mapping is to provide a bound on the approximation error in the subspace 

P. The knowledge of this error bound not only provides us with an estimate for the 

restoration error, but also leads to guidelines on the selections of the training data set. In this 

section we derive an expression for the bound of the approximation error for the interpolation 

network. 

Denote the RBF network as a nonlinear map r.R" ->/?". For the interpolation 

network, we have r(X,.) = 5(X,.), / = 1, •••, L. Given an arbitrary input vector X e P, the 
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norm ||r(X) - 5(X)|| defines the approximation error of the radial basis function network. We 

can define the approximation error as a function of X 

e ( X ) = \ \ r ( X ) - s ( X i  (16) 

To find the bound on e(X), let 

X, = |x,||x- X,|| < ||x- xj|, i j  e l , - , L  a n d  j  / }  (17) 

be the training input vector that is closest to the input vector X. We have 

e(X)=||r(X)-j(X)| 

= |r(X)-r(X,) + s(Xt)-s(X)|| 

<|r(X)-rCXt)|+||s(X)-i(X,)||. 

(18) 

because X = [X[, and X^ The second term on the right 

in the above equation can be further expressed as 

-t l-||5(Xj.| <  X j . 2 , ,  X  )|1 

^  [\xi -Xti\  + B, |x,  -Xi2II + • • •  + K -XtM I] 
M 

= ̂  Bi\xi —Xy|. 
/=1 

where we have used the fact that from (1) 
d s ( X )  

d x j  
<  B [ ,  I  =  I ,  • • • ,  M .  The first term on the 

right in equation (18) can be expressed in a matrix form as 
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•r(Xj)l = ||WG(X)-WG(Xj)| 
= [(G(X) - G(Xj j)"" WW(G(X) - G(X, j)]"", (20) 

where G(X) = [«, (X), (X), • • •, gaX)] is a vector containing the hidden layer outputs for 

the input vector X, and G(Xjt) is a vector containing hidden layer outputs for the input 

vector X^. From the Rayleigh-Ritz theorem [13] and the fact that W^W is an L by L 

symmetric matrix, we have 

[(G{X) - G(X,))'" WW(G(X) - G{Xj ))] 
S |A|^ [(G(X) - G(Xi ))''(G(X) - G(X»))] 
=W^||G(X)-G(X,)1, 

(21) 

the eigenvalues of W^W. Now if 

equation (19), we can prove that 

^ is an eigenvalue of W }> is the largest absolute value of all 

d g ^ i X )  

dxi 
< C/, / = 1 • • •, L, / = 1, • • •, Af , similar to 

M 
|G(X)-G(X,)1<SC,|X,-J:4,|. 

/=! 

(22) 

For the factorizable Gaussian function given by equation (10), we have 

d g i i X )  { x i - m a )  , , , , .. 
1—g,(X), i  = 1,  ••• .  L, /= I,--- ,  M. 

dxi 
(23) 
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For find the bound on 
3g,(X) 

dxi 
, let 

dxi 
= 0,it = l, - -, M .  (24) 

Solution of the above equations give , ^ = 1, • • •, M and k ^ I and X[ = niu ± . 

d g i ( X )  
The bound on 

dxi 
is thus given by 

d g i i X )  

dxi 

,-I/2 

I = 1, •••, L,/ = 1, •••, M .  (25) 

Defining <7° = miner,, , we have 
1=1 

Q - 0 (26) 

Combine equations (18), (19), (20)-(22), and (26), we have the bound for the approximation 

error as 

M 
e { X ) < J ^  

1=1 
B,+ Wl. 

--I/2 ^ 

't y 
\ X l - X k i \  

B  +  
-1/2 A 

(27) 

x - x , i .  
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M ^0 
where B = max5,, Cn = mino", = min<T:i, and ||---||, is the /, norm. For the interpolation 

1=1 1=1 ij 

problem (in which the centers of the Gaussian functions are equal to the training sample input 

vectors, and the contours of the Gaussian fiinctions are hyperspheres), the bound given by 

equation (27) gives us two important guidelines on the selection of the training data set: 

1. The error bound is proportional to the Manhattan distance between the input vector and 

the training data sample closest to it. This suggests a uniform grid for minimizing the 

maximum approximation error. Although it may be more efficient if we put more 

training samples where the derivatives of the unknown function are large and less 

samples where the derivatives are small, it is not possible to find estimates of the 

derivatives without dense sampling in the input space. Without detailed knowledge on 

the derivatives, we should uniformly distribute the training sample points in the subspace 

P. 

