
1

 
Abstract—We develop a tri-level model of transmission and 

generation expansion planning in a deregulated power market 
environment. Due to long planning/construction lead times and 
concerns for network reliability, transmission expansion is 
considered in the top level as a centralized decision. In the second 
level, multiple decentralized GENCOs make their own capacity 
expansion decisions while anticipating a wholesale electricity 
market equilibrium in the third level. The collection of bi-level 
games in the lower two levels forms an equilibrium problem with 
equilibrium constraints (EPEC) that can be approached by either 
the diagonalization method (DM) or a complementarity problem 
(CP) reformulation. We propose a hybrid iterative solution 
algorithm that combines a CP reformulation of the tri-level 
problem and DM solutions of the EPEC sub-problem.  

Index Terms—Generation Expansion Planning, Transmission 
Expansion Planning, Equilibrium Problem with Equilibrium 
Constraints, Mathematical Program with Equilibrium 
Constraints, Complementarity Problem, Nash Equilibrium. 

NOMENCLATURE 

A. Sets 
N Electricity nodes indexed by i, j, k 
L Transmission lines indexed by ij 
௚ܰ௘௡ Set of electricity nodes where a GENCO is located 

indexed by i, j, k 

B. Primal Decision Variable Vectors 
z (First level) Binary decision variables for transmission 
lines, with elements for existing lines set fixed to 1  
ܸ௡௘௪ (Second level) Generation capacities after expansion, 
MW 
q (Third level) Demand satisfied at electricity nodes, MW 
θ (Third level) Voltage angles at electricity nodes 
f (Third level) Electricity flows on transmission lines, MW 
y (Third level) Generation amounts at electricity nodes, MW 
η (Third level) Price (scalar) at the reference electricity node, 
$/MWh 
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C. Parameter Vectors 
a Intercepts of electricity demand prices as linear functions of 
quantities, $/MWh 
b Slopes of electricity demand prices as linear functions of 
quantities, $/MWh/MWh 
c Linear coefficient of the generation cost function, $/MWh 
e Quadratic coefficient of the generation cost function, 
$/MWh/MWh 
ܿ௘௫௣ Investment costs for generation expansion discounted on 
an hourly basis, $/MW 
ܿ௧௥௘௫௣ Investment costs for transmission line expansion 
discounted on an hourly basis, $/MW 
 ௠௔௫ Maximum values for voltage anglesߠ
 ௠௜௡Minimum values for voltage anglesߠ
V Generation capacities at electricity nodes, MW 
U Fuel availability, MW 
K Capacities of transmission lines, MW 
B Negative susceptances of transmission lines, Ωିଵ 

I. INTRODUCTION 

INCREASINGLY across the U.S. and worldwide, the
wholesale electricity market is composed by separate
generation companies (GENCOs), transmission owners 

(TRANSCOs), distribution companies (DISCOs) and load 
serving entities (LSEs) [1]. The Independent System Operator 
(ISO) is charged with monitoring the grid, ensuring reliability 
and settling the electricity market for a region. The ISOs and 
regional reliability councils, who conduct transmission 
planning studies and reliability assessment, must consider how 
GENCOs’ strategic expansion decisions may react to the 
transmission planning decisions, and how the wholesale 
markets will perform in response to both the transmission and 
generation expansions. 

To provide reliable and economic electricity supply, 
planners must not only consider generation expansion to 
ensure there will sufficient energy to meet future loads, but 
also take into account the entire wholesale electricity supply 
system including transmission and market clearing by the ISO. 
Resource investment decisions have great impact on market 
outcomes. Transmission congestion due to insufficient 
transmission capacity can cause spikes in the locational 
marginal prices (LMPs) or even load curtailment in extreme 
cases. LSEs, who are the buyers in the wholesale market, play 
important roles in distributing the electricity to retail 
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customers. In restructured markets, expansion decisions may 
be justified by potential profit increases rather than cost 
reductions. The profit return received by an investor is 
determined by an electricity market price settlement. The ISO 
matches the electricity supply bids and demand offers and 
settles the LMPs to maximize total market surplus of both 
buyers and sellers. Typically this is done on an hourly basis in 
a day-ahead market and every 5 minutes in the real-time 
market. Moreover, investments in generation capacity will be 
effective only if the transmission capacity is adequate to 
transport the newly available power to where the demand is 
located.  

We formulate a market-based transmission and generation 
expansion problem and propose a method to solve it. In our 
model, each GENCO anticipates prices settled by an ISO 
market clearing problem when making its own investment and 
operational decisions. At the same time, the GENCOs’ 
decisions are also made in response to transmission planning 
decisions because sufficient transmission capacity is essential 
for GENCOs to reap additional profits from delivering energy 
from expanded capacity to the load locations. GENCOs will 
hesitate to expand if a high level of grid congestion is likely to 
result in future generation curtailment. On the other hand, too 
much transmission capacity does not favor generation 
expansion either, because low electricity prices provide little 
incentive for investment. Therefore, the transmission 
expansion planning decision must be considered in a market 
based generation expansion planning problem. Although in a 
deregulated market, transmission lines are owned by 
individual TRANSCOs, transmission expansion planning 
remains centralized to guarantee reliability of the transmission 
grid. Therefore, our model includes a centralized transmission 
planning decision by the ISO, who is mainly in charge of the 
reliability of the regional market. The ISO conducts a resource 
adequacy study, anticipates the expansion and dispatch 
decisions by multiple GENCOs, and decides where to expand 
the grid. Our market-based model captures both dependence of 
the GENCOs’ expansion decisions on prior transmission plans 
and their anticipation of wholesale electricity market 
settlement after expansion. 

We formulate the transmission and generation expansion 
planning problem as a mixed integer tri-level program, where 
the discrete centralized transmission planning decisions occur 
in the first level, multi-GENCOs’ generation expansion 
decisions constitute the second level, and an electricity market 
equilibrium problem forms the third level. Modeling 
transmission planning in the top level is consistent with a 
principle that transmission planning should proactively 
influence generation investment [2]. The lower level 
interactions are based on our previous model [3], including 
strategic behavior by the GENCOs. Because the tri-level 
structure with a sub-problem of bi-level games poses solution 
difficulties, algorithms will first be proposed to solve the 
collection of bi-level games. This collection can be 
reformulated as an equilibrium problem with equilibrium 
constraints (EPEC), to which two of the currently available 
methodologies discussed in [4] can be applied. We propose a 
hybrid iterative algorithm to solve the entire tri-level 
programming problem by exploiting the advantages of both 
EPEC solution methods. In part II of this paper, case studies of 

6, 30, and 118 bus test systems are presented to illustrate how 
the algorithm works to optimize the transmission expansion 
plan in anticipation of generation expansion decisions and 
market equilibria.  

The contributions of this paper are fourfold: 1) We propose 
a novel formulation of centralized transmission and 
decentralized generation expansion planning as an integrated 
tri-level optimization problem with a sub-problem of bi-level 
games. 2)  The solution challenges posed by the problem’s 
multi-level and bi-level games structure are addressed by first 
reformulating the non-convex sub-problem as an EPEC and 
solving it by the diagonalization method (DM) as multiple 
mathematical programs with equilibrium constraints 
(MPECs). Since the concavity of each maximization MPEC is 
not guaranteed, we also propose a way to verify the solution as 
a local (approximate) Nash equilibrium (NE) point. 3) We 
apply a complementarity problem (CP) reformulation to the 
entire tri-level programming problem to search for promising 
transmission expansion plans. 4) We develop a novel hybrid 
iterative algorithm that can successfully solve the entire tri-
level expansion planning model.   This approach could be used 
by a regional transmission planner to identify a good 
combination of proposed transmission projects to implement. 

