
Privilege Escalation Attack Scenarios on the DevOps Pipeline
Within a Kubernetes Environment

Nicholas Pecka
Iowa State University, USA

Lotfi ben Othmane
Iowa State University, USA

Altaz Valani
Security Compass, Canada

ABSTRACT
Companies are misled into thinking they solve their security
issues by using tooling that is advertised as aligning with De-
vSecOps principles. This paper aims to answer the question:
Could the misuse of the DevOps pipeline subject applications
to malicious behavior? To answer the question, we designed
a typical DevOps pipeline utilizing Kubernetes (K8s) as a
case study environment and analyzed the applicable threats.
Then, we developed four attack scenarios against the case
study environment: maliciously abusing the user’s privilege
of deploying containers within the K8s cluster, abusing the
Jenkins instance to modify files during the continuous in-
tegration, delivery, and deployment systems (CI/CD) build
phase, modifying the K8s DNS layer to expose an internal IP
to external traffic, and elevating privileges from an account
with create, read, update, and delete (CRUD) privileges to
root privileges. The attacks answer the research question
positively: companies should design and use a secure DevOps
pipeline and not expect that utilizing software "advertised
as aligning" with DevSecOps principles alone is sufficient to
deliver secure software.

CCS CONCEPTS
• Software and its engineering - Software creation and man-
agement;

KEYWORDS
DevSecOps, Security, Kubernetes, CI/CD
ACM Reference Format:
Nicholas Pecka, Lotfi ben Othmane, and Altaz Valani. 2022. Priv-
ilege Escalation Attack Scenarios on the DevOps Pipeline Within
a Kubernetes Environment . In Proceedings of International Con-
ference on Software and Systems Processes (ICSSP). ACM, New
York, NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Companies are adopting the DevOps paradigm [4] where
development and operation teams coexist and focus on a
consistent development and delivery process. DevSecOps [18,
19, 22], a section of DevOps, incorporates the benefits that
DevOps has brought, and includes a security mindset. This
mindset helps to evolve security maturity but does not en-
sure that the system under development is secure on the
sole basis that DevSecOps principles are being followed. The
integration of development and production environments
encouraged companies to adopt DevSecOps by integrating

ICSSP, May 20-22, 2022, Virtual
2022. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

secure software practices and activities into their DevOps
systems. Companies adopt DevSecOps models believing it
solves their security issues without additional input [18]. The
automation of DevSecOps systems, might, however, intro-
duce new security threat vectors despite the great deal of
benefits it provides. The question is: Could misuse of the
DevOps pipeline subject applications to malicious behavior?
Companies are being misled into thinking they have solved
their security issues simply by utilizing tooling that has the
ability to get to a state that aligns with DevSecOps processes
but accepting at face value that the tool already is secure
based on the security it provides out of the box and how it is
being sold to the company. Answering the question positively
would demonstrate the need to raise awareness about the
importance of the security of DevOps pipelines.

To answer the research question, we created, as a case study,
a DevOps pipeline that includes a code repository (GitHub),
a CI/CD system [10] (Jenkins), a repository for storing pack-
aged images (DockerHub) and the underlying architecture
serving the K8s components [3, 15, 25]–K8s allows a system
to be better scaled, monitored, and maintained, including
systems that use machine learning [13]. Then, we performed
threat modeling [26] of the system. Threat modeling is a
process where a system is analyzed for potential security
attacks that take advantage of vulnerabilities, quantifying
threats, and recommending appropriate remediation [26].
Along with those objectives, we aimed to acquire knowledge
on pre-existing vulnerabilities and also potential areas we
could exploit for testing. From that research we derived four
attack scenarios: (1) retrieval of application data utilizing a
custom app that leverages the K8s DNS, (2) manipulate the
CI/CD application Jenkins and install a backdoor, (3) expose
an internal cluster IP to external users, and (4) leverage a
hostPath volume to escape a namespace and gain root access
on the host. We look, specifically, at the concept of privilege
escalation throughout these scenarios.

The contributions of the paper are:

(1) Developing a threat model of a DevOps environment
utilizing Strimzi application as a case study.