2. A proper value for <Tq  should be chosen so that the approximation error can be 

minimized. As can be seen from equation (27), a very small <Jq could lead to a large 

approximation error (|A|^ is also related tofXo) because in this case, the width of the 

Gaussian functions are not sufficient to cover the space between the centers. A large cjg 

could help reduce the approximation error as the reconsUiicted surface has smoother 

transition from one Gaussian function center to another Gaussian function center. 

However, a very large (Tq can make matrix G in equation (13) close to singular, and the 

matrix inversion in (14) becomes numerically intractable. A reasonable selection for (Tq, 

as suggested in [14], is 

d 

where d = max 
'J 

vectors. 

X,-Xj 

C T o - ^ .  ( 2 8 )  

is the maximum distance between training sample input 
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4. Genetic Algorithms for Nonlinear Image Restoration 

In this section we discuss how to use genetic algorithms to solve the nonlinear image 

restoration problem defined in Section 2. Using the definition given in equation (4), the 

nonlinear image restoration problem can be considered as the minimization of the cost 

function with respect to the input image. This minimization problem can be considered as a 

combinatorial optimization problem which can be solved by using genetic algorithms. In this 

section we discuss various aspects of formulating genetic algorithms to solve the 

minimization problem defined in equation (4), including solution encoding, fitness function, 

selection scheme, mutation operation, and crossover operation. 

4.1 Encoding of the Solutions 

The first step of genetic algorithms is to encode the solutions of a problem in a form 

that can be easily manipulated. The encoding solutions are also called chromosomes in 

genetic algorithms. In the nonlinear image restoration problem, a solution is a digital image 

in two or higher dimensional space. After transforming the multi-dimensional digital image 

into an one-dimensional array, a candidate solution can be encoding as a vector 

X = [;c,, • • •, A/ ^ ^' where is the compact subset in which the solution is 

located. The elements are real numbers whose value may be digitized. For an 

eight-bit image e {o, I, • • •, 255} and for a binary image x,, • • •, e {o, l}. The 

major advantage of using the vector form representation is its ease of use and its generality as 

any digital image can be mapped to a one-dimensional vector. However, the vector 

representation does implicitly enforce the constraint that X must lie in the compact subset 

P. As a result, not all vectors of the form X = [x,, •••, are valid solutions. This brings 

some complications to the definitions of the crossover operation and the mutation operation 

as we must generate valid solutions after applying these operations. To check the validity of 

a solution, we can define an indicator function as 
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1, / /XeP. 

0, otherwise. 
(29) 

whose implementation is problem dependent. 

4.2 Fitness Function 

The fitness fiinction defines how well an individual is able to survive in the 

environment. To solve a combinatorial optimization problem, the fitness function is related 

to the objective function to be optimized. For the nonlinear image restoration problem, the 

objective is to minimize the cost function defined in equation (4). Because the objective of a 

genetic algorithm is to maximize fitness, we can define the fitness function as 

where £ is a very large number used to avoid overflow. 

To regularize the ill-posed inverse problem, we need to define proper regularization 

functions to be incorporated in equation (4). The ill-posedness of the image restoration 

problem is closely related to values of the lower bounds A,, / = 1, • • •, M . If the values are 

close to 0, the problem is highly ill-posed and a large regularization constant A must be used, 

The regularization function £j(X) can have various forms dependent on the application and 

our prior information about the restoration result. In many cases the regularization function 

is a smoothing constraint based on a linear high-pass operator, i.e. 

/(X) = \ e(X)'  
i f  £ ( X ) : ^ 0 ,  

(30) 
F L—' Otherwise, 

e^(X)=iHXf, (31) 

where H is a high pass operator. For two-dimensional images, a widely used high pass 

operator is the Laplacian operator [15], given by 
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0.00 -025 0.00 

L= -025 1.00 -025 

0.00 -025 0.00 

(32) 

Another widely used smoothing constraint is the entropy function. Image processing 

applications based on the Maximum Entropy Method (MEM) can be found in Reference [16]. 