In Section II, a thorough literature review is given. The 
model is presented in Section III. Sections IV and V, 
respectively, illustrate the algorithms to solve an NE game of 
bi-level games, and a tri-level programming problem with a 
bi-level games sub-problem. Section VI concludes the paper. 

II. LITERATURE REVIEW 

Many recent studies of restructured electricity markets 
formulate a single decision maker’s expansion decision with 
an ISO market clearing problem as a lower level sub-problem. 
A review of traditional and market based transmission 
expansion planning methodologies was summarized in [5]. 
Transmission expansion with a market equilibrium 
subproblem was modeled in [6]. Similar models of generation 
expansion include [7], [8], [9] [10]. Bi-level programming 
(BLP) models are widely applied to model individual 
GENCOs’ capacity expansion decisions and/or bidding 
strategies while anticipating the market settlement results [11] 
[12] [13] [14] [15].  

Game theory is widely applied to model and investigate the 
outcomes when multiple strategic players make their 
expansion decisions simultaneously. A single level Cournot 
game of multiple GENCOs making both capacity expansion 
and operational decision was studied, and an equilibrium 
solution was iteratively solved by diagonalization [16]. Three 
models of solving a single level Cournot capacity game under 
different economic schemes were presented in [17]. Given the 
parameter assumptions on demand and two types of candidate 
units, the existence and uniqueness of the Cournot equilibrium 
solutions were also discussed and proved. A two-tier, multi-
period, multi-GENCO equilibrium capacity expansion model 
was proposed in [18]. A capacity expansion problem of 
strategic multi-GENCO bi-level games was presented and a 
co-evolutionary algorithm was applied to search for the NE 
solution in [19]. Competitive decisions by multiple GENCOs 
to expand in anticipation of market outcomes can be modeled 
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TABLE I 
COMPARISON WITH DIFFERENT MODELS PROPOSED IN PREVIOUS RELEVANT LITERATURE REVIEW  

 [20] [21] [22] [23] [24] [25] [26] Our Model 

Transmission 
Expansion 

Centralized; 
Existing/new line 

expansion; Maximize 
net surplus 

Decentralized; New 
line expansion; 

Maximize net profit 

Centralized; 
Existing/new line 
expansion; Multi-

criteria 

Centralized; Existing 
line augmentation; 

Minimize operation and 
investment cost 

Centralized; 
Existing/new line 

expansion; Minimizing 
operation and 

investment cost 

Centralized; New 
line expansion; 
Maximize net 

surplus 

Generation 
Expansion 

Decentralized; 
Continuous 

Decentralized; 
Binary 

Decentralized; 
Continuous  

Decentralized; Binary  
Decentralized; 

Continuous 
Decentralized; 

Continuous 
Multi-Period 
Expansion 

No Yes Yes No No No 

ISO’s Market 
Problem 

Maximize surplus 
Minimize system 

cost, minimize loss 
of energy probability 

Maximize surplus Minimize operating cost Minimize operation cost Maximize surplus 

GENCO’s 
Operational 

Problem 
Strategic (Cournot) Competitve 

Strategic (pair of 
price and quantity) 

Strategic (pair of price 
and quantity) 

Competitive Strategic (Cournot) 

Operational 
Uncertainty 

Yes Yes No No Yes No 

Solution 
Method 

Optimization of Bi-
level Games 

Simulation of an 
Iterative Procedure 

Search-based and 
Agent-based 

Method 
Genetic Algorithm 

Linearization and MILP 
Reformulation 

Iterative algorithm 
with Optimization 
of Bi-level Games 

 
as an equilibrium problem with equilibrium constraints 
(EPEC). Two of the currently available algorithm to solve an 
EPEC problem, diagonalization method (DM) and 
complementary problem (CP) reformulation, are discussed in 
[4]. Both linearization technique and strong duality theory are 
adopted in [27] [28] [29] to reformulate an EPEC problem into 
a set of mixed integer linear constraints and solve it to its 
optimality. A combination of constructing a linearization of 
EPEC problem and validating the solution optimality by DM 
is proposed to solve a multi-GENCO’s bilevel capacity 
expansion problem in [30]. Comparison of open loop and 
closed loop capacity equilibrium in an electricity market is 
thoroughly discussed in [31]. This work extended the findings 
of [32] and found that an EPEC with capacity planning in the 
upper level and any competition types from perfect to Cournot 
in the lower level market problem with single load period 
yield same results as an open loop Cournot equilibrium, where 
multi-GENCO determine their capacity and quantity to sell at 
the same time.  

When both transmission and generation planning decisions 
account for interactions among market players, the planning 
model takes on a more complicated, multi-level structure. 
Sauma and Oren [20] studied a multi-GENCO equilibrium 
expansion planning model with anticipation of an ISO market 
clearing problem, and evaluated the transmission expansion’s 
effect on the social welfare of the system by considering 
different transmission expansion plans. For various candidate 
transmission expansion decisions, the bi-level games were 
solved by an iterative DM algorithm. Roh et al. [21] 
developed an iterative process to solve a generation and 
transmission planning problem by simulating the interactions 
among GENCOs, TRANSCOs and ISO with consideration of 
uncertainty, profit from the market clearing decision, and 
transmission reliability. Motamedi et al. [22] proposed a 
transmission expansion framework to take into account the 
expansion reaction from decentralized GENCOs and also 
integrated an operational optimization in restructured 
electricity market. The problem was formulated as a four level 
model and it was approached by agent-based system and 
search-based techniques. Hesamzadeh et al. [23] [24] studied a 
new framework of transmission augmentation planning 

problem with strategic generation expansion and operational 
decision and solved a tri-level program by a genetic algorithm.  

Pozo et al. [25] studied a three-level generation and 
transmission model, and converted it into single level mixed 
integer linear programming problem. Table I compares our tri-
level model with the multi-level generation and transmission 
expansion models investigated in the previous papers. A level 
is labeled as “centralized” if decisions are is made by a single 
entity and “decentralized” if decisions are made separately by 
individual decision makers. Our formulation is similar to the 
one in [20] but we include the transmission plan as a decision 
variable in the optimization problem rather than a parameter. 
Our tri-level model has a similar structure to that investigated 
in [25] [26]. However, we consider price-responsive demand 
functions and strategic interactions among the generators at 
the operational level. The objective of the system operator, to 
maximize the total net surplus, cannot be reduced to 
minimizing cost. The problem structure is also similar to [23] 
[24] but we consider expansion as new transmission lines 
rather than augmentation of the existing circuits, price-
responsive demand functions, Cournot competition among 
GENCOs in the operational level, and surplus maximization as 
the objective function for the system operator.  

III. MODEL AND PROBLEM FORMULATION 

A. Assumptions 

1) For simplicity, we formulate a static model with a single 
hour of operation and no uncertainty. Thus, the third 
(operational) level represents a typical hour in a single 
future scenario for market conditions. At the expense of 
increased computational time, the model could be extended 
to incorporate multiple periods and probabilistic scenarios 
for parameters such as. fuel price and load, or to model 
infrastructure contingencies. 

2) For the transmission expansion, we only consider building 
new lines and do not consider expanding the capacity of the 
existing lines. However, the model can be easily extended to 
include line expansion without changing the structure of the 
problem. 
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Fig. 1. A Tri-level Integrated Generation and Transmission Expansion 
Planning Model 

 
3) The transmission and generation expansion costs in the top 

two levels are both modeled as linear and are discounted to 
form equivalent hourly costs. 

4) Each generator at each bus is owned by a single GENCO. 
As a Cournot competitor, each GENCO makes his own 
decision on the generation quantity to sell in the electricity 
market under a type of bounded rationality [33]. A 
quadratic generation cost function that will not be affected 
by the capacity expansion is assumed. We formulate one 
generator per GENCO in the model. However, the model 
can be easily extended to multiple generators per GENCO. 