(2) Designing four attacks scenarios that demonstrate four
of the threats to the DevOps environment.

(3) Proposing mitigation techniques for the identified threats.

The tests show that DevOps pipeline weaknesses could
create an insecure software supply chain system (SSCS). The
resources for the project including the attack videos are
shared [21].

The paper is organized as follows: Section 2 discusses
related work, Section 3 provides information on the experi-
mentation environment, Section 4 describes the penetration

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ICSSP, May 20-22, 2022, Virtual Pecka et al.

tests, Section 5 discusses the proposed mitigations to address
the reported attacks, and Section 6 concludes the paper.

2 RELATED WORK
Understanding potential entry points to thwart attackers is
vital information. Shamim et al. outlined and explained in
Ref [24] the multiple levels of security including authentica-
tion, security policies, logging, network isolation, encryption,
patching, SSL/TLS, and others in great details. They derived
their findings from over 100 internet artifacts. The individual
items outlined are not a comprehensive list but were found
to be the most affected points of entry across the examined
artifacts. Minna et al. extended Shamim et al.’s work [8] by
outlining various network-security issues pertaining to a K8s
cluster, such as Pod netns by a Pause Container, Container
Network Interface (CNI) Plug-Ins Jeopardy, software isola-
tion of resources, network policies limitations, multi tenant
K8s clusters, dynamic nature of K8s objects, virtual net-
work infrastructure, and not embedded distributed tracing.
In addition, the authors mapped the security of K8s to the
Microsoft K8s threat matrix [29]. Karamitsos et al. [13] dis-
cuss the impact of business manager in deciding on accepting
risks of the DevOps systems due to associated time and cost.

Bertucio analyzed the security of software supply chain
system (SSCS) [5]. They break down each component of the
supply chain and provide a risk and remediation of each
section. They outline a SSCS to depict the points highlighted
throughout the blog provided by Google. The paper looks
further in detail about specific elements of the supply chain
and provides real world examples from an attackers point of
view followed by mitigations to said attacks.

For a further look into various attack scenarios, a github
user by the name of madhuakula has created an interactive
playground called Kubernetes Goat [17]. Users can either fol-
low the instructions on the page to setup their own vulnerable
K8s environment or use the built in interactive playground
to follow various penetration testing scenarios.

On a related topic, attackers realized that public Continuous
Integration (CI) platforms are resource-rich but loosely pro-
tected free Internet services and started exploiting that for
Cryptomining. For instance, Li et al.[16] discovered 1,974
Cijacking instances, 30 campaigns across 12 different cryp-
tocurrencies on 11 mainstream CI platforms. Further, they
unveils the evolution of cryptojacking attack strategies on
the CI platforms in response to the protection put in place
by these platforms, the duration of the mining jobs (as long
as 33 months), and their life cycle. They also discovered that
the revenue of the attack is over $20,000 per month.

3 CASE STUDY SETUP
This section describes a system that we setup to demonstrate
the use of a SSCS to integrate and deploy a secure application
(Strimzi) as an insecure software.

We developed a simple Web application to demonstrate the
use of an application with certain privileges to access other
components of the DevOps environment [20]. The application

Figure 1: The DevOps environment case study.
is developed in Python [7] utilizing the micro web framework
Flask [23] to provide the user/attacker a front-end UI when
deployed to the K8s cluster. The application uses the Apache
Kafka[2] library to interact with Strimzi [11]. Strimzi is used
to streamline the deployment of Apache Kafka [2] on K8s.
This application will serve as our secure application for our
later attack scenarios.

ESXi [27] is used as the hypervisor [28] to manage four
Virtual Machines (VMs)’s that host the experimentation
environment. ESXi was built on a bare metal server with an
i7-6700K CPU @ 4.00 GHz, 4 CPU cores, and 32 GB RAM.
GitHub [9] is used as a code repository for the application.
GitHub serves as the trigger point for the Jenkins [14] job.
Jenkins is an industry standard for CI/CD [10].

