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Introduction 

Agricultural research performed by both the private and public sectors has been shown by Huffman 

and Evenson (1989, 2006a), Huffman et al. (2002), and Yee et al. (2002) to significantly impact the supply 

of agricultural outputs, demand for inputs and/or total factor productivity. This has been a methodological 

step forward relative to studies that have approximated technology with a time trend (Mundlak 2001). In the 

U.S., the public sector undertakes basic research on which the private sector develops applied technologies. 

The most dramatic success of public agricultural research was the early development of commercial hybrid 

corn varieties in the 1930s, which were then reproduced and marketed by private seed companies (Griliches 

1960, Huffman and Evenson 1993). During the ensuing seventy years, the private sector has taken control 

both of developing and marketing of hybrid corn varieties. Soybean varieties before 1950 were largely 

adapted from hay and not seed production, but since then, the primary product is the soybean. Over 1950-

1980, new soybean varieties were largely developed in the public sector (Huffman and Evenson 1993), but 

since the 1980s, the private sector has largely taken control of both developing and marketing them. For 

example, in 1994, the private sector accounted for 64 percent of soybean varietal development resources 

(Fernandez-Corneji 2004). Improvement in breeding practices in poultry, swine, dairy and beef cattle has 

also occurred over time (Huffman and Evenson 1993; Narrod and Fuglie 2000). For the most part, these 

improvements have been concentrated in the private sector (Huffman and Evenson 2006a).  

In addition to enhanced genetic materials, farmers’ cultural and management practices for crop and 

livestock production have steadily changed. Starting in the 1970s, herbicide application to field crops was 

introduced to reduce the need for field cultivation and hand weeding. Also, as a result of the mid-70’s 

energy crisis new “reduce tillage practices” were developed that largely eliminating the need for using the 

moldboard plow and heavy disking in seedbed preparation. By the 1990s, no-till farming was widely 

adopted in the Midwest. The mid-90s also brought new genetically engineered (GE) or modified (GM) field 

crop varieties containing herbicide tolerance and insect resistance (Fernandez-Cornejo and McBride 2000, 
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NRC 2010). Second and third generation GE/GM traits are now available in corn and cotton varieties. 

These varieties provide a type of biological alternative to chemical control of pests, which is widely 

recognized as reducing the pesticide load on the environment because the new pesticides are much less 

toxic than the ones that have been replaced by the GE/GM technology (NRC 2010).  

      The primary objective of this paper is to identify the impact of public and private agricultural 

research on multi-output multi-input profit maximizing decisions of Midwestern farmers. The main 

hypothesis is that investments in public and private R&D shift outward the supply curves for crop and 

livestock outputs and, in some cases, reduce the demand for farm inputs. These changes are consistent with 

increasing multifactor productivity. The study uses state aggregate data for eight Midwestern states, 1960-

2004. The data on quantities of outputs and inputs and their prices are the most up-to-date that are available 

from the Economic Research Service (ERS). The public agricultural research data are the most up-to-date 

from Huffman and Evenson (2006) and Huffman (2009). The private agricultural research variables are the 

adoption rates for privately developed and marketed GE/GM corn and soybean varieties, which were first 

marketed in 1996 (ERS and NRC 2010). The eight Midwestern States of this study account for more than 

65 percent of the US harvested acreage in corn and soybeans. This is also a region where farmers rely 

primarily on natural rainfall for watering their crops, rather than on irrigation. 

Following Diewert (1971), Lau (1976), Chambers (1988), Bairam (1998) and Mundlak (2001), 

production decisions are derived from a profit rather than a cost function (Huffman et al. 2002). The main 

reason being that farmers make plans for producing outputs and using inputs jointly. Moreover, successfully 

estimating a system of output supply and input demand functions derived from an underlying profit function 

is more difficult econometrically than estimating a system of input demand functions derived from an 

underlying cost function. In this study, two supply functions, one for livestock and one for crop outputs, and 

five input demand functions (one each for farm capital services (excluding land), farm labor, energy, 

agricultural chemicals, and other materials) are fitted to Midwestern state aggregate data, 1960-2004.  New 
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estimates of the impacts of public agricultural research on farmers’ production decisions extents the results 

of Huffman and Evenson (1989, 2006) and Lim and Shumway (1997), and the new estimates of impacts of 

GE/GM corn and soybean varieties on production decisions are the first in the literature.1 

The organization structure of the paper is as follows.  The second section gives a brief introduction to 

the development of genetically engineered or modified crops in the United States.  Section three presents an 

aggregate model of production. Section four describes the data and empirical measures of the variables.  

Section five presents the econometric model. Section six presents the empirical results and includes some  

comparisons with earlier studies. The final section presents some conclusions. 

Genetically Engineered Field Crops in the U.S. 

         Since the 1940s, application of chemical insecticides has been the main method for controlling 

insects in many crops, and since the 1970s, herbicides have replaced cultivation and hand weeding for 

control of weeds in U.S. field crops.  In 1999, U.S. expenditure on insecticides was 3 billion dollars, or 33 

percent of the world market.  Forty-five percent of the insecticides applied were devoted to the agricultural 

sector.  Although insecticides were initially hailed as a miraculous method to eliminate pest problems, the 

widespread use of particular insecticides has resulted in the development of tolerance by the target pests 

(Zilberman 2004), high rates of insecticide application, and low effectiveness of these chemicals in some 

areas.  In addition, high rates of application of insecticides have frequently caused environmental and 

human contamination. 

