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ABSTRACT

This dissertation presents a comprehensive study on the forward modeling methods,
signal processing techniques, and image restoration techniques for two-dimensional eddy
current nondestructive evaluation. The basic physical forward method adopted in this study
is the volume integral method. We have applied this model to the eddy current modeling
problem for half space geometry and thin plate geometry. To reduce the computational
complexity of the volume integral method, we have developed a wavelet expansion method
which utilizes the multiresolution compression capability of the wavelet basis to greatly
reduce the amount of computation with small loss in accuracy. To further improve the speed
of forward modeling, we have developed a fast eddy current model based on a radial basis
function neural network. This dissertation also contains investigations on signal processing
techniques to enhance flaw signals in two-dimensional eddy current inspection data. The
processing procedures developed in this study include a set of preprocessing techniques, a
background removal technique based on principal component analysis, and grayscale
morphological operations to detect flaw signals. Another important part of the dissertation
concerns image restoration techniques which can remove the blurring in impedance change
images due to the diffusive nature of the eddy current testing. We have developed two
approximate linear image restoration methods - the Wiener filtering method and the
maximum entropy method. Both linear restoration methods are based on an approximate
linear forward mode! formulated by using the Born approximation. To improve the quality of

restoration, we have also developed nonlinear image restoration methods based on simulated
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annealing and a genetic algorithm. Those nonlinear methods are based on the neural network

forward model which is more accurate than the approximate linear forward model.



CHAPTER 1. INTRODUCTION

Overview of the Problem

Eddy current nondestructive evaluation (NDE) is one of the most important NDE
techniques. In an eddy current measurement, a coil driven by sinusoidal current is placed on
a metal testpiece and the impedance change of the coil is measured as the coil is moved
around the testpiece. By observing the change in impedance as a function of coil position, we
can detect and characterize defects in the testpiece. Applicable types of defects of the eddy
current technique vary from inclusions, voids to surface breaking cracks. Since eddy current
testing only requires one side access to the testpiece, it can be used in complex test geometry
where many other NDE techniques cannot be easily applied. Typical applications of eddy
current testing includes the inspection of steam generator tubing in nuclear power plants and
the inspection of surface structures of aircraft. The techniques developed in this dissertation
were originally targeted for the tubing inspection application. However, they can be applied
to many other two-dimensional eddy current testing applications as well.

In a steam generator in a nuclear power plant there are thousands of heat exchanger
tubes. These tubes are used to transfer heat energy from the nuclear reactor to the power
generator. These tubes must also separate the primary water which is radioactive from the
secondary water which is not radioactive. Therefore, the integrity of these tubes is critical to

the safe operation of the nuclear power plant. Because of the relatively small size of the heat



exchanger tubes and the accessibility constraints of the steam generator, eddy current testing
is widely used in the inspection of the heat exchanger tubes.

Traditionally a bobbin coil probe is used to inspect steam generator tubing. During
the inspection the bobbin coil is inserted inside the tube and then pulled out. While the probe
is moving along the internal surface of the tube, the impedance change of the coil is
monitored and recorded. From the one-dimensional impedance change data obtained from
the bobbin coil, we can decide whether there are flaws and approximately how large the flaws
are. Most flaws in steam generator tubing happen to be circumferential outside diameter
(OD) cracks near tube support plates. Because of the one-dimensional nature of the bobbin
coil, it has a limited sensitivity to circumferential cracks. Therefore, the use of Motorized
Rotating Pancake Coils (MRPC) for eddy current inspection has become a more common
practice in recent years, as utilities struggle to stay ahead of cracking steam generator tubes.
In a MRPC inspection, a small pancake coil is placed on the internal surface of the tube and
rotated while the MRPC probe is pulled out. Therefore, the trace of the pancake coil has a
helical shape. MRPC probes can provide two-dimensional impedance change images over
the tube internal surface which improve the probability of detection and enhance flaw
characterization capability.

Despite its performance improvement over the bobbin coil, the MRPC still has some
disadvantages. One of its major disadvantages is sensitivity-limiting noise resulting from
stray electromagnetic pickup and irregular probe motion. Another major disadvantage is the
blurring of the impedance change image due the nonlinear interaction between the flaw and

the probe coil. Therefore, to improve the quality of data analysis, signal and image



processing techniques must be developed to reduce noise and unwanted effects and to restore
the actual flaw shape from the blurred impedance change image.

The major objective of the study presented in this dissertation is to develop signal and
image processing techniques for the two-dimensional eddy current data so that better flaw
detection and characterization can be achieved. This includes signal processing techniques
which enhance flaw signals and image restoration techniques which generate more accurate
flaw images. Also, to have a better understanding of the problem, we must study the physical
phenomenon involved in eddy current testing. This requires us to solve the eddy current

forward modeling problem.

Fundamentals of Eddy Current Testing

Basic concept

Fig. 1.1 illustrates the basic concept of eddy current nondestructive testing. A varying
electric current flowing in a coil gives rise to a varying magnetic field. A nearby conductor
resists the effect of the varying magnetic field, and this manifests itself by an eddy current
flowing in a closed loop in the surface layer of the conductor to oppose the change causing a
back electromotive force in the coil. Cracks and other surface conditions modify the eddy
currents generated in the conductor so that the back electromotive force is altered. This leads
to a change in the impedance of the coil. If the conductor is a metal testpiece with defects,
we can detect these defects by moving the coil around the surface of the testpiece and

measuring the impedance change of the coil.
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Fig. 1.1. Basic concept of eddy current nondestructive testing.

Practical considerations

Penetration depth

Since the eddy current electromagnetic fields are diffusive fields, they have limited
penetration into the metal testpiece. The rate of decay of the eddy currents is measured by the
skin depth, which is dependent on the test frequency, the permeability of the testpiece, and
the conductivity of the testpiece. Since the permeability and conductivity are material
properties, in eddy current inspection we can only change the test frequency to control the
penetration depth of eddy current testing. Because flaws deeper than two to three times of
the skin depth usually lead to very small responses in the coil impedance change, we need to

make the test frequency low enough so that all structures of interests are sensible by the coil.



However, because the resolution of eddy current testing is also dependent on the skin depth,

we can only achieve high resolution of near surface structures.

Multiple frequency inspection

Due to the frequency dependent nature of eddy current testing, we can use multiple
frequency channels to improve its flaw detection capability. Because high frequency
channels are more sensitive to near surface structures and low frequency channels are more
sensitive to structures deeper in the testpiece, we can combine their results to improve our
capability of differentiating types of flaw. Furthermore, multiple frequency inspections
enable the mixing process, which can be used to remove signals from permanent structures of
the testpiece; so that, signals from flaws adjacent to these permanent structures are more

distinguishable.

Complex data display

Due to the impedance change of the coil being a complex quantity, there is a phase
component. The phase component of the impedance change is very important in eddy current
testing because it is a function of flaw depth. By measuring the phase of the acquired data,
we can differentiate near surface flaws and deep flaws. It is also possible to estimate the
depth of a surface breaking flaw from the phase of its signal. In eddy current data analysis,
the complex impedance change data is usually plotted as a Lissajous figure, with the
horizontal axis being the real part of the impedance change and the vertical axis being the

imaginary part of the impedance change. By observing the shape and the angle of the



Lissajous pattern of a signal, a human analyst can decide whether there is a flaw and

approximately how large the flaw is.

Tubing inspection

Eddy current tubing inspection is different from the inspection of a flat surface
testpiece because there are more uncertainties in the test. First, there could be changes in the
diameter of the tube and vibrations of the probe when it is pulled out from the tube, causing
large liftoff signals in the tube inspection data. Second, tube support plates (TSPs) in the
steam generator create large signals that may obscure signals from flaws near the support
plates. Third, many other changes of the tube over time, e.g., dents, deposits, and wear, can
create signals that are similar to crack signals. This makes the analysis of the tubing
inspection data even more difficult.

In a tube, a flaw can be either on the internal surface of the tube, which is called an
inside diameter (ID) flaw, or on the outside surface of tube, which is called an outside
diameter (OD) flaw. The depth of the flaw is usually measured in percentages of tube
through wall (TW) thickness. Most flaws in steam generator tubing happen to be OD

circumferential cracks near tube support plates.

Organization of the Dissertation

Corresponding to the three major tasks of this study, the dissertation is divided into
three major parts. In Chapters 3-6 we discuss eddy current forward modeling techniques for

half space and thin plate geometry. The techniques discussed include an implementation of



the volume integral method for half space and thin plate geometry, a wavelet expansion
method to reduce the computational complexity of the volume integral method, and artificial
neural network based forward models to substantially speed up the forward computation. In
Chapters 7-9 we discuss signal and image processing techniques to enhance flaw signals and
to detect possible flaw indications. The processing techniques discussed in this part include
preprocessing methods to remove the liftoff signal and to adjust the phase of the signal, a
method based on principal component analysis to remove background signals in the data, and
a detection method based on grayscale morphological operations to find circumferential
cracks. In Chapters 10-13 we discuss eddy current image restoration techniques. The image
restoration techniques discussed in this part include linear restoration techniques based on
Wiener filtering and the maximum entropy method, and nonlinear image processing
techniques based on simulated annealing and genetic algorithms.

In Chapter 2 we review some of the modeling methods and signal processing
techniques in the literature that are related to the processing and analysis of two-dimensional
eddy current data. The review is divided into three major parts: (1) analytical and numerical
methods to model the eddy current flaw-coil interaction and to predict coil impedance
change; (2) signal processing techniques to enhance flaw signals; and (3) solutions of the
eddy current inverse problem to obtain flaw characteristics from impedance change
measurements.

In Chapter 3 we briefly review the mathematical formulation of the volume integral
method. We focus the discussion on how to apply the volume integral method to half space

geometry and thin plate geometry because these two geometry are sufficient to model most



eddy current applications, either precisely or approximately. The analytical solutions for the
incident fields and the Green’s functions for half space geometry and thin plate geometry are
also discussed.

In Chapter 4 we discuss a practical implementation of the volume integral method for
half space geometry and thin plate geometry. The implementation of the volume integral
method is difficult because it involves calculations of complex and numerically unstable
integrations of Bessel functions. We applied fast Hankel transforms to efficiently integrate
many of the integrations used in the volume integral method. In this chapter we also discuss
how to compute the volume integral of Green’s function in the singular element which is
critical to the accuracy of the forward model.

In Chapter 5 we discuss a wavelet expansion method to reduce the computational
complexity of the volume integral method. This method utilizes the multiresolution
compression capability of the wavelet basis and the diffusive nature of eddy currents. By
using a wavelet basis in a Galerkin method, we transform the system matrix to a very sparse
matrix which can be inverted efficiently. The wavelet expansion method has been shown to
greatly reduce the amount of computation involved in the volume integral method with only a
small loss in accuracy.

In Chapter 6 we discuss fast eddy current models based on artificial neural networks.
Since numerical models are inherently computationally intensive, they cannot be used in
situations where speed is the first concern and accuracy is a secondary concern. To improve
the speed of forward modeling, we utilized the functional approximation capability of neural

networks to create an approximate mapping from the flaw image to the impedance change



image from a set of training samples. The neural network based forward models have shown
to be able to provide speedup of several orders as compared to numerical models.

In Chapter 7 we discuss preprocessing techniques to cleanup the two-dimensional
eddy current data. The preprocessing techniques include background removal methods based
on polynomial fitting and median filtering, and an automatic phase adjustment method based
on a least squares criterion.

In Chapter 8, a background removal method based on principal component analysis
(PCA) is discussed. In this technique, PCA is used to extract major components of the
background signals in the data. Flaw signals are considered as details of the image and can
be separated from the background by using the result of the PCA processing. This technique
has been shown to be effective in removing noise from ID variations and manufacturing
induced conditions.

In Chapter 9 we discuss a detection method for circumferential cracks based on
grayscale morphological operations. This method is based on two shape characteristics of the
signal from a circumferential crack: minimum horizontal extent and maximum vertical
extent. These shape characteristics can be recognized by mathematically morphological
operations. By using a serial combination of different morphological operations,
circumferential cracks in the MRPC data can be enhanced and a crack map can be generated
to indicate possible flaw locations.

In Chapter 10, an eddy current image restoration technique based on Wiener filtering
and an approximate linear eddy current forward model are discussed. The linear forward

model is based on a reciprocity impedance change formula and the Born approximation. This
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method has been tested using both synthesized and experimental data. Its sensitivity to noise,
its strengths, and limitations are also discussed in Chapter 10.

In Chapter 11, another linear eddy current image restoration technique - the maximum
entropy method (MEM) is discussed. MEM has been successfully applied in many areas of
image processing. The principle of maximizing the entropy has been shown to provide
exceptional results in many applications. In this chapter, the concepts and the mathematical
formulation of MEM for the eddy current image restoration problem are discussed. Test
results on synthesized data, experimental data, and inspection data have all shown its superior
performance over the Wiener filtering method in terms of both noise reduction and
resolution. The major disadvantage of the MEM approach is its high computational
complexity when compared with the Wiener filtering approach.

To improve the quality of the restoration results, we have also developed nonlinear
image restoration techniques which are based on the fast neural network forward model. In
Chapter 12 we discuss a nonlinear image restoration technique based on simulated annealing.
Although this method is more computationally intensive than the linear restoration methods,
it can provide restoration results with better resolution and a higher signal-to-noise ratio.