The application components are deployed to K8s [15], an
orchestration tool for docker [6] containers that allows a col-
lection of containers to be monitored, managed, and sized
at scale. The kube-APIserver is leveraged for the scheduler,
controller-manager, and the etcd components to communicate
so they can exist separately allowing them to be decoupled.
There is then a kubelet on each of the worker nodes that
will call back to the APIserver so the other components can
manage the cluster properly. An important note is that K8s
shrouds the containers in its own networking layer. K8s aligns
closely with the DevSecOps mentality and these functionali-
ties provide DevSecOps great tooling. Due to this, however,
it might be assumed the applications within a K8s cluster
are secure. This paper aims to prove that insider attackers
can exploit security weaknesses of DevSecOps pipeline to
transform a possibly secure software into an insecure one.

Figure 1 depicts the DevOps pipline case study. From de-
veloper to the customer, a developer begins by submitting
their code commit to GitHub. A webhook listener from Jenk-
ins triggers from the latest code push to Github and initiates
the corresponding Jenkins build job. During the build job,
Jenkins pulls the source repository from GitHub including the

Privilege Escalation Attack Scenarios on the DevOps Pipeline Within a Kubernetes Environment ICSSP, May 20-22, 2022, Virtual

Table 1: Outline of the attack scenarios.

ID Prerequisite privileges Attack Component Attacker Gains

1 Deploy applications
with the same names-
pace as target

Deploy malicious application, leverage application to
siphon data from target application

Strimzi Potential to compro-
mise sensitive data
within kafka

2 Access to privileged
Jenkins account

Authenticate to Jenkins, edit build job to input bad pay-
load, once deployed access application through backdoor
created from bad payload

Jenkins Installation of potential
backdoor into applica-
tion being built

3 Add objects to desired
target

Authenticate to K8s cluster, edit the networking of target
applications service, input an ingress object to expose
externally

K8s Net-
working

Ability to connect to
app from external

4 create, read, update,
and delete (CRUD)
privileges

Deploy application in namespace with hostPath volume,
leverage the volume by rooting to the host system, gain
K8s credentials and has full access to cluster

K8s
storage,
Docker

Root access to Host box
along with K8s cluster

new code changes. Next, it compiles and packages everything
into a docker container utilizing built in docker functions to
prepare the application for future deployment. Once built,
the docker container is pushed to DockerHub [12] and tagged
with the build version. Jenkins proceeds to log into the K8s
cluster and utilizes docker commands to download the docker
image on DockerHub onto the K8s cluster. The image is then
deployed to the K8s cluster. The customer then evaluates the
new version and provides user feedback that the development
team then uses to enhance the DevOps system.

4 ATTACK DEMONSTRATION SCENARIOS
ON THE DEVOPS CASE STUDY

The components of the research environment were broken
down and analyzed for their inputs and outputs. Through this,
we derive potential threats to be used against the system
and selected four of them for validation. Table 1 outlines
the attacks in the form of prerequisite, attack description,
affected component, and attacker’s gains from the attack. The
remaining of this section describes the four attacks against
the case study environment in details.

4.1 Retrieve Information in Topic
The first attack deals with an attacker having privileges to
deploy containers to a K8s cluster. The goal is to compromise
information from secure applications within the SSCS that
exist within the cluster. This data is generally only available
within the K8s cluster itself due to the K8s DNS layer. The
attacker creates a custom application that, when deployed,
will provide a front facing web UI. The custom app used was
created as part of this research and is available at Ref. [20].
Once deployed within the cluster, the attacker connects to
the front facing UI of the new application and leverages the
application to compromise data by siphoning data from the
Strimzi application using the custom application. This could
lead to compromise secretive data depending on what the
custom application is able to retrieve. Listing 1 lists the
commands to perform the attack.

1 // Authenticate to Kubernetes cluster and
2 // confirm kubeconfig matches the desired K8s cluster
3 // Deploy Strimzi
4 kubectl apply -f name_of_strimzi.yaml
5 // Deploy Custom Application
6 kubectl apply -f name_of_custom_app.yaml
7 // Verify the applications are in ready state
8 kubectl get pods \
9 -n name_of_namespace_where_apps_are_located

10 // Locate Strimzi internal clusterIP
11 kubectl get services \
12 -n name_of_namespace_where_strimzi_is_located
13 // Locate URL of custom application
14 kubectl get services \
15 -n name_of_namespace_where_custom_app_is_located
16 // Navigate to URL from previous step
17 // Populate fields of custom application to
18 // connect to Strimzi
19 Plug in values clusterIP:Port of Strimzi
20 // Verify data is sent/received to/form Strimzi
21 Data will be displayed after executing command

Listing 1: Attack steps to Retrieve Information in Topic.