5) We assume the market equilibrium in the third level is 
simultaneously determined by Cournot competition among 
the GENCOs and an ISO market clearing problem. Its 
equivalent linear complementarity problem (LCP) 
reformulation generates a unique NE solution due to the 
concave objective functions and convex feasible regions 
[20]. Although the Cournot model simplifies the actual 
market structure, its broad market outcomes have been 
validated against an agent-based simulation of bid and offer 
matching [34]. In contrast, the multiplicity of solutions [9] 
[27] [28] [29] in supply function equilibrium formulations 
may obscure the effects of upper-level capacity expansion 
decisions. 

B. Formulation 

The problem is formulated as a tri-level model as shown in  
Fig. 1 with the ISO’s discrete transmission expansion 
decisions on the first level, multi-GENCOs’ separate 
generation expansion decisions on the second level, and the 
multiple market players’ operational decisions in the third 
level. By extending the bi-level model in [3], we decentralize 
the generation expansion decisions by separate GENCOs 
where, in the lower level, the GENCOs and ISO 
simultaneously optimize their own operational benefits. The 
GENCO decides its generation level, and the ISO allocates 
energy to the LSEs to maximize the total system surplus. 
Different from the lower level model in [3], we do not 
consider a fuel supply problem to account for the fuel 
availability and fuel transportation capacity. Instead, for a 
simplified version, we include a fuel capacity constraint in 

each GENCO’s operational decision problem to represent any 
combination of fuel supply and transportation capacity 
constraints. Since the generation decisions are influenced by 
the transmission grid, it is assumed that the ISO makes a 
centralized transmission expansion decision in anticipation of 
the expansion decisions made by its followers, the GENCOS.  

A full mathematical formulation of the mixed integer tri-
level nonlinear programming model is proposed as below, 
where the variables in the brackets to the right of constraints 
are their corresponding dual multipliers. 
 First Level: From a system point of view, the ISO collects 

the information about future loads and resources and makes 
a centralized decision, z, on transmission expansion to 
maximize system net surplus, equivalent to system total 
surplus less generation and transmission expansion cost: 

௭ ݔܽ݉ ∑ ቀ
ଵ

ଶ ௝ܾݍ௝
ଶ ൅ ௝ܽݍ௝ቁ௝אே െ ∑ ൫ ௝ܿݕ௝ ൅ ௝݁ݕ௝

ଶ൯௝אே೒೐೙ െ 

∑ ܿ௜௝
௧௥௘௫௣ܭ௜௝ݖ௜௝௜௝א௅ െ ∑ ௝ܿ

௚௘௫௣൫ ௝ܸ
௡௘௪ െ ௝ܸ൯௝אே೒೐೙  (1) 

 Second Level: Each GENCO k makes its own expansion 
decision V୩

୬ୣ୵, given the other GENCOs’ decisions and in 
anticipation of market clearing results. Each GENCO k 
maximizes its net operating profit from selling the power in 
the electricity market less the expansion cost: 

௞݌௏ೖ೙೐ೢ ሺݔܽ݉ െ ܿ௞ െ ݁௞ݕ௞ሻݕ௞ െ ܿ௞
௚௘௫௣ሺ ௞ܸ

௡௘௪ െ ௞ܸሻ ሺ2ሻ 
s.t.         ௞ܸ

௡௘௪ െ ௞ܸ ൒ 0 ሾܸ݊ߤ ௞ܸ ൒ 0ሿ                  ሺ3ሻ 
 Third Level: The ISO chooses q, f, and  to optimize both 

the sellers’ and buyers’ surplus, ∑ ቀ
ଵ

ଶ ௝ܾݍ௝
ଶ ൅ ௝ܽݍ௝ቁ௝אே െ

 ∑ ேא௝௝ݍ௝݌  and ∑ ே೒೐೙א௝௝ݕ௝݌ െ ∑ ൫ ௝ܿݕ௝ ൅ ௝݁ݕ௝
ଶ൯௝אே೒೐೙ , and 

transmission rent,  ∑ ሺ݌௝ െ ௅א௜௜௝݌ ሻ ௜݂௝ , the total of which 

reduces to  ∑ ቀ
ଵ

ଶ ௝ܾݍ௝
ଶ ൅ ௝ܽݍ௝ቁ௝אே െ ∑ ൫ ௝ܿݕ௝ ൅ ௝݁ݕ௝

ଶ൯௝אே೒೐೙ . 

Because ∑ ൫ ௝ܿݕ௝ ൅ ௝݁ݕ௝
ଶ൯௝אே೒೐೙  remains constant in this 

optimization problem, it is equivalent to maximize 

∑ ቀ
ଵ

ଶ ௝ܾݍ௝
ଶ ൅ ௝ܽݍ௝ቁ௝אே . Constraint (5) gives the load balance 

on each electricity nodes. Equations (6) and (7) give the 
bounds on voltage angles. Equations (8) and (9) are the 
linearized power flow equations. The thermal transmission 
limits are enforced by constraints (10) and (11). ܯ௜௝ is a big 
value so that when ݖ௜௝ is 1, ௜݂௝ ൌ ௜ߠ௜௝൫ܤ െ  ,௝൯; otherwiseߠ
the constraints (8) and (9) are relaxed. Here, with a direct 
current optimal power flow approximation, we assume the 
voltage angle at reference bus, ߠ௥௘௙ ൌ 0, and the ranges for 
all other voltage angles are within ±0.6, so that ܯ௜௝ ൌ
 .௜௝ sufficesܤ1.2

௤,ఏ,௙ݔܽ݉ ∑ ቀ
ଵ

ଶ ௝ܾݍ௝
ଶ ൅ ௝ܽݍ௝ቁ௝                    (4) 

.ݏ .ݐ ௝ݍ ൅ ∑ ௝݂௜௝௜ െ ∑ ௜݂௝௜௝ ൌ ,௝ݕ ݆׊ א  ௝൧    (5)݌ൣ  ܰ
௜ߠ ൑ ௝ߠ

௠௔௫, ݆׊ א ௝ߙൣ ܰ
ା ൒ 0൧                 (6) 

െߠ௝ ൑ െߠ௝
௠௜௡, ݆׊ א ௝ߙൣ ܰ

ି ൒ 0൧              (7) 

௜݂௝ െ ௜ߠ௜௝൫ܤ െ ௝൯ߠ ൑ ൫1 െ ,௜௝ܯ௜௝൯ݖ ݆݅׊ א ௜௝ߛൣ  ܮ
ା ൒ 0൧ (8) 

െ ௜݂௝ ൅ ௜ߠ௜௝൫ܤ െ ௝൯ߠ ൑ ൫1 െ ,௜௝ܯ௜௝൯ݖ ݆݅׊ א ௜௝ߛൣ   ܮ
ି ൒ 0൧(9) 

௜݂௝ ൑ ,௜௝ܭ௜௝ݖ ݆݅׊ א ௜௝ߣሾ   ܮ
ା ൒ 0ሿ            (10) 

െ ௜݂௝ ൑ ,௜௝ܭ௜௝ݖ ݆݅׊ א ௜௝ߣሾ   ܮ
ି ൒ 0ሿ           (11) 

௝ݍ ൒ 0, ݆׊ א ܰ   ሾߜ௝ ൒ 0ሿ                  (12) 
Simultaneously, each GENCO i maximizes its operational 
profit with anticipation of their decisions’ effect on the 
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reference price, ߟ, and determines its quantity to sell [33]. 
Equation (14) implies balance of total demand and 
generation, (15) indicates that the generation level must not 
exceed its capacity. Inequality (16) imposes a constraint on 
fuel availability, which also implies an upper bound on the 
generation level y and expanded capacity ௜ܸ

௡௘௪, that 
restricts the feasible region and makes the problem 
computationally easier to solve. 