In the United States, the use of herbicides in agriculture has increased dramatically since the 1950s; 

herbicide use is now greater than the combined use of insecticides and fungicides.  Plants exhibit varying 

levels of tolerance to herbicides.  Some plants are highly sensitive and can be damaged or killed by very 

low doses of certain herbicides, while plants that have high tolerance can be unaffected by herbicides that 

                                                 
1 Although we recognize that the farm program for field crops experienced a major change in 1996 Farm Bill, there is 
not simply way to include this and other program effects. However, our crop output prices include deficiency payments 
and the land area includes acreage enrolled in the Conservation Reserve Program. 
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kill other plants.  Hence, farmers have used private sector developed herbicides to selectively control weeds 

in field crops for more than 40 years. New private sector developed crop varieties that carry herbicide-

tolerant genes are minimally affected by application of a particular herbicide while at the same time killing 

targeted weeds.  To farmers, currently available herbicide tolerant crops represent an innovation that allows 

them to simplify herbicide application to a single broad-spectrum herbicides, thereby simplifying farm 

management decision making. However, in a few areas weeds have adapted to the herbicide, and farmers 

then need to make further modifications in their production practices (NRC 2010).   

The discovery of DNA in 1953 and a gene splicing technique in 1973 set the stage for genetic 

engineering of new crop varieties in the 1990s. This was largely accomplished by the transfer of insect 

resistance genes into commercial crop cultivars.  One type of insect resistance (IR) has been obtained by 

insertion of Bacillus thuringensis (Bt), a soil bacteria that makes many insects become ill and die, and this 

new Bt technology has been effective in controlling particular insect pests in some field crop.  For example, 

Bt cotton is mainly effective in controlling tobacco budworms and less effective in controlling the cotton 

bollworm.  Early Bt corn varieties  provided resistance primarily to the European corn borer and were 

somewhat protective towards the corn earworm, the Southwestern corn borer and to a lesser extent the 

cornstalk borer (Fernandez-Cornejo and McBride 2002). Hence, insect resistant crop varieties have 

emerged as another solution to farmers’ plant insect pest problems. 

Newly developed GE/GM crop varieties that are available to farmers can be broken down into 3 

types of GE traits: “IR (insect resistant)”, “HT (herbicide tolerant)” and “stacked (combinations of HT and 

IR)”. With Bt genetically engineered into a crop variety, plant parts become toxic to target insects and kill 

them. With HT genetically engineered into a crop variety, the plant is resistant to a particular commercial 

herbicide; for example, Monsanto’s Roundup contains the active ingredient glyphosate.  Hence, for 

Roundup Ready soybean varieties, farmers plant the HT variety and, roughly one month after emergence of 

the crop and accompanying weeds, the farmer applies the commercial herbicide Roundup, which kills all of 
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the plants in the field, except for the Roundup Ready Soybean plants. This then leaves the treated soybean 

fields largely free of weeds. Moreover, the effectiveness of applying the herbicide Roundup to Roundup 

Ready soybean plants is not sensitive to modest deviations in the application date, which is a major 

advantage to farmers that have off-farm jobs, other competing uses for their time, or face uncertain rainy 

weather conditions. Because farmers always face weed problems in their fields and soybean plants are not 

competitive against tall weeds, and because of the wide window for applying Roundup to the soybean 

varieties, HT soybean varieties have become very successful in the United States. In contrast, corn is a 

strong competitor against weeds, and HT corn varieties have been less successful than soybean varieties. 

Likewise, European corn borer infestation is random, not occurring every year. Hence Bt for European corn 

resistance has not been as popular with farmers as HT.  The recent development of GM protection to corn 

root worm holds more potential because the rootworm is a persistent pest.  Hence, GM corn varieties have 

one to three main traits. GM soybeans varieties are primarily herbicide-tolerant. GM cotton varieties have 

one or two traits, for Bt and/or HT. 

In 1995 no significant acreage of U.S. crops was planted to biotech crop varieties, and in 1996 the 

rate of adoption was low, being higher for Bt cotton and HT soybeans than for Ht corn and cotton or Bt 

corn (figure 1). Bt cotton has been adopted in some areas of the South, but not in other areas where insect 

problems, including tolerance to chemical insecticides, were less severe.  The HT cotton adoption rate 

surpassed Bt cotton adoption by 1998, reflecting the fact that weeds are a persistent problem in cotton, and 

HT cotton has experienced higher adoption rates than Bt cotton through 2007.  

Although the adoption rate for HT soybean varieties was initially lower than for Bt cotton, HT 

soybean varieties have experienced very rapid adoption rates over 1997-2007, except for a brief setback in 

2000. The adoption rate in 2007 was about 90 percent of planted acres.  HT and IR corn varieties were 

adopted more slowly by U.S. farmers, but by 2007, HT and IR corn variety adoption rates had reached 

about 50 percent (figure 1). In the U.S. in 1996, biotech crop variety shares for planted acres were 17 
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percent for cotton, 7 percent for soybeans and 4 percent for corn.  But in 2007, these shares had increased to 

91 percent for soybeans, 87 percent for cotton and 73 percent for corn.  

The adoption of GM crop varieties by states in the U.S. is conditioned by cropping patterns: the 

extent to which farmers in a particular state plant soybeans, corn or cotton (see ERS 2008; Ryan and Runge 

2003). For example, of the eight Midwestern states in this study, Indiana, Missouri, and Iowa farmers were 

the leaders in HT soybean varietal development by 2000—with roughly 60 percent of planted soybean 

acreage (see figure 2).2  By 2007, GM soybean adoption rates converged across these states to roughly 90 

percent.  

GM corn varietal adoption rates for IR, HT and combined IR and HT over 1996-2007, are displayed 

in figure 3. They show that Minnesota, Iowa, and Missouri have been the leaders in adoption of GM corn 

varieties. Ohio and Indiana farmers have lagged far behind. However, figure 3 does show that there was a 

decline in GM corn adoption rates in the Midwestern states over 1999-2001. By 2007, more than 70 percent 

of the planted corn acres in Minnesota, Iowa and Missouri were planted to GM varieties. 

Of all the states that had adopted biotech varieties as of 2007, 60 percent of the value of biotech corn 

production was attributed to Iowa, Illinois, Minnesota and Nebraska, and fifty-four percent of the value of 

biotech soybean production came from Iowa, Illinois, Minnesota and Indiana. In contrast, 68 percent of the 

value of biotech cotton production yielded from Texas, California, Mississippi and Georgia. 