4.2 Manipulate CI/CD by Modifying the Files
The second attack deals with an attacker that has privileges
to the Jenkins instance serving the CI/CD. The attacker
selects a build step and then modifies the files prior to being
packaged and deployed to an online container repository.
Once the modified application is deployed, anything may
trigger the malicious payload. This could put multiple systems
at risk if the application modified is heavily used across a
wide array of organizations (open source application such as
Strimzi is a great example). Listing 2 lists the commands to
perform the attack.

1 // Authenticate to Jenkins
2 Jenkins login - www.name_of_jenkins_url.com
3 input username/password
4 // Locate Build Step
5 Navigate to proper build step

ICSSP, May 20-22, 2022, Virtual Pecka et al.

6 // Modify Build Step
7 Select build step _for modification
8 // Edit build step by inputting malicious payload
9 malicious_payload_code

10 // Execute build job
11 Run Jenkins build
12 // Authenticate to K8s cluster
13 Confirm kubeconfig matches desired K8s cluster
14 // Pull newly created malicious docker image
15 docker pull repo_name/image_name/tag
16 // Deploy malicious docker image
17 kubectl apply -f name_of_image.yaml
18 // Trigger malicious payload
19 Perform triggering action

Listing 2: Attack steps to Manipulate CI/CD.

1 // Authenticate to K8s cluster and
2 // confirm kubeconfig matches desired K8s cluster
3 // Deploy Strimzi
4 kubectl apply -f name_of_strimzi.yaml
5 // Verify Strimzi is in ready state
6 kubectl get pods -n namespace_of_Strimzi
7 // Locate Strimzi internal clusterIP
8 kubectl get services -n namespace_of_Strimzi
9 // Add NodePort network object to Strimzi

10 kind: Service
11 apiVersion: v1
12 metadata:
13 name: strimzi-service
14 spec:
15 selector:
16 app: strimzi_app
17 ports:
18 - protocol: TCP
19 port: Strimzi_Port
20 nodePort: (30000-32767) - # in _this range
21 type: NodePort
22 // Verify Strimzi is exposed
23 Contact newly exposed IP

Listing 3: Attack steps to expose K8s clusterIP to external
users.

4.3 Kubernetes Expose clusterIP to External
Users

The third attack deals with an attacker that has access to
the K8s cluster to manipulate networking protocols. K8s pro-
vides internal cluster IPs, nodeports, and other ingress type
objects for K8s resources. These objects allow for internal
applications to communicate across the cluster, and to ex-
ternal sources. Services in K8s start with an internal cluster
IP that allows for communication with other services within
the K8s cluster. The attacker can expose the cluster IP with
another ingress object such as a nodeport. The nodeport will
attach an external URL that will allow external applications
to contact the internal K8s application via the nodeport.
With this, an attacker can hook directly into the now inse-
cure application (courtesy of the recent K8s configuration)

and siphon secretive data. Listing 3 lists the commands to
perform the attack.

1 // Authenticate to K8s cluster and
2 //confirm kubeconfig matches desired K8s cluster
3 // Ensure service account has CRUD privileges
4 // Launch attacker pod with hostPath volume attached
5 kubectl apply -f attacker_pod_name.yaml
6 // Exec into the attacker pod
7 kubectl -n crud_namespace \
8 exec -it attack_pod_name bash
9 // Verify account level is not admin

10 kubectl get secrets -n kube-system
11 // Verify pod creation in developer ns
12 Kubectl auth can-i create pod -n crud_namespace
13 // Check where at in host
14 echo ${uname -n}
15 // Execute command to escalate privileges
16 chroot /host/ bash
17 // Verify location by checking running containers
18 docker ps
19 // Locate kubecfg files and view K8s cluster
20 /location/to/kubectl \
21 --kubeconfig=/location/to/kubecfg-kube-node.yaml
22 // Check pods within K8s cluster
23 /location/to/kubectl \
24 --kubeconfig=/location/to/kubecfg-kube-node.yaml \
25 get pods -A
26 // Delete a pod within the K8s cluster
27 /location/to/kubectl \
28 --kubeconfig=/location/to/kubecfg-kube-node.yaml \
29 delete pod pod_name -n pod_namespace

Listing 4: Steps to perform the Kubernetes Namespace Break-
out attack.