௬೔,ఎݔܽ݉  ሺߟ ൅ ߶௜ െ ܿ௜ െ ݁௜ݕ௜ሻ  ௜             (13)ݕ

.ݏ .ݐ ௜ݕ ൅ ߟ ∑
ଵ

௕ೕ
௝ ൌ ∑

థೕି௔ೕ
௕ೕ

௝ െ ∑ ௝௝ஷ௜ݕ  ሾߚ௜ሿ      (14) 

௜ݕ ൑ ௜ܸ
௡௘௪  ሾߤ௜ ൒ 0ሿ                    (15) 

௜ݕ ൑ ௜ܷ  ሾߩ௜ ൒ 0ሿ                       (16) 
௜ݕ ൒ 0   ሾߞ௜ ൒ 0ሿ                        (17) 

The reference node LMP and price premia at non-reference 
nodes that appear in (13) and (14) are respectively defined 
in equations (18) and (19), which link the dual variables, ݌௝, 
in the ISO’s problem and the reference price, ߟ, in the 
GENCO’s problem. 

ߟ ൌ  ௥௘௙                                  (18)݌
߶௝ ൌ ௝݌ െ ,ߟ ݆׊ א ܰ                    (19) 

Working from the bottom to the top, the sub-problem in the 
third level is an equilibrium problem formed by combining 
equations (13) – (17) for each GENCO with (4) – (12), (18), 
and (19), given the decision variables in the upper two levels, 
௜௝ and ௞ܸݖ

௡௘௪, as fixed parameters. The bi-level sub-problem in 
the lower two levels consists of the objective function (2) 
subject to constraint (3) and the decision variables (q, etc.), 
with corresponding dual variables, being optimal in the lower 
level equilibrium problem (4) – (19), given the decision 
variables in the first level, ݖ௜௝, as fixed parameters. Finally, the 
entire tri-level program includes the objective function (1) 
subject to the decision variables ܸ௡௘௪ being optimal in the bi-
level sub-problem (2) – (19). 

IV. ALGORITHM TO SOLVE THE EPEC SUB-PROBLEM 

To approach the optimization of the tri-level expansion 
problem with electricity market, we first study its equilibrium 
sub-problem, given in equations (2)–(19), without considering 
the ISO’s centralized transmission expansion decisions in the 
first level. This game involves generation expansion decisions 
from multiple GENCOs, where each of their separate 
optimization problems is a bi-level problem with multiple 
followers including all GENCOs and the ISO. Each GENCO’s 
bi-level problem, in equations (2)-(19), can be reformulated as 
an MPEC by replacing the lower level optimization problems 
in equations (4)-(17) with their equivalent first-order 
optimality conditions given in equations (20)-(35) [4]. Each 
perpendicular constraint; e.g.,  ߠ௠௔௫ െ ௝ߠ ٣ ௝ߙ

ା, can be further 
converted to an equivalent nonlinear reformulation; e.g., 
൫ߠ௠௔௫ െ ௝ߙ௝൯ߠ

ା ൌ 0. Therefore, for each equilibrium 
constraint, there are three corresponding dual variables: two 
for the equations or inequalities and one for the nonlinear 
reformulation of the perpendicular relationship. For example, 
in equation (24) ߠߤ௞௝

ା ൒ 0 and  ߙߤ௞௝
ା ൒ 0 are dual variables for 

equations ߠ௠௔௫ െ ௝ߠ ൒ 0 and ߙ௝
ା ൒ 0, respectively while 

௞௝ߙߠߤ
ା  is the dual variable for the equation ൫ߠ௠௔௫ െ ௝ߙ௝൯ߠ

ା ൌ

0. In each GENCO k’s problem, the other GENCOs’ capacity 
expansion decisions are considered as fixed parameters. The 
subscript of dual variables starting with k indicates the specific 
sets of dual variables for GENCO k. Also the dual variables 
for (18) and (19) are, respectively, ߟߤ௞ and ߤ߶௞௝. 

௝ܾݍ௝ ൅ ௝ܽ െ ௝݌ ൅ ௝ߜ ൌ 0, ݆׊ א ܰ  ሾݍ݀ߤ௞௝ሿ        (20) 
െߙ௝

ା ൅ ௝ߙ
ି െ ∑ ௜௝ߛ

ାܤ௜௝௜, ൅ ∑ ௝௜ߛ
ାܤ௝௜௜ ൅ ∑ ௜௝ߛ

௜௝௜ܤି െ ∑ ௝௜ߛ
௝௜௜ܤି ൌ 0                  

݆׊ א ܰ   ሾߠ݀ߤ௞௝ሿ (21) 
௝݌ െ ௜݌ െ ௜௝ߛ

ା ൅ ௜௝ߛ
ି െ ௜௝ߣ

ା ൅ ௜௝ߣ
ି ൌ 0, ݆݅׊ א ݀ߤൣ   ܮ ௞݂௜௝൧ (22) 

௝ݍ ൅ ∑ ௝݂௜௝௜ െ ∑ ௜݂௝௜௝ ൌ ,௝ݕ ݆׊ א  ௞௝൧    (23)ݕݍߤൣ   ܰ
௠௔௫ߠ െ ௝ߠ ൒ 0 ٣ ௝ߙ

ା ൒ 0, ݆׊ א ܰ  
ሾߠߤ௞௝

ା ൒ 0, ௞௝ߙߤ
ା ൒ 0, ௞௝ߙߠߤ

ା ሿ                      (24) 
௝ߠ െ ௠௜௡ߠ ൒ 0 ٣ ௝ߙ

ି ൒ 0, ݆׊ א ܰ  
௞௝ߠߤൣ

ି ൒ 0, ௞௝ߙߤ
ି ൒ 0, ௞௝ߙߠߤ

ି ൧                     (25) 

െ ௜݂௝ ൅ ௜ߠ௜௝൫ܤ െ ௝൯ߠ ൅ ൫1 െ ௜௝1.2ܤ௜௝൯ݖ ൒ 0 ٣ ௜௝ߛ
ା ൒ 0, ݆݅׊ א                   ܮ

ሾߤ ௞݂௜௝
ା ൒ 0, ௞௜௝ߛߤ

ା ൒ 0, ௞௜௝ߛ݂ߤ
ା ሿ                     (26) 

௜݂௝ െ ௜ߠ௜௝൫ܤ െ ௝൯ߠ ൅ ൫1 െ ௜௝1.2ܤ௜௝൯ݖ ൒ 0 ٣ ௜௝ߛ
ି ൒ 0, ݆݅׊ א                     ܮ

ሾߤ ௞݂௜௝
ି ൒ 0, ௞௜௝ߛߤ

ି ൒ 0, ௞௜௝ߛ݂ߤ
ି ሿ                    (27) 

௜௝ܭ௜௝ݖ െ ௜݂௝ ൒ 0 ٣ ௜௝ߣ
ା ൒ 0, ݆݅׊ א   ܮ

ሾܭߤ௞௜௝
ା ൒ 0, ௞௜௝ߣߤ

ା ൒ 0, ௞௜௝ߣܭߤ
ା ሿ                    (28) 

௜௝ܭ௜௝ݖ ൅ ௜݂௝ ൒ 0 ٣ ௜௝ߣ
ି ൒ 0, ݆݅׊ א   ܮ

ሾܭߤ௞௜௝
ା ൒ 0, ௞௜௝ߣߤ

ା ൒ 0, ௞௜௝ߣܭߤ
ା ሿ                   (29) 

