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Abstract 

A mixing index based on solid volume fraction fields is developed for gas-solid flows. Conventional 

mixing indices are based on particle realizations of granular mixing and are applicable to experimental 

data or DEM simulations. However, these indices cannot be used as-is for multi-fluid models, and an 

index for characterizing mixing in gas-solid flows from continuous fields is needed.  The performance 

of the mixing index is tested in two applications. The first is a 3D simulation of the mixing of biomass 

and sand in a fluidized bed reactor, and the second is a 2D simulation of binary particle segregation 

in a fluidized bed. The simulations are performed using OpenFOAM®. The mixing index is used to 

quantify gas-solid mixing using solid volume fractions and solid-solid mixing using solid fractions. The 

formulation of conventional mixing indices is extended to be used with solid volume fractions fields, 

and methods for performance improvement are presented.     
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1. Introduction 

Particle mixing and segregation are common processes used in various industries such as 

pharmaceutical, chemical, food, cosmetic, and ceramic industry. In the chemical industry, gas-solid 

mixing plays an important role when gas-solid reactions are present; for example, in chemical looping 

combustion1,2. Solid mixing is vital in the fast pyrolysis of biomass in fluidized bed reactors, where 

biomass mixes with sand which acts as the heat carrier3,4. Experimental studies have been conducted 

with noninvasive techniques for flow visualization to understand particle behavior within the interior 

of granular mixers5–17. With the increase in computational power, the use of computational methods 
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has increased over recent decades. Particle simulations based on the Discrete Element Method (DEM) 

and have been used to study mixing in a variety of granular mixtures18–29. For fluidized beds or devices 

at the industrial scale, with small and many particles, DEM simulations become computationally 

expensive because their cost scales with the number of particles. Alternatively, granular flow can be 

modeled using a continuum approach that obeys Eulerian conservations of mass, momentum, and 

energy30,31, which only need to resolve spatial variation of averaged fields.   

The multiphase computational fluid dynamic (mCFD) models are Eulerian multi-fluid models based 

on a random-field statistical approach32,33 to gas-solid flows. Each phase is treated as an 

interpenetrating continuum defined in the Eulerian frame of reference.  Phase indicator functions are 

random fields used to distinguish the presence of a phase 𝛽𝛽 in a realization 𝜔𝜔. For every given location 

in space, the indicator function tells if the given phase exists or not. If the phase exists, the local value 

of the indicator function is 1, and if not, it is 0. The indicator can be written as  

 𝐼𝐼𝛽𝛽(𝐱𝐱, 𝑡𝑡;𝜔𝜔) = �1     if 𝐱𝐱 is in phase 𝛽𝛽 at time 𝑡𝑡        
0     if 𝐱𝐱 is not in phase 𝛽𝛽 at time 𝑡𝑡 . (1.1) 

The solid volume fraction 𝜙𝜙 can be interpreted as the ensemble average of the solid phase indicator 

function shown in Eq. (1.2), where the angled brackets correspond to ensemble averaging:  

 𝜙𝜙(𝐱𝐱, 𝑡𝑡) =  〈𝐼𝐼𝑠𝑠(𝐱𝐱, 𝑡𝑡)〉. (1.2) 

The solid volume fraction field obeys a conservation equation similar to density in a variable density 

single phase fluid flow, and evolves with the phase-averaged velocity 〈𝐮𝐮𝑠𝑠〉 as follows:  

 𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝜙𝜙〈𝐮𝐮𝑠𝑠〉) = 0. (1.3) 

The solid phase-averaged velocity 〈𝐮𝐮𝑠𝑠〉 is defined as  

 〈𝐮𝐮𝑠𝑠〉 =
 〈𝐼𝐼𝑠𝑠𝒖𝒖〉
 〈𝐼𝐼𝑠𝑠〉

, (1.4) 

and obeys the conservation of momentum equation, which looks like the Navier-Stokes equation: 

 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝜙𝜙〈𝐮𝐮𝑠𝑠〉)  +  ∇ ∙ (𝜌𝜌𝑠𝑠𝜙𝜙〈𝐮𝐮𝑠𝑠〉〈𝐮𝐮𝑠𝑠〉)  

=  〈𝐼𝐼𝑠𝑠𝜌𝜌𝑠𝑠𝐛𝐛〉  +  〈∇ ∙ 𝐼𝐼𝑠𝑠𝛕𝛕〉  + 〈𝛕𝛕 ∙ 𝐧𝐧𝛿𝛿�𝐱𝐱 −  𝐱𝐱(𝐼𝐼)�〉  −  ∇ ∙ 〈𝐼𝐼𝑠𝑠𝜌𝜌𝑠𝑠𝐮𝐮𝑠𝑠′′𝐮𝐮𝑠𝑠′′〉. 
(1.5) 

The terms on the right-hand side correspond to body force, the divergence of stress, solid-gas 

interaction, and Reynolds stress transport. It is worth noting that, because the phases are treated as 

interpenetrating continua, models are needed to describe solid granular properties through kinetic 

theory closures for granular flows30,34–37, frictional stress models38–40, and a drag law for the solid-gas 



 
 

interaction terms31,41–44.  

A mixing index is used to quantify the quality of solid mixing. There are over forty mixing indices 

proposed by various authors45–56. The most widely used index is Lacey's index57. For a monodispersed 

system of particles with a fraction of colored particles, the Lacey index is given by:  

 𝑀𝑀 =  
𝑠𝑠𝑂𝑂2 − 𝑠𝑠2

𝑠𝑠𝑂𝑂2 − 𝑠𝑠𝑅𝑅2
, (1.6) 

where 𝑠𝑠2 is the sample variance in the estimated fraction of colored particles, 𝑠𝑠𝑂𝑂2 = 𝑝𝑝𝑝𝑝 is the variance 

of the completely segregated mixture, 𝑠𝑠𝑅𝑅2 = 𝑝𝑝𝑝𝑝/𝑛𝑛 is the variance of a perfect mixture with 𝑛𝑛 particles 

in the sample. The probability of finding colored particles is denoted 𝑝𝑝, and 𝑞𝑞 =  (1 − 𝑝𝑝) is the 

probability of finding uncolored particles. The Lacey index gives the ratio of how much mixing has 

occurred to how much could occur. There are several variants of the Lacey index, such as the Kramer58 

and Rose45,48 indices, that use the standard deviation instead of the variance. Mixing time is often 

studies with the mixing index, and few studies have developed a relation to quantify the mixing 

time51,52,56,59. Mixing has also been studied considering granular energy and velocity variances29,60,61.  

Characterization of mixing in a particle realization is different from characterizing it in an averaged 

field representation. Most mixing indices are based on particle data obtained from either experiments 

or discrete element method simulations47,48,53,54,56,62.  For an extensive review of mixing indices, we refer 

the reader to the review article of Bhalode and Ierapetritou56. They have classified various indices into 

three categories, namely, variance-based, distance-based, and contact-based. These methods 

correspond to a realization of particle positions. However, multiphase computational fluid dynamics 

of gas-solid flow are based on averaged field representations. The question of the applicability of 

variance-based mixing indices, which were formulated for a realization of particle configuration and 

are applied to samples of particles, is then not straightforward. The distance-based and contact-based 

mixing indices require particle locations and cannot be applied to mCFD.  In contrast, mixing in 

multiphase CFD is based on average volume fraction fields, and an index must be based on continuous 

fields defined on a grid, which would be a new category of mixing indices. Although the Lacey index 

has been adapted and used in mCFD of gas-solid flows52, many open questions remain about its 

implementation and interpretation. For instance, Godlieb et al.52 show that there are issues of grid 

dependence for small sampling volumes.  

The term grid-independence is used in the context of computing a mixing index, and it should not be 

confused with mesh convergence in computational fluid dynamics. A mesh convergence study in CFD 



 
 

involves performing the same computation on various mesh sizes to determine a reasonable mesh 

resolution with low discretization error. On the other hand, establishing grid independence of a mixing 

index would involve calculating a mixing index on different grid sizes mapped from a single CFD 

simulation. To understand these criteria, relevant length scales need to be addressed. There are three 

characteristic length scales: physical, computational, and sampling. 