The Model of Aggregate Production 

Following Huffman and Evenson (1989), Shumway et al. (1988) and Bairam (1989), the structure 

of agriculture at the state level is assumed to be approximated by a flexible aggregate multi-output and input 

profit function. Applying Hotelling’s lemma to this function, obtain a set of aggregate agricultural output 

                                                 
2 The data from 2000-2007 are taken directly from ERS (2008). We extended the data for Ht soybeans and for GM corn 
containing HT, IR, or stacked HT and IR, by state from 2000 to 1996, assuming the pattern for each state going back in time was 
similar to the pattern for the U.S. data, including a zero adoption rate for all traits in 1995. Because of seeming inconsistencies in 
the disaggregated GM trait adoption data for corn over 1996-1999, we did not extend data backward for HT and IR corn 
separately.   
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supply and input demand functions (Lau 1976; Fuss and McFadden 1978; Chamber 1988). The profit 

function framework has an advantage over a cost function approach in that outputs are left hand side 

variables to be explained by output and input prices, but, with a cost function framework, outputs are used 

to explain input demand. When farmers in one state are a small supplier of U.S. (or world) output and 

demand for U.S. (or world) agricultural inputs, these prices can reasonably be assumed to be exogenous.   

Three common flexible form profit functions are the trans-log (Diewert 1974), normalized 

quadratic (Lau 1976), and generalized Lontief (Diewert 1971). Among these functional forms, Chambers et 

al (2008) have shown that the normalized quadratic revenue function, which is a special case of the profit 

function, performs best in simulation experiments. In empirical studies, supply and demand functions that 

are derived from the normalized quadratic profit function have as dependent variables quantities of output 

and input. In contrast, for the translog profit function, the associated choices functions or dependent 

variables are profit shares. Since profit can be negative and small, this makes the dependent variables quite 

noisy. Examples of successful uses of the normalized profit function that represent agricultural technology 

at the state level are Shumway (1983), Shumay et al. (1988), and Huffman and Evenson (1989). 

Let there be n+m+1 net outputs yi.  Of these, n+1 are outputs with yi > 0, i = 0, …, n, that are 

produced with m inputs with yi < 0, i = n+1, …, n+m.  Furthermore, there are K quasi-fixed or 

environmental factors denoted by zk ≥ 0, k = 1, …, K.  Let P0 be the price of one of the outputs, and call it 

the numeraire price which can be set to be 1. All prices are positive and the normalized price of the n 

outputs and m inputs can be defined as pi = Pi/P0, i = 1,…,n+m. 

The exact algebraic form of the normalized quadratic function is given by: 

    0
1 1 1 1 1 1 1 1

1 1
2 2

n m K n m n m K K n m K

i i k k ij i j kl k l ik i k
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This function as written is linearly homogeneous in prices and also has a Hessian matrix of 

constants, so that the local convexity in prices implies global convexity (Lau 1976).   

Input Demand, Output Supply.  Given the normalized quadratic profit function (1), a set of  n + m 

output supply and input demand can obtained directly by applying Hotelling’s lemmas: 
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The supply equation for the numeraire output, equation (2’), is obtained residually from (1) and (2). 

Hence, the optimal choice equations derived from this normalized quadratic profit function are 

linear function in unknown parameters, and equation (2) is linear in normalized prices and quantities 

of quasi-fixed factors, equation (2 and 2’). The partial elasticity output and input decisions with 

respect to prices is derived from equations (2) and (2’)  
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To be consistent with concavity of the profit function, the own-price elasticities of output supply is 

expected to be positive and those of input demand to be negative.  Inputs i and j are designated as 

“substitutes” when ηij > 0 and as “compliments” when ηij < 0. Outputs i and j are designated 



 10

“substitutes” if ηij < 0 and as complements if ηij > 0.  Given estimates of the α’s, β’s, γ’s and φ’s, the 

partial elasticities can be evaluated at the sample means of p’s and z’s. 

Impacts of Quasi-Fixed Factors.  We are especially interested in the impacts of public agricultural 

research and availability of GE soybean and corn varieties on farmers’ production decisions, but 

also the impact of land (availability) and pre-season precipitation. Pre-season precipitation was 

chosen are the appropriate weather variable because it is known to farmers at planning and planning 

time. Although crop yields are also impacted by weather conditions during the growing and 

harvesting seasons, farmers input decisions are largely made at planning/planting time before 

actually growing and harvesting season weather is realized.  

It is commonly believed that agricultural research (public and private) has a favorable effect on 

technologies that are intensive in agricultural chemical and machinery services.  In addition, 

Huffman and Evenson (1989) found that additional public agricultural research had a slight bias 

effect toward fertilizer and fuel usage and against machinery and labor input usage, and Huffman 

and Evenson (2006a,b) and Huffman (2009) showed that public agricultural research increases 

agricultural productivity.3 

To explore the tendency of quasi-fixed factors to bias farmers’ production decisions, we adopt 

Antle’s (1984) measure and expand it to multi-output technology, as in Huffman and Evenson 

(1989). The results is a measure of the impact on revenues shares and cost shares for yi* due to a 

change in zk.  Let total revenue n + 1 outputs be denoted by 

   ,0*
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*
0 >+=Π ∑

=
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i
iR ypy                                                             (4) 

and the total cost of the m variable inputs is denoted by  

                                                 
3 For other approaches, see Clark and Youngblood (1992), Karaginnis and Mergos (2000), Pardey and Craig (1989), 
Mckay et al. (1983), and Lambert and Shonkwiler (1995). 
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and using (8) and the fact that in this study revenue for livestock (v) and crop (c) output shares sum 

to 1 (= R R
v cs s+ ), then algebraic expression for the bias on the numeraire output (crop) is 
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For both outputs and inputs, Bik > 0 (Bik < 0) denoted a “favorable” (“unfavorable”) effect of zk on 

yi*, which means that when zk increases, the revenue (or factor’s cost) share of yi* increases 

(decreases). The bias effect is neutral if Bik = 0. 