When the entropy function is used, the regularization function can be defined as 

M 
e,(X) = ^XilogXi. (33) 

i = [  

To avoid zero values, pixels in the restoration image are usually initialized using small 

positive numbers. The entropy function is also a smoothing constraints because the image 

with the maximum entropy is a constant image. 

4.3 Selection 

One widely used selection scheme is the proportionate selection scheme in which the 

number of offspring for a given candidate is proportional to its fitness. However, for the 

fitness function defined in equation (30), the proportionate selection scheme is not 

appropriate for the following two reasons. First, because of the noise in the impedance 

change measurement, the minimum cost has a nonzero value and the maximum fitness may 

not be much larger the minimum fitness. Second, because the fitness defined in equation 

(30) introduces a nonlinear scaling to the cost function, the fitness difference between a good 

solution and a bad solution can be very small compared with the base value of the fitaess. If 

the proportionate selection scheme is used, the expected number of instances of the good 

solution after selection is only slightly larger than that of the bad solution. As a result, the 

convergence of the genetic algorithms can be very slow. One way to deal with this problem 

is to scale the fitness value for each individual before the proportionate selection to extend 
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the range of the fitness difference. However, scaling of the fitness fiinction may introduce 

individuals with negative fitness which requires special handling. An alternative way to deal 

with the small differences in fitness is to use the rank-based selection scheme. In the rank-

based selection, the expected number of offspring for a candidate solution is only dependent 

on its fitoess rank, not the absolute value of its fitness. In this selection scheme, first the 

individuals are sorted according to their fitness values. Then given a probability , the rank-

based selection always tries to pick the highest fitness individual with the probability . If 

this is not successfiil, the individual with the second highest fitness value is selected with the 

probability P^, and so on until an individual is selected or the lowest fitness individual is 

reached. Since in the rank-based selection, the expected number of instances of an individual 

is only dependent on its fitness rank, the result of selection is not sensitive to the scale of the 

fitness difference. 

4.4 Mutation 

The mutation operation adds random perturbations to the chromosomes of the 

candidate solutions in the population. In genetic algorithms, mutation is a random localized 

search mechanism which has a secondary role and is mainly used for restoring lost genetic 

materials that may not be recovered by crossover. For the one-dimensional vector 

chromosome X = [x,, • • •, "se a variation of the trade mutation proposed in 

Reference [17]. For each element in the vector, we mutate it with probability P^. If the 

element x, is to be mutated, it is replaced by a random number uniformly distributed in the 

set D - {jf,}, where D is the set of all possible values of an element in X. To ensure that 

the mutated chromosome is still in the compact subset P, the indicator function is used to 

check its validity. If the indicator function returns 0, the mutation operation is repeated until 

a valid solution is generated. 

The above validity check process may result in a large waste of computer time. To 

make the process more efficient, we can incorporate our prior information about P in the 

mutation operation so that the results of mutation are more likely to fall in P. We can 
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achieve this by using a mask Q = [<?,, where e {o, l}, / = 1, •••, M . If the 

subset p has a large support in the / th dimension, we set ^/ = I. Otherwise, we set qi = 0. 

In the mutation operation, we mutate the / th element of X with a larger probability if 

qi = 1 and mutate it with a smaller probability if ^; = 0. By using this two-level 

mutation scheme, fewer repetitions of the mutation operation are necessary before a valid 

mutation result can be generated. 

4.5 Crossover 

Crossover operation is the key search mechanism of genetic algorithms. In the 

crossover operation, individuals in the population are paired off and exchange of genetic 

material between the two parents takes place. For the vector form chromosome, several types 

of crossover operations, e.g., the single-point crossover, two-point crossover, and the uniform 

crossover, may be used [5]. Given two parents Xj = [x,,, • ••, and 

^2 -  [^21 >" • • '  ̂ 2Af ]^ 'single-point crossover scheme generates a random integer k 

which is uniformly distributed from 1 to M and exchange the elements in the two parents 

starting from the position k. The two-point crossover scheme generates two random integers 

ky and that are uniformly distributed from 1 to M and exchange the elements in the two 

parents between the position fc, and the position • For a pair of candidate solu"'.ons, both 

the single-point crossover and the two-point crossover operation takes place with a 

probability P^. In the uniform crossover scheme, the exchange of genetic materials is on an 

element by element basis. For each position in the vector representation, the elements of the 

two parents are exchanged with the probability . 