In Chapter 13 we discuss another nonlinear image restoration methods based on a
genetic algorithm. Although the procedure of the genetic algorithm based approach is more
complicated than the simulated annealing based approach, it can generate similar restoration
results with a much faster convergence speed due to the parallel search property and the
crossover operation of the genetic algorithm. This method provides a better tradeoff between

the quality of the restoration and the execution time.
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The dissertation is summarized and concluded in Chapter 14. Major results of the
study are reviewed and the strengths and weaknesses of each method are discussed and
compared. In this chapter we also discuss what we have learned during the course of the

study and some suggestions for future research.
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CHAPTER 2. LITERATURE REVIEW

Introduction

In this chapter we briefly review modeling methods and processing techniques in the
literature that are related to the processing and analysis of two-dimensional eddy current data.
The review is divided into three major parts: (1) analytical and numerical methods to model
the eddy current flaw-coil interaction and to predict coil impedance change; (2) signal
processing techniques to enhance flaw signals; and (3) solutions of the eddy current inverse
problem to obtain flaw characteristics from impedance change measurements. The first part
of the review involves solutions of the eddy current forward problem which provide an
understanding of the physical criteria associated with eddy current testing. The second part
of the review involves signal enhancing techniques to improve the quality of experimental or
inspection data; thus, flaws can be more easily located and better characterized. The third
part of the review involves solutions of the eddy current inverse problem which are directly
related to the flaw characterization capability of the eddy current nondestructive testing
technique. The three parts of the problem are closely related: although the final results are
generated by methods that solve the inverse problem, our understanding of the first two parts
are critical to how well we can solve the inverse problem. Our objective of maximizing the
inspection capability of the eddy current technique can only be achieved after we fully

understand all the aspects associated with this problem.
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Forward Modeling

Overview

The eddy current forward modeling problem has been an active research area for a
relatively long time. Good understanding and accurate modeling of the forward problem
have a significant impact on the design of new probes and inspection instruments as well as
the solution of the inverse problem.

The eddy current forward problem can be considered as the problem to solve the
incident electromagnetic field distribution, which is the field when there is no flaw in the test
object, and the total electromagnetic field distribution, which is the field when there is a flaw
in the test object. This is based on Auld’s well known reciprocity formula [1] for the

impedance change of a coil placed above a metal testpiece

AZ= -[szao(r')EO(r') E(r)dv', @.1)
J

where E? is the incident electric field, E is the total electric field, / is the current density in
the coil, do(r') is the conductivity change, and V' is the flaw volume.

At the frequency of typical eddy current inspection, the electromagnetic field in the
metal testpiece is governed by a diffusion equation. If we choose the electric field as the
unknown quantity, the diffusion equation can be expressed as [2]

V2E -7y’E = iouJ°. (2.2)
where 72 =iwuo, and JO is the current density induced by the coil without the presence of

the flaw. When the test geometry is simple and the flaw has a regular shape, it is possible to

find an analytical solution for the total electric field. However, in most cases numerical



14

methods must be used to solve for the total electromagnetic field. There are a number of
numerical methods in the eddy current literature, e.g., the boundary element method [3, 4],
the volume integral method [2, 5, 6], and the finite element method [7]. Although these
numerical methods give exact solution of the field, they are inherently computationally
intensive. Therefore, in the literature there are also various approximate methods that are
valid under certain flaw and test geometry configurations [8-13]. Besides the above
mentioned methods which are solidly based on electromagnetic field theory, there is an
imaging model by Groshong [14] which is based on a resistive loop approximation and the

idea of layered nonlinear representation.

The volume integral method

The volume integral method [2, 5, 6] transforms the governing diffusion equation for
eddy current into a volume integral equation which is more suitable for numerical solution.
Consider a special solution of (2.2) when the current source is a point electric dipole placed
in the layer containing the flaw

V2G(r,r ) - iwuc ,G(r,r ) = ioud(r-r)l, (2.3)

where the solution of the above equation G(r,r') is the Green’s function, &(r —r') is the
three-dimensional Dirac delta function, and I is the unit dyad. Given the Green'’s function
for the test geometry, the solution of (2.2) can be expressed as a volume integral in the flaw
region. To see this, rewrite (2.2) as

V2E - iwuo E = iopu[J° +(0—04)E] (2.4)
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The term (0 -0 ()E can be considered as an effective current dipole density at the source

point due to the variation of the flaw conductivity from the host conductivity. We can

combine (2.3) and (2.4), and express the total field as

E(r)= [Ger.r)-[1°(¢ )+ So(e JECe Yidv

- 2.5
=E%(r)+ J' o (r )G(r,r' )-E(r )av (2.5
v

Given the Green’s function and the incident field E°, we can solve the above volume integral
equation for the total field E. This is usually done by discretizing equation (2.5).

Compared with other numerical methods, the volume integral method is easy to
implement and it can model three-dimensional flaws with arbitrary conductivity distribution.
The disadvantage of the volume integral method is that it uses a large number of volume

elements, and thus has high computational resource requirement.

The boundary element method

The boundary element method [3, 4] is formulated by an application of Green’s
theorem to the unknown field and to a Green’s function to obtain the solution. If the Laplace
Green’s function is used in solving a Helmholtz equation, the field at a point is expressed as a
volume integral over the region of interest. This leads to the volume integral method.
However, if a Helmholtz Green’s function is used, the field at a point is expressed by
integrals over a bounding surface. If we let the field point move to the surface, we obtain an
integral equation over the surface for the unknown fields, where the kernels are the
Helmholtz Green'’s functions and their normal derivatives. If we let H be the unknown field,

then the boundary integral equation can be derived as [3]
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AH@ =[G, S )Ail%ds', 2.6)
)

where S’ is the flaw region, and G(@,S') is the Helmholtz Green’s function for the given
geometry. Equation (2.6) can be discretized and solved numerically for the unknown H
field, which can then be used in computing the impedance change.

The major advantage of the boundary element method is that it reduces a three-
dimensional problem to a two-dimensional problem so that a lot of computation can be
saved. However, the Helmholtz Green’s function is more complex than the Laplace Green’s
function. For some test geometry, it may not be possible to solve the Helmholtz Green’s
function analytically. It is also more difficult for the boundary element method to model a

complete three-dimensional problem than the volume integral method.

The finite element method

The finite element method is a general method of solving partial differential equations
(PDEs). The basic idea of the finite element method is to use variational principles to
transform a boundary value problem into a set of linear equations. A widely used method is
the Galerkin method [7]. In the Galerkin method, the unknown field is expressed as a series
expansion based on a set of basis functions. The basis functions are selected to satisfy the
boundary conditions. By substituting the series expression of the unknown field into the
partial differential equation and utilizing the orthogonality property of the basis functions, we
can transform the boundary value problem into a set of linear equations which can be solved

numerically.
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The advantages of the finite element method are its high accuracy and its capability of
modeling arbitrary test geometry and flaw configuration. The disadvantages of the finite

element method are its high complexity and high computational resource requirement.

The Groshong model

The Groshong model is an eddy current imaging model based on a simple resistive
loop approximation. This model maps a two-dimensional flaw image to a two-dimensional
magnitude image of the impedance change of the coil. In this model, the interaction between
the coil and the flaw is considered as a transformer where the coil is the primary of the
transformer and the current filaments induced by the coil are considered the secondary of the
transformer. A flaw in the metal testpiece changes the length of circuit path of the current
filament, thus changing the resistance of the secondary and creating a voltage change in the
primary. The mathematical formulation of the Groshong model uses the layered nonlinear
representation. The first layer of the model is a directional first derivative of a Gaussian

function

(xcos8 + ysinB) { (xcosO + ysine)z}
expy—

H(xayye) == ﬁ;o_d 20-5
2.7)

. (—xsinf + ycose)z}

1
expy—
J2ro, p{ 20;
in the rotated two-dimensional Cartesian coordinate system (x',y') =

(xcos@ + ysinf, — xsin@ + ycosf) at the angle 8. The first term of the right hand side is

the first derivative of a Gaussian function with spread o, parallel to the direction defined by
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6, and the second is a Gaussian function with a much larger spread o, perpendicular to 6.

This function is used to reflect the fact that the coil impedance change is more sensitive to the
flaw perpendicular to the current filaments, and less sensitive to the flaw parallel to the
current filament. A number of H functions with different angles 6, are used to
approximate the coil response in the full angle range.

The second layer of the model is a nonliear point function

s(v) =V1+v? (2.8)

which is used to estimate the local path length of filaments flowing in the direction of 6.

The third layer is a linear Gaussion blurring function

r-r)® @-@)°
exp(— 2 2
2ro,0, 20; 20,

R(r,9) = ) (2.9)

where o, is the standard deviation of the blur in the radial direction, and o, is the angular

extent. This function is used to smooth out the effect of using a finite number of H
functions to approximate the response in the full angle range.

The Groshong model is relatively simple when compared to models based on
electromagnetic theory and it is less computationally intensive. Also, because it uses a
layered nonlinear form, we can easily obtain its derivative. Thus a gradient based inverse
method can be used for this forward model. However, the Groshong model also has several
disadvantages. First, there is no direct relationship between the coil parameters and the
model parameters. Therefore, the model parameters can only be obtained by obtaining a lot
of measurements, and then using a nonlinear optimization method to determine the estimates

of model parameters. Second, the coil types and test geometry that can be modeled by this
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method are limited. Third, because it is a real model, phase information is not used in the

model. This is undesirable because in many applications phase information is critical.

Signal Processing Techniques

Overview

The major task in signal processing of eddy current data is to remove noise from
various sources, and unwanted signals from non-ideal test conditions and structural changes
of the test piece other than the flaw of interest. Due to the complexity of the nonliear
interaction between the flaw signal and the unwanted signals, signal processing of eddy
current data is a very challenging task. Many conventional signal processing techniques are
not efficient in handling eddy current data Traditional eddy current signal processing is
mainly based on the phase difference between the flaw signal and unwanted signals. For
instance, the signal from an OD crack has a different phase from the liftoff signal. A process
called mixing [15] is widely used in industry to separate the flaw signal from signals of
unwanted effects. The mixing process utilizes the frequency dependent response of eddy
currents to differentiate changes in the test piece. Recently, a spline smoothing technique
[16] has been applied to remove random noise in experimental eddy current data. This

method is rather effective in reducing electronic noise in experimental data.

Mixing
Mixing is based on the observation that the response of a eddy current probe to a

defect in the test piece is frequency dependent. If we measure the same test piece using two
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different frequencies, we can combine the signals from the two measurements and enhance
the flaw signal. Suppose the flaw signal is larger at the higher frequency, and the unwanted
signal is larger at the lower frequency. Let X, (n) be the total signal from the higher
frequency, and X, (n) be the total signal from the lower frequency, thus we can enhance the
flaw signal by generating a mixing signal

X;(n)=X,(n)-CX,(n), (2.10)

where the complex mixing constant, C, can be decided by minimizing the mean square error

£=Y|X,(m)-CX,(n)|". @.11)

This minimization problem can be easily solved by letting the partial derivative of equation
(2.11) with respect to C be zero and then solving for C. The result is
XX, (mX;(n)

) ZIXz(")IZ ‘

C (2.12)

The above mixing algorithm is called a two-channel linear mixing algorithm. There
are also three-channel mixing algorithms and nonlinear mixing algorithms. The mixing
process is widely used in removing signals from support structures in tubing inspection.
However, the mixing process is not very effective in separating the flaw signal and signals

from structures with similar material property and depth as the flaw.

Spline smoothing
The spline smoothing method discussed in Reference 16 is an extension to the widely

used spline smoothing process. Smoothing splines can be used to approximate a set of
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discrete, noisy data. The optimal spline can be obtained by finding the spline coefficients
that minimizes a cost function. Usually the cost function contains the average square error
between the noisy data and the spline approximation, and a regularization term. The method
presented in Reference 16 provides a practical, effective way for estimating the optimal
amount of smoothing from the data. Applications of this method have been shown to be very

effective in removing the electronic noise in experimental measurements.

The Inverse Problem

Overview

Contrary to the relative success of the forward problem, there have been few practical
solutions to the eddy current inverse problem. The reason comes from the physical nature of
the eddy current testing; the eddy current inverse problem is an ill-posed nonlinear inverse
problem. Due to the diffusive nature of the electromagnetic fields in the frequency range of
eddy current measurements, it is difficult to obtain a high-resolution flaw image from a high-
resolution measurement.

There are a number of flaw inversion methods in the eddy current literature. Basically
they can be classified as parametric methods [17-22], and nonparametric methods [23-27]. In
the first class, the flaw shape or the testpiece shape is assumed to be known, and the inverse
problem is modeled by several size parameters and material parameters. Usually a table is
built from multiple solutions of the forward problem, either experimentally or theoretically,
and the inversion is basically to look up the table and find the best match. The table merely

represents a mapping from a flaw parameter space to an impedance change feature space.



22

Therefore, it may have many forms from a simple look-up table [17] to a fuzzy classifier or a
neural network [18, 19].

In the nonparametric method class, there are methods [23, 24] based on the Born
approximation which simplify the nonlinear inverse problem to a linear inverse problem.
However, this approximation is valid only when the conductivity of the flaw is close to the
host conductivity or when the aspect ratio of the flaw is within a certain range. More
recently, attention has been turned to the nonlinear inverse problem. Groshong et al. [26]
have developed an eddy current image restoration method based on constrained gradient
descent and the layered nonlinear forward model they developed. Norton and Bowler [27]
have derived the expression of the gradient of impedance change to the changes in the flaw
conductivity distribution. This gradient expression is based on fundamental electromagnetic
theory and requires the solution of a normal forward problem and the solution of a
hypothetical forward problem. Based on this gradient expression, a class of gradient-based
iterative inverse methods can be used to reconstruct the flaw shape or flaw conductivity
distribution. However, because the eddy current inverse problem is highly ill-conditioned,
gradient-based methods are very likely to stick to local minima even if regularization

constraints are used.

Constrained gradient descent based on the Groshong model
This inversion method is an image restoration technique based on the Groshong
forward model. The objective of the restoration is to determine the estimate of the flaw

image which minimizes the squared error
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lel” = X {(e./) - DG ixe)* + M F 6 im?} 2.13)
Lj

where g(i,j) is the impedance change measurement, f (i,J) is the estimate of the flaw
image, D(i, j) is the impedance change image given by the forward model, C( f (i, ))) is the
constraint function, and A is the Lagrange multiplier. The constraint function can have
various forms based on the prior knowledge about the flaw. For example, the constraint
function can be defined to minimize the volume of the flaw or to make the flaw as smooth as
possible. The minimization of this squared error can be solved iteratively by using a gradient
descent method

2
fm+1) =f(m) -« ﬂi;" , (2.14)

where « is the step size. It is straightforward to apply the gradient descent method to the
Groshong model because the gradient of the layered nonlinear representation can be easily
obtained by using the chain rule.