The quasi-fixed factors will change profit if they are permitted to change over time. A 

shadow-value measure of the impact of a marginal change in a quasi-fixed factor, given (1) is  
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Equation (11) can be evaluated at the sample mean values of the p’s and z’s.  

The Data and Variables 

Data from the agricultural sector’s state accounts, 1960-2004, are key data for the 

econometric analysis of production decisions. The state level data on quantities and prices of inputs 

and outputs have been prepared under the leadership of Eldon Ball at ERS. Outputs of farms are 

divided into two groups: crop (consisting of grain, forage and fiber produced) and livestock 

(consisting of livestock and livestock products).  Variable farm inputs are capital services, labor, 

energy and chemicals (fertilizer and chemical pesticides), and other farm materials.  We define five 

quasi-fixed factors: land services, public agricultural research stock, GE corn varietal availability 

and GE soybean varietal availability, and pre-season precipitation deviation (defined as the 

deviation from normal amounts). The production decisions of farmers in the states IA, IL, IN, MI, 

MN, MO, OH and WI are of interest in this study.   See table 1 for the list of variables.  

In the ERS agricultural state accounts, output is defined as gross production leaving the 

farm, rather than real value added.  The measure of output starts with disaggregated data for 

physical quantities and market prices of crops and livestock.  The output quantity for each crop and 

livestock category includes quantities of commodities sold off the farm, additions to inventory, and 

quantities consumed as part of final demand in farm households during the calendar year, but 
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excludes intermediate goods produced and consumed on the “farm”.  State output accounts include 

interstate shipments to intermediate farm demand. The price for each disaggregated output reflects 

the value of that output to the sector by adding subsidies and subtracting indirect taxes.    

Based on the above information, two output indices─livestock and crops—for each state 

have been constructed as Tornquist indexes of farm outputs.   Livestock consists of meat animals, 

poultry and eggs, dairy products and others.4  Crop output includes food grains, feed crops, oil 

crops, sugar crops,  vegetables and melons, Christmas, ornamental and fruit trees.5 

For the aggregate farm sector, the USDA’s farm labor accounts were developed as matrices 

of hours worked and compensation per hour for laborers, cross-classified by sex, age, education, and 

employment class—employee versus self-employed and unpaid family workers.  By combining the 

aggregate farm sector matrices with state-specific demographic information, state-by-year matrices 

of hours worked and hourly compensation are constructed, each with cells cross-classified by sex, 

age, education, and employment class, and with each matrix linked to the USDA’s hours worked 

and compensation totals.  For each state and year, self-employed and unpaid family workers are 

imputed the mean wage earned by hired workers with the same demographic characteristics, 

because labor compensation data for self-employed and unpaid family workers are not available.  

Indices of farm labor input are constructed for each state using the demographically cross-classified 

hours and compensation data.  Farm labor hours having higher marginal productivity (wages) are 

given larger weights in forming the index of farm labor input than are hours having lower marginal 

productivities, which explicitly adjusts indices of farm labor input for quality change in farm labor 

hours. 

                                                 
4 Also includes wool, mohair, horses, mules, honey, beeswax, goats, rabbits, and fur animals. 
5 Also includes floriculture, forest products, mushrooms, legume and grass seeds, hops, popcorn and flax fiber and seed. 
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    Capital input includes services of durable equipment and inventories.  Construction of time 

series measures of capital input and prices for the associated capital services for each state are based 

on the capital stock and implicit rental prices for each asset type in each state (Ball et al. 1999).  

Capital stocks are developed from data on investments, by way of a perpetual inventory method 

where past investments are weighted by relative efficiency and summed. Implicit rental prices for 

each asset are based on the correspondence between the purchase price of the associated asset and 

the discounted value of future service flows derived from the asset. The index of capital services 

input for each state is obtained by aggregating over the different capital assets, weighted by the 

asset-specific rental prices.  Service prices for capital services input are constructed as the ratio of 

the total current dollar value of capital service flows divided by the associated capital quantity 

index. 

The materials input in the ERS data set refers to intermediate input used in production during 

the calendar year, whether withdrawn from beginning inventories or purchased from outside the 

farm sector. These farm inputs include fertilizer, pesticides, fuels/electricity, feed/seed/livestock and 

other services.6 We then categorized these inputs into three groups: energy, agricultural chemicals 

and other materials.  The energy input includes petroleum fuels, natural gas and electricity.  

Agricultural chemicals consist primarily of fertilizers and pesticides.  Other materials are the 

residual obtained after subtracting energy and agricultural chemicals from total material input, and 

include seeds, machinery services hired and contract labor. Prices for all outputs and inputs in all 

years are relative to the 1996 Alabama level. 

Turing the quasi-fixed factors, land is measured in constant quality units by compiling data on 

land area and average value per acre for each Agricultural Statistics District in each state.  The land 

area in each district and use category is reported in the Census of Agriculture.  For non-Census 

                                                 
6 Also includes purchased services, such as contract farm labor services, custom hired machine services, machine and 
building maintenance and repairs, irrigation fees paid public sellers of water, and miscellaneous farm production items. 
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years, the percentages in each district and use category are interpolated between Census years. 

Conservation reserve land is included in the land quantity index.  Land values per acre are taken 

from the annual Agricultural Land Values Survey. 