௝ݍ ൒ 0 ٣ ௝ߜ ൒ 0, ݆׊ א ܰ  ሾݍߤ௞௝ ൒ 0, ௞௝ߜߤ ൒ 0,  ௞௝ሿ  (30)ߜݍߤ
ߟ ൅ ߶௝ െ ௝ܿ െ 2 ௝݁ݕ௝ െ ௝ߚ െ ௝ߤ െ ௝ߩ ൅ ௝ߞ ൌ 0, ݆׊ א ௚ܰ௘௡  

 ௞௝൧                                        (31)ݕ݀ߤൣ

௝ݕ ൅ ௝ߚ ∑
ଵ

௕೔
௜ ൌ 0, ݆׊ א ௚ܰ௘௡   ൣߟ݀ߤ௞௝൧            (32) 

௝ܸ
௡௘௪ െ ௝ݕ ൒ 0 ٣ ௝ߤ ൒ 0, ݆׊ א ܰ 

݊ߤൣ ௞ܸ௝ ൒ 0, ௞௝ߤߤ ൒ 0,  ௞௝൧                 (33)ߤܸ݊ߤ

௝ܷ െ ௝ݕ ൒ 0 ٣ ௝ߩ ൒ 0, ݆׊ א ܰ  
௞௝ܷߤൣ ൒ 0, ௞௝ߩߤ ൒ 0, ௞௝ߩܷߤ ൒ 0൧                (34) 

௝ݕ ൒ 0 ٣ ௝ߞ ൒ 0, ݆׊ א ܰ  ሾݕߤ௞௝ ൒ 0, ௞௝ߞߤ ൒ 0,  ௞௝ሿ  (35)ߞݕߤ

A. Diagonalization Method (DM) 

One way to find an equilibrium solution, if one exists, is to 
iteratively solve each GENCO’s problem by fixing the other 
GENCOs’ expansion decisions to their current optimal 
solutions, which is called DM in [4]. In other words, the 
optimal solution determined by each GENCO should be 
identical to the value that the other GENCOs assume as a 
model parameter of their own optimization models. However, 
the existence of a pure Nash equilibrium (NE) strategy is not 
guaranteed for the EPEC sub-problem, and the GENCOs’ 
expansion decisions, ௞ܸ

௡௘௪ , can oscillate, usually among two 
or more different values within a small range, generally by 1-
3% and at most 5% from our computational experience. 
Therefore, we define a maximum number of iteration cycles 
and an approximate NE solution as the average of the 
subsequential limiting solutions, which will be further 
illustrated in Part II of this paper. The model of producers in a 
Cournot game under a type of bounded rationality drastically  
limits the number of possible Nash equilibria compared to a 
supply function equilibrium formulation as in [23]. In our 
numerical studies described in Part II of this paper, multiple 
Nash equilibria are not observed.  

The DM algorithm is illustrated in Table II. First, we solve 
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the MPEC for GENCO 1 by initializing the values of the other 
GENCOs’ expansion decisions ଶܸ,..|ே೒೐೙|

௡௘௪௘௤௨ , equal to their 

existing capacity, ଶܸ,..|ே೒೐೙|  as model parameters and GENCO 

1’s existing capacity ଵܸ as starting point for ଵܸ
௡௘௪. Once the 

optimal solution ଵܸ
௡௘௪כ for GENCO 1 is obtained, it is 

considered as a model input ଵܸ
௡௘௪௘௤௨ to the next MPEC 

problem of GENCO 2 while ଷܸ,..,|ே೒೐೙|
௡௘௪௘௤௨  remain the same for the 

new problem. The iteration continues with starting point for  

୩ܸ
௡௘௪as updated ୩ܸ

௡௘௪௘௤௨  until the MPEC problem of the final 
GENCO is solved. Because the decision ௞ܸ

௡௘௪ can only be 
changed when the MPEC of GENCO k is solved, ௞ܸ

௡௘௪ is 
updated once during a round of n iterations (one for each 
GENCO). If, after a round of iterations, the changes in value 
of each GENCO’s decision are all within the predefined 
threshold ߝ, we conclude that an equilibrium has been 
identified and stop the iteration process. Otherwise, we 
continue the iteration until the predetermined limit is reached. 
The MPEC problem can be solved in GAMS by using the 
solver NLPEC [35], which first reformulates our MPEC into a 
nonlinear program (NLP), and then calls the NLP solver 
CONOPT [36] to solve the problem. 

 
TABLE II 

SOLVING THE EPEC SUB-PROBLEM BY DM ALGORITHM 
DM Algorithm 
Input parameters ଶܸ,..,|ே೒೐೙|

௡௘௪௘௤௨ ; 

Let ConvergenceFlag = 0, Cycle=0; 
While (ConvergenceFlag = 0 and Cycle ൑MaxCycle) 
        Let ConvergenceFlag = 1; 
        For GENCO  k = 1 to | ௚ܰ௘௡| 
              Cycle = Cycle+1; 
              Solve GENCO k’s MPEC problem, Equations (2), (3), (18), (19), 
(20)-(35), with optimal solution ௞ܸ

௡௘௪כ; 
              If  ห ௞ܸ

௡௘௪כ െ ௞ܸ
௡௘௪௘௤௨ห ൒  ߝ

                     ConvergenceFlag = 0; 
              End If;            
              Let  ௞ܸ

௡௘௪௘௤௨ ൌ ௞ܸ
௡௘௪כ; 

       End For 
End While 
Output ଵܸ,..,|ே೒೐೙|

௡௘௪ ൌ ଵܸ,..,|ே೒೐೙|
௡௘௪௘௤௨ ; 

 

B. Complementarity Problem (CP) Reformulation 

Another way to find a NE solution of the equilibrium bi-
level sub-problem is through CP reformulation [4]. Combining 
the MPEC problem for each GENCO results in an equilibrium 
problem with equilibrium constraints (EPEC). The CP 
reformulation combines the KKT conditions of each MPEC to 
reformulate the EPEC into a mixed complementarity problem 
(MCP). Given the lack of convexity of each MPEC, optimality 
to the CP reformulation is only a necessary condition for a 
solution to be an equilibrium of the original bi-level games, 
but not a sufficient condition. Specifically, the solution found 
by CP reformulation is a stationary point of the original EPEC 
problem. The derivation of the CP reformulation can be found 
in Appendix A. 

V. A HYBRID ITERATIVE ALGORITHM TO SOLVE THE TRI-
LEVEL PROGRAMMING PROBLEM 

Upon CP reformulation of equations (2) – (19), the tri-level 
problem (1) – (19), can be converted into a single level 

optimization problem with a set of nonlinear, linear and 
complementarity constraints (38) – (95) as shown in Appendix 
A. The reformulated problem, consisting of the equations (1) 
and (38) – (95), is a generalized MPEC with mixed integer, 
linear, nonlinear and equilibrium constraints, and can be 
solved by the NLPEC solver in GAMS. The NLPEC solver 
provides several different reformulation methodologies to 
approach MPEC problems [35]. The type of MPEC 
reformulation we found the most successful and reliable is to 
penalize violation of the equilibrium constraints in the 
objective function by first converting each equilibrium 
constraint, 0 ൑ ݔ ٣ ݕ ൒ 0, to its equivalent constraint set: 
ݔ ൒ 0, ݕ ൒ 0, ݕݔ ൌ 0, and then including a term,  1/ߤ௣௘௡ݕݔ, 
in the objective function. As the reciprocal penalty parameter 
 ௣௘௡ iteratively decreases to zero, the penalty applied toߤ
ݕݔ ് 0 increases until solutions eventually approximate 
ݕݔ ൌ 0 [35].   