The first length scale corresponds to the solid volume fraction field itself. If we take the solid volume 

fraction 𝜙𝜙 and the gradient of the solid volume fraction ∇𝜙𝜙 we can define a length scale as 

 ℓ𝜙𝜙 =
𝜙𝜙

|∇𝜙𝜙| . 
(1.7) 

The minimum of the length scale ℓ𝜙𝜙  defines the smallest length scale encountered in the entire 

domain. For a bi-disperse problem, we have three physical length scales: the length scale ℓ𝜙𝜙, the length 

scale ℓ𝜙𝜙𝐴𝐴  corresponding to the solid volume fraction of particle A, and the length scale ℓ𝜙𝜙𝐵𝐵 

corresponding to that of particle B. 

Multiphase CFD simulations are performed on a computational mesh. In the finite volume method, 

the mesh is composed of discrete cell volumes, and a grid size ℎ can be associated to the mesh. This 

mesh spacing is the computational length scale. The mixing index can be computed from the solid 

volume fractions at each cell center directly using computational cells from the CFD simulations. 

However, the solid volume fraction fields can also be sampled over a sampling volume with volume 

𝒱𝒱𝑠𝑠. The third length scale can be associated with this sampling volume and can be written as 

 ℓ𝑠𝑠 = 𝒱𝒱𝑠𝑠
1/3 . (1.8) 

Given the three scales, we can say that grid-independent mixing results require a sampling volume 

greater than the computational grid spacing and smaller than the minimum of the physical solid 

fraction length scales. If the condition  

 ℎ ≤ ℓ𝑠𝑠 < min�ℓ𝜙𝜙, ℓ𝜙𝜙𝐴𝐴 , ℓ𝜙𝜙𝐵𝐵� 
(1.9) 

is met, we can expect grid-independent mixing results if the mixing index is appropriately defined. We 

can also make the sampling volume length scale larger than the spatial variation of the solid volume 

fraction averaged fields, as follows: 

 ℓ𝑠𝑠 > min�ℓ𝜙𝜙, ℓ𝜙𝜙𝐴𝐴 , ℓ𝜙𝜙𝐵𝐵�. (1.10) 

If we choose sampling volumes larger than the smallest physical length scale, mixing results will vary 

with respect to the size of the sampling volume, and we will have scale-dependent mixing.  



 
 

The objective of this article is to introduce a new mixing index based on solid volume fraction fields. 

Two types of mixing indices are introduced in Section 2: one to quantify gas-solid mixing, and the 

other for solid-solid mixing. We then apply these indices to two applications in sections 3 and 4. The 

first application is cold flow simulations of a biomass fluidized bed reactor, and the second is a study 

of segregation of two types of particles in a fluidized bed. Multi-fluid simulations were performed 

using OpenFOAM63,64 and the relevant equations are given in Appendix A. We see in Fig. 6 and Fig. 

8, that the new mixing index helps discriminate mixing between two designs of the biomass fluidized 

bed reactors. Also, we see from Fig. 10 that the new index improves the performance of an existing 

global index. An important performance characteristic, sensitivity, is introduced in section 5 and the 

new mixing indices are shown to have tunable sensitivity.  

2. Mixing index formulation 

The mixing indices for gas-solid and solid-solid mixing are derived in this section. The index for gas-

solid mixing is based on the particle volume fraction fields, and the index for solid-solid mixing is 

based on solid fraction fields. In a polydisperse system of particles, the solid fraction of a particle species 

is defined as its volume fraction divided by the total particle volume fraction. The idea of the new 

mixing indices is analogous to the mixture fraction that arises in single-phase mixing of fuel and 

oxidizer in the combustion problem. The new mixing indices linearly map the solid volume fractions field 

and the solid fraction field between 0 and 1, where the perfectly mixed state is set to 0.5 at all grid locations. 

The global average of the solid volume fraction and the solid fraction will always map to 0.5. By doing 

so, the dependency on global averages is eliminated. Both indices are functions of space and time and 

will be used to identify regions of rich and lean mixing. Hence, these new indices can be classified as 

local mixing indices.  

2.1. Local mixing index 

Consider a bi-dispersed system with 〈𝑁𝑁〉 particles, with particles of type 𝐴𝐴 and 𝐵𝐵. Let 〈𝑁𝑁𝐴𝐴〉 and 〈𝑁𝑁𝐵𝐵〉 

be the average number of particles of 𝐴𝐴 and 𝐵𝐵 respectively, such that 〈𝑁𝑁〉 = 〈𝑁𝑁𝐴𝐴〉 + 〈𝑁𝑁𝐵𝐵〉. The global 

average number density for a given type of particles are: 

 
𝑛𝑛�𝐴𝐴 =

〈𝑁𝑁𝐴𝐴〉
𝑉𝑉

, 

 𝑛𝑛�𝐵𝐵 =
〈𝑁𝑁𝐵𝐵〉
𝑉𝑉

, 

(2.1) 

where 𝑉𝑉 is the volume of the domain. The global average volume fractions are given as  



 
 

 
𝜙𝜙�𝐴𝐴 =

𝜋𝜋𝑑𝑑𝐴𝐴3

6
𝑛𝑛�𝐴𝐴, 

 𝜙𝜙�𝐵𝐵 =
𝜋𝜋𝑑𝑑𝐵𝐵3

6
𝑛𝑛�𝐵𝐵,  

(2.2) 

where 𝑑𝑑𝐴𝐴 and 𝑑𝑑𝐵𝐵 are the particle diameter of type 𝐴𝐴 and type 𝐵𝐵 particles, respectively. Perfect local 

mixing occurs when the local number densities match the global average number densities, that is, 

𝑛𝑛(𝑥𝑥, 𝑡𝑡) = 𝑛𝑛� and 𝑛𝑛𝐴𝐴(𝑥𝑥, 𝑡𝑡) = 𝑛𝑛�𝐴𝐴, or if the local volume fraction 𝜙𝜙(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙�, and 𝜙𝜙𝐴𝐴(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙�𝐴𝐴. 

2.1.1. Local mixing of particles in air 

The volume fraction 𝜙𝜙(𝑥𝑥, 𝑡𝑡) of the particles can vary from zero to the maximum packing limit. The 

local mixing index 𝑀𝑀∅ provides a linear scaling of the volume fraction field from 0 to 1. A value of 0.5 

corresponds to the global average volume fraction 𝜙𝜙, and values of 0 <  𝑀𝑀∅  <  0.5  define a lean 

mixture and for values  0.5 <  𝑀𝑀∅  <  1  define a rich mixture, analogous to the mixture fraction in 

combustion. We can then write: 

 𝑀𝑀∅(𝑥𝑥, 𝑡𝑡) = � 𝑎𝑎1𝜙𝜙 + 𝑏𝑏1,  0 ≤ 𝜙𝜙 < 𝜙𝜙�
 𝑎𝑎2𝜙𝜙 + 𝑏𝑏2, 𝜙𝜙� ≤ 𝜙𝜙 ≤ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚

 (2.3) 

where 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum packing fraction for solids in the bi-dispersed system, and the 

coefficients 𝑎𝑎1, 𝑏𝑏1, 𝑎𝑎2 and 𝑏𝑏2 can be found using the following conditions on 𝑀𝑀∅ 

 
𝜙𝜙 = 0 ,                𝑀𝑀∅ = 0,  
𝜙𝜙 = 𝜙𝜙� ,            𝑀𝑀∅ = 0 .5, 
𝜙𝜙 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 ,        𝑀𝑀∅ = 1. 

(2.4) 

Using the above conditions to determine the values of coefficients in Eq. (2.3) gives the following 

expression for the local mixing index of solids in a gas-solid mixture: 

 𝑀𝑀∅(𝑥𝑥, 𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ 𝜙𝜙

2𝜙𝜙�
,  0 ≤ 𝜙𝜙 < 𝜙𝜙�

3
4

 +  
1
4
�

2𝜙𝜙 – (𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜙𝜙�)
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚- 𝜙𝜙�

� , 𝜙𝜙� ≤ 𝜙𝜙 ≤ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
. (2.5) 

The index in Eq. (2.5) provides the richness of the solid particle phase and can be called the richness 

index. 