Besides the constraint term in the squared error, other regularization techniques may
also be used to force the gradient descent method, which seeks a local minima of the squared
error, into regions containing better solutions. One such technique is the so-called spectral
magnitude clipping in which a masking function is defined to represent a desired limiting
shape of the spectrum of the estimated flaw image. During each iteration, the spectrum of the
updated flaw image is calculated and the spectrum is clipped according to the masking
function. This technique is useful in removing the high frequency noise generated in the

inversion process.
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Although the image restoration method discussed above is relatively simple and not
very computationally intensive, it is still limited by the disadvantages of its forward model
and the fact that the gradient-based method is unlikely to be able to find the global minimum.
Application of this method to real-world problems requires great effort in finding the optimal
parameters for the forward model. Modeling errors introduced by inaccurate parameters may

greatly deteriorate the restoration result.

Gradient descent methods by Norton and Bowler

Starting from basic electromagnetic theory of eddy current, Norton and Bowler [27]
have derived an expression to compute the gradient of the impedance change to the flaw
conductivity distribution. This gradient expression requires solving the total electric field for
the normal forward problem and then solving the total electric field for another hypothetical
forward problem with an adjoint Green’s function [27], e.g.,

VZ(r) = —0,E(r) - E(r), (2.15)
where E(r) is the total electric field for the normal forward problem, and E(r) is the total
electric field for the hypothetical forward problem with the adjoint Green’s function. In the
following we give a brief review of the key derivation of Norton and Bowler’s result.

For a unit current source, the reciprocity formula gives the impedance change of the
coil as

Z=- ‘J, So(r)E’(r') - E(r' )dr'

2.16
=-[E(r")-P(r')dr', (2.16)
14
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where P(r') = oyv(r')E(r'), and v(r') is the normalized conductivity change. Then it
follows

dZ = -[E%(r') - dP(r")dr'. (2.17)
v

And from the volume integral equation (2.5), we have a similar equation for the equivalent

current density P(r)

P(r) = P*(r) + v(r)k? [ G(r,r'") - P(r")dr"', (2.18)
v

where k2 = iu,0,. Taking the derivative of (2.18), we have

dP(r) = v(r)GE(r) + v(l')k2 |G(r,r')-dP(")dr". (2.19)
v

Now consider a hypothetical forward problem defined by
E'(r') =Er') - *[G@', ) - E@)v(r)ar, (2.20)
where E(r') is the total electric field for the hypothetical forward problem, and G is the
adjoint of G ; that is
Ga',r) =G (r,r"), (2.21)
where 7 denotes the transpose of the dyad. For this hypothetical problem, we have a similar
equation as (2.18)

Pr)=P'(r)+ v(r)k2 [G(r,r")-P(r')ar". (2.22)
v

Now substituting (2.20) into (2.17), interchanging orders of integration and using (2.21) gives

dZ = —[E@') - dP(x")dr'+k* [ v(r)E(r) - [ G(r,r') - dP(r)dr hr

2.23
=-[E(r)- [dP(r) -v(O)k* [ G(r,r')- dP(r' )dr'}!r. (2.23)
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The quantity in brackets is seen from (2.19) to be dv(r)c,E(r), thus (2.23) reduces to

dZ = - 6,E(r) - E(r)dv(r)dr. (2.24)
But by definition,

dZ = [VZ(r)év(r)dr. (2.25)
Then it is clear that the functional gradient of the impedance change is

VZ(r) = —0,E(r) - E(r). (2.26)

The gradient of the mean square error of the impedance change can be easily derived
if the total electric fields E(r) and E(r) are known. The solution of the total fields can be
best done by using the volume integral method because the Green’s function appears directly
in the formulation of the volume integral equation, and the solution of the hypothetical
forward problem can be done in the same fashion as the solution of the normal forward
problem.

Based on equation (2.26), a number of gradient based inversion methods can be used
to restore the flaw conductivity distribution. These methods include the steepest descent
algorithm, the conjugate gradient descent algorithm, and the Levenberg-Marquardt algorithm
[27]. Various constraints can also be used to regularize the ill-conditioned inversion.
However, the application of constraints cannot guarantee that the global minima can be
found. Also, due to the long execution time needed to numerically solve the two forward

problems in each iteration, this method is not very feasible for practical use.
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CHAPTER 3. THE VOLUME INTEGRAL METHOD

FOR EDDY CURRENT MODELING

Introduction

To develop signal and image processing techniques for two-dimensional eddy current
inspection data, we must have a deep understanding of the underlying physical nature of eddy
current measurements. Such an understanding not only gives insight on what techniques are
appropriate for the eddy current problem, but also provides a basis for evaluating various
processing techniques. The solution of the eddy current forward problem is also important
for quantitative characterization of the shape and the size of the defect under investigation.
The eddy current forward problem can be formally defined as the problem to predict the
impedance change of a coil given the test geometry, the properties of the testpiece, the coil
parameters, and the conductivity distribution in the flaw. Analytical solutions of the eddy
current forward problem exist for simple test geometry and flaws with good symmetry
properties. However, for flaws with irregular shapes in a complex geometry, an analytical
solution usually is not available, so we must find a numerical solution. There have been
several numerical models in the literature, e.g., the finite element method [7], the boundary
element method [3, 4], and the volume integral method [2, 5, 6]. Among these models, the
volume integral method has shown good potential due to its capability of modeling a three-
dimensional flaw with arbitrary shape. It is also straightforward to apply the volume integral

method if the Green's function of the given geometry is known.
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In this chapter, we briefly review the volume integral method used in eddy current
modeling. The volume integral method was originally used in geophysical induction studies
and was introduced to the field of eddy current NDE by Dunbar [2]. The volume integral
method transforms the governing diffusion equation of the eddy current problem to an
integral equation, which is more suitable for numerical solution by using the Green’s function
for the given geometry. This volume integral equation can be discretized and transformed to
a linear matrix equation which can be solved directly. In this chapter the volume integral

method in half space geometry and thin plate geometry is discussed.

The Eddy Current Modeling Problem

Given a test geometry and the conductivity distribution in the flaw volume, the eddy
current modeling problem is to find the impedance change of a coil driven by sinusoidal
current and placed above the metal testpiece. We can derive the governing diffusion equation

for this problem starting from the Maxwell equations

VxE=-2B G.1)
dt

VxH=], (3.2)
where E is the electric field intensity, B is the magnetic flux density, His the magnetic field
intensity, and J is the current density. In the frequency range of eddy current testing, the
displacement current is very small, and thus can be neglected (quasistatic assumption).
Taking the curl of (3.1) and substituting (3.2) into (3.1) by using the relation B=y H, we

have the following equation
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VxVxE:-u%%, (3.3)

The current density in (3.3) contains two components
J=J"+0E, (3.4)
where J° is the current density due to the source coil, and the second term is the current
induced by the total electric field, E. Notice that in Cartesian coordinates
VxVxE=V(V-E)-V’E. (3.5)

Since V-E =0 in metal (assume piece-wise continuous conductivity distribution in the flaw

@ time dependence to give the governing

volume), we combine (3.5) and (3.3) with an ei
differential equation as

VE-7’E=iwul°, (3.6)
where y? = iwpuo . This is a diffusion equation, and the diffusive nature of eddy currents
determines the resolution limit of eddy current testing. The source current density in this
equation can be obtained from the incident field distribution. Analytical solutions exist for
the incident field for an air-core coil above a half space or layered metal [28]. The
fundamental problem of eddy current modeling is to solve equation (3.6) for the total field
given the flaw conductivity distribution and the incident field.

Having solved for the total field, the impedance change of the coil next to a

nonmagnetic metal can be obtained from the following reciprocity formula [1]

AZ=—ILZIao(r')Eo(r')-E(r')dv', (3.7)
v
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where [ is the current in the coil, do(r') is the conductivity change, and V' is the flaw
volume. This equation is particularly useful because it only requires the incident field and the
total field to be evaluated within the flaw volume. It is not necessary to numerically compute

the fields in the region of the coil.

The Volume Integral Method

In the following discussion of the volume integral method, we assume the geometry is
either a half space of homogeneous metal or layered metal in which the flaw region is
constrained within one layer. Consider a special solution of equation (3.6) when the current
source is a point electric dipole placed in the layer containing the flaw

V2G(r,r ) —iopo o G(r,r ) = ioud(r-r )L, (3.8)
where the solution of the above equation E(r, r' ) is the dyadic Green’s function, &(r—r") is
the three-dimensional Dirac delta function, and I is the unit dyad. Given the Green’s
function for the test geometry, the solution of equation (3.6) can be expressed as a volume
integral in the flaw region. To see this, rewrite equation (3.6) as

VE -iouc E =iou[J° + (6 - 0,)E], (3.9)
where iouc,E has been subtracted from both sides of the equation. The term
(0 —0,)E = d0E can be considered as an effective current dipole density at the source point
due to the variation of the flaw conductivity from the host conductivity. We can combine

equations (3.8) and (3.9), and express the total field as
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E(r) = [G(r,r')-[J°(r') + S0(r" E(r')]av’

=E°(r) + [ 60(r)G(r,r') - E(r)dv', (3.10)
!

where E°(r) = jG(r, r')-J°@x')dv'. Given the Green’s function and the incident field E°,

we can solve equation (3.10) for the total field E. This is usually done by discretizing
equation (3.10). The flaw volume is divided into N smaller volume elements within which

the electric field can be assumed constant. After discretization, equation (3.10) becomes

N
E(r)=E(r)+ Y, [G(r,r )do.dv; E, (3.11)

i=ly,
which can be further reduced to the following linear system
E’=(I-C)E, (3.12)
where E° is incident field, E is the total field, I is the identity matrix and C is a matrix
derived from the conductivity change and the integration of the Green’s function in each

element.

After equation (3.12) is solved and the total field is found, we can use a discretized

version of equation (3.7) to compute the impedance change

N
AZ = 60,E? Edv,. (3.13)
<

The Volume Integral Method for Half Space Geometry

To solve the volume integral equation (equation (3.11)), we must find the incident

electric field and the Green’s function for a given test geometry. The complexity of the
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solutions for the incident field and the Green’s function is dependent on the symmetry of the
test geometry. One simple, but yet very useful geometry, is the half space geometry in which
the flaw is located in a homogeneous metal half space. A thick metal plate can be modeled
by the half space geometry if the thickness of the plate is much larger than the skin depth at

the test frequency. The skin depth is defined as

2
0= s (3.14)

Incident field

To solve the eddy current forward problem using the volume integral method, we
must find the incident field distribution for a given coil and test geometry. The incident field
for a cylindrical air-core coil with rectangular cross-section placed above a homogeneous half
space has been derived by Dodd and Deeds [28]. Their solution for the incident electric field
is

I(a) ], (ar)(e™™ —e % )e™™?

E%r,)=T[ PP dar, (3.15)
where
— jouNI
T= : 3.16
(l =) = 1) (10
Ia) =" rJ\(on)dr, (3.17)
and

o'=Ja? + jouoc. (3.18)
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In the above equations #; is the coil inner radius, r, is the coil outer radius, [, is the liftoff of
the coil, /, is the distance between the metal surface and the coil upper surface, N is the

number of turns of wire in the coil, / is the current in the coil, @ is the test frequency, and

o is the conductivity of the testpiece.

Green’s function

To solve equation (3.11), we must also know the Green’s function for the given test
geometry. The Green’s function for a homogeneous half space has been obtained analytically
by Raiche and Coggon [29], and Beissner [30]. It includes two components, the primary or
infinite medium component, and the secondary component which satisfies the boundary

condition at the metal-air interface
G(r.r)= G (r.r)+ Gy (r.r), (3.19)

where the primary Green'’s tensor is given by

2 -R
4moG (T, v )=( 9 —yza..]e——
(3.20)

(r=r")r;—r;")

FE —(1+7R+72R2)5.--],

-R
= ER—3[(3+3}'R+72R2)

where o is the host conductivity, ¥ =./jouc , i,je {x, y,z} , 5,-j is the Kronecker delta

function, and R = J(x -x)+ (y- y')2 +(z—2')%. From equation (3.20) it is clear that the
primary Green'’s function is singularat r =r'.

The nine terms of the secondary Green’s function G,-f are given by
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2(x—x')2 1 (x—x’)2

s 12\ 2J) 2 2
4roG,, —l: i -r]H‘_ = H,-v"H,,
47tony = (x_xigy—y )[2?‘ _Hz],

-12

4n0GS, = ';s (x—x')z+2)3+ 30 +720%),

Gy =G,
S

4noG,, =[ 3

_.e—)Q
471'on2 = 3

Q

G} =-G3,
G, =-G;,,

-2

4moG3 = ;3 I:(3+37Q+}'2Q2)T—(1+7Q+72Q2)],

where r=‘/(x—x')2 +(y-y)?, Q=J(x—x')2+(y—y')2 +(z+2')* ,and

(y—y'Nz+2)3B+30+7y*0%),

(z+72)?

———H,-Y’Hj,

- (. A .
H =] 1(2—-;)2“’(”“11(17/)41}.,

wof A .
Hy =] /1-(2 - ;)e'"‘“Z’JO(Ay)dA,

H, =j:%(

v—-A
v+ A

)e‘V‘Z*Z') Jo(Ay)dA,

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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are functions of ¥ and (z+2'), where v = ‘//12 +72 . The secondary Green’s function is

singularat z+2z'=0.

The Volume Integral Method for Thin Plate Geometry

The half space geometry is appropriate for modeling surface breaking cracks or other
near-surface flaws in a plate thick enough so that the second metal-air interface can be
neglected, because in this case the diffusive fields cannot penetrate deep enough to the
second surface. However, to model an OD crack on a steam generator tube, the half space
geometry cannot be used. This is due to the test frequency usually being selected to make the
skin depth comparable to the tube wall thickness so that the signal from an OD crack can be
picked up by the coil. The direct modeling of the tube geometry is difficult because of lack
of symmetry in the geometry. When the size of the coil is small compared to the tube, the
tube internal surface near the coil is flat enough so that we can treat it as an infinite flat, thin
plate. The thin plate geometry is also useful for many other applications of eddy current

testing, e.g., the testing of hidden corrosion in lap-joints of aircraft.

Incident field

The incident field for a cylindrical air-core coil with rectangular cross-section placed
above an infinite flat thin plate can also be derived from Dodd and Deeds’ results in [28].

