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PREFACE 

Over the last two decades, there has been tremendous development in 

the field of laser technology leading to major advances in the fields of 

atomic and molecular spectroscopy. This is evidenced by the large number 

of books and review papers that have been written to document this 

development. 

The laser as a light source has been a boon to the spectroscopist for 

at least three different reasons. The first of these is the increase in 

resolution attainable in conventional spectroscopy. The laser presents 

itself as a more powerful source of monochromatic light than conventional 

light sources and monochromators. The second reason that the laser has 

shown itself to be such a powerful spectroscopic tool is that laser light 

can be generated in extremely short pulses which enables one to study 

very rapid transient states. Finally, the laser has facilitated the 

development of a series of spectroscopic methods which include transition 

schemes that can be probed because of the high power that the laser 

presents. 

The main goal of the research presented in this dissertation is the 

development of new laser-based spectroscopic techniques which utilize 

some of these valuable properties. This dissertation is divided into two 

parts which reflect the two basic areas of my research. Part I describes 

the development of a number of new nonlinear spectroscopic techniques. 

The techniques described include examples of two- and three-photon 

absorption as well as inverse Raman spectroscopy. Part II is devoted to 
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a study of spatial mapping of spectral sources. This work couples the use 

of a laser with digital-image processing technology. Described will be 

examples which include the mapping of atomic and molecular species in 

flames as well as atomic species in laser-generated vapor plumes. 
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PART I. NEW TECHNIQUES IN NONLINEAR SPECTROSCOPY 
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INTRODUCTION TO NONLINEAR SPECTROSCOPY 

The advent of the laser as a light source has led to the development 

of new spectroscopic techniques based on transition schemes that can be 

probed due to the high power of the laser. Under low light level 

conditions, light and matter interact with each other in a linear fashion. 

As the light level increases, however, nonlinearities which result from 

the simultaneous interaction of the medium with more than one photon from 

the incident field(s) become significant. These nonlinearities arise 

because of the nonlinear terms of the electric susceptibility expansion. 

Shen (1) has divided the development of nonlinear optics into three 

periods. During the first period (1961-1965), new nonlinear techniques 

were being discovered at a rapid rate. Some new nonlinear techniques were 

still being discovered during the second period (1965-1969), but the 

emphasis was on better understanding these phenomenon. The third period 

(post 1969) represents the maturity of nonlinear optics. During this 

time period, the main emphasis has been on the use of nonlinear techniques 

rather than on the discovery of new nonlinear phenomenon. 

There are a number of good reviews on nonlinear spectroscopy (1,2, 

3,4) which go into more detail than is warranted here. More details will 

be given about the specific techniques presented in this dissertation as 

they are discussed in later sections. 

As will be shown, much information can be gained about atomic and 

molecular systems from the spectroscopy of their nonlinear behavior. Many 

atomic and molecular states that are difficult to probe with conventional 
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linear spectroscopy because of weak interaction with the field due to a 

series of selection rules can be probed with nonlinear techniques. In 

addition, ultraviolet and infrared transitions may be probed using 

readily available tunable visible lasers, thus eliminating some of the 

practical problems of doing spectroscopy in these regions. 
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DOPPLER-FREE TWO-PHOTON SPECTROSCOPY OF NAPHTHALENE 

Theory and Review of Related Work 

Two-photon theory was originally developed by Goeppert-Mayer (5) in 

1931. It was not until 1961, however, that this effect was experimentally 
?+ 

verified by Kaiser and Garrett (6) who observed blue fluorescence from Eu 

impurities in CaFg crystals when irradiated with light at 694.3 nm from a 

ruby laser. The only mechanism by which this phenomenon could be 

explained was two-photon absorption (TPA). TPA is usually described in 

terms of second order pertubation theory, however for our purposes a 

simple quantum explanation will suffice. Suppose that two photon fields 

at frequencies and Wg are incident upon a medium. Either of these two 

fields alone will produce only small nonresonant oscillations in the 

medium. If, however, the photon fields are present simultaneously, they 

can induce oscillations in the medium which are described by the sum or 

difference of their frequencies. If w-j + Wg is at resonance with the 

medium then the resultant oscillation may result in the absorption of both 

photons, leaving the atom (molecule) in a different quantum level. The 

TPA process operates by selection rules which are different from those 

governing one-photon processes. Quantum theory states that for a one-

photon transition to be allowed from an initial state (o) to a final 

state (f) that the integral 

M = / (r) ilj^ dT (1) 
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must not vanish. Considering the symmetry of the operator (r) and the 

molecular state involved, for centrosymmetric molecules only transitions 

between states of opposite parity are allowed. If the same treatment is 

applied for a two-photon transition, the opposite selection rule is 

obtained and only transitions between states of equal parity are allowed 

(7). If a molecule has no center of symmetry, then the transition may be 

both one and two-photon allowed. 