2.1.2. Local mixing of particles in a mixture of particles 

In order to characterize solid-solid mixing, the solid fraction, which is the ratio of volume fraction of 

particles of type A to the total volume fraction of particles 



 
 

 𝜉𝜉𝐴𝐴(𝑥𝑥, 𝑡𝑡) =
𝜙𝜙𝐴𝐴(𝑥𝑥, 𝑡𝑡)
𝜙𝜙(𝑥𝑥, 𝑡𝑡)

 , (2.6) 

is the relevant quantity on which the local mixing index should be defined. A value of 0 corresponds 

to a region with no 𝐴𝐴 type particles, and a value 1 corresponds to a region of only particles A. The 

global average solid fraction is given by: 

 𝜉𝜉𝐴̅𝐴 = �
𝜙𝜙𝐴𝐴
𝜙𝜙
� . (2.7) 

The local solid-solid mixing index 𝑀𝑀𝜉𝜉  is defined between 0 and 1, where a value of 0.5 corresponds 

to the global average solid fraction  𝜉𝜉̅. For values 0 <  𝑀𝑀𝜉𝜉  <  0.5 the mixture is defined as lean, and 

for values  0.5 <  𝑀𝑀𝜉𝜉  <  1 as rich in 𝐴𝐴 particles. The local solid-solid mixing index for particles of type 

𝐴𝐴,  can be written as  

 𝑀𝑀𝜉𝜉𝐴𝐴(𝑥𝑥, 𝑡𝑡) = � 𝑐𝑐1𝜉𝜉𝐴𝐴 + 𝑑𝑑1,  0 ≤ 𝜉𝜉𝐴𝐴 < 𝜉𝜉𝐴̅𝐴
 𝑐𝑐2𝜉𝜉𝐴𝐴 + 𝑑𝑑2, 𝜉𝜉𝐴̅𝐴 ≤ 𝜉𝜉𝐴𝐴 ≤ 1

, (2.8) 

where the coefficients 𝑐𝑐1, 𝑑𝑑1, 𝑐𝑐2, and 𝑑𝑑2 can be found by using the following conditions: 

 
𝜉𝜉𝐴𝐴 = 0 ,                𝑀𝑀𝜉𝜉𝐴𝐴 = 0,  
𝜉𝜉𝐴𝐴 = 𝜉𝜉𝐴̅𝐴 ,            𝑀𝑀𝜉𝜉𝐴𝐴 = 0 .5, 
𝜉𝜉𝐴𝐴 = 1 ,                𝑀𝑀𝜉𝜉𝐴𝐴 = 1. 

(2.9) 

From Eq. (2.8) we get the following expression for the local solid-solid mixing index: 

 𝑀𝑀𝜉𝜉𝐴𝐴(𝑥𝑥, 𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ 𝜉𝜉𝐴𝐴

2𝜉𝜉𝐴̅𝐴
,  0 ≤ 𝜉𝜉𝐴𝐴 < 𝜉𝜉𝐴̅𝐴

1 -  
1
2
�

1 – 𝜉𝜉𝐴𝐴
1-  𝜉𝜉𝐴̅𝐴

� , 𝜉𝜉𝐴̅𝐴 ≤ 𝜉𝜉𝐴𝐴 ≤ 1
. (2.10) 

2.2. Global mixing index 

The Lacey and Rose indices are applied to particle configurations using particle number fraction and 

provide a single value of mixing for the system as a whole. These indices can be classified as global 

mixing indices. Here we demonstrate the use of these indices with solid volume fraction and solid 

fraction fields. Note that this extension may not respect all aspects of the analysis underlying the 

development of these indices, and applicability of these variance-based indices explored in Appendix 

D. The global mixing index is scaled from 0 to 1, where a value of 0 denotes an unmixed state, and a 

value of 1 defines a perfectly mixed state. The form of the global indices remains the same as Lacey's 

or Rose's, but the standard deviations are computed on the solid volume fraction or the solid fraction. 

Here we use the Rose formulation to demonstrate the use of the index. 



 
 

The standard deviation of volume fraction is used to define the global mixing of particles in air 𝑀𝑀𝐺𝐺,𝜙𝜙, 

and it is given by:  

 𝑀𝑀𝐺𝐺,𝜙𝜙 = 1 −
𝜎𝜎𝜙𝜙
𝜎𝜎𝑜𝑜

, (2.11) 

where 𝜎𝜎𝜙𝜙  is the standard deviation of the current state, and 𝜎𝜎𝑜𝑜  is the standard deviation of the 

unmixed state, defined as follows: 

 
𝜎𝜎𝜙𝜙 = �∑(𝜙𝜙 − 𝜙𝜙�)2

𝑁𝑁
, 

𝜎𝜎𝑜𝑜 = �𝜙𝜙�( 1 − 𝜙𝜙�). 

(2.12) 

Similarly, the global mixing index for solids of type A in a mixture of solids given by 𝑀𝑀𝐺𝐺,𝐴𝐴 is defined 

as: 

 𝑀𝑀𝐺𝐺,𝜉𝜉𝜉𝜉 = 1 −
𝜎𝜎𝜉𝜉𝜉𝜉
𝜎𝜎𝜉𝜉𝜉𝜉

. (2.13) 

The standard deviation 𝜎𝜎𝜉𝜉𝜉𝜉 of the current state and that of perfectly mixing state, 𝜎𝜎𝜉𝜉𝜉𝜉 , are given, 

respectively, by: 

 
𝜎𝜎𝜉𝜉𝜉𝜉 = �∑�𝜉𝜉𝐴𝐴 − 𝜉𝜉𝐴̅𝐴�

2

𝑁𝑁
, 

𝜎𝜎𝜉𝜉𝜉𝜉 = �𝜉𝜉𝐴̅𝐴� 1 − 𝜉𝜉𝐴̅𝐴�. 

(2.14) 

A global mixing index value of 0 corresponds to an unmixed system, and a value of 1 corresponds to 

a well-mixed system. 

3. Mixing of biomass and sand in fast pyrolysis 

Heat transfer is a bottleneck for scale-up in conventional biomass fast pyrolysis65,66. Autothermal 

pyrolysis addresses this limitation by allowing for partial oxidation of pyrolysis products, which are 

exothermic reactions that provide heat for the endothermic reactions such as devolatilization65,67. In 

autothermal pyrolysis, a mixture of nitrogen and air is used as the fluidizing gas. Air is used to introduce 

small amounts of oxygen for char combustion, a significant contributor to the heat for the process. 

For the ideal performance of autothermal pyrolyzers, the retention of char in the bed is essential for 

the reaction with oxygen. At the same time, the quick release of volatile gases from biomass is vital 

for bio-oil yield. Therefore, the quality of biomass mixing in autothermal pyrolysis can have a 



 
 

significant impact on yield. The height of the injection point of the biomass in the reactor could play 

a role in the mixing and subsequently influence yield.  

In this section, we look at the mixing of biomass in a lab-scale fluidized bed reactor. Biomass is injected 

using an auger into the reactor, where it mixes with sand. The location of the injection points may 

influence how biomass and sand mix. Two injection locations are selected for this study, and cold 

flow simulations of biomass and sand are carried out. The simulation setup and mesh convergence 

study are first presented, and the mixing indices derived in section 2 are applied to the two designs.  

3.1. Simulation setup 

The fluidized bed reactor is 3.81 cm in diameter, with a height of 42.7 cm. A schematic diagram 

representing the computational domain is shown in Fig. 1. Silica sand of size 600 µm and density 2650 

kg/m3 is initialized until a height of 10.5 cm from the bottom of the bed. Fluidizing gas enters the 

domain from the bottom of the bed at a rate of 20 SLPM. A combination of air and biomass particles 

of size 1587 µm and density 700 kg/m3 is fed with an auger screw at a rate of 1 kg/h. The auger screw 

geometry is simplified as a cylindrical obstruction, as shown in Fig. 1.  