The public agricultural research stock for an originating state is used as a proxy for the “true” 

measure of public agricultural research that impacts farm production decisions.   The public 

agricultural research stock is the summation of weighted past public sector investments in 

agricultural research with a productivity enhancing emphasis (Huffman 2009, Huffman and Evenson 

2006a,b) in 1996 dollars.  Although a free-form lags structure of the impacts of public agricultural 

research expenditures on farm production decisions might be incorporated, Griliches (1998) has 

argued that we have considerably more information about the likely lag pattern. He suggested that 

the impact of research and development on agricultural productivity or on farm output and input 

decisions most likely has a short gestation period with little or no impact, then blossoms into 

significant positive impacts, and eventually becomes obsolete.  Huffman and Evenson (2006) and 

Huffman (2009) approximated this pattern by imposing a trapezoidal timing weights are a two-year 

lag with no impact. The research stock is computed by summing past real research expenditures 

with a two through 34 year lag and the following trapezoidal shaped timing weights.  At first, a two-

year gestation period is imposed during which the impacts of public agricultural research capital on 

productivity are negligible.  Then, impacts are assumed to be positive and represented by linearly 

increasing weights for the next seven years, followed by six years of maturity during which weights 

are high and positive.  There are then linearly declining weights for the next twenty years that 

eventually go to zero (See figure 4).7 

                                                 
7 In this paper, we have ignored possible interstate spillin effects of public agricultural research so as to concentrate on 
estimating the impacts of other factors on production. This does risk causing some biases in estimated coefficients.  
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Farmers’ adoption rates for GM corn and soybean varieties in each state and year are described 

in the second section of the paper. The pattern by state of the adoption rate for corn and soybean 

varieties is displaced in figures 2 and 3. 

Pre-season precipitation in each year and state is computed as the deviation of current 

precipitation from its 30 year average level for the months of October to March before each growing 

season.8  Sample mean values of the variables are displaced in table 1. 

The Econometric Model 

 In the econometric model, crop output supplied is chosen as the numeraire commodity, 

equation (2) becomes a system of six equations: livestock output supplied and five input demand 

equations for variable inputs, and a random disturbance term (µit) is appended to the seven 

equations.  A working hypothesis is that the amount of crop and livestock output produced in each 

state is small in the total US and world markets for outputs and inputs. This allows us to treat 

normalized prices as given.  Also, a trend (t) is incorporated into model to help insure we have 

covariance stationary multivariate time series. This time trend also controls for other trend-

dominated factors that could otherwise confuse interpretation of our empirical results (Nelson and 

Plosser 1982, Wooldridge 2002).  

 Now collect together the seven behavior behavioral equations of the production system and 

re-parameterize the model as follows to facilitate discussing autocorrelation 

  Yit = Xitδi + µit, i = 1, ...7; t = 1, …45,                                                                            (12) 
 
where µit = ρ µit-1 + εit is an AR(1) stochastic process where εit is uniformly distributed with a zero 

mean, variance σi
2, and  uncorrelated over time (Greene 2003). To estimate this model, first fit all 

                                                 
8 The precipitation data from 1960 to 1994 is obtained from ERS’s archived data product 92008.  Data from 1995 to 
2004 are forecast values using exponential smoothing based on each state’s historical data (Hamilton 1994). 
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seven choice equations without cross-equation restrictions, and the use the associated residuals to 

estimate one value for ˆρ, ρ  here is in fact 0.979 with a t-value of 115.  Using ρ̂,  we then transform 

(12) into model where the variables are expressed as pseudo first-differences: 

 Yit – ρ̂ Yit-1 = (Xit – ρ̂ Xit-1) δi + εit*.                                                                                 (13) 
 
Under an assumption that that each states quantity supplied of crop and livestock output and demand 

for inputs is small in the total US market and world market, the producers of each state are treated as 

price takers. Then the production system can be estimated in a straight forward way as a difference 

seemingly-unrelated (SUR) regression model with cross equation restrictions (Greene 2008, Zellner 

1962, Barton 1969). 

The Empirical Results 

The estimated coefficients for the agricultural supply and input demand system obtained by 

fitting seven output supply and input demand equations for eight Midwestern states, 1960-2004, to 

the (44x8) 352 total observations are reported in table 2 and 3. In viewing table 3, it is obvious that 

there are many more explanatory variables in the crop output supply (numeraire commodity) 

equation. The estimated coefficients in table 2 needed to derive the own-price elasticities (equations 

3) reported in table 4 are statistically strong for, except for the two supply equations. The impacts of 

available land on choices are sizeable and statistically strong. The impact of public agricultural 

research and availability of GE/GM soybean varieties are mixed—some coefficients are 

significantly different from zero and others are not. The impact of the availability of GE/GM corn 

varieties is somewhat weaker than for GM soybean varieties. The impact of trend is to reduce or 

leave unchanged outputs supplied and inputs demanded.   

Estimates of Input and Output Price Elasticities. Own- and cross-price elasticities are obtained by 

evaluating equation (3) at the sample mean value of the associated quantities and prices (table 1) and 

are reported in table 4. All own-price elasticities are negative for inputs and positive for outputs, 
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which are as expected. The crop and livestock output supply responses are, however, inelastic, being 

0.021 for livestock and 0.127 for crop output. All five of the variable input demand equations have 

negative own-price elasticities. Moreover, the input demand elasticities are quite small for capital 

services and labor (-0.040 and -0.66, respectively); more modest in size for energy and other 

materials (-0.354 and -0.288, respectively), and somewhat larger for agricultural chemicals (-0.591). 

Some plausible reasons exist for the seemingly small size of own-price elasticities of livestock and 

crop supplied. First, the true size may be small. Second, our output supply equations are yearly 

average prices received by farmers adjusted for government program payments, which incorporates 

consider speculation by farmers about the optimal time to sell inventories. Third, the output prices 

might have an endogenous component. An expected price at planning/planting time, at least for crop 

output, might lead to a larger supply elasticity (Huffman and Evenson 1989).   

The cross-price elasticities for inputs provide information on which inputs are substitutes and 

complements (table 4). Farm capital services are substitutes for energy and agricultural chemicals 

but a complement for labor and other materials. All inputs are a substitute for farm labor, except for 

capital services. Energy is a substitute for all other inputs, and agricultural chemicals are a substitute 

for all other inputs. Other materials are a substitute for labor and agricultural chemical but a 

complement for capital services, energy and other materials. However, the cross-price elasticities are 

quite variable in size, being relatively small in many cases. Between the two outputs, cross-price 

effects are small positive suggesting a type of synergy in Midwestern U.S. agriculture. 