Because of possible occurrence of non-existing pure NE 
solution, the MPEC problem might not even be feasible, 
instead of solving the entire MPEC problem by itself, we relax 
it and adopt it to identify a promising transmission plan. We 
then evaluate the generation expansion and market outcomes. 
Two of the currently available approaches to solve bi-level 
games as an EPEC are DM and CP reformulation. Based on 
our computational studies reported in Part II, given a certain 
transmission expansion planning decision, the performance of 
DM is quite stable in successfully identifying the 
(approximate) Nash equilibrium (NE) of the bi-level games; 
while the CP reformulation, since it is not an equivalent 
reformulation of the original bi-level game, can only find a 
stationary point and provide a bound for the original problem. 
However, the benefit of CP reformulation is to be able to solve 
the entire tri-level problem as a single level problem that 
includes the transmission expansion decisions ݖ௜௝. With all 
these considerations in mind, we propose a hybrid iterative 
algorithm that takes advantage of both methods. It first solves 
a master problem, transformed from the CP reformulation, to 
propose a transmission expansion decision ݖ௠௔௦௧௘௥ି௡  in the n-
th iteration. Given that transmission expansion plan, it 
employs DM to find an (approximate) NE point of the game of 
bi-level games. The iterative solution procedure is illustrated 
in Figure 2, and a detailed explanation of the hybrid algorithm 
is in Appendix 4.B of [37]. The steps of the algorithm are as 
follows: 
 Step 1: Set n to 0. Initialize the best found system net 

surplus, ܨ௕௘௦௧, to 0, and let the objective value lower bound 
constraint (36) of MINLP master problem be greater than 
Fୠୣୱ୲. Go to Step 2.  

Fሺz, Ωሻ ൒ Fୠୣୱ୲,  

where Ω ൌ ൛V୨
୬ୣ୵, q, yൟ, Fሺz, Ωሻ ൌ ∑ ቀ

ଵ

ଶ
b୨q୨

ଶ ൅ a୨q୨ቁ୨ െ

∑ ൫c୨y୨ ൅ e୨y୨
ଶ൯୨אNౝ౛౤ െ ∑ c୧୨

୲୰ୣ୶୮K୧୨z୧୨୧୨אL െ

∑ c୨
୥ୣ୶୮൫V୨

୬ୣ୵ െ V୨൯୨אNౝ౛౤                 (36) 

 Step 2: Solve a MINLP master problem A-n. If the MINLP 
master problem A-n can be successfully solved to an 
optimal solution, we fix the transmission expansion decision 
z୫ୟୱ୲ୣ୰ି୬ and continue to solve the EPEC sub-problem B 
with DM. Go to Step 3. Otherwise, the algorithm is 
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 , bestF z F 

master nz 

master nz 

 ,master n subF z  

 ,master n sub bestF z F  

   , ,best master n subF z F F z   
master nz 

master nz 

 
Fig. 2. A Hybrid Iterative Algorithm to Solve a Tri-level Problem with an EPEC Sub-problem 

 
terminated and best solution found so far is returned as the 
final solution. 

 Step 3: With optimal solution Ωୱ୳ୠ ൌ ቄV୨
୬ୣ୵ୱ୳ୠ, qୱ୳ୠ, yୱ୳ୠቅ 

found by DM, the system net surplus Fሺz୫ୟୱ୲ୣ୰ି୬, Ωୱ୳ୠሻ is 
calculated. If F൫z୫ୟୱ୲ୣ୰ି୬, Ωୱ୳ୠ൯ ൒ Fୠୣୱ୲, go to Step 4. 
Otherwise, go to Step 5.  

 Step 4: Update constraint (36) with 
Fୠୣୱ୲ ൌ F൫z୫ୟୱ୲ୣ୰ି୬, Ωୱ୳ୠ൯, add a constraint (37-n) to cut 
z୫ୟୱ୲ୣ୰ି୬ point and update the best found solution and its 
objective value, F൫z୫ୟୱ୲ୣ୰ି୬, Ωୱ୳ୠ൯. Let n ൌ n ൅ 1, and go 
to Step 2.  
∑ ൫1 െ z୧୨൯୧୨,୸౟ౠ

ౣ౗౩౪౛౨ష౤ୀଵ ൅ ∑ ൫z୧୨൯୧୨,୸౟ౠ
ౣ౗౩౪౛౨ష౤ୀ଴ ൒ 1 (37-n) 

 Step 5: Add a constraint (37-n) to cut z୫ୟୱ୲ୣ୰ି୬. Let 
n ൌ n ൅ 1, and go to Step 2. 
 The hybrid algorithm is not guaranteed to find a global 

optimal solution of the tri-level model. However, the 
numerical results for two of the case studies presented in Part 
II of this paper are validated as the global optimal solutions.  

 

VI. CONCLUSIONS 

In this paper, we consider an integrated transmission and 
generation expansion planning problem in a restructured 
electricity market environment. We propose a novel tri-level 
programming model, where a centralized transmission 
expansion planning decision in the top level is made in 
anticipation of the multi-GENCOs’ responses in terms of their 

generation expansion decisions in the middle level, while each 
GENCO also makes its capacity expansion decision by 
anticipating the electricity market equilibrium results achieved 
by all the GENCOs making their generation decisions, and an 
ISO’s market clearing problem in the bottom level. 

The tri-level programming model includes an EPEC 
problem, which can be approached by either the 
diagonalization method (DM) or a complementarity problem 
(CP) reformulation. To solve the tri-level optimization 
problem, a hybrid iterative algorithm is proposed by taking 
advantage of the strengths of both DM algorithm and CP 
reformulation. The benefit of applying CP reformulation is its 
capability to transform the tri-level model into a single level 
MINLP problem, to which we can apply the DICOPT solver 
[38], and identify a promising transmission planning decision 
in each iteration. Because of the model’s nonconvexity, there 
is no guarantee that a global optimum will be identified by any 
solver designed for convex MINLPs. Among these, DICOPT 
has been found to be relatively fast on a variety of problems 
[39] and, in our computational experience described in Part II, 
produced good results. A thorough study of which MINLP 
solver performs best in this context is a subject for further 
research. On the other hand, given a preselected transmission 
expansion decision, the DM algorithm works more reliably 
and efficiently to find the corresponding (approximate) Nash 
Equilibrium (NE) point for the generation expansion bi-level 
games. 

The problem we consider in this paper is a static model that 
considers only a single hour in a future year, which will 
always result in the generation levels y being equal to the new 
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capacity levels V୬ୣ୵. In the future, we can extend the model 
and the algorithm to take into account multiple periods and 
uncertainties. Instead of having one equilibrium problem in 
the third level, the model should include multiple equilibrium 
problems under different scenarios for, e.g., demand levels 
and fuel prices.  Each generator’s MPEC problem would be to 
maximize average net profit. The resulting buyers’ and sellers’ 
surplus amounts would be averaged in the top level objective 
with appropriate weighting factors. 

Part II of the paper will continue with numerical results. 
 

APPENDIX A.   
CP REFORMULATION FOR MULTIPLE GENCO’S EPEC SUB-

PROBLEM 
 

The CP reformulation for the EPEC sub-problem, equations 
(38)-(95), are derived as following, based on [4]. ܮ represents 
the Lagrangian function of the second level problem (2) – 
(19), with a nonlinear reformulation (20) – (35) replacing the 
third level problem, given by equations (4) – (19).  