4.4 Kubernetes hostPath Namespace Breakout
The final attack deals with a hostPath namespace breakout [1].
A namespace in K8s allows for network segregation and to
map deployments too when created. An attacker requires
access to a service account with CRUD (create, retrieve,
update, delete) privileges in any namespace within the cluster.
The attacker deploys a pod within the allowed namespace,
then proceeds to abuse the hostPath volume to mount an
escape for privilege escalation. A hostPath volume is a storage
object that mounts a file or directory from the host node’s
file system into the pod. Once the attacker deploys their
malicious pod, they then exec into it and chroot to access the
node’s root file system due to the hostPath volume mount
exploit. The attacker can then find the kubeconfig files on the
host and gain cluster admin privileges. Through this, they
can target our secure applications that may exist on other
nodes and perform malicious actions against them including
editing, deletion, and more. Listing 4 lists the commands to
perform the attack.

5 PROPOSED PROTECTION MECHANISMS
The common theme of the attacks is privilege escalation.
Thus, the first protection from the attacks is use of the

Privilege Escalation Attack Scenarios on the DevOps Pipeline Within a Kubernetes Environment ICSSP, May 20-22, 2022, Virtual

principle of least privilege when managing a SSCS within
the utilized DevSecOps model K8s; limiting account access
shrinks the attack vector, as attackers will have less victims
to choose from, to perform the type of attacks described
in this paper. This section proposes protection mechanisms
against the reported attack scenarios of section 4.
Protection from deploying malicious application. The main
protection from deploying malicious applications and disclos-
ing confidential information is to limit users privileges. We
recommend implementing service accounts that are tied to
specific namespaces to prevent users from deploying contain-
ers outside their dedicated area.
Protection from the CI/CD manipulation. The main protec-
tion from manipulating the CI/CD pipeline is to restrict
access to Jenkins instance. We recommend the use of a ser-
vice account to trigger the Jenkins job and limit other uses to
admin/super user to, for instance, override things if needed.
Cluster IP exposure mitigation. The main protection from
exposing the IP address of an internal K8s resource externally
is to establish service accounts in the K8s cluster. We rec-
ommend assigning specific service accounts to access specific
resources within certain namespaces and focus the activities
monitoring for malicious behavior to specific users that have
access to the internal resources in question.
HostPath volume escalation mitigation. The main protection
from the hostPath volume namespace breakout is to restrict
the CRUD privileges to higher level accounts. Lower level
accounts that needs CRUD privileges must authenticate as a
high level user to perform their tasks, which focuses the activ-
ities monitoring to specific limited accounts. We recommend
also to acquire dedicated storage so to prevent the need of
hostPath volumes being deployed and instead hosting the
storage on another machine that would not be part of the
main cluster.

6 CONCLUSIONS
We developed a DevOps pipeline case study, and demon-
strated four privilege elevation oriented malicious actions
against the internal components of the pipeline that show the
possibility to maliciously use the system to make a software
insecure. The chosen attack scenarios are maliciously abusing
the user’s privilege of deploying containers within the K8s
cluster, abusing the Jenkins instance to modify files during
the CI/CD build phase, modifying the K8s DNS layer to
expose an internal IP to external traffic, elevating privileges
from a create, read, update, and delete (CRUD) privileges
of a low-level account to root privileges.

For the outlined attack scenarios presented in this paper,
abiding by the principle of least privilege will mitigate most
issues when dealing with privilege escalation. Ensuring that
lower level accounts do not possess any form of admin or
root access will help reducing the potential attack landscape
and enable the security organization to focus on monitoring
the activities of the pool of accounts needing those types of
privileges. This paper focuses on four specific attack scenarios,
but there are numerous other potential attacks not only in

the privilege escalation space but at various other levels of
the system. Future work can include work in the cloud spaces
that utilize K8s rather then the on premise view this paper
examines. Also looking into other attack vectors outside of
privilege escalation would be good research in the future as
well.