Input-output cross- price elasticities indicate the magnitudes of supply and demand curve 

shifts due to a change in a cross-price (table 4). An increase in the price of livestock output increases 

the demand (rightward shift) for variable inputs, except for labor. In contrast, an increase in the price 

of crop output increases the demand for labor and other materials, but reduces the demand for 

capital services, energy and agricultural chemicals.  Input prices also affect output supplied. An 
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increase in the price of capital services decreases the supply (leftward shift) of livestock output but 

increases the supply of crop output; an increase in the wage to labor increases the supply livestock 

output but reduces the supply of crop output; an increase in the price of energy increases the supply 

of livestock output and reduces the supply of crop output; and increases in the price of agricultural 

chemicals or other materials reduces both the supply of livestock and livestock output.  

Impacts of Quasi-Fixed Factors. We have impacts of quasi-fixed factors on the supply of outputs 

and demand for inputs; bias effects on revenue and cost shares of a change in these factors; and on 

the shadow value of a marginal change in one of these factors. First, consider the impact of a change 

in a quasi-fixed factors on output supply and input demand in Midwestern agriculture (see table 2 

and 3). An increase in the quantity of available land increases livestock and crop output supplied and 

the demand for all five variable inputs (rightward shifts). An increase in public agricultural research 

increases the livestock and crop output supplied and increases the demand for labor, agricultural 

chemicals and other material inputs but reduces (leftward shift) in the demand for capital services 

and energy. An increase in the availability of GM soybean varieties increases livestock but reduces 

crop output and increases the demand for farm capital services, agricultural chemicals and other 

materials. It, however, reduces the demand for labor and energy.  An increase in the availability of 

GM corn varieties increases weakly livestock and crop output supplied and the demand for labor and 

other materials but reduces the demand for capital services, energy and agricultural chemicals. An 

increase in pre-season precipitation increases crop output supplied but reduces livestock output 

supplied, and increases the demand for capital services, labor, and other materials but reduces the 

demand for energy and agricultural chemicals.   

Second, as quasi-fixed factors change they the transformation function and these shifts are 

summarized by evaluating equations (8)-(1), using coefficient estimates from tables 2 and 3 and 

variable means from table 1. Additional land biases input cost shares toward energy, agricultural 
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chemicals and other materials inputs, but against capital services and labor. Additional land also 

biases output revenue shares toward crops and against livestock output. Additional public 

agricultural research biases input cost shares toward agricultural chemicals and other materials but 

against capital services, labor and energy. Additional public agricultural research also biases 

revenue shares toward crops and against livestock. A higher adoption rate for GM soybeans biases 

input cost shares toward capital services, energy and agricultural chemicals but is relatively neutral 

on shares for labor and other materials.  It biases revenue shares towards crops and away from 

livestock.  A higher rate of GM corn adoption biases input cost shares away from agricultural 

chemicals and has minimal impact individually on the other input cost shares, although the sum of 

these small changes must offset the larger impact on agricultural chemicals. Higher GM corn 

adoption biases revenue shares toward crops and against livestock. The effects on revenue and cost 

shares of a change in pre-season precipitation is zero due to the mean value of pre-season 

precipitation being zero.   

Third, the shadow values equations (11) are also evaluated at the sample mean of the data.  

The shadow value of a $1 (constant 1996 dollars) increase in agricultural land services is $2,841; a 

$1 (constant 1996 dollars) increase in public agricultural research stock is $1,390 per year; a 1 

percentage point increase in GM soybean varieties is $389 million; a 1 percentage point increase in 

share of corn acreage planted to GM hybrid corn varieties is $577 million; and an additional inch of 

pre-season precipitation is $634 million. These values seem quite large, but standard errors in some 

cases are also most likely large, especially given the number of small t-values in table 3.   

Discussion.  Several previous studies have reported output supply and input demand elasticity 

estimates for U.S. agriculture at the region or state level. They include Ball (1988), Huffman and 

Evenson (1989), Lim and Shumway (1997), Shumway and Lim(1993), Shumway et al. (1988), and 

Vasavada and Chambers (1986).  These studies, however, differ, not only in functional form of the 
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choice functions, but also in the number and definition of variable input and output groups, 

observation unit (states or regions), time period covered and conditioning variables, i.e., the list of 

quasi-fixed factors, estimation method, and points at which elasticities are evaluated.  Their findings 

for price elasticities of output supply and input demand vary widely.  Compared with relevant 

studies, the magnitudes of our findings for own- and cross-elasticities are relatively small. 

Vasavada and Chambers (1986) focused on aggregate output measures and estimated the long 

run output supply and input demand elasticities for a normalized quadratic value function.  They 

found the own-price elasticity for labor to be -0.51, which is much larger than our estimate.  In their 

study, capital services are found to be an inferior factor, with positive elasticity 0.12, but we find a 

negative own-price elasticity of demand.  Their finding for the elasticity of intermediate materials is 

-0.34, but we have separate own-price elasticities for energy of -0.354, of agricultural chemicals of -

0.591 and of other materials of -0.288. They have an estimate for the elasticity of the aggregate 

output is 0.54, which is substantially larger than own-price elasticity of supply of crop output of 

0.127 and of livestock output of 0.021. 

Ball (1988) modeled multi-product supply response in agriculture with a trans-log profit 

function over the period 1948-79.  He found the price elasticity of livestock supply to be elastic, at 

1.089.  Even though he used different output and input categories than we do, he obtained own-price 

elasticities that were larger in absolute value than ours.   

Shumway has conducted several studies on multi-product supply and input demand in U.S. 

agriculture.  In his 1997 study with Lim, they examined U.S. agricultural crop and livestock 

relationships in the context both of duality and time-series econometrics.  They estimated both the 

co-integrated and the traditional models using quadratic and trans-log functional forms, respectively.  