Two designs with different locations of the biomass feeder inlet, as shown in Fig. 1, were considered 

to study the effect on the mixing of biomass inside the fluidized bed. The position of the biomass 

inlet was 2.5 cm, well within the fluidized bed, for design 1 and 8.5 cm, underneath the freeboard, for 

design 2. Biomass and air are injected into the fluidized bed reactor for 10 s. Then injection is ceased, 

and the simulation is continued to 15 s.  

Three-dimensional simulations of the fluidized bed reactor were done using the Eulerian multi-fluid 

solver in OpenFOAM63,64. A description of the Euler-Euler multi-fluid model with kinetic theory 

closures for polydisperse granular phases used is given in Appendix A. Gradients were calculated with 

a second order least-square method, and the a second order scheme with Sweby limiter68 was used for 

the divergence terms. The superficial inlet velocity boundary conditions were used for air and biomass 

at the respective inlets, and a pressure inlet-outlet condition was used at the outlet boundary. A no-

slip wall boundary condition was used for the gas phase velocity, and the Johnson and Jackson38 

particle slip were used for the velocities of the solid phases. The velocity of sand and biomass were 

set to zero at the inlet at the bottom of the fluidized bed. A Neumann boundary condition was 

prescribed at the wall for the volume fractions of each phase. The solid phase volume fractions were 

set to zero at the gas inlet and that of biomass at the biomass-inlet was set to 0.55. A fixed value for 



 
 

air volume fraction of 1 and 0.45 were used at the gas and biomass inlet, respectively. The Johnson 

and Jackson boundary condition was used for granular energy at the wall for the solid phases. The 

simulation was isothermal, at a fixed temperature of 300 K.  

3.2. Mesh convergence 

The block meshing technique in OpenFOAM was used to generate a hexahedral mesh. The mesh of 

the cross-section of the reactor and the injection point is shown in Fig. 2. Mesh refinements were 

made near the wall and inlet auger. A mesh convergence study was carried out with the four mesh 

sizes listed in Table 1. The mesh size was calculated as69 
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The mesh convergence study was done on time-averaged quantities. Relevant quantities for each phase 

were time-averaged from 2 to 10 s. The first couple of seconds were not included in the time-average 

to remove the impact of the initial transient condition. The remaining 8 s were found to be adequate 

to obtain converged mean flow fields. Initially the bed is stationary, and we allow some time for the 

flow to develop to a quasi-steady state. The duration for time-averaging was determined by computing 

the relative error in the moving average of the total solid volume fraction field.  

The relative error and fine grid convergence index (GCI)69 were computed from the Rose index 

applied to meshes 1, 2 and 3 from Table 1 and are presented in Table 2. Time-averaged solid volume 

fractions fields of sand and biomass were used. While the grid convergence index of biomass volume 

fraction is low, as show in Table 2, it has oscillatory convergence. The GCI for the biomass volume 

fraction is 0.6%, but the value of the mixing index increases from mesh 1 to 2 and then deceases from 

mesh 2 to 3.  

In addition to the mesh convergence study, the 𝐿𝐿2  norm of the true error, which is the absolute 

difference of the result from the best solution, was computed and plotted in Fig. 3. The true error of 

time-averaged solid volume fraction fields was computed for meshes 2,3 and 4 compared to the finest 

mesh 1. The order of convergence for the sand volume fraction is slightly above one, and that of 

biomass is less than 1. The second finest mesh (mesh 2) with 551,381 cells was chosen for the mixing 

index study. 



 
 

3.3. Local mixing 

Biomass being the lighter particle tends to float on top of the bed, and this is seen in the volume 

fraction plots in Fig. 4 and Fig. 5. Biomass is more concentrated at the top of the bed for Design 2 

than it is for Design 1. At 5 s, the biomass is evenly distributed for Design 1 but is more concentrated 

towards the top of the bed at 10 s. For Design 2, the biomass remains at the top of the bed at 5 s and 

gets concentrated further as it is injected into the reactor.   

Evenly distributed dense sand volume fraction fields are observed for Design 1 at 5 s, and moderately 

dense sand is observed between the middle and top portion of the bed at 10 s. Unlike Design 1, the 

presence of bubbles with a low concentration of sand are seen in Design 2, which grow as they move 

up through the bed. The biomass inlet auger obstructs the flow in Design 1 and prevents this feature, 

as observed in Design 2. The total particle fraction is the sum of the biomass and sand volume 

fractions, where the dense regions can be observed for volume fractions above 0.6. 

The quality of gas-solid mixing can be quantified by applying the richness index 𝑀𝑀∅ to the total particle 

volume fraction. The richness index is applied to both designs at 5 s and 10 s and shown in Fig. 6.   

The richness index linearly scales the volume fraction ranging between 0 and maximum packing 

fraction 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 to 0 and 1, with 0.5 corresponding to the global average of the total volume fraction, 

the well-mixed state. As the bed is fluidized, the gas rises through the bed forming a relatively even 

distributed concentration of particles on Design 1 but successive densely packed and dilute zones of 

particle for Design 2 as seen in Fig 6. At 5 s, only dense regions are seen right above and at the injection 

inlet of the biomass auger in Design 1.  As the process continues, a less dense region of particles is 

seen between the middle and top portion of the bed at 10s, which is attributed to the slight bed 

expansion. Under the biomass feeder, which is an obstruction in the fluidized bed, lean pockets with 

few particles are observed at both 5 and 10 s in Design 1. The bubble regions in Design 2 are enhanced 

by the Richness Index in contrast to the total volume fraction fields shown in Fig. 4 and Fig. 5. Higher 

gradients are observed below the bubble regions compared to the top portion of the bubble.  

The solid mixing index can be applied to the solid fraction of biomass and sand. The solid fractions 

of biomass for both designs at 5 and 10 s are shown in Fig. 7. A small fraction of biomass can be seen 

at 5 s, and higher biomass fractions can be seen towards the top of the bed at 10 s. In the lean regions 

above the bed, a more significant proportion of biomass is observed for Design 2 than for Design 1, 

at 10s.  



 
 

To quantify the quality of solid mixing, the solid mixing index 𝑀𝑀𝜉𝜉  is applied to the solid fraction fields. 

The solid-solid mixing index is applied to the solid fraction fields of biomass 𝜉𝜉𝐴𝐴 for both designs at 5 

and 10 s, as shown in Fig. 8. 

A mixing index of 0.5 corresponds to the global average solid fraction, representing a well-mixed state. 

A higher proportion of well-mixed biomass is seen around the biomass feeder at 5 s than it is at 10 s 

for Design 1. The biomass is better mixed at 10 s between the middle and top section of the bed. Note 

that the region at the top at 5 s has no biomass or sand in Design 1, which means that the solid volume 

fractions for both solid phases are zero in this region, and the solid fraction is undefined. 

Consequently, the mixing index in such areas is not defined. Solid fractions and the solid mixing index 

were clipped in Fig. 7 and Fig. 8, respectively, and replaced with a solid color to show the domain. At 

the bottom of Design 2, almost no biomass is present at 5 s and 10 s, which is primarily collected 

towards the top. Regions of 𝑀𝑀𝜉𝜉𝐴𝐴 > 0.5 and 𝑀𝑀𝜉𝜉𝐴𝐴 < 0.5 are seen at 10 s for Design 2, clearly indicating 

non-mixedness of biomass with sand. However, at 5 s, the top of the bed shows good mixing of 

biomass and sand. The biomass segregates from the sand as it is injected into the bed in Design 2. 

The region corresponding to a mixing index of 0.5 is larger in Design 1 than in Design 2; consequently, 

mixing in Design 1 is better than in Design 2.    

3.4. Global mixing 

We now compare global indices based on the solid fraction to characterize solid-solid mixing. The 

Rose mixing index, 𝑀𝑀𝐺𝐺,𝜉𝜉𝜉𝜉 from Eq. (2.13), is applied to biomass solid fraction fields 𝜉𝜉𝐴𝐴 to quantify 

the overall solid-solid mixing of the two designs. The performance of few other variance-based mixing 

indices was studied and are presented in Appendix D, where we apply these indices to the volume 

fraction fields of biomass, 𝜙𝜙𝐴𝐴. Here we have chosen to restrict the analysis to solid-solid mixing.  