The two-photon absorption strength 6 is expressed as: 

- = - Pg = P^PgôCJlA"^ (2) 

where P^ and Pg are the optical powers at and respectively, 

expressed in photons sec"^. C is the sample concentration in molecules 

cm" , & is the path length in cm, and A is the beam area in cm (8), 

Typical values for 6 are on the order of 10"^® cm^ sec photon"^ 

molecule"^ One can see from this that the TPA effect is quadratically 

dependent on laser power and the small values for 6 indicate that TPA is 

indeed a very weak effect. Low absorption levels make TPA difficult to 

measure directly. Other more sensitive techniques are therefore used 

to detect the occurrence of TPA. Some of these include fluorescence (9), 

thermal lensing (10), photoacoustics (11), two-photon ionization (12,13), 

and optogalvanic spectroscopy (14). 

Since its somewhat slow beginnings, TPA has been more fully 

developed and applied to solid, liquid, and vapor phase samples. TPA is 

the topic of a number of good review articles to which the reader is 

referred for a more rigorous treatment of two-photon theory and for the 

details of its development (7,15,16). The rest of this chapter will deal 
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with one of the more recent developments in TPA, Doppler-free two-photon 

absorption (DFTPA). 

The width of a spectral line is determined by three main 

contributors: the natural linewidth, pressure broadening, and Doppler 

broadening. The natural linewidth is limited by the spontaneous emission 

lifetime of the excited state and has a corresponding half-width on the 

-5 ~1 order of 10 cm in the visible region. Pressure broadening arises 

from binary collisions which terminate the life of an excited state. At 

atmospheric pressure this broadening mechanism accounts for a half-width 
— 9 —1 

of approximately 10' cm" . This undesirable limit on resolution can 

easily be eliminated by making the spectroscopic measurement at low 

pressures. The final contributor to the measured linewidth is Doppler 

broadening. Doppler broadening results from the relative motion of the 

molecule with respect to the radiation field. Typical Doppler half-

widths are on the order of 10~ cm" . In this case it can be seen that 

no matter how monochromatic the light source is, Doppler broadening will 
-1 

limit the resolution of the spectra to about 10" cm" . For high 

resolution work, this limit is not acceptable. 

A series of spectroscopic techniques have been developed which are 

capable of probing inside the Doppler width of a transition. These 

include saturation spectroscopy (17,18), Doppler-free two-photon 

spectroscopy (19,20,21), optical double resonance (22), optical Ramsey 

fringes (23,24), polarization spectroscopy (25), polarization labeling 

(26), and coherent four-wave mixing (27). Each of these techniques has 

its own advantages and disadvantages. 
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The application of TPA in Doppler-free spectroscopy was suggested by 

Vasilenko et (28), Roberts and Fortson (29), and Kelley et (30). 

The theory of this experimental technique can be easily explained with the 

aid of Figure la. Consider an atom (molecule) in a standing photon field. 

This atom is moving at velocity v. In the rest frame of the atom, 

the apparent frequencies of the photons traveling in opposite directions 

become w^(l±v^/C), where C is the speed of light. For a two-photon 

process between energy levels with a separation of AE, if both photons 

are absorbed traveling in the same direction, resonance will occur when: 

AE = 2-1^0)^ (l±v^/C) (3) 

This expression is clearly velocity dependent and only a small fraction 

of the molecules will be in resonance. If, however, one photon is 

absorbed from each of the two counterpropagating photon fields, then 

the two-photon resonance condition is described by: 

AEZ-ft = 2^1 = (jJQ (4) 

Equation 4 is velocity independent and all atoms are at resonance. As 

one scans the region around 1/2 Wq, one will trace out the usual broad 

Doppler profile. This signal will be very weak due to the fact that so 

few atoms are in resonance. As one scans through 1/2 Wq, however, all 

atoms are at resonance and a high intensity profile of the natural 

lineshape is obtained. This idea is shown schematically in Figure lb. 

The first experimental observations of DFTPA were made simu-

taneously by several groups. Baraben et al^. (31) and Levenson and 

Bloembergen (32) observed 3S-5S DFTPA in sodium vapor using pulsed dye 



Figure 1. Doppler-free two-photon absorption 

a. Molecular velocity diagram 

b. TPA signal as a function of laser frequency 
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lasers. Hansch et (33) observed 3S-4D DFTPA in sodium vapor using a 

continuous wave (cw) single frequency dye laser. Later DFTPA studies of 

atomic systems include: Bjorkholm and Liao (34) who studied resonance-

enhanced DFTPA in sodium vapor, Flusberg e;t (35) who measured hyper-

fine splitting in thallium, Hansch et al. (36) who observed DFTPA in 

hydrogen, and Kowalski et (37) who measured hyperfine splitting in 

lithium. A good review of DFTPA in atomic systems is given by Bloembergen 

and Levenson (38). 