For the nonlinear image restoration problem, the uniform crossover scheme is 

preferred because it has no positional bias. The crossover result of the uniform crossover is 

not dependent on how the two or higher dimensional image is mapped to the one-dimensional 

vector. Again, to ensure that the offspring are still in the compact subset P, the indicator 

function is used to check their validity. The crossover operation must be repeated if at least 

one of the two offspring is not a valid solution. For a specific application, it may be possible 
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to define a more efficient crossover operation which only creates offspring in the subset P 

and thus eliminate the need of repeating the crossover operation. 

5. Application to Eddy Current Image Restoration 

In this section we discuss how to apply the general image restoration method 

discussed in Section 3 and Section 4 to a real-world application - the eddy current image 

restoration problem. First, we give a brief introduction to the eddy current nondestructive 

technique and the eddy current image restoration problem. Then we discuss how to use the 

radial basis function network to approximate an eddy current numerical model and how to 

apply genetic algorithms to solve the nonlinear restoration problem. We also present 

restoration results for experimental two-dimensional eddy current measurements obtained 

from surface-breaking cracks on a thin aluminum plate and compare them with the 

restoration results of Wiener filtering. 

5.1 The Eddy Current Image Restoration Problem 

Eddy current nondestructive evaluation (NDE) is one of the most important NDE 

techniques. In an eddy current measurement, a coil driven by sinusoidal current is placed on 

a metal testpiece and the impedance change of the coil is measured as the coil is moved 

around the testpiece. By observing the change in impedance as a function of coil position, we 

can detect and characterize defects in the testpiece. Since eddy current testing only requires 

one side access to the testpiece, it can be used in complex test geometry where many other 

NDE techniques can not be easily applied. Typical applications of eddy current testing 

includes the inspection of steam generator tubing in nuclear power plants and the inspection 

of surface structures of aircraft. More information on the eddy current NDE technique can be 

found in Reference [18]. Due to the fact that eddy current testing is governed by diffusive 

electromagnetic fields, a two-dimensional impedance change image is a blurred version of 

the corresponding flaw image. Also, the impedance change distribution is a nonlinear 

function of the conductivity distribution of the flaw. The impedance change of an air-core 

coil placed on a testpiece can be computed by using the following reciprocity formula [19] 
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AZ = —r J 5cir' )E" (r-) • E(r' )dv', 
I- V' 

(34) 

where I is the current in the coil, ^(r') is the conductivity change caused by a defect, 

E® (r) is the incident electric field, and E(r) is the total electric field. The incident field is 

not a fianction of the flaw conductivity distribution and it can be determined if the coil 

parameters and test geometry are given. The total field is a more complex function 

dependent on both the incident field, test parameters and the flaw conductivity distribution. 

The relationship between the incident field, the total field and the flaw conductivity 

distribution can be expressed in the following volume integral equation [19] 

where G(r,r') is the Green's function for the test geometry. Since the total field is a 

function of both the incident field and the conductivity change, the impedance change AZ is 

a nonlinear function of the conductivity change 5<T(r'). 

The eddy current image restoration problem is a typical example of the nonlinear 

image restoration problem defined in Section 2. First, because it is governed by diffusive 

fields, the forward mapping is smooth and the derivatives of the forward mapping are 

bounded in a compact domain. Second, the eddy current image restoration problem is highly 

ill-posed due to the Limited resolution of eddy current testing (details of the flaw conductivity 

distribution get lost in the volume integration in equation (34)). Third, existing numerical 

models for eddy current forward modeling are computationally intensive which makes the 

direct application of combinatorial optimization methods impractical. 

(35) 
V 
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5.2 Solving the Eddy Current Image Restoration Problem Using Radial Basis Function 