REFERENCES
[1] D. Abhisek. 2020. Kubernetes Namespace Breakout

using Insecure Host Path Volume - Part 1. https:
//blog.appsecco.com/kubernetes-namespace-breakout-using-
insecure-host-path-volume-part-1-b382f2a6e216. Accessed on
Oct. 2021.

[2] Apache. 2021. Apache Kafka. https://kafka.apache.org. Accessed
on Sep. 2021.

[3] C. Artur, I. Iustin-Alexandru, B. Robert, D. Virgil, and C. Ovidiu.
2020. Implementation of a Continuous Integration and Deploy-
ment Pipeline for Containerized Applications in Amazon Web
Services Using Jenkins, Ansible and Kubernetes. 19th RoEduNet
Conference: Networking in Education and Research (RoEduNet)
(7 2020), 6.

[4] AWS. 2021. What is DevOps. https://aws.amazon.com/devops/
what-is-devops/. Accessed on Sep. 2021.

[5] A. Bertucio. 2021. Protect your open source project from
supply chain attacks. https://opensource.googleblog.com/
2021/10/protect-your-open-source-project-from-supply-chain-
attacks.html?m=1. Accessed on Nov. 2021.

[6] Docker. 2013. Developers Love Docker. Businesses Trust It. https:
//docker.com. Accessed on Oct. 2021.

[7] Python Software Foundation. 2001. Python. https://python.org.
Accessed on Oct. 2021.

[8] M. Francesco, C. Balakrishnan, B. Agathe, R. Filippo, and M.
Fabio. 2021. Understanding the Security Implications of Kuber-
netes Networking. IEEE Computer and Reliability Societies (09
2021), 11.

[9] Inc. GitHub. 2008. GitHub. https://github.com. Accessed on
Oct. 2021.

[10] Red Hat. 2018. What is CI/CD? https://www.redhat.com/en/
topics/devops/what-is-ci-cd. Accessed on Oct. 2021.

[11] Red Hat. 2021. Apache Kafka on Kubernetes. https://github.
com/strimzi. Accessed on Sep. 2021.

[12] Docker Inc. 2011. Build and Ship any Application Anywhere.
https://hub.docker.com. Accessed on Oct. 2021.

[13] K. Ioannis, A. Saeed, and A. Charalampos. 2020. Understanding
the Security Implications of Kubernetes Networking. Information
2020, 11, 362 (11 2020), 15.

[14] Jenkins. 2011. Jenkins. https://jenkins.io. Accessed on Oct. 2021.
[15] Kubernetes. 2021. Production-Grade Container Orchestration.

https://kubernetes.io. Accessed on Sep. 2021.
[16] Z. Li, W. Liu, H. Chen, X. Wang, X. Liao, L. Xing, M. Zha, H.

Jin, and D. Zou. 2022. Robbery on DevOps: Understanding and
Mitigating Illicit Cryptomining on Continuous Integration Service
Platforms. In 2022 2022 IEEE Symposium on Security and
Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA,
USA, 363–378. https://doi.org/10.1109/SP46214.2022.00022

[17] madhuakula. 2020. Kubernetes Goat. https://github.com/
madhuakula/kubernetes-goat. Accessed on Nov. 2021.

[18] V. Mohan and L. Ben Othmane. 2016. SecDevOps: Is It a Mar-
keting Buzzword? - Mapping Research on Security in DevOps. In
2016 11th International Conference on Availability, Reliability
and Security (ARES). 542–547. https://doi.org/10.1109/ARES.
2016.92

[19] V. Mohan, L. ben Othmane, and A. Kres. 2018. BP: Security Con-
cerns and Best Practices for Automation of Software Deployment
Processes: An Industrial Case Study. In 2018 IEEE Cybersecurity
Development (SecDev). 21–28.

[20] N. Pecka. 2021. py-producer-consumer. https://github.com/
npecka/py-producer-consumer. Accessed on Oct. 2021.