The solid fraction of biomass is computed from 1 s to 10 s at intervals of 1 s. The mixing index is 

applied to the biomass solid fraction and plotted with time, as shown in Fig. 9. The plot is 

supplemented with biomass volume fraction fields 𝜙𝜙𝐴𝐴 at 3 s, 7 s, and 10 s for both designs. Here a 

global mixing index of 1 corresponds to a perfectly mixed system. The plot in Fig. 9 shows that the 

system is well mixed early in the injection stage for both designs. The mixing improves until 3 s in 

Design 1 and then segregates around 4 s. However, the mixing in Design 2 segregates until 3 s, then 

remains almost constant until 8 s, then segregates further until 10 s. From the instantaneous volume 

fraction plots, the biomass is evenly distributed in Design 1 at 3 s. As the biomass is injected into the 



 
 

bed, it begins to segregate from the sand and collects at the top at 7s, and furthermore so until 10 s. 

The trend is captured by the global index plot. In Design 2, the biomass is collected at the top at 3 s, 

and some amount of the biomass moves down towards the middle of the bed at 7 s. However, the 

mixing index at these times is roughly the same. The concentration of the biomass at the top increases 

further in Design 2, which explains the drop in the quality of mixing until 10s. While the overall mixing 

in Design 1 is slightly better than that of Design 2, the biomass is much more segregated at 10s for 

Design 2 than for Design 1.  

We now compare global indices based on the new mixing indices introduced in this work. We can 

apply the same formulation using the scaled local solid mixing index 𝑀𝑀𝜉𝜉𝐴𝐴 . The Rose formulation 

applied to the local solid mixing index in time is plotted in Fig. 10 and supplemented with the same 

biomass volume fraction fields 𝜙𝜙𝐴𝐴 shown in Fig. 9. It can be seen that the sensitivity of global mixing 

is enhanced by the local mixing index. The difference between the quality of mixing in both designs 

is more significant for the index computed on the local solid-solid mixing 𝑀𝑀𝜉𝜉𝐴𝐴  than that computed 

on the solid fraction 𝜉𝜉𝐴𝐴. In addition, a clear improvement is seen in the performance of the index at 

the initial times of biomass injection. As biomass is injected into the bed, we expect that the quality of 

mixing of biomass and sand improves with time relative to the initial time of injection. The mixing 

improves dramatically for Design 1 until 3 s, and then slowly segregates as the biomass collects at the 

top of the bed. The mixing gradually improves in Design 2, but then segregates after 8 s. From the 

volume fraction fields shown in the plot, Design 1 follows a similar trend. At 3 s the biomass is 

relatively more evenly distributed and then collects at the top and continues to do so until 10s. Unlike 

the global index computed on the solid fraction fields, better mixing is seen at 7 s compared to at 3 s 

from the global index calculated based on the local mixing index for Design 2. At 7 s, biomass has 

moved further below the injection auger. At 10 s, the mixing quality reduces, as seen in Fig. 9. 

The local mixing indices derived in this article were used to compare the performance of two designs 

of a fluidized bed reactor for fast pyrolysis of biomass. A mesh-convergent grid was determined for 

the CFD simulations, and the sampling for the mixing study was done using the same. The richness 

index 𝑀𝑀𝜙𝜙 applied to the total solid volume fraction in Fig. 6, shows the spatial quality of gas-solid 

mixing. The biomass solid fraction fields 𝜉𝜉𝐴𝐴 were computed, and the solid mixing index 𝑀𝑀𝜉𝜉𝐴𝐴  was used 

to quantify solid-solid mixing. As shown in Fig. 8, biomass and sand are more segregated at 10 s. The 

new mixing indices provide a powerful tool to identify regions of rich and lean mixing. The Rose index 

was used to quantify the mixing of the system for the two designs.  We found that the global index 



 
 

applied to the solid fraction fields 𝜉𝜉𝐴𝐴 is insensitive to the initial state of injection, and the performance 

of the index is enhanced by applying it to the local solid mixing index field 𝑀𝑀𝜉𝜉𝐴𝐴 . From this study, 

Design 1 was found to be a better choice over Design 2. 

4. Segregation in bi-disperse flows 

Segregation of bi-disperse gas-solid mixtures is another problem that can be studied using mixing 

indices. In the biomass problem, we had two types of solid particles, biomass and sand, that were 

initially unmixed. Biomass was injected, and the quality of mixing was quantified. In the segregation 

problem, we start with a bi-disperse system of particles that are perfectly mixed in a fluidized bed. The 

binary mixture consists of silica sand and glass beads, and their properties are described in Table 370. 

The particles are classified as jetsam and flotsam, where the particles that are prone to sink to the 

bottom of the bed are referred to as jetsam, while those that float at the top are referred to as flotsam. 

Both types of particles have similar densities, but the particle sizes are different. The silica sand is 

smaller in size and will tend to float while the glass beads will settle to the bottom of the bed.  

4.1. Computational setup 

The simulations were done on a two-dimensional rectangular domain using the same multi-fluid 

model, as described in Appendix A.   The domain of the fluidized bed is 0.12 m wide and has a height 

of 1 m and is shown in Fig. 11. The bed was initialized up to a height of 0.4 m with equal volume 

fractions of 0.31 for jetsam and flotsam particles each. Air is injected from the bottom of the bed with 

a uniform velocity of 0.1 m/s. The same schemes and boundary conditions described in the previous 

section are used for this problem. 

4.2. Mesh convergence 

As in the biomass case a mesh convergence study for the CFD simulations is done with 4 meshes as 

given in Table 4. The grids are uniform, with no additional refinement at walls. The simulations were 

run till 50 s and relevant quantities were time-averaged from 4 to 50 s. The initial time was excluded 

from the time averaging, to remove the impact of the initial transient start up condition. The duration 

of time averaging was determined as in the biomass simulations, and longer time-averaging of 46 s 

was needed to obtain converged mean flow fields. The reason could be attributed to the unsteady 

bubbling nature of the fluidized bed.   



 
 

The Rose index based on the solid volume fraction fields was computed for the three finest meshes 

and are represented as ∅𝑖𝑖 in Table 5, where 𝑖𝑖 goes from 1 to 3 corresponding finest to coarsest mesh. 

The index was applied to both jetsam and flotsam time averaged volume fraction fields. The estimated 

error and grid convergence index69 are computed and presented in Table 5. The relative error and GCI 

are acceptable for both jetsam and flotsam as they are under 5%, but the apparent order 𝑝𝑝 is just below 

1. 

The 𝐿𝐿2 norm of the true error is calculated and plotted in Fig. 12. The true error was calculated for 

the time-averaged volume fraction fields of jetsam and flotsam from meshes 2, 3 and, 4 with reference 

to the finest mesh 1. The order of convergence is above 1.5 for both jetsam and flotsam fields. Mesh 

2 can be used for the mixing index study; however, the finest mesh 1 was chosen since the mesh size 

is smaller than 1 mm. A parametric study of mixing could be done where multiple CFD simulation 

are needed, in which case it is recommended to use mesh 2. However, here we intend to only compute 

a mixing index in a single case. The computation of the mixing index is inexpensive, and the finest 

mesh can be used.  

4.3. Local mixing 

The simulation starts with a perfectly mixed system of particles. In time the particles segregate, and 

the larger particles settle to the bottom of the bed. The volume fraction fields of the flotsam, jetsam, 

and total particles at 30 s are shown in Fig. 13. The smaller flotsam particles are richer at the top of 

the bed and the larger jetsam particles are rich at the bottom. Apart from the bubbles, the volume 

fraction of the total particles in the fluidized bed are dense ranging from 0.6 to 0.68.  