Their study utilized Ball’s aggregate annual data series for U.S. agricultural production for the 

period 1948-91.  A summary of their results is presented in table 4.  Their estimates for output 
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supply and input demand own-price elasticities under the trans-log functional form are generally 

larger than our findings and their quadratic functional form estimates are similar  Their price 

elasticity of livestock supply is 1.01, which is very close to Ball’s (1988) findings.  The magnitudes 

of their elasticity estimates using the quadratic profit function estimates are closer to ours, except 

that they obtain unexpectedly negative own-price elasticities for crop output and positive own-price 

elasticities for capital and materials inputs. 

Huffman and Evenson (1989) discussed biases caused by public agricultural research and other 

policies for U.S. cash grain farms.  They used different output and input categories, so it’s hard to 

make a full-scale comparison.   

Conclusions  

Output supply and input demand functions have been fitted to state aggregate data for eight 

U.S. Midwestern states, 1960-2004, and they are consistent with an aggregate profit function 

framework. Supply elasticities for crop and livestock outputs are positive but small. The own-price 

elasticities of demand for all inputs are shown to be negative, being larger for agricultural chemicals 

and energy that for farm capital services, labor and other materials. Additional public agricultural 

research, a quasi-fixed factor, is shown to increase the supply of crop and livestock outputs and the 

demand for agricultural chemicals and other materials but to reduce the demand for capital services, 

labor and energy. An increase in the adoption of GM soybean varieties (resulting from private 

R&D) increases the supply of livestock output but reduces the supply of crop output. It also 

increases the demand for farm capital services, agricultural chemicals and other materials and 

weakly reduces the demand for labor and energy. The impact of an increase in the adoption of GM 

corn varieties (also resulting from private R&D) reduces the demand for energy but other effects on 

input demand are quite weak. 
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The shadow value of public and private agricultural research (availabilityof GM soybean and 

corn varieties) are shown to be positive and sizeable.   

Future research will explore the effects of disaggregating crop output and using crop prices 

that are available to farmers at planning/planning time.  
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Figure 2 

                                                                                    
  Source: ERS (2008) for 2000-2007; our estimates for 1996-1999.                                                                          
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Figure 3 

 
 

 Source: ERS (2008) for 2000-2007; our estimates for 1996-1999.       
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Table 1. Variable Names and Summary Statistics for U.S. Agriculture in Eight    
               Midwestern States, 1960-2004 

Variables  Mean St.Dev
Quantities1 

Crop Output (yc) 3.81 1.97
Livestock Output (yv)  3.15 1.54
Capital Services (yk) -1.54 0.55
Labor (yh) -3.89 1.59
Energy (ye) -0.29 0.10
Ag Chemicals (ya) -0.68 0.39
Other Materials (ym) -2.51 1.13

 
Prices2 

Crop Output (Pc) numeraire
Livestock Output (pv) 0.92 0.14
Capital Services (pk) 0.76 0.35
Labor (ph) 0.58 0.42
Energy (pe) 0.93 0.32
Ag Chemicals (pa) 0.84 0.16
Other Materials (pm) 1.12 0.26

 
Profit (Π) -0.37
    Revenue (ΠR) 6.71
    Cost (ΠC) -7.08
 
Quasi-Fixed Factors 

Land Services (ZL)3 0.87 0.24
Public Ag Research (Zr)4 30.05 10.71
GM Soybean Varieties (Zs) 0.11 0.24
GM Corn Varieties (Zc) 0.04 0.11
Pre-season Precipitation (Zp)5 0.00 2.49

1Value $1,000,000,000 in 1996 prices of Alabama 
2 Crop price in nominal relative to 1996 in Alabama; other  
prices are normalized prices, e.g., pv is the nominal price of 
livestock output divided by the nominal price of crop output. 
3Value $1,000,000,000 in 1996 prices in Alabama 
4$1,000,000 in 1996 prices of Alabama 
5Deviation from 30 norms or mean 

 

 



Table 2.  Estimation of an IV SUR Model with First-Order Autocorrelation of a System of Output 
Supply and Input Demand Equations with Restrictions: Eight Midwestern States, 1960-2004 (asymptotic 
t-or z-values in parentheses; N = 44x8 = 352 observations per equation)1 

  
Supply 
Equation  Demand Equations 

Variables   
   

Livestock    Capital Labor Energy 
Ag-

chemical 
Other 

Materials 
Normalized Prices:         

Livestock (pv)  0.0711  -0.0598 0.0298 -0.0077 -0.0826 -0.0138 
  (0.86)  (-2.28) (0.60) (-0.81) (-2.17) (-0.25) 
Capital (pk)  -0.0598  0.0801 0.0378 -0.0745 -0.0244 0.0135 
  (-2.28)  (1.89) (2.23) (-5.02) (-0.94) (0.54) 
Labor (ph)  0.0298  0.0378 0.4394 -0.0105 -0.0149 -0.0637 
  (0.60)  (2.23) (4.41) (-1.72) (0.55) (-1.27) 
Energy (pe)  -0.0077  -0.0745 -0.0105 0.1099 -0.0420 -0.0120 
  (-0.81)  (-5.02) (-1.72) (11.68) (-4.30) (-1.30) 
Ag-chemical (pa)  -0.0826  -0.0244 -0.02149 -0.0420 0.4779 -0.2733 
  (-2.17)  (-0.94) (-0.55) (-4.30) (10.75) (-7.84) 
Other Materials (pm)  -0.0138  0.0135 -0.0637 -0.0120 -0.2733 0.6450 
  (-0.25)  (0.54) (-1.27) (-1.30) (-7.84) (10.16) 

Fixed Factors:         
Land (ZL)  1.6054  -1.2285 -2.9785 -0.8000 -1.6907 -4.0314 
  (1.20)  (-2.81) (-1.11) (-5.08) (-2.30) (-2.81) 
Public Research (ZL)  0.0435  0.0141 -0.0007 0.0038 -0.0153 -0.0138 
  (2.19)  (2.16) (-0.02) (1.59) (-1.40) (-0.65) 
GM Soybeans (Zs)   0.1775  -0.2145 0.2803 0.0196 -0.2599 -0.0935 
    (0.70)  (-2.58) (0.56) (0.65) (-1.88) (-0.35) 
GM Corn (Zc)  0.4179  0.0234 -0.1074 0.0660 0.1471 -0.3284 
  (1.08)  (0.18) (-0.14) (1.43) (0.69) (-0.79) 
Preseason  -0.0038  -0.0015 -0.0111 0.0007 0.0011 -0.0022 