The expression for the incident electric field is
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- I(0)J —oh _ g% Ne~®? "y~ (2H-2)
E%rg=1]" (@), (or)(e™ — e ®)[(+a)e -:Elo]z @)e ]da’ 53

of(@+a)? - (a'-a)e
where T, I(a), o' are given in equations (3.16), (3.17) and (3.18), and H is the thickness
of the plate.

Equation (3.33) reduces to equation (3.15) if we replace H with + o in (3.33).
Apparently the half space geometry is a special case of the thin plate geometry when the plate

thickness is infinite.

Green’s function

The Green’s function for the thin plate case is more complicated than the Green’s
function for the half space geometry due to reflection terms between the two metal-air
interfaces of the thin plate. Weaver [31] derived the Green’s function for the geometry
containing two homogeneous layers, and the thin plate geometry is a special case of the two-
layer geometry. The Green’s function for the thin plate geometry is based on the solution of
two differential equations: the solution when the source is a vertical dipole and the solution
when the source is a horizontal dipole. For the vertical dipole, the solution for the thin plate
case can be derived by combining all the reflection terms of the Green’s function for the half

space geometry

+4oa
G = Z[Gu” (x=x',y=-y,2=242nH)+ G (x=x', y=', 2+ z'+2nH)], (3.34)

n=-co

where Gz': and GZSZ are terms of the primary Green’s function and the secondary Green’s

function for the half space geometry, respectively. Similarly,
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+o0
Gt = Y [GE(x-x,y-y,z=242nH) + G5 (x—x', y-', 2+ 7+2nH)], (3.35)
and
“+o0
Gl = Y [GEh(x-2,y=y 2~ 242nH) + GE(x~ X', y=', 2+ 242nH) | (3.36)

n=—oo

The solution for the horizontal dipole can be considered as the combination of two

terms: the term for the Green’s function in the half space geometry and an additional term

G =G} +G; (3.37)

,j ’
where i e {x, y,z} , JE {x, y} s G,-? is the term for the Green’s function in the half space
geometry, and G,-;- is the additional term. The detail expressions for the additional terms can

be found in Reference [31]. The computations of these additional terms require evaluations

of integrations involving the zero order and the first order Bessel functions of the first kind.
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CHAPTER 4. IMPLEMENTATION OF THE

VOLUME INTEGRAL METHOD

Introduction

In the last chapter we discussed the volume integral method for the eddy current
forward modeling problem. We also discussed analytical solutions of the incident fields and
the Green’s functions for half space geometry and thin plate geometry. The material
discussed in the last chapter is the fundamentals for the implementation of the volume
integral method. However, the content covered in the last chapter is not self-sufficient for an
efficient and reliable implementation of the volume integral method. To actually implement
the volume integral method, several problems must be carefully studied. One of the more
important problems is how to accurately compute integrations involving Bessel functions.
Another important problem is how to compute the volume integral for the Green’s function in
each volume element. In both cases, the integrations may not be stable due to the singular
nature of the Bessel functions and the Green’s function. In each step of the calculation we
must find a computation method that is numerically tractable and efficient. In this chapter we
discuss the problems associated with a practical implementation of the volume integral
method. To start, we summarize the major steps of the volume integral method as follows:

1. Compute the incident field for a given test geometry and given coil parameters.

2. Compute the Green'’s function for the test geometry.
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3. Calculate the system matrix by computing the volume integral of the Green’s function in
each volume element.

4. Invert the system matrix by LU decomposition.

5. Solve for the total field by back substitution.

6. Compute the impedance change by numerically integrating the impedance change volume

integral.

Computation of the Incident Field

To calculate the incident field (equation (3.15) or equation (3.33)), we need to
compute integrations with the first order Bessel function (equations (3.15), (3.17) and (3.33)).
Direct numerical integration of these formulas are computationally intensive and intractable
due to the singular nature of the Bessel function. Instead of direct integration, we can
formulate the integrations in the form of first order Hankel (Fourier-Bessel) transforms and
use an algorithm for fast Hankel transform to compute the integrations. The » th order

Hankel transform is defined as
H, () = [7f (], @)dr. 4.1)

Comparing equations (3.15), (3.17) and (3.33) with equation (4.1), it is clear that these
integrations are first order Hankel transforms.

There are many fast algorithms for computing Hankel transforms [32-36]. In our
implementation we use an algorithm [35, 36] which does not require direct computation of

the first order Bessel function of the first kind. This algorithm is based on the fact that the
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Hankel transform can be considered as a series combination of the Chebyshev transform and

the Fourier transform
H,w) = j"F{G,{f N}, (42)
where F { } denotes the Fourier transform, and G,,{ } denotes the Chebyshev transform of

order n, which is defined as [35]

2T, (y/ r)f(r)dr
(l—(y/r)z)u2 ’

G,(y)= Il':l 4.3)

where T, (x) = cos(n cos™'(x)) is a Cheybshev polynomial of the first kind, order 7 .
Based on equations (4.2) and (4.3), we can use the Simpson integration rule [37] to
numerically compute the Chebyshev transform after using a change of variable s* = r* — y?

in (4.3)

G,(y)= 2I§Rz-yz)u2f((s2 + yz)mﬁn(y/(s2 + y2)112 )ds. 4.4)

After the numerical integration for the Chebyshev transform is finished, a Fast Fourier
Transform (FFT) is then performed on the result of the numerical integration to obtain the
result of the Hankel transform. This method is computationally efficient and stable. Only a
moderate number of integration data points are necessary for an accurate result. One limit of
the method is that the number of integration data points must be a power of 2 so that it can be
processed by the FFT algorithm.

The incident field distribution for the half space geometry is computed using
equations (3.15) - (3.18). The incident field distribution for the thin plate geometry is

computed using equations (3.33) and (3.16) - (3.18). Notice that the incident field
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expressions in equations (3.15) and (3.33) are two-dimensional functions of r and z.
Therefore, a two-dimensional table is used to store the result of incident field computation.
According to the modeling parameters, the incident field is computed for certain ranges of r
and z. The range for z is usually decided by the vertical extent of the flaw region. The
range for r is usually given by a constant multiple of the radius of the flaw region. Ata
certain depth z, two Hankel transforms must be computed to obtain the radial incident field
distribution. In later modeling steps, the stored incident field distribution is read from the
table and the vector electric field is transformed from a cylindrical coordinate system to an

Euclidean coordinate system.

Computation of the Green’s Function

Half space geometry

For half space geometry, the Green’s function is comprised of two parts: the primary
Green'’s function and the secondary Green’s function. Computation of the primary Green’s
function for a given source point r' and a given field point r is straightforward by using
equation (3.20). Computation of the secondary Green’s function for a given source point r'
and a given field point r is more complicated since it involves integrations of Bessel
functions (equations (3.30) - (3.32)). As shown by Raiche and Coggon [29], the Hankel
transforms of equations (3.30) - (3.32) can be evaluated analytically. Details of the analytical
integrations can be found in Reference {29]. The results of the analytical integrations require

evaluations of the zero order and the first order modified Bessel functions of the first kind I,

I,, and the second kind X, K.
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The primary and secondary Green’s function are computed using equations (3.20) -
(3.32) and the analytical integration results in Reference [29]. The modified Bessel functions
Iy, I,, K,, K, are approximated using power series expansions given in Reference [38].
Since the primary Green’s function is a function of x—x', y—~y',and z—z', we compute it
for various combinations of x—x', y—y', and z—z2', and store the results in a three-
dimensional table. Due to the secondary Green’s function being a function of x—x', y—y',
and z+Z', we compute it for various combinations of x—x', y—y',and z+z', and store the

results in a three-dimensional table for later use.

Thin plate geometry

Computations for the Green’s function in the thin plate geometry are more
complicated. For a vertical dipole, we need to compute the summations in equations (3.34) -
(3.36) based on our results for the Green’s function in half space geometry. Apparently the
infinite summations in equations (3.34) - (3.36) are not feasible. For any practical
implementation, we can only use finite summations to approximate the infinite summations.
The question is how to select a finite set of terms in the infinite summations to generate an
accurate approximation, while minimizing the cost of computation. The answer to the
question is based on the nature of eddy currents: the reflection terms in equations (3.34) -
(3.36) decrease exponentially with n. The rate of decrease is defined by the skin depth at the
test frequency. Therefore, by examining the values of the skin depth and the plate thickness

we can find a number N, such that when n > N or n <—N the reflection terms are
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practically zero. Only the reflection terms between — N and N are used in the approximate
finite summations.

For a horizontal dipole, the Green’ function in the thin plate geometry is a
combination of the Green’s function in the half space geometry and an additional term
(equation (3.37)). The additional term involves integrations with the zero order and the first
order Bessel functions of: the first kind. Following the approach used for the incident field
computation, these integrations are also computed using the fast algorithm for zero order and

first order Hankel transforms.

Computation of the System Matrix

Computation of the system matrix requires evaluation of integrations of the Green’s
function in rectangular volume elements. For both half space geometry and thin plate
geometry, the Green’s function can be separated into two parts: the primary Green'’s function
which is a function of x—x', y—y', and z—-7', and the secondary Green’s function which is
a function of x—x', y—y', and z+2z'. Due to the complexity of the secondary Green’s
function, its integration can only be performed numerically. The numerical integrations for
the secondary Green’s function are computed by using Gauss-Legendre quadrature [37]. The

Legendre polynomial of order n is defined as

n

I 4",
P = =" (4.5)
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The abscissas x;, x,, -+, x, in Gauss-Legendre quadrature are zeros of the Legendre

polynomial
P(x;)=0, i=1,-,n (4.6)

The corresponding weights H,, H,,---, H, are given by

21—-x;)2

i:m, i=l,---,n. (4-7)

To compute the abscissas and the weights, we need to find the zeros of the Legendre
polynomial of order n. This is equivalent to solving a nonlinear equation which can usually
be done by using the Newton’s method. Details on numerical integrations with Gauss-

Legendre quadrature can be found in Reference [37].

The volume integrals for the primary Green’s function need more consideration
because the primary Green’s function is singular at r =r'. For the singular element (the
volume element contains the point r =r'), we cannot use a numerical integration to compute
the volume integral because it will lead to divergence. To make the integration for the
singular element accurate, we must analytically integrate the singular part of the primary
Green'’s function. Our approach is to use a Taylor series expansion of the primary Green’s

function to separate the singular part and the non-singular part. First we notice that

y-RZ Y3R3

4
5 5 + O(R™). 4.8)

e =1-1R+
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Substituting equation (4.8) into equation (3.20), we see that only the first and third terms in

equation (4.8) result in singular terms. Therefore, we can separate the primary Green'’s

function into two parts
4roG, =4noG;] +4moG, (4.9)
where
. J* 1 7
P _ 2 .
470G “(ar,.ar, -7 &,](R+ ; R) (4.10)

contains singular terms in the primary Green’s function, and G,f contains non-singular terms

in the primary Green’s function. For the non-singular terms, we can numerically integrate
them using Gauss-Lengendre quadrature. For the singular terms in equation (4.10), we must

integrate them into a rectangular volume element analytically. The analytical integrations

2

1
associated with the term ( - ')/25,-} ]72- have been derived in Reference [6] as

aror,
dxdydz
=== fGr2+ 020+ filzxy)+C, @.11)
xT+y +z
where
f1(x,y,2) = xylog(y/x* + y* + 2% +2) ~Zarctan = X =, (4.12)
2 x\/x“ +y +2"
and

LS (4.13)

d x
o dxd = C,
Wi e
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2
] ;ay mdxdydz =log(yx* +y> +2% +2)+C. (4.14)

2
We derived the analytical integrations associated with the term ( 8:-9 > }'26,.1- ]R as
i

2
H.[’;x_fmwydz=leog(y+ 2 +y?+z2)

ye (4.15)
+xylog(z+\/x2+y2+z2)-x2arctan = —=+C,
x\/x“+y“+z“

, 92 z /x2+ 2472
jﬂ&x&y‘/'rz +y? + 22 dxdydz = 2y

, o (4.16)

‘+

+x 2y log(z+ x2+y2+zz)+C.

The analytical result for the integration _[H \/xz + y? + z%dxdydz is not shown here because

it is not singular and can be integrated numerically.

Solution of the Linear System

After the incident field is computed and the system matrix is obtained, we can form a
system of linear equations as shown in equation (3.12). The vector containing the incident
field is obtained by numerically integrating the incident field within each rectangular volume
element. The solution of equation (3.12) is usually done by using LU decomposition with
Gauss-Jordon elimination [37]. A square matrix A can be decomposed into a lower-
triangular matrix L and an upper-triangular matrix U if it is not singular

A=LU. (4.17)
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The Gauss-Jordon elimination algorithm for LU decomposition iteratively performs row
operations to transform the original matrix into an upper-triangular matrix, while the lower-
triangular matrix is defined by the coefficients of the row operations.

To improve numerical stability, an operation called pivoting is usually used in the
Gauss-Jordon elimination. The pivoting operation finds the number with the largest absolute
value in the current column of elimination and exchanges the current row with the row
containing the largest pivot. By performing pivoting, the numbers used in the elimination are
divided by the largest number available. This avoids divisions of small numbers which may
lead to erratic results due to the limited accuracy of any practical computing device.

Due to all quantities in equation (3.12) being complex numbers, a complex version of
LU decomposition must be used. The complex version of the LU decomposition algorithm is
basically the same as the real value LU decomposition algorithm presented in Reference [37]
except all real operations are replaced with complex operations.