The richness index is applied to the total particle volume fraction 𝜙𝜙 as shown in Fig. 14. The scaling 

clearly shows the bubble regions ranging from 0 to 0.2 with lean solid gas mixing and dense granular 

mixing regions with values ranging from 0.9 to 1. Few regions of well-mixed gas-solid mixing are 

observed in the bed. These regions correspond to a mixing index of 0.5 and can be seen at the bottom 

of the bed and around the bubbles. The mixing in this problem is skewed with rich zones of particles 

and lean bubble regions that are well captured by the richness index 𝑀𝑀𝜙𝜙.  

The solid fractions 𝜉𝜉𝐴𝐴 can be computed for flotsam particles from Eq. (2.6). These are computed and 

shown in Fig. 15. The bubbles are no longer visible as the particle volume fractions in the bubble are 

small but non-zero. The particle volume fractions in the bubbles are of the order 0.01, and the solid 

fraction computes the relative proportion of a type or particles in a mixture of particles. The top of 



 
 

the bed has no particles present, and these regions were clipped. The solid mixing index is calculated 

on these solid fraction fields and given in Fig. 15. Note that the index is computed on the range from 

0 to 1, with 0.5 corresponding to the global solid fraction average, however the figure is scaled from 

0 to 0.8 to better illustrate the spatial variation. 

The solid fractions and solid mixing index are nearly identical. The reason for this is that the average 

solid fraction of the flotsam particles is very close to 0.5. It can be shown from Eq. (2.10) that the 

solid mixing index 𝑀𝑀𝜉𝜉𝐴𝐴 reduced to 𝜉𝜉𝐴𝐴  for 𝜉𝜉𝐴𝐴��� = 0.5. The problem was initialized with equal volume 

fractions of both jetsam and flotsam. Therefore, little scaling is observed by the local solid mixing 

index. The solid mixing index shows a solid mixture with a richer proportion of flotsam particles at 

the top than at the bottom, implying the inverse with a richer proportion of jetsam particles at the 

bottom of the bed. 

4.4. Global index 

As in the biomass problem, the global mixing index can be applied to the solid fraction fields 𝜉𝜉𝐴𝐴 and 

the local solid mixing index fields 𝑀𝑀𝜉𝜉𝐴𝐴 . The Rose index was applied to these fields for every 5 s from 

0 to 30 s and is plotted in Fig. 16.  There is almost no difference between the results as the local fields 

are identical.  

The mixing index study was done for a bi-disperse system of particles that were initially perfectly 

mixed in a fluidized bed. The richness index 𝑀𝑀𝜙𝜙 was applied to the total particle volume fraction to 

quantify gas-solid mixing. We found that the index captured the presence of low particle volume 

fraction bubbles well, as shown in Fig. 14. While quantifying the solid-solid mixing with the solid 

mixing index 𝑀𝑀𝜉𝜉𝐴𝐴 , these bubbles were not visible. The solid fraction field 𝜉𝜉𝐴𝐴  and the solid-solid 

mixing index 𝑀𝑀𝜉𝜉𝐴𝐴 , were found to be almost identical, as shown in Fig. 15. The global average of the 

solid fraction field 𝜉𝜉𝐴𝐴��� is close to 0.5, and therefore almost no scaling is done by the mixing index. The 

Rose index was computed for the both the solid fraction field 𝜉𝜉𝐴𝐴 and the local solid mixing index field 

𝑀𝑀𝜉𝜉𝐴𝐴 , and were shown to be nearly identical as well. 

5. Tunable sensitivity via accessed states 

In a system, the quality of mixing may never be perfectly mixed or segregated. The biomass problem 

starts with a fully segregated initial state but never reaches a fully mixed state, and vice versa for the 



 
 

segregation problem. The richness index 𝑀𝑀𝜙𝜙 and the solid mixing index 𝑀𝑀𝜉𝜉𝐴𝐴 were applied to both 

problems using the whole range possible states. That is, the solid volume fraction 𝜙𝜙 used was from 0 

to the maximum packing limit 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 , and for the solid fraction 𝜉𝜉𝐴𝐴 the range from 0 to 1 was used. 

Realistically, the region of accessed mixing states may be smaller. Defining a mixing index between 

unrealistic states may obscure the relative levels of mixing or segregation in a system. We therefore 

introduce a new performance criterion, which we sensitivity. A mixing index that can be sensitive to 

capture these features will provide additional information on the quality of mixing in a system. The 

local mixing indices derived in section 2 have tunable sensitivity and can be applied to an accessed 

region. We saw that, by applying the Rose index to the local solid mixing index we improved the 

sensitivity of the index to initial states of injection in the biomass problem. By tuning the local mixing 

index further, we may improve the performance of the Rose index. 

5.1. Formulation 

The sensitivity tuning can be done by defining the minimum and maximum limits of the accessed 

mixing state. The derivation with these limits can then be done by defining the index as: 

 𝑀𝑀𝜑𝜑  = �

0, 𝜑𝜑 < 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒1𝜑𝜑 + 𝑓𝑓1, 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜑𝜑 < 𝜑𝜑�
 𝑒𝑒2𝜑𝜑 + 𝑓𝑓2, 𝜑𝜑� ≤ 𝜑𝜑 ≤ 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

1, 𝜑𝜑 > 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

,  (5.1) 

where 𝜑𝜑 can be either the solid volume fraction 𝜙𝜙 or the solid fraction 𝜉𝜉. The coefficients 𝑒𝑒1, 𝑓𝑓1, 𝑒𝑒2, 

and 𝑓𝑓2 can be calculated using the following limits: 

 
𝜑𝜑 =  𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚,                𝑀𝑀𝜑𝜑 = 0,  
𝜑𝜑 =  𝜑𝜑� ,                   𝑀𝑀𝜑𝜑 = 0 .5, 
𝜑𝜑 = 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚  ,                𝑀𝑀𝜑𝜑 = 1. 

(5.2) 

The resulting index obtained has the form: 

 𝑀𝑀𝜑𝜑 =

⎩
⎪
⎨

⎪
⎧

0, 𝜑𝜑 < 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜑𝜑 − 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

2(𝜑𝜑� − 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚)
, 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜑𝜑 < 𝜑𝜑�

1 −
𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜑𝜑

2(𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜑𝜑�)
, 𝜑𝜑� ≤ 𝜑𝜑 ≤ 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

1,  𝜑𝜑 > 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

. (5.3) 

5.2. Mixing of biomass and sand 

The local mixing can be fine-tuned further to distinguish the performance of the two designs. Instead 



 
 

of scaling the solid fraction fields from 0 to 1, we could pick a region within a certain range of values. 

The average biomass solid fraction is 0.12 for both designs at 10 s. Looking at the solid fraction plots 

of biomass in Fig. 7, selecting the range of 0.04 to 0.4 is feasible. To compare the two results, both 

the standard scale and accessed region are given in Fig. 17. The differences between the designs can 

be seen more clearly: Design 1 has a larger region of well-mixed sand and biomass at 10 s. 

As in Fig. 10, the global mixing index can be applied to the accessed solid mixing index. The two 

ranges are plotted in Fig. 18 for time 1 s to 10 s. The average biomass increases as it is injected into 

the bed. The minimum solid fraction was set to 0, but the maximum solid fraction was set to 0.75 and 

0.5, respectively. There is an almost undiscernible decrease in the quality of mixing of Design 1, but a 

discernable reduction in the quality of mixing in Design 2 for initial time of inject, as shown in Fig. 

18. The difference in the performance of the index between the designs increases with time as can be 

seen in Fig. 18. The difference has increased from 18.2 % between the using the maximum solid 

fraction 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 of 0.75 to 34.9% with setting maximum solid fraction 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 to 0.5 at 10 s. The sensitivity 

of the mixing index has improved.  

5.3. Segregation 

The local accessed solid mixing index can be applied to the solid fraction fields for the segregation 

problem as well. Majority of the domain has a solid fraction value between 0.3 and 0.7. Two different 

accessed regions ranges were chosen to compare to the original mixing index. The accessed regions 

of solid fractions with ranges of 0.2 to 0.8 and 0.3 to 0.7 are computed as shown in Fig. 19. To compare 

these results, the color bar range of 0 to 1 is used.  By computing the mixing index of the accessed 

region, the index's sensitivity can be tuned, and the regions of mixing can be discerned.  