Networks and Genetic Algorithms 

For the eddy current image restoration problem, we are interested in recovering the 

flaw shape from the impedance change image. To reduce the dimensionality of the problem, 

we assume the flaw is a void or a uniform inclusion and the flaw has identical depth span all 

over the flaw region. Based on this assumption, we can represent the flaw with a binary 

image. We can use the radial basis fiinction network discussed in Section 3 to learn the 

nonlinear mapping from the binary flaw image to the complex impedance change image from 

training samples obtained through numerical computations or experiments. To simplify the 

generation of the training data set, we require that there be only one flaw region in the flaw 

image. This defines a subset in the whole solution space. Only flaw images in this subset are 

valid solutions. With this restriction, we can form the training flaw set by using flaws with 

various shapes and sizes. The actual shapes and sizes of the flaws used in the training set are 

dependent on our prior information about the defect. For instance, if we know that the flaw 

is a crack, we can use rectangular flaws with different lengths and widths to build the training 

set. If we have very little information about the flaw shape, we may need to create a training 

set that contains flaws with different shapes and sizes. The number of training flaws 

sufficient for a good restoration is dependent on the dimensionality of the solution space and 

the desired restoration error. Also, because of the noise in the impedance change 

measurement, using a large number of training samples may not lead to a small restoration 

error. As a result of this, usually we do not need to build a training set with a large number of 

samples if we have sufficient prior information on the flaw shape. The interpolation network 

discussed in Section 3 is appropriate for building the eddy current forward model because the 

number of training samples we need to use is limited. The training of the network is also 

straightforward (equation (14)) and there is no learning error. 

Since the candidate solutions of the problem are binary images and the subset P 

denotes binary images with only one flaw region, we need to modify the general genetic 

algorithms discussed in Section (4) for this specific application. In the following we 
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summarize the major steps for the binary encoded genetic algorithms used for the eddy 

current image restoration problem 

Encoding of the solution 

The two-dimensional binary flaw image can be mapped into a one-dimensional binary 

vector (a binary string). Then a candidate solution can be expressed as 

Because in the fast forward model we have assumed that there is only one flaw region in the 

flaw image, not every binary string given by equation (36) is a valid candidate solution. 

Instead of using the indicator function, we have defined the crossover operation and mutation 

operation to always generate valid solutions. 

Fitness Junction 

For the eddy current image restoration problem, the cost function is defined as 

where AZ,y is the impedance change corresponding to candidate solution X, AZ,y is the 

measured impedance change, A is the regularization constant, and m is the number of 

directional changes in the flaw boundary (number of comers in the flaw). The first term in 

equation (37) gives the forward prediction error, and the second term forces the solution to 

have a regular boundary. The impedance change prediction AZ^ is obtained using the radial 

basis function network. 

(36) 

(37) 
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Selection 

The rank-based selection discussed in Section 4.3 is used. 

Mutation 

To generate a valid solution, we define the mutation operation as to randomly 

increase or decrease the flaw region by one pixel. If an increase is chosen, we find the set of 

pixels that are neighbor pixels of any of the boundary pixels in the candidate solution to be 

mutated. Then we randomly select one pixel from this set and add this pixel to the flaw 

region. On the other hand, if a decrease is chosen, we randomly pick a boundary pixel in the 

candidate solution and remove it from the flaw region. Smce removing a boundary pixel that 

may separate the flaw region into two unconnected flaw regions, we need to repeat the 

random selection if the selected boundary pixel carmot be removed due to this reason. 

Crossover 

As discussed above, the major problem in defining the crossover operation is to 

ensure it generates valid offspring. In the eddy current image restoration problem, a valid 

solution can only have one flaw region. Let the two parent solutions be X, and Xj, and 

I = Xj n X2, the following algorithm creates a valid offspring Y: 

1. If I = 0 (no intersection region), Y = X, with probabiUty 0.5 and Y = X, with 

probability 0.5. 

2. If I has only one flaw region, then the offspring are generated in the following way 

(1)Set Y = I. 

(2) While A(Y) < ^(a(X,) + ACXj)), where A(X) is a function which returns the flaw 

area of a flaw image X, 

a. Let B be the set of pixels that are neighboring pixels of any of the boundary 

p i x e l s  i n  Y ,  B ,  =  B  n  X , ,  a n d  B j  =  B  n  X j .  

b. Y = Y u B, with probability 0.5 and Y = Y u Bj with probability 0.5. 
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3. If I has more than one flaw region, Y = X, with probability 0.5 and Y = X, with 

probability 0.5. 

In the above crossover scheme, case 1 and case 3 are situations where a valid 

crossover operation is difficult to define. They are simply ignored because of their relatively 

rare occurrences. In case 2, we initialize the offspring with the intersection of the flaw 

regions of the two parents (where common genetic material is located). Then we randomly 

grow the offspring in the union of the flaw regions of the two parents until its flaw region 

reaches a reasonable size. This crossover scheme allows efficient exchange of genetic 

materials while keeping the offspring a valid candidate solution. 