Since many elements in the system matrix are very small, the system matrix can be
considered a sparse matrix. Based on the sparse nature of the system matrix, we can use a
sparse matrix implementation of the LU decomposition algorithm to reduce the
computational complexity of inverting the matrix. The sparse matrix LU algorithm is based
on a single link list data structure. Each row of the sparse matrix is stored in one single link
list. The sparse matrix LU algorithm not only reduces the computations involved in matrix

inversion, but also greatly reduces the memory requirement.
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Computation of the Impedance Change

After the system matrix is inverted by the LU decomposition, we can compute the
total field by using back substitution. Details on the back substitution algorithm can be found
in Reference [37]. If pivoting is used in the Gauss-Jordon elimination algorithm, components
in the incident field vector must be reordered according to the pivoting sequence to ensure a
correct result. Corresponding to the sparse matrix LU decomposition algorithm, we have
implemented a sparse matrix back substitution algorithm which is also based on the single
link list data structure. After the total field is solved for every volume element, the
impedance change of the coil can be obtained using equation (3.13). This process is usually
repeated for different offsets between the coil center and the flaw center. The number of

offsets and the stepsizes are defined by the scan plan used in the modeling program.
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CHAPTER 5. WAVELET EXPANSION IN

THE VOLUME INTEGRAL METHOD

Introduction

In the last two chapters we discussed the theory and the implementation of the volume
integral method in half space geometry and thin plate geometry. Although the volume
integral method is capable of modeling three-dimensional flaws, the computation involved in
modeling large three-dimensional flaws is usually far beyond what can be achieved by
conventional computing sources because a large number of volume elements must be used.

If the number of volume elements is N, the memory requirement for storing the system
matrix is proportional to N2, and the number of operations required to invert the system

matrix is on the order of N3. Also, the accuracy of the method is related to the size of the
volume elements. In metal the electric field change is closely related to the skin depth; thus
it is necessary for the dimension of each volume element to be much smaller than the skin
depth to accurately model the field distribution. For a large three-dimensional flaw (in units
of skin depth), the number of elements required will be on the order of thousands. Such a
large number of elements causes a very high, sometimes almost unattainable computational
requirement for the computing resource. Therefore, to apply the volume integral method to
large flaws, we must find a way to reduce the computational complexity.

In this chapter we apply a wavelet expansion to the volume integral method to reduce

the computational complexity of the method. Part of the content in this chapter has been
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presented in Reference [39] and [40]. Results from the wavelet method have been compared
with results from a layer approximation and experimental results [12]. In this chapter we
give a comprehensive discussion of the wavelet expansion method, with both theoretical
derivations and implementation details. Utilizing this method, a new linear system is
obtained by using wavelet expansion in a Galerkin method to solve the governing volume
integral equation. By using a proper threshold, a sparse system matrix can be generated
which results in a large savings in execution time and memory requirements.

To evaluate the performance of the wavelet method, we present several numerical
examples with the Haar wavelet [41] and the Daubechies’ compactly supported wavelet [42]
with a periodic extension. The numerical examples show how the wavelets change the
sparsity of the system matrix. We also observed an interesting relationship between the
physical nature of the eddy current problem and the structure of the system matrix. To
evaluate the accuracy lost in the process of the wavelet transform and threshold, we
conducted an experiment on a simulated corrosion pit underneath a thin aluminum plate. The
experimental results are compared with results given by the wavelet method. We observed

that a very high compression rate can be achieved with only a small loss in accuracy.

Introduction to Wavelet Theory

Based on a rigorous mathematical foundation, wavelets and multiresolution analysis
have been widely applied in many engineering disciplines such as signal processing, data
compression and pattern recognition. The unique time-frequency (or spatial-wave number)

localization property of wavelets provides a new tool with which we can form a
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multiresolution view of the signal under investigation. We give a brief introduction to
wavelet theory and multiresolution analysis, with some emphasis on the orthonormal wavelet
basis and periodic wavelets. The discussion is limited to the fundamental theory and the
aspects of wavelets that are essential for the completeness of the discussion in this chapter.
For detailed discussion on wavelet theory, one may refer to the books of Chan [41],
Daubechies [42], and Chui [43], and the papers by Vetterli [44], Heil and Walnut [45], and

Mallat [46].

Wavelets and multiresolution analysis

Wavelets are the families of basis functions which are derived from a common

function - the mother wavelet that is represented by
v =la 2y ED), G.1)
a

where a and b are the scaling and translation indices, respectively. The above expression of
a wavelet basis suggests a multigrid representation. Unlike other basis functions, such as the
Fourier basis, the wavelet basis has two indices in both time and frequency domains. Itis
well known that, because Fourier basis functions are periodic functions, they are localized
only in the frequency domain, but not in the time domain. The uncertainty principle imposes
limits on the simultaneous localization in both time and frequency domains. Therefore, for
any single basis function, we cannot localize it in both time and frequency domains.
Although we still have to follow the uncertainty principle for a wavelet basis, we are able to
localize some basis functions in the time domain and others in the frequency domain by

selecting proper values of the scaling index and translation index for each basis function.
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Therefore, we are able to form a multiresolution representation of the linear space under
investigation by using a wavelet basis.
The mathematical foundation of the construction of multiresolution analysis starts

from the definition of the scaling function, which is also called the father wavelet. A
function ¢(x) in [*(R) (finite energy function) is called a scaling function if it generates a
nested sequence of subspaces

{0} --cV_ cV,cV, = [X(R) (5.2)
and satisfies the dilation equation

o(x)= Y cplax—k), (5.3)
k

with {c,} being a finite energy sequence and a being any rational number. A common
selection is a =2 , which is the case for octave scales, and the subspaces V; are generated by
¢ . (x)=277¢(2/ x~k). Since, for any scale j, we have V; cV/,,, there exists a unique
orthogonal complementary subspace W; of V; in V;,, . This subspace W; is called “wavelet
subspace” and is generated by y ;. (x) =22y (2’ x— k), where y(x) is the mother wavelet.

Based on this relationship, the mother wavelet can be derived from the corresponding scaling
function using

w(x)= Y (-D¥e $(2x—k). (5.4)
k

The scaling function exhibits low-pass filter characteristics in the sense that @(0) =1,
where @(£) denotes the Fourier transform of function ¢(x). On the other hand, the wavelet

function exhibits band-pass filter characteristics in the sense that (0)=0. Because any
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subspace V,, is the direct sum of the subspaces V; and W; , it follows that V; contains the
low resolution components in V;,;, and W; contains the high resolution components
inV;,. Since {V;} is a nested sequence ranging from the subspace with the lowest resolution
to the subspace with the finest detail, we therefore have a multiresolution decomposition of
[*(R) in which V; contains the smoothed part at resolution level j, and W; contains the
detailed part at resolution level j. A multiresolution decomposition of L*(R) also possesses

the property that any function in L2(R) can be approximated as closely as possible by a

function that belongs to at least one of the subspaces V.

Orthonormal wavelet basis

The wavelets {y;,} form an orthonormal basis if
(lek,y,['"t):a]'lak'm; fOl' all j,k,l,mGZ (5-5)
where (f, g)is the inner product operation of functions f(x) and g(x) in [*(R), and is

defined by
400
(f. 8= [ f(0g(x)dx, (5.6)

Z is the set of integers and &, , is the Kronecker delta function.

The significance of an orthonormal wavelet basis lies in the fact that it is a non-

redundant representation of the original signal. The construction of a multiresolution
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decomposition of L>(R) requires the subspaces {W;} be orthogonal to each other. Given any

function f(x) in L*(R), we can approximate it by using the orthonormal wavelet basis

f)=c+Y Y a;, W (x), (5.7)
j k

where ¢ is a constant, and the expansion coefficients a;, can be obtained by projecting
f(x) onto the subspace expanded by v ;,(x) and

aji ={f0)V¥ (X)) (5.8)

It is obvious that not every function that satisfies equation (5.3) can be used as the
scaling function to construct an orthonormal wavelet basis. To construct an orthonormal
wavelet basis, some additional conditions must be satisfied so that the form of scaling
function is constrained. There are two fundamental conditions that define an orthonormal
wavelet basis: the approximation condition and the orthogonality condition. The
approximation condition comes from the question: To what degree p—1 can the polynomials
1, x,x2,---, xP™ be reproduced exactly by the approximating functions, which, in our case, are
the scaled and translated versions of the solution of equation (5.3)? If a polynomial of order
p—1 can be approximated exactly, then the approximation error for an arbitrary function is of
the order A”, where h is the grid separation. From approximation theory, we know that if ¢
has an approximation error of order A”, its Fourier transform ¢ must have zeros of order p
at all points &=2nn,neZ (except at £=0) [42]. This gives us the following constraint on

the recursion coefficients in equation (5.3),
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Y (-Dtk"c, =0, m=0,1,--, p-1 (5.9)
k

The orthogonality condition comes from the requirement that the wavelets defined in
equation (5.4) must be orthogonal to each other. This gives another constraint on the

recursion coefficients [42] of

Y CkChzm = 26m- (5.10)
%

The objective in constructing orthonormal wavelets is to satisfy conditions of

equations (5.9) and (5.10). The simplest orthonormal wavelet is the Haar wavelet with p=1.

The corresponding scaling function is the box function. Fig. 5.1 illustrates the Haar wavelet
and the corresponding scaling function. The Haar wavelet has a very compact support - as
small as the grid separation. This makes it the simplest wavelet that can be applied to

function approximation and expansion. However, since it has p =1, it is rather inefficient in

approximating smooth functions. Another group of compactly supported orthonormal

wavelets has been developed by Daubechies, which has an accuracy of p=1,2,3,--- and there
are 2,4, 6, --- nonzero coefficients. Fig. 5.2 illustrates the Daubechies wavelet with p=2 and
the corresponding scaling function. The selection of p is a tradeoff resulting from the
uncertainty principle: a large p gives better approximation of smooth functions as well as a

larger support for the corresponding wavelet basis. In real applications a compromise must

be made on p according to the nature of the problem under investigation.
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(a) Haar wavelet
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(b) The box function

Fig. 5.1. Haar wavelet and its scaling function - the box function.
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(a) The Daubechies compactly supported wavelet with p=2
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1.00 —

0.00 —

-1.00 | | 1 | T |

-1.00 0.00 1.00 2.00

(b) The corresponding scaling function

Fig. 5.2. The Daubechies compactly supported wavelet with p =2 and its scaling
function.
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Periodic wavelets

In the section above we discussed orthonormal wavelets on the real line. For the
purpose of solving an integral equation in a bounded region, it is more convenient if we use
wavelets that are periodic on the real line, as we will explain later. Given an orthonormal

multiresolution analysis with scaling function ¢(x) and wavelet y(x) on the real line, the

periodic, orthonormal wavelets in [0, 1] can be defined as [42]

Prx)= Y 84 (x+n), (5.11)
neZ
WY (x)= Y W, (x+n) (5.12)
neZ
with
¢ (x)=2"9(2 x~k), (5.13)
W (0)=2"y(2 x~k) (5.14)

where j, k,n € Z . It can be shown [42] that ¢§7 =1 and {y?71j=0,1,2,--, k=1, 2/ -y
constitute a periodic, orthonormal basis in [0, 1].

For any periodic function in A(R)[0,1], an approximation of this function can be

defined as the projection at the resolution level j

2/-1

f)=Pif(x)=, a;, Wi (x), (5.15)
k=0

where a;, is the inner product of f(x) and v/f“k’ (x) in [0,1]. P; is called the projection
operator onto the subspace V- the subspace formed by the linear combination of basis

functions (¢%7 (x)lk eZ}. Since ¢%5 (x) has a typical length scale of 277, VP canbe
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referred to as the subspace of all the functions that have no detail with length scales smaller

than 27/. Therefore, the subspace VP is asubset of the subspace V/*". According to

wavelet theory, every function in L*(R)[0, 1] can be approximated to arbitrary resolution by
its projection in V" and the projection will converge to the original function as j
approaches oo.

If the orthonormal wavelet and scaling function in equations (5.13) and (5.14) are
compactly supported, the infinite summations in equations (5.11) and (5.12) reduce to finite

summations. The periodic, orthogonal wavelet {7 (x) constructed from the Daubechies

compactly supported wavelet with p =2 on the real line is shown in Fig. 5.3.

2.00

1.00 —

0.00 —

-1.00 —

'2.00 | | T ] I 1 ! ] l |
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 5.3. The periodic wavelet basis {7 (x) constructed from the Daubechies

compactly supported wavelet with p=2.
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Wavelet Expansion in the Solution of the Volume Integral Equation

In this section we apply the wavelet basis discussed in the last section to the solution
of the three-dimensional volume integral equation introduced in Chapter 3. Wavelets have
been applied to the solutions of integral equations [47-49]. To simplify the mathematical
derivation, we consider the one-dimensional case first and derive the new linear system
equations by using the Galerkin method. Then we extend the result to the three-dimensional
case. The discussion will be based on using the wavelet basis on the real line. The

modification of the method when using periodic wavelets will also be considered.