The global mixing index is applied to the accessed solid mixing index, as shown in Fig. 20. The 

sensitivity of accessed regions is captured by the global mixing index. The results change more 

dramatically in contrast to the biomass problem.   

Accessed regions of solid fraction 𝜉𝜉𝐴𝐴 were chosen in both the biomass and segregation problem, and 

the spatial representation were enhanced in both cases. More details in local mixing or segregation 

were captured as shown in Fig. 17 for the biomass problem, and in Fig. 19 for the segregation case. 

However, we found that the sensitivity had a larger effect on the performance of the Rose index in 

the segregation problem in contrast to the biomass problem. 



 
 

6. Discussion 

Local mixing indices which are a function of space, characterize spatial mixing patterns in a device 

through their spatial dependence. On the other hand, global mixing indices provide a single scalar 

value that is a metric for the quality of mixing of the system in its entirety. The purpose of local mixing 

indices is to identify regions of rich, lean, and well mixedness in a device, while the global mixing 

indices are useful for comparing designs. Local mixing indices are computationally inexpensive and 

can be applied to volume fraction fields obtained from CFD simulations or X-ray computed 

tomography (XCT) experiments. A grid of sampling volumes can be constructed and used to compute 

both local and global indices. Note that the sampling grid need not be the same as the computational 

grid. The global average of the solid volume fractions and the solid fraction is computed from this 

grid by taking the sample mean of the corresponding values at each sampling volume. Then the 

formulations given by Eq. (2.5), Eq. (2.10), and Eq. (5.3) can be applied to calculate the richness index, 

solid mixing index, and accessed region mixing index, respectively, at each sampling volume grid 

location. The variance or standard deviation can be calculated from the sampling volumes, and the 

global indices of Lacey or Rose, respectively, can be calculated for the device. 

The performance of the mixing index was characterized in two applications of fluidized bed. The first 

is the mixing of biomass and sand in a reactor designed for biomass fast pyrolysis. The second is the 

segregation of a binary mixture of particles with similar densities but different sizes. Although the two 

problems are solved with the same set of equations, there are important differences in the mixing 

characteristics. The initial conditions of the two problems correspond to the two extremes of the 

mixing problem. In the biomass problem, the two types of particles are initially fully segregated. 

Biomass is injected into the fluidized bed where it mixes with sand. In the segregation problem the 

two particles are perfectly mixed initially and begin to segregate as the bed is fluidized.   

The quantity of particles in the segregation problem remains constant in time, while the amount of 

biomass increases as it is injected into the bed. The global average of biomass changes with time in 

the biomass problem, while that of the particles in the segregation problem is constant. This is 

important because the mixing indices are computed using global averages. For the richness index, the 

global average of solid volume fraction 𝜙𝜙 corresponds to perfect gas-solid mixing, and the global 

average of solid fraction 𝜉𝜉 corresponds to perfect solid-solid mixing. Therefore, the average solid 

volume fraction 𝜙𝜙�, and average solid fractions of biomass 𝜉𝜉𝐴̅𝐴, need to be calculated for each time-step 

in the biomass problem. However, note that only the average solid fraction 𝜉𝜉𝐴̅𝐴 needs to be computed 



 
 

for each time-step in the segregation problem. The novelty in using the local mixing indices 𝑀𝑀𝜙𝜙 and 

𝑀𝑀𝜉𝜉𝐴𝐴 , is that the solid volume fraction and solid fraction fields are scaled by mapping of the global 

averages to 0.5, thereby removing any dependence on the global average. In addition to quantifying 

spatial mixing, the benefit of the new index 𝑀𝑀𝜉𝜉𝐴𝐴  is that the performance of the Rose index was 

improved when used with the local solid mixing index 𝑀𝑀𝜉𝜉𝐴𝐴 rather than using the solid fraction 𝜉𝜉𝐴𝐴, 

showing that the difference between the designs was more significant, and the mixing improves for 

the initial time as the biomass is injected in the bed.  

The presence of bubbles with solid volume fraction of order 0.01 are observed in the Design with 

higher injection inlet in the biomass case and the 2D segregation case. Unlike granular mixing, where 

the total solid volume fraction does not vary appreciably in the domain, in gas-solid problems, the 

total solid volume fraction can range from zero to its maximum value in regions of maximum solid 

packing. The solid fractions do not capture the effects of the bubbles, as they compute the relative 

proportion of a type of particle in a mixture of particles. Therefore, in gas-solid problems, the local 

solid fraction alone does not provide a good indication of solid-solid mixing throughout the domain. 

Both richness and solid fraction mixing indices are needed to characterize solid-solid mixing in gas-

solid flows. In addition, a conditional solid mixing index is needed to account for the effect of bubbles 

when studying solid-solid mixing.  

The sensitivity of the local mixing indices can be enhanced by performing a re-scaling of solid volume 

fraction and solid fraction fields in an accessed region. The mixing index was computed on the solid 

fraction field for both applications, and the sensitivity of this local mixing index was shown to improve 

in both cases. The differences in performance of the two designs in the biomass problem are easier to 

discern, and the local regions in the segregation were better captured. However, it is important to note 

that choosing the accessed regions depends on the problem under consideration. The global mixing 

index was applied to these accessed region fields. While there was only a slight improvement in the 

sensitivity of the global mixing index in the biomass problem, there was a substantial effect on the 

index's performance in the segregation problem. The Lacey index characterizes the departure of the 

variance of the current sample state from a reference unmixed state, scaled by the difference in the 

variance between perfectly mixed and unmixed reference states. These reference states correspond to 

a reference distribution*. Other distributions could be used as the reference distributions for the 

                                                 
*The term distribution here is not used in the strict sense of the word, as in probability distribution. 



 
 

unmixed and perfectly mixed states, resulting in a more sensitive index.  

In this study, the mixing indices were computed directly on the computational grid; therefore, the 

sampling volume was the same as the size of the cell volumes from the CFD simulations. The solid 

volume fraction fields obtained from the simulations can be sampled with larger volumes by mapping 

the results to grids with desired cell sizes. If the length scale of the sampling volume is smaller than 

the smallest length scale of the solid volume fraction, the results are expected to be grid-independent. 

If larger sampling volumes are used, micro-mixing features with a length scale smaller than the 

sampling volume will be excluded. Mixing can vary depending on the scale at which the system is 

observed. Therefore, a mixing index that can capture mixing at different scales by using larger sampling 

volumes can be devised. 

7. Summary 

Conventional mixing indices are based on realizations of particle data obtained from DEM simulations 

or experiments. They cannot be applied as-is to average solid volume fraction fields obtained from E-

E multi-fluid model simulations or XCT experiments. In this paper, we develop and present two new 

mixing indices for gas-solid mixing based on average solid volume fraction fields. These mixing indices 

are the richness mixing index that characterizes gas-solid mixing, and the solid fraction mixing index 

that characterizes solid-solid mixing.  

The richness index, 𝑀𝑀∅, is analogous to the mixture fraction that arises in single-phase mixing of fuel 

and oxidizer in combustion problems. It employs a local linear transformation that normalizes gas-

solid mixing characteristics in different spatial regions by eliminating dependence on the global average 

of the total solid volume fraction. Therefore, the richness mixing index, which always lies between 0 

(pure gas) and 1 (fully packed solids), indicates the local departure from perfect mixing corresponding 

to 0.5. Perfect mixing corresponds to the local total solid volume fraction being equal to the global 

average total solid volume fraction.  The solid fraction mixing index, 𝑀𝑀𝜉𝜉𝐴𝐴 , employs a similar idea and 

normalizes solid-solid mixing characteristics in different spatial regions by eliminating dependence on 

the global average of the solid fraction of individual solid particle types.  It also always lies between 0 

(absence of particle A) and 1 (only particle A is present), indicating the local departure from perfect 

mixing corresponding to 0.5. Perfect solid-solid mixing corresponds to the local solid fraction of A 

being equal to the global average solid fraction of A.  