A. Partial derivatives of Lagrange function 

There are all together 19 sets of equality constraints with 
dimensionห ௚ܰ௘௡ห ൅ 7ห ௚ܰ௘௡ห|ܰ| ൅ 5ห ௚ܰ௘௡ห|ܮ| ൅ 6ห ௚ܰ௘௡หห ௚ܰ௘௡ห. 
They have the same number of unrestricted variables to match 
them, respectively ݍ݀ߤ௞௝, ߠ݀ߤ௞௝, ݀ߤ ௞݂௜௝, ݕ݀ߤ௞௝, ߟ݀ߤ௞௝, 
௞௝ߙߠߤ ,௞௝ݕݍߤ ,௞௝ߩܷߤ

ା ௞௝ߙߠߤ ,
ି ௜௝ߛ݂ߤ ,

ା, ߛ݂ߤ௜௝
௜௝ߣܭߤ ,ି

ା ௜௝ߣܭߤ ,
ି , 

 .௞௝߶ߤ ,௞ߟߤ ,௞௝ߞݕߤ ,௞௝ߤܸ݊ߤ ,௞௝ݕݕߤ ,௞௝ߜݍߤ
௡௏ೖܮ ൌ െܿ௞

௚௘௫௣ ൅ ܸ݊ߤ ௞ܸ ൅ ݊ߤ ௞ܸ,௞ ൅ ௞ߤ௞௞ߤܸ݊ߤ ൌ 0, ݇׊ א

௚ܰ௘௡, ݇ א ௚ܰ௘௡                       (38) 
௤ೕܮ ൌ ௞௝ݍ݀ߤ ௝ܾ ൅ ௞௝ݕݍߤ ൅ ௞௝ݍߤ ൅ ௝ߜ௞௝ߜݍߤ ൌ 0, ݇׊ א

௚ܰ௘௡, ݆ א ܰ                             (39) 
ఏೕܮ ൌ െߠߤ௞௝

ା െ ௞௝ߙߠߤ
ା ௝ߙ

ା ൅ ௞௝ߠߤ
ି ൅ ௞௝ߙߠߤ

ି ௝ߙ
ି െ 

∑ ሺߤ ௞݂௜௝
ା ௜௝ܤ ൅ ௞௜௝ߛ݂ߤ

ା ௜௝ߛ
ାܤ௜௝ െ ߤ ௞݂௜௝

ି ௜௝ܤ െ ௞௜௝ߛ݂ߤ
ି ௜௝ߛ

௜௝ሻ௜ܤି ൅
∑ ൫ߤ ௞݂௝௜

ା ௝௜ܤ ൅ ௞௝௜ߛ݂ߤ
ା ௝௜ߛ

ାܤ௝௜ െ ߤ ௞݂௝௜
ି ௝௜ܤ െ ௞௝௜ߛ݂ߤ

ି ௝௜ߛ
௝௜൯௜ܤି ൌ 0, ݇׊ א

௚ܰ௘௡, ݆ א ܰ (40) 
௙೔ೕܮ ൌ െݕݍߤ௞௝ ൅ ௞௜ݕݍߤ െ ߤ ௞݂௜௝

ା െ ௞௜௝ߛ݂ߤ
ା ௜௝ߛ

ା ൅ ߤ ௞݂௜௝
ି ൅

௞௜௝ߛ݂ߤ
ି ௝௜ߛ

ି െ ௞௜௝ܭߤ
ା െ ௞௜௝ߣܭߤ

ା ௜௝ߣ
ା ൅ ௞௜௝ܭߤ

ି ൅ ௞௜௝ߣܭߤ
ି ௜௝ߣ

ି ൌ
0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (41)                     ܮ

௬ೕܮ ൌ ௝ୀ௞݌ െ ௝ܿୀ௞ െ 2 ௝݁ୀ௞ݕ௝ୀ௞ െ 2 ௝݁ݕ݀ߤ௞௝ ൅ ௞௝ߟ݀ߤ ൅
∑ ௝௝ݕݕߤ െ ݊ߤ ௞ܸ௝ െ ௝ߤ௞௝ߤܸ݊ߤ ൅ ௞௝ݕߤ ൅ ௝ߞ௞௝ߞݕߤ െ ௞௝ݕݍߤ ൌ

0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡                  (42) 
ఎܮ ൌ ∑ ௞௝௝ݕ݀ߤ ൅ ௞ߟߤ ൅ ∑ ௞௝௝߶ߤ ൌ 0, ݇׊ א ௚ܰ௘௡ (43) 

థೕܮ ൌ ௞௝ݕ݀ߤ ൅ ௞௝߶ߤ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ    (44) 

௣ೕܮ ൌ ௝ୀ௞ݕ െ ௞௝ݍ݀ߤ ൅ ∑ ݀ߤ ௞݂௜௝௜ െ ∑ ݀ߤ ௞݂௝௜௜ െ ௞௝߶ߤ ൌ
0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ                  (45) 

ఈೕశܮ ൌ െߠ݀ߤ௞௝ ൅ ௞௝ߙߤ
ା ൅ ௞௝ߙߠߤ

ା ൫ߠ௠௔௫ െ ௝൯ߠ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ(46) 

ఈೕషܮ ൌ ௞௝ߠ݀ߤ ൅ ௞௝ߙߤ
ି ൅ ௞௝ߙߠߤ

ି ൫ߠ௝ െ ௠௜௡൯ߠ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ (47) 
ఊ೔ೕశܮ ൌ െߠ݀ߤ௞௝ܤ௜௝ ൅ ௜௝ܤ௞௜ߠ݀ߤ െ ݀ߤ ௞݂௜௝ ൅ ௞௜௝ߛߤ

ା ൅ ௞௜௝ߛ݂ߤ
ା ሾെ ௜݂௝ ൅ 

௜ߠ௜௝൫ܤ െ ௝൯ߠ ൅ ൫1 െ ௜௝ሿܯ௜௝൯ݖ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (48)   ܮ
ఊ೔ೕషܮ ൌ ௜௝ܤ௞௝ߠ݀ߤ െ ௜௝ܤ௞௜ߠ݀ߤ ൅ ݀ߤ ௞݂௜௝ ൅ ௞௜௝ߛߤ

ି ൅ ௞௜௝ߛ݂ߤ
ା ሾ ௜݂௝ െ 

௜ߠ௜௝൫ܤ െ ௝൯ߠ ൅ ൫1 െ ௜௝ሿܯ௜௝൯ݖ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (49)   ܮ
ఒ೔ೕశܮ ൌ െ݀ߤ ௞݂௜௝ ൅ ௞௜௝ߣߤ

ା ൅ ௞௜௝ߣܭߤ
ା ൫ݖ௜௝ܭ௜௝ െ ௜݂௝൯ ൌ 0, ݇׊ א

௚ܰ௘௡, ݆݅ א  (50)                           ܮ

ఒ೔ೕషܮ ൌ ݀ߤ ௞݂௜௝ ൅ ௞௜௝ߣߤ
ି ൅ ௞௜௝ߣܭߤ

ି ൫ݖ௜௝ܭ௜௝ ൅ ௜݂௝൯ ൌ 0, ݇׊ א

௚ܰ௘௡, ݆݅ א  (51)                           ܮ
ఋೕܮ ൌ ௞௝ݍ݀ߤ ൅ ௞௝ߜߤ ൅ ௝ݍ௞௝ߜݍߤ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ (52) 

ఉೕܮ ൌ െݕ݀ߤ௞௝ ൅ ௞௝ߟ݀ߤ ∑
ଵ

௕ೕ
௝ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡(53) 

ఓೕܮ ൌ െݕ݀ߤ௞௝ ൅ ௞௝ߤߤ ൅ ௞௝൫ߤܸ݊ߤ ௝ܸ
௡௘௪ െ ௝൯ݕ ൌ 0, ݇׊ א

௚ܰ௘௡, ݆ א ௚ܰ௘௡                   (54) 
ఘೕܮ ൌ െݕ݀ߤ௞௝ ൅ ௞௝ߩߤ ൅ ௞௝൫ߩܷߤ ௝ܷ െ ௝൯ݕ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡(55) 
఍ೕܮ ൌ ௞௝ݕ݀ߤ ൅ ௞௝ߞߤ ൅ ௝ݕ௞௝ߞݕߤ ൌ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡(56) 

B. KKT conditions derived from the optimization problems in 
the second level:  

There are all together 21 sets of inequality constraints with 
dimension of ห ௚ܰ௘௡ห ൅ 6ห ௚ܰ௘௡ห|ܰ| ൅ 8ห ௚ܰ௘௡ห|ܮ| ൅
6ห ௚ܰ௘௡หห ௚ܰ௘௡ห. They have the same number of positive 
variables to match them, shown as the dual variables in the 
constraints. 