One-dimensional case

Consider the following one-dimensional simplification of the problem defined in
equation (3.10)

E°(x) = E(x) - J'Q G(x, x Yoo (x )E(x' )dx, (5.16a)

E(x)=0, xeQ, (5.16b)
where Q=[0, L] is the solution region which contains the flaw. The explicit boundary
condition of equation (5.16b) is the result of using the wavelets on the real line, since some of
the wavelet basis functions used for the expansion of the unknown total field E(x) in the
solution region Q do not vanish outside Q. Then we use the Galerkin method to approximate
E(x) in Q with an orthonormal wavelet basis on the real line giving

i k(J)

9
Ex)y=—75+Y Y, ap¥(x), xeQ, (5.17)
\/Z J=i k=k(J) e
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where g, and a are the expansion coefficients and JL is a normalization factor. The

expansion of E(x) uses wavelets from resolution level j;, which corresponds to the lowest
resolution component of E(x), to the resolution level j,, which corresponds to the desired

resolution for the solution. Notice that equation (5.17) is only satisfied when x e Q. Letting

1 xef

p(x)={0 reQ, (5.18)

we can express the total field on the real line as

j k()
E(x)= ﬂj—iﬁ+ Z Z a ¥ ji(x)p(x). (5.19)
L= g )

To simplify the expression, we can combine the scaling index and translation index of

the basis functions into one index. Let

Wo(x)= E% (5.20)

and suppose the number of basis functions used in the summation of equation (5.19) is N -1,

the total field can be expressed as

N-I
E(x)= Y ay(x)p(x), (5.21)
=0

where {a;}, {y;(x)} are derived from {a jk}, {l,ll ik (x)} by combining the indices. Substituting

equation (5.21) into equation (5.16a) gives

N-l N-l
E%(x)= 3y (0)p(x)+ [ Gxx)80(x') Y, ay,(x')p(x' ). (5.22)
i=0 Q i=0

Since do(x')=0 if x & Q, we can rewrite the right hand side of equation (5.22) as
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N-1 N-1
E°(x)= Y api(x)p(x) + Y,a;{G(x,x')80(x), ;(x). (5.23)
i=0 i=0

Taking the inner product of both sides of equation (5.23) with y ;(x), j=0,1,---, N -1 gives

N~ N-1
(E°x), p j(0)) =D ay (x)p(x), ¥ ;) + 3. a:{(Glx,x )80 (x'), w,(x ), W j(x)), (5.24)
=0 =0
j=01L---,N-1

These linear equations can be written in more compact form as
N-1
Y a(D; +Cy)=b;, j=0,1--,N-1 (5.25)
i=0

where b = (E °(x), v j(x)) is the wavelet expansion coefficient of the incident field,

C;= {G(x,x"Yoo(x"), W (X' N, v j(x)) is the two-dimensional expansion coefficient of the

function G(x,x')6c(x'), and D; = Il{/i(x)lll j(x)dx. Given the Green’s function for the test
Q

geometry, the incident field distribution and the conductivity distribution in the flaw region, b;
and C; can be easily obtained by using the fast wavelet transform algorithm, and Dj; is derived

directly from the wavelet basis selected.
Equation (5.25) is the general form of the linear system equations for the solution of

equation (5.16a) after using an orthonormal wavelet basis on the real line. The reason why D

does not reduce to the Kronecker delta function is that the basis functions {y;(x)} used to

approximate the total field are not always orthogonal to each other in Q. Suppose the support

of y;(x) is §;, and the support of y ;(x) is §;, then we have
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ij
Therefore, if any part of the overlapped region of S; and S; are outside of Q, the value of D;

must be calculated explicitly. This is another disadvantage of using wavelets on the real line in
the solution of equation (5.16a) in a bounded region. A special case of equation (5.25) exists
when we use the Haar wavelet to approximate the unknown total field. In this case, we are able
to express the total field in Q by using basis functions all lying in Q because the Haar wavelet
has a support as small as the grid separation, and D; =§;; because S, cQ.,i=0,1,---,N-1.
Therefore, in the case of the Haar basis, there is no problem at the boundary of the solution
region and the boundary condition of equation (5.16b) is not necessary. However, since the

Haar basis is not efficient in approximating smooth functions ( p =1), the resultant system

matrix may not be as sparse as that from a smoother wavelet.

Extension to the three-dimensional case
The above result can be extended to the three-dimensional case by a similar, but

somewhat lengthy derivation. The three-dimensional volume integral problem is given by

E(r)=E%(r)+ J' So(c)YG(r,r')-E(r')dv', (5.27a)
o

E(r)=0, reV'. (5.27b)
We can construct an orthonormal basis for L2(R®) by using the tensor product

functions generated by three one-dimensional orthonormal wavelet bases

!Vj‘,k‘;j'.k';j:,k: (xv Y, Z) = ij‘k‘ (x)l/,jv,k’ (y)q,j:,k: (2)7 (5'28)
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where the wavelets in x, y and z directions are scaled independently.

By a similar formulation and combination of indices as we used in the section above,

we can express the total vector field as

N,~-IN,~IN -1
E(r) =Y, Y DauV..(xy.2)p(x)p,(y)p,(2) (5.29)

i=0 j=0 k=0
where a; is the vector expansion coefficient for the three-dimensional total vector field
E(r).

Substituting equation (5.29) into equation (5.27a) and using the same procedure as in

the section above, we can obtain the linear system equations for the three-dimensional case as

N, —-IN,-IN -1 _ .
> Y Yay  (Diumn + Cijiman) = by, (5.30)
i=0 j=0 k=0

-1, n=0,1,---,N, -],

Z

[=0,1,-- N, =1, m=0,1,---,N,

where b, is the vector expansion coefficient for the incident vector field, Cuma is the
expansion coefficient of the six-dimensional function (—}(r,r' Yoo (r') and ]_)_,-jk,,,,,, isa3by3
matrix with 9 identical elements, and each element can be expressed as

dijldnm =J‘Wi;j;k(xv .sz)WI;m:n(xv y,2)dv' (531)
v

Extension to the periodic wavelet case
As seen before, using wavelets on the real line in the solution of integral equations
like equation (5.16a) has two major disadvantages. First, the boundary condition of equation

(5.16b) must be explicitly enforced. This is a very undesirable requirement in applying this
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method since the total field generally does not vanish outside the flaw region. To satisfy
(5.16b), we must enlarge the solution region Q so that outside Q the total field is very small
and can be neglected. This may result in a solution region which is much larger than the flaw
region, and thus reduce the usefulness of this method. Another major disadvantage is that
because some of the wavelet basis functions used to approximate the total field are not

orthogonal in the solution region, the term D;; does not reduce to delta functions and must be

calculated before the solution of equation (5.25). These disadvantages arise from the fact that
wavelet basis functions on the real line used to approximate the total field do not form an
orthogonal set in the solution region Q. The periodic wavelet introduced in the last section,

on the other hand, can be used to avoid these difficulties because it can be made orthonormal

per

in a bounded region Q. Using an orthonormal, periodic wavelet basis {v/ o (x)} defined in

Q=[0, L], we can expand the total field in Q as

N-l
E(x)=Y apP (x), xeQ (5.32)

i=0
by combining indices. Notice that the right hand side of equation (5.32) denotes a periodic
function with a period equal to L and whose value is equal to the total field in region Q.

Substituting equation (5.32) into equation (5.16a), we have

N-I N-l
E°(x)= Y awl(x)+ j G(x,x)80(x) Y a;yP (x)dx', xeQ (5.33)
i=0 Q i=0

Projecting both sides of equation (5.33) into the subspaces expanded by

yi(x), j=0,1,---,N -1, we have the following equations
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N-1 N-1
JE w2 (ndx =Y a,8; + 3. a; [ [ Glx.x)800x WP (e (x)dr'dx,  (5.34)
[o] i=0 i=0 QO
j=0,1,---,N -1,

which can be rewritten in the form of a matrix equation
N-I
Y ai(8; +Cy)=b;, j=0,1,---,N~I (5.35)
ard

where b; are the periodic wavelet expansion coefficients of the incident field and C; are the

periodic wavelet expansion coefficients of G(x,x')éc(x'). The use of periodic wavelets in

the solution of equation (5.16a) gives a group of well formed linear equations: all coefficients
in equation (5.35) can be obtained by using the fast wavelet transform algorithm of Mallat
[46]. Also, since the boundary condition equation (5.16b) is not necessary, we can use a
solution region which has the same size as the flaw region.

Despite its advantage over the wavelet on the real line, a potential disadvantage of
using periodic wavelets exists due to the fact that the periodization of the total field may
introduce an edge effect. Since the values of the total field at the two ends of the solution
region generally are not equal, there are discontinuous points at the boundaries of each
period. This discontinuity introduces some large expansion coefficients for the total field and
makes the system matrix less sparse. However, experience has shown that this edge effect

generally does not have a large influence on the overall performance of the wavelet method.
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Numerical Results and Comparison with Experimental Results

To evaluate the validity and performance of the wavelet method, we implemented the
method and used the problem of hidden corrosion in an aluminum plate as a test case. In this
section, we first describe the experimental setup for the model problem used as the test case
for the wavelet method. Then we give some implementation considerations of the wavelet
method. We also give the numerical results obtained by using the Haar wavelet and the

periodic wavelet constructed from the Daubechies compactly supported wavelets with p=2,

and compare the results from the wavelet method with the experimental result. The
experimental results presented in this chapter were obtained by John Moulder of the center

for NDE at Iowa State University.

The experiment

The test case is to determine the change in the impedance of a right-cylindrical air-
core coil next to a aluminum plate that contains a right-cylindrical flat-bottom hole on the
side opposite the coil. The half space below the coil can be considered as a two layer
structure, where the first layer is the aluminum plate and the second layer is vacuum. A
schematic drawing of the test is shown in Fig. 5.4. In the experiment, the impedance change
of a precision wound coil of copper wire was measured at 20 frequencies, equally-spaced
between 2.5 kHz and 50 kHz, with an HP 4194A impedance analyzer. Scans were repeated
five times and the results averaged to produce the results reported herein. Measurements of
the coil impedance were made as a function of frequency and position with respect to the

center of the flat-bottom hole.
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Fig. 5.4. Schematic drawing of the eddy current test problem of a flat bottom hole on
the bottom side of a thin aluminum plate.

The coil has a right-cylindrical cross-section and consisted of 504 turns of copper
wire wound on an insulating nonmagnetic core. The inner radius of the coil is 3.8 mm, the
outer radius is 5.63 mm, and the height of the coil is 2.42 mm. The liftoff is 0.23 mm.

The test sample consists of a thin flat plate of 2024 aluminum alloy. The dimensions
of the plate are 75 mm x 125 mm x 1.02 mm. A nominally right-cylindrical hole was drilled
on the side of the plate opposite the coil. The diameter of the hole is 6.30 mm and the depth
ranged between 0.28 mm at the center to 0.27 mm at the edge. This flaw is relatively large
compared with the skin depth in the test frequency range and direct modeling by the volume

integral method is not feasible due to the large computational resource requirement.

Implementation of the wavelet method

The modeling problem described above can be considered as the problem of
determining the impedance change of the coil caused by a flaw in an infinite flat metal plate
because the aluminum plate is very thin and the flaw is not close to the edges of the plate.

Therefore, the problem is modeled using the thin plate geometry. The fast wavelet transform
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algorithm used in our implementation is Mallat’s pyramid algorithm for an orthonormal
wavelet basis. It is worth mentioning that all the electric field quantities in the
implementation are vectors with complex values. The wavelet transform of a complex

function is obtained by transforming the real and imaginary parts independently and then

combining the results. Also, to obtain b, and Cj,,, in equation (5.30), multi-dimensional

wavelet transforms must be used. Based on the approach we used to define the three-
dimensional wavelets in equation (5.28), the multi-dimensional wavelet transform can be
obtained by transforming the data in each dimension sequentially, and the result is not
dependent on the order of the dimensions used in the transforms. This is exactly the same as
for the multi-dimensional Fourier transform.

There exists another problem with the storage of the system matrix in the
implementation of the wavelet method. The system matrix is the six-dimensional wavelet
transform of the product of the Green’s function and the conductivity distribution. The
problem is how to compute the wavelet transform of the system matrix without fully storing
it in the computer memory since this matrix could be very large when the number of volume
elements used in modeling is sufficient for an accurate solution. To solve this problem, we
utilized a property of Mallat’s pyramid algorithm for the fast wavelet transform [46]. Notice
that in the pyramid algorithm, the computation at any resolution level is solely based on the
result of the immediately higher resolution level. Thus, we are able to compute a wavelet
transform of size N from the results of wavelet transforms with a smaller size M if both N
and M are powers of 2. Based on this relationship, we can compute the wavelet transform of

the whole system matrix in two steps. In the first step, we divide the system matrix into
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many submatrices with identical sizes and compute the wavelet transform for each of them.

The result is stored in a sparse matrix data structure. In the second step, the wavelet transform

of the whole matrix is obtained by using the result of the first step. The result is then

thresholded and stored back in the sparse matrix data structure.
The steps used to implement the wavelet method are summarized as follows:

1. Compute the incident field distribution by using Dodd and Deed’s result [28]. See
Chapter 4 for details.

2. Compute the integral of the Green'’s function in each volume element. The Green’s
function for thin plate geometry is calculated by using the result of Weaver [31]. For
singular elements, both analytical and numerical integrations are used to stabilize the
result. For nonsingular elements, only numerical integration is used. Details on
computing the Green’s function for half space and thin plate geometry can be found in
Chapter 4.

3. Compute the wavelet transform of the system matrix by using the two-step algorithm
mentioned above. Implementation details of the pyramid algorithm for computing
wavelet transform can be found in Reference [37].

4. Invert the transformed system matrix by using the sparse matrix LU decomposition
routine.

5. Compute the wavelet transform of the incident field.

6. Compute the wavelet coefficients of the total field by backsubstitution.

7. Take the inverse wavelet transform to obtain the total field.

8. Calculate the impedance change by using the reciprocity principle formula (3.13).
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Comparison of the numerical result and the experimental resuit

Based on the procedure discussed above, two numerical tests were performed for the
test case. In the first numerical test, the aim was to compare the result obtained from the
wavelet method by using the Haar basis and the periodic wavelet basis constructed from the

Daubechies compactly supported wavelet with p =2, which we will refer to as DAUB4P in

later discussions for simplicity. In the first test, the test frequency was selected as 10 kHz,
which corresponds to a skin depth of 1.17 mm in 2024 aluminum. The solution region was a
rectangle with a length and a width equal to the diameter of the cylindrical flaw and a height
equal to the height of the flaw. The solution region was modeled by 512 rectangular
elements with 16 elements along each of the 2 horizontal directions and 2 elements in the
vertical direction. In the first comparison, the system matrices were obtained by using a
threshold of 0.005, which is relatively small, to ensure that a good result would be obtained.
The matrix map for the sparse matrix obtained by using the Haar basis is shown in Fig. 5.5.
After thresholding, only 4.36% of the total number of the matrix elements were nonzero
elements. The matrix map for the sparse matrix obtained by using DAUB4P is shown in Fig.
5.6. In this case, 5.05% of all the matrix elements were nonzero elements after thresholding.
The matrix structures shown in Fig. 5.5 and Fig. 5.6 indicate some of the properties of the
wavelet method. First, most nonzero elements are close to the diagonal of the matrix, which
indicates that a large interaction exists between the basis functions with overlapped or
adjacent supports. Second, many nonzero elements are located in the upper-left corner of the
matrix where low resolution wavelets are located, and only a few are located in the bottom-

right corner where the high
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Fig. 5.5. The system matrix map after transformation
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Fig. 5.6. The system matrix map after transformation
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resolution wavelets are located. This implies that most interactions are between the low
resolution components of the total field, and that the interactions between the two high
resolution components that are not close to each other are very small. Third, the edge effect
caused by periodization of the total field is obvious in Fig. 5.6, since there are many nonzero
elements at the edges of the blocks at various resolutions. The impedance change results
obtained by using the Haar basis and DAUB4P are compared with the experimental results in
Fig. 5.7. The theoretical results are in good quantitative agreement with the experimental
results. Also there is no significant difference between the result obtained using the Haar
wavelet and the result obtained using the periodic wavelet in this case.