These mixing indices are local in the sense of capturing spatial mixing patterns in a device. They are 



 
 

intended to be applied to sampling volumes that are smaller than the smallest length scales of the 

average volume fraction fields, which in turn are obtained from mesh-converged simulations. In this 

range of sampling volumes, these local mixing indices are expected to be independent of the sampling 

volume itself; that is, the local mixing indices within this range are grid-independent. The term grid-

independence is strictly used in the context of computing a mixing index and is not the same as mesh-

convergence for computational fluid dynamics. 

The mixing indices were applied directly on the computational grid of two different applications in 

fluidized beds. The first application is the mixing of biomass and sand in a fluidized bed reactor 

designed for fast pyrolysis. The mixing patterns for two different designs are evaluated to determine 

whether a higher or lower injection location for the biomass yields better mixing of biomass and sand. 

The local mixing indices show that the design with a lower injection inlet result in better overall mixing. 

In the second application, two-dimensional simulations were performed of an initially perfectly mixed 

binary mixture of particles leading to segregation. Low volume fraction bubbles are seen in the 

segregation problem and in Design 2 in the biomass case, but not in Design 1. The current formulation 

of the solid-solid mixing index does not account for the presence of bubbles. Both richness and solid 

fraction mixing indices are needed to characterize solid-solid mixing in gas-solid flows. 

It is useful to have a single scalar measure of mixing that can be used to evaluate different designs. 

Global indices that provide a single scalar measure of mixing in a system can be derived from these 

local mixing indices by extending variance-based or standard deviation-based indices, originally 

developed for particle mixing by Lacey and Rose, respectively. Considerable improvement in the 

representation of time-evolution of mixing is observed when using the global Rose solid fraction 

mixing index 𝑀𝑀𝜉𝜉𝐴𝐴 , as opposed to a global Rose solid fraction index. This justifies the development of 

the solid fraction mixing index, as opposed to simply using Rose's index based on the solid fraction 

and emphasizes the importance of normalizing the departure from the mixed state in different spatial 

regions. 

Sensitivity of a mixing index is a new performance criterion introduced in this work. A global index 

that is sensitive to design changes can be useful for making design decisions. The sensitivity of global 

indices based on standard deviation or variance of the local solid fraction mixing index depends on 

two factors: (a) the sensitivity of the local mixing index and (b) choice of the reference distribution 

corresponding to the perfectly mixed and perfectly unmixed states. The local mixing indices developed 

in this paper have tunable sensitivity. The newly developed mixing indices allow the first sensitivity 



 
 

factor to be tuned by introducing the concept of accessed regions, namely, by recognizing that only a 

portion of the range of solid volume fraction (for richness) or solid fraction (for solid-solid mixing) 

values are accessed in a particular application.   

8. Conclusions 

In this paper, we develop and present two new mixing indices for gas-solid and solid-solid mixing 

based on average solid volume fraction fields in gas-solid flows. These new indices employ a local 

linear transformation that normalizes mixing characteristics in different spatial regions by eliminating 

dependence on the global average of the total solid volume fraction in gas-solid mixing and total solid 

fraction in solid-solid mixing. Significant improvement in the performance of the global Rose index 

is observed when formulated based on solid fraction mixing index 𝑀𝑀𝜉𝜉𝐴𝐴 , as opposed to a global Rose 

solid fraction index. Finally, the newly developed mixing indices have tunable sensitivity by 

introducing the concept of accessed regions.  
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Computational domain Design 1 Design 2 
Fig. 1: Geometry of fluidized bed reactor used for autothermal pyrolysis of biomass. 
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Fig. 2: Computational grid 
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Fig. 3: L2 norm of the true error of meshes 2,3 and, 4 with respect to mesh 1. 
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Fig. 4: Volume fraction of biomass 𝜙𝜙𝐴𝐴, sand 𝜙𝜙𝐵𝐵, and total particles 𝜙𝜙 for both designs at 5 s. 
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Fig. 5: Volume fraction of biomass 𝜙𝜙𝐴𝐴, sand 𝜙𝜙𝐵𝐵, and total particles 𝜙𝜙 for both designs at 10 s. 
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Fig. 6: Richness index 𝑀𝑀𝜙𝜙 of total particles for both designs at 5 and 10 s. 
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Fig. 7: Solid fraction of biomass 𝜉𝜉𝐴𝐴 for both designs at 5 and 10 s. The green region at the 
top of the plot at 5 s represents an undefined solid fraction. 
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Design 1 Design 2 Design 1 Design 2  
5 s 10 s  

 

Fig. 8: Mixing index of biomass 𝑀𝑀𝜉𝜉𝐴𝐴  for both designs at 5 and 10 s. The green region at 
the top of the plot at 5 s represents an undefined solid-solid mixing. 
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Fig. 9: Rose index applied to biomass solid fraction 𝜉𝜉𝐴𝐴  
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Fig. 10: Rose index applied to biomass local solid-solid mixing index 𝑀𝑀𝜉𝜉𝐴𝐴  
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Fig. 11: Computational domain. 
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Fig. 12: L2 norm of true error of meshes 2,3 and, 4 with respect to mesh 1. 
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Fig. 13: Volume fraction of flotsam 𝜙𝜙𝐴𝐴, jetsam 𝜙𝜙𝐵𝐵, and total particles 𝜙𝜙. 
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Fig. 14: Richness index 𝑀𝑀𝜙𝜙 applied to total particles. 

 



PARTICLE TECHNOLOGY AND FLUIDIZATION AIChE Journal 
 DOI10.1002/aic.17639 

 

  
Solid fraction 𝜉𝜉𝐴𝐴 Solid mixing index 𝑀𝑀𝜉𝜉𝐴𝐴  

 

Fig. 15: Solid fraction and mixing index of flotsam particles. 
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Fig. 16: Global indices. 
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Fig. 17: Accessed region mixing index of biomass for both designs at 10 s. 
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Fig. 18: Rose index applied to local accessed solid mixing index of biomass. 
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Fig. 19: Accessed solid mixing index for 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 to 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚. 
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Fig. 20: Global index applied to accessed regions. 
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Table 1: Mesh sizes. 

Mesh Cells Mesh size 𝒉𝒉 (mm) 
1 1,813,672 0.53345 
2 551,381 0.80017 
3 164,009 1.19857 
4 49,142 1.79356 

 

 

Table 2: Grid convergence error global index. 

Property Sand volume fraction Biomass volume fraction 
∅𝟏𝟏 0.6754 0.8024 
∅𝟐𝟐 0.6456 0.8211 
∅𝟑𝟑 0.6330 0.8179 
𝒆𝒆𝒂𝒂𝟐𝟐𝟐𝟐 4.44% 2.33% 
𝑮𝑮𝑮𝑮𝑮𝑮𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐  3.96% 0.6% 
𝒑𝒑 2.161 4.354 

 

 

Table 3: Properties of the binary mixture70. 

Property Silica sand (Flotsam) Glass beads (Jetsam) 
Sauter mean diameter [µm] 125 500 
Size [µm] 100-150 400-600 
Sphericity [-] 1 1 
Density [kg/m3] 2600 2540 
Geldart group [-] B B 
Terminal velocity [m/s] 0.8 4.1 
Minimum fluidization velocity [m/s] 0.017 0.22 

 

 

Table 4: Mesh sizes. 

Mesh  Cells Mesh size 𝒉𝒉 (mm) 
1 151,200 0.891 
2 67,200 1.336 
3 29,840 2.00 
4 13,197 3.00 

 

 



Table 5: Mesh convergence error global index. 

Property Flotsam volume fraction Jetsam volume fraction 
∅𝟏𝟏 0.8364 0.8543 
∅𝟐𝟐 0.8249 0.8450 
∅𝟑𝟑 0.8077 0.8313 
𝒆𝒆𝒂𝒂𝟐𝟐𝟐𝟐 1.38% 1.08% 
𝑮𝑮𝑮𝑮𝑮𝑮𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝟐𝟐𝟐𝟐  3.6% 2.81% 
𝒑𝒑 0.966 0.9705 
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