5.3 Numerical Results 

To evaluate the performance of the nonlinear image restoration method on the eddy 

current image restoration problem, we tested it using experimental data obtained from a two-

dimensional impedance change measurement for a surface-breaking crack on a thick 

aluminum plate. The crack has a length of 4.04 nmi, a width of 0.21 mm, and a depth of 

0.916 mm. The aluminum plate is thick enough to be considered as a half space. The coil 

used has an inner radius of 3.8 nun, an outer radius of 5.63 mm, and a height of 2.64 mm. A 

two dimensional scan was made on a 64 by 64 grid, with a grid separation of 0.4 mm. Before 

restoration, the data were preprocessed using polynomial background removal and spline 

smoothing. 

To generate the training data set for the neural network forward model, we created 36 

artificial flaws with various lengths and widths. The impedance change images for those 

artificial flaws were then computed by using a volume integral model with wavelet expansion 

[19]. The training flaw images and the real and imaginary impedance change images are 

shown in Fig. 1. 

After the training data set was created, a radial basis function network with 4096 

input layer nodes, 36 hidden layer nodes, and 8192 output layer nodes (4096 nodes for the 

real part impedance change and 4096 nodes for the imaginary part impedance change) was 
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(a) Flaw images (b) Re(Z) images (c) Im(Z) images 

Fig. 1. The training data set for creating the neural network forward model. 

used to approximate the nonlinear forward model based on the training data set. The 

interpolation network was used and the variances for the Gaussian functions were decided 

using equation (28). The output layer weights were decided using equation (14). 

After the fast forward model was generated, a restoration test was performed using the 

genetic algorithm based restoration method. The test was performed with a crossover 

probability of 0.9, a mutation probability of 0.7, a probability for rank-based selection of 0.3, 

a population size of 10, and a maximum number of generations of 10. The real part and 

imaginary part impedance change images of the laboratory data and the restoration result 

from the genetic algorithm are shown in Fig. 2. As a comparison, we also give the 

restoration result from Wiener fdter in Fig. 2. The Wiener filter used for this problem is 

obtained by using a linear approximate forward model for the impedance change. 

« » 

(a) Re(Z) (b) Im(Z) (c) Result of GA (d) Result of Wiener filter 

Fig. 2. Test results for the experimental data using the genetic algorithm (GA) based 

method and Wiener filter. 
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In the restoration results from both the genetic algorithm based method and the Wiener filter 

method, the restored flaw is shorter than the actual flaw. This is thought to be a result of the 

background noise in the laboratory data. From Fig. 2 we can see that the restoration result 

from the genetic algorithm based method is better than that of Wiener filter in terms of 

resolution and signal-to-noise ratio. Another advantage of the genetic algorithm based 

method is that in its restoration result there is no distortion due to a linear approximation, 

which can usually be found in the results of linear methods for relatively long cracks. 

However, the genetic algorithm based approach is more computationally intensive than the 

Wiener filter approach which makes it only applicable to a limited amount of data. 
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6. Conclusions 

In this paper we have presented a nonlinear image restoration method based on radial 

basis function networks and genetic algorithms. This method is proposed to solve the image 

restoration problem for two-dimensional measurements made with nonlinear sensors 

involving complex physical phenomenon. The image restoration problem for these 

applications are difficult because of the slow speed of available numerical models and the ill-

posedness of the inverse mappings. To overcome the difficulties associated with gradient 

based methods and direct combinatorial optimization methods, we have applied radial basis 

function networks to approximate these forward mappings in a compact subset of the input 

space by learning from a set of training samples. The radial basis function networks can be 

made much faster than the numerical models so that we can use genetic algorithms to find the 

optimal restoration image which minimizes the forward prediction error. We derived an 

upper bound for the approximation error and gave some guidelines on the selection of 

training data set. Test results on the experimental data from a surface-breaking crack on an 

aluminum plate showed the practicality of the method in the eddy current image restoration 

problem and its superior performance over the Wiener filter method. However, even after 

using the radial basis function network to speed up the forward model, the genetic algorithm 

based method still has higher computational complexity than most linear methods. Future 

work is desired to improve the convergence performance of the genetic algorithm based 

nonlinear image restoration method and to further reduce its execution time. 
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