To examine the effect of the threshold on the accuracy of the results, or in other
words, to decide whether there is some range of the threshold within which the results remain
almost unchanged, we recomputed the results for the numerical example above using a
threshold of 0.05. The matrix map for the sparse matrix obtained by using the Haar basis is
shown in Fig. 5.8. After thresholding, only 0.413% of the matrix elements were nonzero.
The matrix map for the sparse matrix obtained by using the DAUB4P is shown in Fig. 5.9.
In Fig. 5.9, only 0.254% of the matrix elements were nonzero after thresholding. One can see
that after using a threshold of 0.05, most nonzero elements are on the diagonal of the system
matrix. The impedance change results in this case are compared with the experimental
results in Fig. 5.10. Although the threshold is ten times larger and the thresholded matrices
are rather sparse, an overall correspondence between the theoretical results and the
experimental result can still be observed. It can be seen from this example that the wavelet

method does indeed have a good potential for reducing the redundancy of the problem.
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Fig. 5.7. Comparison of experimental results and the results obtained by using the Haar
wavelet and DAUB4P with a threshold of 0.00S.
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The second numerical test was to examine the stability of the method over a relatively
large frequency range. The theoretical impedance changes using DAUB4P and a threshold of
0.005 were computed for the frequency range from 2.5 kHz to 50 kHz, with a stepsize of 2.5
kHz, and for offsets from 0 mm to 8 mm, with a stepsize of ] mm. The impedance change
results as a function of frequency for offsets 0 mm, 4 mm and 8 mm are compared with the
experimental results in Fig. 5.11. It is observed that the agreement between the results from
the wavelet method and the experimental results are stable over this relatively large frequency

range.

Discussions

In this chapter we have applied wavelet theory in the solution of the volume integral
equation for the eddy current modeling problem. The new linear system equations after using
the wavelet basis are obtained by applying a Galerkin method to the governing volume
integral equation. The derivation is based on the result of the one-dimensional case, followed
by the extension to the three-dimensional case and the extension to periodic wavelets. The
wavelet method was tested using the problem of modeling hidden corrosion in a thin
aluminum plate. Results obtained from both the Haar wavelet and the periodic wavelet
constructed from the Daubechies compactly supported wavelet were compared with
experimental results. The numerical examples show that by using the wavelet expansion
method, it is possible to reduce the computational complexity by one to two orders with small
loss in accuracy. This makes the eddy-current modeling problem of large three-dimensional

flaws solvable using modest computing resources.
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CHAPTER 6. FAST EDDY CURRENT FORWARD MODELS

USING ARTIFICIAL NEURAL NETWORKS

Introduction

In the preceding chapters we have discussed the volume integral method for eddy
current forward modeling and a wavelet expansion method used to reduce the computational
complexity of the volume integral method. Although in some cases the wavelet method can
reduce the execution time by a factor of ten or more, the resultant execution time is still much
longer than what is acceptable in some applications. One important application which
belongs to this category is the solution of the nonlinear eddy current image restoration
problem in which a large number of forward solutions must be computed. Another
application is fast eddy current forward models for educational purpose in which the user
would like to generate the modeling results for many forward problems in a short time.

In this chapter we apply artificial neural networks to the eddy current modeling
problem in order to reduce the execution time of the forward model [50]. Our method is
based on a two-dimensional imaging model in which an eddy current probe is considered as a
black box transforming a flaw conductivity change image to a complex impedance change
image. The nonlinear mapping from the flaw image to the impedance change image can be
learned by using neural networks based on a training data set. After the learning process of
the neural networks is finished, they can be used to generate outputs for new inputs.

There are two major reasons to use a neural network forward model. First, the

computational complexity of most numerical models is O(N'*) , compared with O(N?) for
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the forward computation of most neural networks, where N is the number of elements used
in the forward model. This order of difference is significant when N is large. Second, the
training data set for the neural network model can be obtained either theoretically or
experimentally, which makes the neural network forward model capable of modeling
complex geometry in which numerical models are hard to apply, but experimental
measurements are still feasible.

The structure of the neural network eddy current forward model is shown in Fig. 6.1.
The flaw image in Fig. 6.1 represents the two-dimensional conductivity change distribution
of the flaw. If only cracks and voids are considered, a binary image can be used for the flaw
image to reduce the complexity of the forward model. To reduce the size of the input image,
i.e., to reduce the number of input features of the neural network, we use a two-dimensional
Haar transform to capture the major characteristics of the flaw image. The inputs to the

neural network are the thresholded Haar transform coefficients of the flaw image. The Haar

Real

Neural
Network
(MLP or

RBF) :

Haar
Transform
and Data

Compression

Inverse

FFT Imaginary

Flaw Image

Impedance Change
Image

Fig. 6.1. Diagram of the neural network eddy current forward model.
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transform is a wavelet transform with the mother wavelet being the Haar wavelet. The
multiresolution decomposition capability of the Haar transform makes it easy to separate the
major features of the flaw image from less important details of the flaw image. To reduce the
dimensionality of the output space, we use the low frequency components of the impedance
change image in the Fourier domain as the outputs of the neural network. The complex
impedance change image is then obtained by applying the inverse FFT to the neural network
outputs. The validity of this compression approach comes from the fact that the impedance

change image is usually smooth due to the diffusive nature of eddy current.

Multilayer Perceptron

The multilayer perceptron (MLP) is one of the most widely used neural network
models. A comprehensive discussion on the multilayer perceptron can be found in Reference
[51]. Here we simply review some of its fundamental features. A multilayer perceptron has
an input layer of sensory nodes (source nodes), one or more hidden layers of computational
nodes, and an output layer of computational nodes. Nodes in adjacent layers are connected
by synaptic weights. By changing the synaptic weights, we can change the functional form of
the perceptron, and thus it can be used to approximate an unknown function. The multilayer
perceptron is a uniform approximator, which means it can be used to approximate any
smooth function to arbitrary accuracy if enough hidden layer nodes are used.

The forward computation of a multilayer perceptron is done on a layer-by-layer basis.

First, for each hidden layer node or output layer node, an activation level is computed as
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P
Vi (n) = § wip (m)y{ ™ (), 6.1)

where v{”(n) is the activation level of node j in layer [ at the time instant n, w (n) is

the synaptic weight between node j in layer / and node i in layer /-1 at time instant n,

y,f"') (n) is the output of node i in layer /~1 at time instant n, and P is the number of

nodes in layer [—1. Apparently the activation level is the result of the innerproduct
operation between the input vector (the vector containing all output values in layer / —1) and

the weight vector of node j inlayer /. The output of a hidden layer node or an output layer

node is a nonlinear function of its activation level, which is usually called sigmoidal
nonlinearity. A particular form of the sigmoidal function is the logistic function

1
1+exp(—v$ (n))

yf-') (n) = (6.2)

which is a monotonic increasing function bounded in O tol.

The training of a multilayer perceptron is usually done by using the backpropagation
learning algorithm. The backpropagation algorithm is a gradient based iterative algorithm in
which the learning error is propagated backwards through the network. Accordingly, the
synaptic weights of the output layer are updated first, and then the synaptic weights of the
hidden layer next to the output layer, and so on. The synaptic weight update equation in the
backpropagation algorithm is given by

wi (n+1) = wi (n) + 18 (n) '™ (m), (6.3)
where 1 is a learning rate parameter, and 5}’) (n) is the local gradient for node j in layer /.

For an output layer node, the local gradient is given by
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80 (n) =[d;(n)—0;(m)o;(n)[1-0;(n)], (6.4)
where d;(n) is the desired output of output node j, and o;(n) is the actual output of output
node j,ie., 0;(n)=y{"(n). For a hidden layer node, the local gradient is given by

8 (m = yP (1= y ML mywy™ (n). (6.5)
k

Equation (6.5) indicates that the local gradient for node j in layer [ is related to the local

gradients and synaptic weights for all nodes in layer [+ 1. Therefore, it can be computed
only after the local gradients in the next layer have been computed. Consequently, the
computation of the backpropagation algorithm is also on a layer-by-layer basis, starting from
the output layer.

One major disadvantage of the backpropagation algorithm is that it is slow in
convergence, especially for large-scale problems. The slow convergence is a result of using
the gradient based weight update formula since gradient based methods tend to stick to local
minima [52]. To improve the convergence performance of the original backpropagation
algorithm, we have used several modifications such as adding a momentum term, using an
asymmetric sigmoidal function like hyperbolic tangent instead of a logistic function, and
applied the Delta-Bar-Delta learning rule [S1] to adaptively control the learning rate for faster
convergence. Our experience has shown that these modifications, especially the Delta-Bar-
Delta learning rule, can significantly improve the convergence speed of backpropagation.
However, due to its inherent local optimization property, the learning of the backpropagation

algorithm is still too slow for problems like the eddy current forward modeling. Our
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experience has shown that the learning time becomes impractical even when the training data

set only contains several examples.

Radial Basis Function Neural Networks

The radial basis function (RBF) neural network is another important class of
feedforward layered neural networks. Theories and applications of the RBF networks can be
found in References [53-60]. An RBF network has one input layer, one hidden layer and one
output layer. The nonlinearity of an RBF network is implemented in the hidden layer. The
output layer of an RBF network is a linear layer, compared with the nonlinear output layer in
a multilayer perceptron. The major application of an RBF network is functional
approximation [57], i.e., to approximate an unknown function given the values of the
function on some sample data points. This approximation problem is ill-posed because much
of the information of the function is not available so there are many possible solutions. To
deal with the ill-posedness of the approximation problem, regularization schemes must be
applied to incorporate a priori information in the solution. The RBF network can be thought
of as one solution of this regularization problem. It is also a uniform approximator.

The output of a hidden layer node in an RBF network is given by
8:(X) =g (|x-cif), (6.6)
where X is the input vector, g (|-}) is a radial basis function, and C; is the center vector of

the radial basis function. Usually the norm used in equation (6.6) is the 2-norm, or the

Euclidean distance. There are many possible forms for the radial basis function g .

However, the most widely used is the multivariate Gaussian
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G, (X)= exp[-— %(x -G 'X-C, )], (6.7)

where C; is the center of the Gaussian function, and X, is the covariance matrix of the
multivariate Gaussian function. It is clear that C; determines the location of the Gaussian
function and X, determines the shape of the Gaussian function.

As mentioned above, the output y; of node j in the output layer is a linear

combination of the outputs in the hidden layer

y; = LwiGi(X), (6.8)

where w; is the linear weight connecting node j in the output layer and node / in the

hidden layer.

The training of the RBF network finds the optimal values for C;, Z;, w; so as to

minimize the learning error. In general, a nonlinear optimization algorithm must be used for
the training of the hidden layer parameters, and a linear optimization algorithm must be used
for the output layer parameters. In the literature, there are various learning algorithms [51,
58, 61, 62] proposed for the RBF network in different applications. For our particular

problem, we considered two cases:

Case 1 - small number of training samples
In this case, we can simply use the training sample inputs as the centers for the radial

basis functions, i.e.,

C =X, i=L--, M, (6.9)
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where X are the input vectors of the training samples, and M is the number of training
samples. The shape of the multivariate Gaussian function is decided by a diagonal

covariance matrix

= = diag {02, 02,--, 03 }, (6.10)

d
where N is the number of inputs, o; =E’ i=1--,N, and d is the maximum

distance between the centers of the Gaussian functions. In this case, the equal potential
surface of each multivariate Gaussian function is a hypersphere. To decide the optimal
output layer weights, we need to solve

Y=GW, (6.11)
where Y is a matrix containing the desired outputs given by the training samples, G is a
matrix containing hidden layer outputs, and W is the matrix containing output layer weights.
Since in this case the number of hidden layer nodes is equal to the number of training
samples, equation (6.11) is well-defined (equal number of equations and unknowns) and can
be solved directly by

w=G"Y, (6.12)

where the matrix inversion can be done by using LU decomposition and back substitution.

Case 2 - large number of training samples
In this case, we cannot use training sample inputs as centers for RBFs because this
will lead to a network with a large number of hidden layer nodes which is slow and difficult

to train. To reduce the number of centers, we use the K-Mean algorithm [51] to find K
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cluster centers in M training samples with K much smaller than M . For the K

multivariate Gaussian functions, the diagonal covariance of equation (6.10) can still be used,

d.
however, now we let o, =F', i=1--,N,and
2M

d; = nﬁx{lcj. ~cift 6.13)

is the maximum distance between the RBF centers in the i th dimension. As a result of
equation (6.13), the equal potential surface of each multivariate Gaussian function becomes a
hyperellipse. In this case, the optimal output layer weights cannot be computed directly,
because now there are more equations than unknowns in equation (6.11) so that the problem
is overdetermined. We can use a Least Mean Square (LMS) algorithm to iteratively compute
the optimal output layer weights [51]

wj,-(n+l)=W~.(n)+n(yj -0,)8;, (6.14)

Ji

where w; is the weight between output layer node j and hidden layer node i, y; is the
desired output of output layer node j, o; is the actual output of the output layer node j, g;

is the output of the hidden layer node i , and 7 is a learning rate parameter. A disadvantage

of equation (6.14) is that it is much slower than the direct matrix inversion in equation (6.12).

Therefore, in practice equation (6.12), the Case | algorithm, is more frequently used.

Numerical Results

To illustrate some properties of the neural network forward model, we numerically

tested both the MLP and the RBF models. The first test was to examine the generalization
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property of MLP. We used a short crack and a long crack, and the corresponding impedance
change images as a training data set to train a three layer perceptron. After the learning
process was finished, a crack with medium length was used to test the perceptron. The
outputs of the neural network model were then compared with exact solutions obtained by
using a volume integral model with wavelet expansion. The training data set and the test
results for the first test are shown in Fig. 6.2. As can be seen in Fig. 6.2, the impedance
change images given by the neural network model are rather close to the exact results,

although some minor differences are still visible.