௞ܸ
௡௘௪ െ ௞ܸ ൒ 0 ٣ ܸ݊ߤ ௞ܸ ൒ 0, ݇׊ א ௚ܰ௘௡        (57) 

௠௔௫ߠ െ ௝ߠ ൒ 0 ٣ ௞௝ߠߤ
ା ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ     (58) 

௝ߠ െ ௠௜௡ߠ ൒ 0 ٣ ௞௝ߠߤ
ି ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ     (59) 

െ ௜݂௝ ൅ ௜ߠ௜௝൫ܤ െ ௝൯ߠ ൅ ൫1 െ ܯ௜௝൯ݖ ൒ 0 ٣ ߤ ௞݂௜௝
ା ൒ 0, ݇׊ א

௚ܰ௘௡, ݆݅ א  (60)                    ܮ

௜݂௝ െ ௜ߠ௜௝൫ܤ െ ௝൯ߠ ൅ ൫1 െ ܯ௜௝൯ݖ ൒ 0 ٣ ߤ ௞݂௜௝
ି ൒ 0, ݇׊ א

௚ܰ௘௡, ݆݅ א  (61)                    ܮ
௜௝ܭ௜௝ݖ െ ௜݂௝ ൒ 0 ٣ ௞௜௝ܭߤ

ା ൒ 0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (62)   ܮ
௜௝ܭ௜௝ݖ ൅ ௜݂௝ ൒ 0 ٣ ௞௜௝ܭߤ

ି ൒ 0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (63)   ܮ
௝ݍ ൒ 0 ٣ ௞௝ݍߤ ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ         (64) 
௝ߙ
ା ൒ 0 ٣ ௞௝ߙߤ

ା ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ        (65) 
௝ߙ
ି ൒ 0 ٣ ௞௝ߙߤ

ି ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ        (66) 
௜௝ߛ
ା ൒ 0 ٣ ௞௜௝ߛߤ

ା ൒ 0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (67)       ܮ
௜௝ߛ
ି ൒ 0 ٣ ௞௜௝ߛߤ

ି ൒ 0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (68)       ܮ
௜௝ߣ
ା ൒ 0 ٣ ௞௜௝ߣߤ

ା ൒ 0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (69)       ܮ
௜௝ߣ
ି ൒ 0 ٣ ௞௜௝ߣߤ

ି ൒ 0, ݇׊ א ௚ܰ௘௡, ݆݅ א  (70)       ܮ
௝ߜ ൒ 0 ٣ ௞௝ߜߤ ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ܰ         (71) 

௝ܸ
௡௘௪ െ ௝ݕ ൒ 0 ٣ ݊ߤ ௞ܸ௝ ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡ (72) 

௝ܷ െ ௝ݕ ൒ 0 ٣ ௞௝ܷߤ ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡    (73) 
௝ݕ ൒ 0 ٣ ௞௝ݕߤ ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡       (74) 
௝ߤ ൒ 0 ٣ ௞௝ߤߤ ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡       (75) 
௝ߩ ൒ 0 ٣ ௞௝ߩߤ ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡       (76) 
௝ߞ ൒ 0 ٣ ௞௝ߞߤ ൒ 0, ݇׊ א ௚ܰ௘௡, ݆ א ௚ܰ௘௡       (77) 

C. Equivalent KKT conditions derived from the optimization 
problems in the third level 

There are all together 18 sets of constraints, among which 
there are 8 sets of equality constraints with dimension of 
1 ൅ 2ห ௚ܰ௘௡ห ൅ 4|ܰ| ൅  and 10 sets of inequality constraints |ܮ|
with dimension of 3ห ௚ܰ௘௡ห ൅ 3|ܰ| ൅  The equality .|ܮ|4
constraints have the same amount of unrestricted variables to 
match them, respectively ݍ௝, ߠ௝, ௜݂௝, ݕ௝, ݌ ,ߟ௝, ߚ௝, ߶௝, while the 
inequality constraints have the same number of positive 
variables to match them, shown as the dual variables in the 
constraints. 

௝ܾݍ௝ ൅ ௝ܽ െ ௝݌ ൅ ௝ߜ ൌ 0, ݆׊ א ܰ                 (78) 
െߙ௝

ା ൅ ௝ߙ
ି െ ∑ ൫ܤ௜௝ߛ௜௝

ା െ ௜௝ߛ௜௝ܤ
ି൯௜,௜௝א௅ ൅                                       
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∑ ൫ܤ௝௜ߛ௝௜
ା െ ௝௜ߛ௝௜ܤ

ି൯௜,௝௜א௅ ൌ 0, ݆׊ א ܰ              (79) 
௝݌ െ ௜݌ െ ௜௝ߛ

ା ൅ ௜௝ߛ
ି െ  ௜௝ߣ

ା ൅  ௜௝ߣ
ି ൌ 0, ݆݅׊ א  (80)          ܮ

ߟ ൅ ߶௝ െ ௝ܿ െ 2 ௝݁ݕ௝ െ ௝ߚ െ ௝ߤ െ ௝ߩ ൅ ௝ߞ ൌ 0, ݆׊ א ௚ܰ௘௡ (81) 

௝ݕ ൅ ௝ߚ ∑
ଵ

௕ೕ
௝ ൌ 0, ݆׊ א ௚ܰ௘௡                 (82) 

௝ݍ ൅ ∑ ௝݂௜௜ െ ∑ ௜݂௝௜ ൌ ,௝ݕ ݆ א ܰ                (83) 
௠௔௫ߠ െ ௝ߠ ൒ 0 ٣ ௝ߙ

ା ൒ 0, ݆׊ א ܰ              (84) 
௝ߠ െ ௠௜௡ߠ ൒ 0 ٣ ௝ߙ

ି ൒ 0, ݆׊ א ܰ              (85) 
െ ௜݂௝ ൅ ௜ߠ௜௝൫ܤ െ ௝൯ߠ ൅ ൫1 െ ௜௝ܯ௜௝൯ݖ ൒ 0 ٣ ௜௝ߛ

ା ൒ 0, ݆݅׊ א  (86) ܮ

௜݂௝ െ ௜ߠ௜௝൫ܤ െ ௝൯ߠ ൅ ൫1 െ ௜௝ܯ௜௝൯ݖ ൒ 0 ٣ ௜௝ߛ
ି ൒ 0, ݆݅׊ א  (87)  ܮ

௜௝ܭ௜௝ݖ െ ௜݂௝ ൒ 0 ٣ ௜௝ߣ
ା ൒ 0, ݆݅׊ א  (88)             ܮ

௜௝ܭ௜௝ݖ ൅ ௜݂௝ ൒ 0 ٣ ௜௝ߣ
ି ൒ 0, ݆݅׊ א  (89)             ܮ

௝ݍ ൒ 0 ٣ ௝ߜ ൒ 0, ݆׊ א ܰ                    (90) 

௝ܸ
௡௘௪ െ ௝ݕ ൒ 0 ٣ ௝ߤ ൒ 0, ݆ א ௚ܰ௘௡           (91) 

௝ܷ െ ௝ݕ ൒ 0 ٣ ௝ߩ ൒ 0, ݆ א ௚ܰ௘௡              (92) 
௝ݕ ൒ 0 ٣ ௝ߞ ൒ 0, ݆ א ௚ܰ௘௡                 (93) 

ߟ ൌ  ௥௘௙                              (94)݌
߶௝ ൌ ௝݌ െ ,ߟ ݆׊ א ܰ                     (95) 
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