         Precipitation (Zp)  (-1.49)  (-1.78) (-2.14) (2.41) (0.78) (-0.80) 
Time (t)  -0.0014  0.0023 -0.0022 0.0001 0.0009 0.0011 
  (-1.60)  (8.21) (-1.24) (1.39) (1.85) (1.23) 
Intercept  0.0707  -0.0880 0.0497 -0.0144 -0.0422 -0.0922 
  (3.71)  (-14.01) (1.30) (-6.37) (-4.00) (-4.50 
         
         
     04-23-10 



 
Table 3.  Estimate of the numeraire (crop output) equation with cross-equation restrictions (to 
coefficients in table 2) 
 

Variable Coefficient t-value Variable Coefficient t-value 
ZL 39.1080 2.04 .5(ZL)2 3076.656 2.02 
Zr 0.1722 0.71 ZLZr 5.312 0.26 
Zs 38.7174 1.00 ZLZs 5.393 0.01 
Zc -20.5248 -0.26 ZLZc -129.853 -0.19
Zp 0.0723 2.18 ZLZp 0.403 0.20 
t -0.0023 -0.12 ZLZt -1.295 -1.43 

.5(pv)2 0.0711 0.86 .5(Zr)2 -0.111 -0.35 
pvpk -0.0598 -2.28 ZrZs -1.993 -0.67 
pvph 0.0298 0.60 ZrZc 6.038 1.29 
pvpe -0.0077 -0.81 ZrZp -0.024 -0.61 
pvpa -0.0826 -2.17 Zrt -0.003 -0.24 
pvpm -0.0138 -0.25 .5(Zs)2 -29.320 0.98 

.5(pk)2 0.0801 1.89 ZsZc -8.074 -0.24 
pkph 0.0378 2.23 ZsZp 18.369 0.49 
pkpe -0.0745 -5.02 Zst -0.835 -0.92 
pkpa -0.0244 -0.94 .5(Zc)2 56.304 0.95 
pkpm 0.0135 0.54 ZcZp -26.678 -0.43 

.5(ph)2 0.4394 4.41 Zct 0.377 0.20 
phpe -0.0105 -1.72 .5(Zp)2 0.003 0.61 
phpa -0.0149 -0.55 Zpt -0.004 -2.34 
phpm -0.0637 -1.27 .5t2 -0.000 -0.16 

.5(pe)2 0.1099 11.68 Constant 0.170 1.01 
pepa -0.0420 -4.30    
pepm -0.0120 -1.30    

.5(pa)2 0.4779 10.75    
papm -0.2733 -7.84    

.5(pm)2 0.6450 10.16    
     4-23-10 
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Table 4.  Output Supply and Input Demand Elasticities: Eight Midwestern States, 1960-20041 

        Elasticity w.r.t. prices of 

 Quantity Capital Labor Energy Ag-chemical Other Materials 
Livestock 

Output 
Crop 

Output 
Inputs        

Capital -0.040 -0.014 0.045 0.013 -0.010 0.036 -0.033 
 (-1.89) (-2.23) (5.02) (0.94) (-0.54) (2.28)  
Labor -0.007 -0.066 0.003 0.003 0.018 -0.007 0.056 
 (-2.23) (-4.41) (1.72) (0.55) (1.27) (-0.60)  
Energy 0.196 0.021 -0.354 0.122 0.046 0.024 -0.056 
 (5.02) (1.72) (-11.68) (4.30) (1.30) (0.81)  
Ag-chemical 0.027 0.013 0.058 -0.591 0.453 0.112 -0.072 
 (0.93) (0.55) (4.30) (-10.75) (7.84) (2.17)  
Other Materials    -0.004 0.015 0.004 0.091 -0.288 0.005 0.176 

 (-0.54) (1.27) (1.30) (7.84) (-10.16) (0.25)  
Outputs        

Livestock -0.014 0.006 -0.002 -0.022 -0.005 0.021 0.017 
 (-2.28) (0.60) (-0.81) (-2.17) (0.25) (0.86)  
Crop 0.009 -0.033 0.004 0.011 -0.131 0.013 0.127 

1 Evaluation of equation (3) at the sample mean value of the variables from table 1 and using coefficient estimates taken 
from table 2. t- or z-values in parentheses; evaluated at the sample of prices and quantities. 

       04-23-10 
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Table 5. Estimates of Bias Effects in Production Decisions w.r.t. Quasi-Fixed Factors: Eight    
Midwestern States, 1960-20041 

                              Quasi-Fixed Factors 

Production Decisions      Land 
   Public Ag  
   Research 

 GM 
Soybean  
   Adoption 

   GM Corn 
    Adoption  

Inputs       

Capital      -0.336     -0.383     0.013      -0.002  
Labor      -0.268     -0.054    -0.015      -0.000  

Energy       1.353     -0.467    -0.012      -0.012  

Ag-chemical       1.199      0.672     0.039      -0.012  

Other Materials       0.801      0.170    0.001       0.007  
Outputs       

Livestock  -368.020     -5.892    0.644      -0.339  
Crop    279.900      4. 480   -0.490       0.258  

1 Evaluation of equation (9) and (10) at sample mean value of the variables from table 1 and using estimated coefficients 
from table 2 and 3. All bias effects for pre-plant precipitation are zero because the mean value of this variable in zero. 
04-23-10 
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Table 6.  Output Supply and Input Demand Own-Price Elasticities  
from Lim and Shumway (1997) 

  Functional Form 

Quantity Translog Quadratic 
   
Inputs   

Capital -0.26 0.22 
Labor -0.43 -0.13 
Materials -0.63 0.28 

   
Outputs   

Livestock 1.01 0.10 
Crop 0.69 -0.05 

      
  
 