(a) Training sample 1 (b) Re(Z) of (a) (c) Im(Z) of (a) (d) Training sample 2

(e) Re(Z) of (d) (f) Im(Z) of (d) (g) Test flaw  (h) MLP output: Re(Z)

(i) MLP output: Im(Z) (j) Exact Re(Z) (k) Exact Im(Z)

Fig. 6.2. Test results on the generalization capability of multilayer perceptron.



89

Although the test on the generalization property of MLP is rather satisfying, our
experience indicates that it is not a practical method to our particular problem due to its
extreme slow convergence speed. It is only useful when the number of training samples in
the training data set is very small. On the other hand, our experience has shown that the
learning process of the RBF network is faster even for a relatively large training data set. Fig.
6.3 gives a training example of the neural network forward model based on an RBF net. In
this training process, we used 36 slots with various length and width and 6 holes with various

radius as training flaws. To find the impedance change images for the 42 flaws, we

@& L T
A B X
2 0 00
9 5 608
eoed
c o 9@

%

(a) Training flaw images (b) Re(Z) images (c) Im(Z) images

Fig. 6.3. Training example of the radial basis function neural network.

used the volume integral method code. The computation of the 42 forward problems took
about 10 hours of CPU time on a DEC 5000 workstation. Then we trained an RBF network
using these 42 training samples. The learning process took about 45 seconds using the Case
1 algorithm and it only took 30 seconds for the RBF forward model to regenerate the 42

training samples. Compared with the 10 hours used by the numerical model, this is over one
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thousand times of speed improvement. To test the generalization capability of this RBF
forward model, we used an elliptical test flaw which was not used in the training data set.
The output of the RBF forward model and the exact outputs are compared in Fig. 6.4. As can
be seen in Fig. 6.4, it is very difficult visually to tell the difference between the RBF outputs
and the exact outputs from the images. Therefore, we made some quantitative comparisons.
The normalized maximum error between the two results is 1.6%, and the normalized mean
square error between the two results is only 0.32%. We judge this accuracy to be acceptable

for most real world applications.

(a) Test flaw (b) RBFRe(Z) (c)RBFIm(Z) (d)ExactRe(Z) (e)Exact Im(Z)

Fig. 6.4. Test results of radial basis function neural network.

Conclusions

In this chapter we discussed how to use artificial neural networks to build fast eddy
current forward models. Our numerical results showed that these models can give several
orders of speed improvement over traditional numerical models. We found that one
important step in applying this method is to create a proper training data set. For the two
neural network models we studied, the RBF net is considered more practical due to its faster

learning process, although the generalization property of MLP may be better.
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CHAPTER 7. PREPROCESSING TECHNIQUES FOR

TWO-DIMENSIONAL EDDY CURRENT INSPECTION DATA

Introduction

Inspection data obtained from two-dimensional eddy current inspection using a
MRPC are usually distorted by noise and many other unwanted effects. Noise in the
inspection data include electromagnetic interference from the driving motor of the MRPC
probe, and quantization noise and thermal noise in the data acquisition circuit. Changes in
probe liftoff, tube diameter, and tube wall thickness also create large background signals
which make recognition and characterization of flaw signals difficult. Furthermore, due to
variations in probe characteristics and instrumentation setup, a calibration procedure must be
performed to align the phase and magnitude of the inspection data with a calibration standard.
This calibration step is usually a time-consuming process. In this chapter we discuss several
preprocessing techniques which can be used to remove some unwanted signals in the data
and to prepare the data for further signal and image processing procedures. The
preprocessing techniques we have studied include background removal methods to remove
liftoff signals and an automatic phase adjustment algorithm which can be used to simplify the
calibration process in some situations. The preprocessing techniques discussed in this
chapter are used only as the first step of the processing. Therefore, further processing must
be performed to obtain good data analysis results. Due to space limit, processing results are

not included in this Chapter. They can be found in Reference [63].
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Background Removal

The first step of preprocessing is to remove the background signal in the raw data.
Due to the diffusive nature of eddy current testing, the coil impedance change is very
sensitive to liftoff and small variations on tube internal surface. Because the background
signal is generally much larger than the flaw signal (especially for a MRPC probe), it must be
removed from the raw data before any phase rotation can be applied to the data. We have

tested three methods for background removal and they are described in this section.

Background removal by polynomial fitting

The first method uses a least-square polynomial fitting to obtain the background
signal and then the background signal is subtracted from the original data [64]. The
background removal of the horizontal and the vertical components of the raw data are
performed independently. Also, because the data is two-dimensional, the background
removal is first performed on the horizontal direction, and then on the vertical direction.

Given a dataset f(x;), i=1,---,n, the problem of fitting a mth order polynomial
gx)= Y ax! (7.1)
j=0

is to find the group of coefficients {a j} so that the least-square error

n

2
e=2[f(x,.)-2ajx,!} (7.2)
j=0

i=]

is minimized. Setting



Je
ba—l—O, [=0,---,m, (7.3)

we have the following m+ 1 equations for m+ 1 unknowns

iaj[ixij”]:zn:f(xi)xi’, [=0,---,m. (7.4)
=0 =1

i=l
These linear equations can be solved by using Gauss-Jordon elimination and
backsubstitution.

Normally a second-order polynomial fitting is used for both horizontal and vertical
directions. Higher order fitting generally is not necessary and may introduce artifacts in the
result. Even with the second-order polynomial fitting, when there is a strong signal in the
data, the background obtained is usually distorted by the presence of the large signal. This

will generate some artifacts near the large signal in the background removal result.

Background removal by median filtering

The second method is to smooth the data by using median filtering [65] and then
subtract the smoothed version from the original data. A nice property of the median filter is
that it can remove spike-like noise without removing edges in the data. Therefore, the
smoothed signal will not be distorted by a large, pulse-like signal if a median filter with the
proper window size is used. Because our objective is to detect circumferential cracks,
anything wider than the typical width of a crack signal (which can be decided by the
characteristics of the probe because the crack itself is usually very narrow) can be considered
as part of the background signal. Thus, we can use a median filter along the vertical direction

with a window length larger than two times the typical width of a crack signal to obtain the
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background. The disadvantages of median filtering are that it is relatively slow because at
each pixel in the image a sorting of local data values must be performed, and it has an edge

effect because a running window is used.

Background removal by masked polynomial fitting

Since both the polynomial fitting method and the median filtering method have
disadvantages, we investigated a third method which somewhat combines the first two
methods. This method is a modification of the polynomial fitting method, but it also uses the
idea of order statistics. In this method, before the polynomial fitting, the data is sorted, and
the parts of the data with the largest values and smallest values will not be used in the
polynomial fitting. For example, if given a margin of 20%, the data points with values in the
range of the largest 20% and the smallest 20% will not be used in polynomial fitting after
sorting. Therefore, if there is a strong but localized signal, the data points from this signal
will not be used in the polynomial fitting which results in fewer artifacts in the background
removal result. Also, this method is almost as fast as the direct polynomial fitting method
because in this case only one sorting operation is required for each line of data. We do not

need to perform a sorting operation for each pixel.

Automatic Phase Adjustment

The second step of the preprocessing is to adjust the phase of the raw data so that in
one channel the flaw signal is maximized and all other unwanted signals are minimized. This

step is necessary because in later processing we want to deal with a real image, and we want
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the signal-to-noise ratio (SNR) of this data to be maximized. When the SNR of the raw data
is high, it is not hard to adjust the phase manually since the flaw signal is visible in the raw
data. However, if the SNR of the raw data is low, it is almost impossible to see the flaw
signal in the raw data and the phase adjustment is difficult and time consuming without a
standard calibration procedure. To deal with this problem, we developed an automatic phase
adjustment method which can find the optimal rotation angle without performing the
calibration procedure. This method is based on the assumptions that there exists a phase
difference between the signal and the noise, and the energy of the noise is much larger than
that of the signal. The first assumption is valid because we are interested in OD cracks, and
from eddy current theory they have a phase difference dependence upon the liftoff signal and
ID noise. The second assumption simply means low SNR.

To explain the method, let us consider a simple noisy signal which is the sum of two
vectors, the signal vector and the noise vector, respectively

A,ej 0, 4 A,,ej e,

where A, >> A, and there is a nontrivial difference between 6, and 6,. Now if we rotate
this signal to make the SNR maximized for the vertical (or imaginary) component, then the
best rotation angle is the one that rotates the noise vector exactly to the horizontal axis so
there is no projection of the noise vector on the vertical axis. It can be proved in this case
that the energy of the horizontal component is also maximized. From this simple example,
we see that the problem of finding the rotation angle that gives the largest SNR in the vertical
channel is equivalent to the problem of finding the rotation angle for maximizing the energy

in the horizontal channel.
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Without loss of generality, consider a one-dimensional data set
{X;=R+ L}, (1.5)
where the energy of the horizontal component of the data after rotating by a phase angle 8

can be expressed as
E=Y, [Re{x,e” }]’ (1.6)

To find the 8 for maximizing E, set

£ (7.7)
0 '
Because
Re{X,-eje}= R, cos@ —I; sin0, (7.8)
we have the following equation after differentiation,
> (R, cos6 — I, sinB)(~R, sin 6 — I, cos8) = 0. (1.9)
After some manipulation, the above can be written as
1
Z[E(R,? — I?)sin20 + R, cos 29] =0. (7.10)
i
Then it follows that
z Ri Ii
= (7.11)

—arctan=————5—-
2 2(1"- - Riz)

The above derivation can be easily extended to a two-dimensional case. The above equation

can still be used, except now the summations are on all the data points in the image
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22 Rl

= - : 4
e 2arctanzz:(lil,T —Rij,:)‘
i g

(7.12)

Test results [63] have shown that when the assumptions of the automatic phase
rotation algorithm are satisfied, it can provide a result similar to that of the standard
calibration procedure. However, when the data has relatively high SNR or when there are
signals from OD tube variations which have very similar phase as the OD crack signal, the

standard calibration process is still necessary.
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CHAPTER 8. EDDY CURRENT IMAGE PROCESSING

USING PRINCIPAL COMPONENT ANALYSIS

Introduction

In this chapter we present an eddy current image processing technique based on
principal component analysis (PCA) [66-68]. PCA is a widely-used signal processing and
image compression technique which has many applications in feature extraction, data
compression, and noise reduction [S1]. In our problem, it is used as a noise reduction method
to remove the background signal in the two-dimensional eddy current inspection data. In
eddy current measurements, liftoff and other ID variations create large background signals,
which usually make small crack signals hard to be recognized. The background removal
methods discussed in the last chapter can be used to remove global background signals in the
data. However, for background signals that have similar spatial distributions as the flaw
signals, these preprocessing techniques are very inefficient. The background signals with
smaller spatial supports usually result from dents and other ID variations that are common for
a heavily used tube. In order to remove these background signals, we developed the
background removal method based on PCA. In our method, PCA is used to estimate the
background of the image and then to subtract the estimate from the original image. We have
finished some tests on the PCA method using MRPC data. The test results have shown the
high potential of the method. It is hoped that this technique will be helpful to human analysts

in detecting small crack signals.
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Basic Theory of PCA

What is PCA?

Principal Component Analysis [66-68] is a statistical method which determines an
optimal linear transformation

Y =WX (8.1)

to transform an input vector X € R" of a zero-mean, wide-sense stationary stochastic process
to a vector Ye R™, m<n so that the components of Y are uncorrelated. PCA is also
referred to as the Karhunen-Loeve or Hotelling transform. PCA has many important
applications, such as spectral analysis, pattern recognition and image compression. It can be

proven that the optimal transform matrix W can be constructed from the first m
orthonormal eigenvectors {Wl Wyt ,Wm} of the covariance matrix of X

Ryx = E{XX"}. 8.2)
The eigenvectors are normalized so that

W'W,; =§,. (8.3)
The eigenvectors and eigenvalues are solutions to the following eigenvalue problem

RyxW; =4, W;, (8.4)
and the first m eigenvectors correspond to the m largest eigenvalues. The first m
eigenvectors are considered the principal eigenvectors, which are directions in the n -
dimensional vector space in which the input data have the largest variance. By projecting the

input data through W, the n -dimensional input vector is mapped into the m -dimensional

subspace spanned by the principal eigenvectors. In other words, the input data is
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compressed, which means PCA can transform a large amount of correlated input data into a

set of statistically decorrelated components.

PCA using unsupervised Hebbian learning

The application of the PCA method discussed above requires the solution of the
eigenvalue problem for the covariance matrix of the input data. The direct solution of
eigenvalue problems by matrix decomposition is complex and time-consuming. Therefore, a
neural network approach, the Hebbian learning network [51], has been developed to solve the
eigenvalue problem. Another advantage of the Hebbian learning neural network is that it
does not require the computation of the covariance matrix, but directly obtains the principal
eigenvectors from the input data.

A Hebbian learning net is a simple two layer linear network where the first layer
contains the elements of the input vector, and the second layer contains the elements of the

output vector. An output of the network is given by

y; = Z W,x;, (8.5)

where W; are the synaptic weights. Initially the weights of the network are set to random

numbers. The network is then trained by feeding input data into it and the weights are
iteratively modified. The objective is to force the weights to finally converge to the principal
eigenvectors of the covariance matrix of the input data. By assuming that the input data is

ergodic, the covariance matrix can be expressed as

Ry = 2 X XT, (8.6)
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where the summation is taken over all the input data. To find the weight update equation
which forces the weights to converge to the principal eigenvectors, we need to minimize the

energy
E(W,) = %"x -%[ @.7)

under the normalization condition

w'w, =1, (8.8)

where X = W;y; under the normalization condition. Notice that in the case of a single

j
output node, the energy is minimized if the weight vector converges to the largest eigenvector
of the covariance matrix of the input data. Minimization of the energy can be achieved by

using a gradient descent optimization method. Taking the partial derivative of the energy, we

have

FE(W,)
IW.

J

= _}’j(x- ijj)v (8.9)

which is the direction in which the energy has the fastest increase. We can reduce the energy
by updating the weight vector along the opposite direction of the gradient, e.g.,

W, (k + 1) = W, (k) + p(k) y, (k)(x; (k) = W, (k) y, (k)), (8.10)
for the case of a single output node, where u(k) is the l