[21] N. Pecka and L. Ben Othmane. 2022. Insider At-
tacks on the DevOps Pipeline. https://github.com/npecka/
InsiderAttacksontheDevOpsPipeline.

[22] A. Quintessence. 2021. The DevSecOps Cultural Transforma-
tion. https://www.pagerduty.com/blog/devsecops-ops-guide/.
Accessed on Jan. 2022.

https://blog.appsecco.com/kubernetes-namespace-breakout-using-insecure-host-path-volume-part-1-b382f2a6e216
https://blog.appsecco.com/kubernetes-namespace-breakout-using-insecure-host-path-volume-part-1-b382f2a6e216
https://blog.appsecco.com/kubernetes-namespace-breakout-using-insecure-host-path-volume-part-1-b382f2a6e216
https://kafka.apache.org
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://opensource.googleblog.com/2021/10/protect-your-open-source-project-from-supply-chain-attacks.html?m=1
https://opensource.googleblog.com/2021/10/protect-your-open-source-project-from-supply-chain-attacks.html?m=1
https://opensource.googleblog.com/2021/10/protect-your-open-source-project-from-supply-chain-attacks.html?m=1
https://docker.com
https://docker.com
https://python.org
https://github.com
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://github.com/strimzi
https://github.com/strimzi
https://hub.docker.com
https://jenkins.io
https://kubernetes.io
https://doi.org/10.1109/SP46214.2022.00022
https://github.com/madhuakula/kubernetes-goat
https://github.com/madhuakula/kubernetes-goat
https://doi.org/10.1109/ARES.2016.92
https://doi.org/10.1109/ARES.2016.92
https://github.com/npecka/py-producer-consumer
https://github.com/npecka/py-producer-consumer
https://github.com/npecka/InsiderAttacksontheDevOpsPipeline
https://github.com/npecka/InsiderAttacksontheDevOpsPipeline
https://www.pagerduty.com/blog/devsecops-ops-guide/

ICSSP, May 20-22, 2022, Virtual Pecka et al.

[23] A. Ronacher. 2010. Flask web development, one drop at a time.
https://flask.palletsprojects.com/en/2.0.x/. Accessed on Oct.
2021.

[24] S. Islam Shazibul, B. Ahamed Farzana, and R. Akond. 2020.
XI Commandments of Kubernetes Security: A Systematiza-
tion of Knowledge Related to Kubernetes Security Practices.
arXiv:2006.15275v1 [cs.CR] (06 2020), 7.

[25] G. Somya and G. Satvik. 2019. Automated Cloud Infrastructure,
Continuous Integration and Continuous Delivery using Docker
with Robust Container Security. In IEEE Conference on Multi-
media Information Processing and Retrieval (MIPR). San Jose,

CA, 5.
[26] Synopsys. 2021. Threat Modeling. https://https://www.synopsys.

com/glossary/what-is-threat-modeling.html. Accessed on Nov.
2021.

[27] VMWare. 2001. ESXi. https://www.vmware.com/products/esxi-
and-esx.html. Accessed on Oct. 2021.

[28] VMWare. 2001. What is a hypervisor? https://www.vmware.
com/topics/glossary. Accessed on Oct. 2021.

[29] Y. Weizman. 2020. Threat matrix for Kubernetes.
https://www.microsoft.com/security/blog/2020/04/02/attack-
matrix-kubernetes/. Accessed on Oct. 2021.

https://flask.palletsprojects.com/en/2.0.x/
https://https://www.synopsys.com/glossary/what-is-threat-modeling.html
https://https://www.synopsys.com/glossary/what-is-threat-modeling.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/topics/glossary
https://www.vmware.com/topics/glossary
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

	Abstract
	1 Introduction
	2 Related work
	3 Case study setup
	4 Attack demonstration scenarios on the DevOps case study
	4.1 Retrieve Information in Topic
	4.2 Manipulate CI/CD by Modifying the Files
	4.3 Kubernetes Expose clusterIP to External Users
	4.4 Kubernetes hostPath Namespace Breakout

	5 Proposed protection mechanisms
	6 Conclusions
	References