Oscillator strengths of atomic systems are distributed unevenly in a 

few levels and the fluorescence quantum yields in these systems are close 

to one. The distribution of oscillator strengths among numerous 

rovibronic levels and low-fluorescence quantum yields (due to radiation-

less decay) in molecular systems are not so favorable for two-photon 

studies. 

The first DFTPA studies on molecular systems were done by Bischel 

et (39,40) who studied CH^F and NHg in the infrared region. 

Woerdman (41) has reported DFTPA in Nag, Gelbwachs et (42) in nitric 

oxide and benzene, and Bernheim et al_. in CO (43). Of the many TPA 

studies done on vapor phase molecular systems, most have enjoyed high 

peak power-pulsed lasers. It has been shown in atomic TPA studies, 

however, that only when one uses a cw single-frequency dye laser that 

the ultimate resolution can be obtained. 

Since molecular systems are more difficult to study by TPA than are 

atomic systems, the power available from a cw single frequency laser will 

most likely be inadequate to generate any significant TPA signal. One 
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way in which this power can be significantly increased is by moving the 

sample cell inside the laser cavity where the available power is on the 

order of one hundred times greater than the available extracavity power. 

Sinçe TPA is a function of power squared, this gain in power should 

correspond to a 10^ increase in TPA signal. If the sample exhibits very 

weak absorption, its presence should not introduce any loss of laser 

gain and corresponding drop in laser power. In addition, by placing the 

cell inside the laser cavity, the colinearity of the counterpropagating 

beams is guaranteed by lasing. 

The use of intracavity absorption has been developed independently 

by two groups (44,45) in an attempt to better the resolution attainable 

with pulsed laser systems. This chapter reports our work in the 

development of this technique as it is demonstrated with the DFTPA 

spectrum of naphthalene. Gelbwachs and Wessel (42) using a system 

similar to the one described here have obtained DFTPA spectra of nitric 

oxide and benzene. 

Experimental 

The heart of our Doppler-free two-photon spectrometer was a 

Spectra-Physics Model 580-A electronically tunable single-frequency dye 

laser with a passive stability of 50 MHz. The dye laser was pumped by 

a Control Laser Model 553A Ar^ laser operating at 6 W all lines. The 

dye laser was modified in order to accommodate the intracavity gas cell. 

This was done by removing the front mirror from the faceplate of the dye 

laser and mounting it on a movable Gimbal mount in front of the dye 
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laser. In addition, the normal front mirror of the dye laser was replaced 

with a highly reflecting mirror (99.9%) in order to increase the effective 

power. 

The aluminum gas cell shown in Figure 2 had two 11 mm diameter, 

15 mm focal length, anti-reflection coated lenses as windows. A 4 cm 

diameter, f/1 fused silica collection lens was mounted perpendicular to 

the two focusing lenses. The beam waist inside the gas cell was estimated 

to be 8 ym. The gas cell could be evacuated to 1 x 10~® torr. For 

alignment purposes, the gas cell was mounted on an X-Y transiational stage 

and a Gimbal mount. 

To obtain optimum power and mode structure, the gas cell was placed 

inside the focused fluorescence spot formed by the rear concave mirror 

of the dye laser. The position of the front mirror relative to the gas 

cell was found to be quite critical and was optimized by monitoring the 

output power of the dye laser. Once the laser was tuned to lase, the 

gas cell and laser mirrors were carefully aligned to give a TEM^^ mode 

laser output. If the laser output had higher axial modes, the fluores

cence signal was reduced by one or two orders of magnitude. This is due 

to the poor focusing properties of higher-order laser beams. 

A schematic diagram of the experimental apparatus is shown in 

Figure 3. To monitor the power, wavelength, and mode structure of the 

laser, the output beam was split into a thermopile, a Bausch and Lomb 

1/4 m double monochromator, and a Spectra-Physics Model 470 spectrum 

analyzer with an 8 GHz free-spectral range. In single mode operation 

using the standard scanning electronics of the 580A system, we were 



en 

Figure 2. Aluminum gas cell (cross section), LI and L2 are focusing lenses, L3 is 

the fluorescence collection lens, and R1 is a concave aluminum mirror 



Figure 3. Experimental arrangement of a cw intracavity two-photon 

absorption laser system 
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able to scan the laser over several GHz without mode-hopping. This was 

essential to obtaining meaningful spectra. 

The fluorescence collected by the f/1 lens was detected by a 

Dry-Ice cooled Amperex 56DVP photomultiplier tube operated at 2200 V. 

Two Corion SB-1 filters were placed in front of the photomultiplier to 

block any scattered laser light. The fluorescence signal was monitored 

using standard photon-counting techniques using an Ortec Model 9315 

photon counter. The analog output of the photon counter provided the 

Y-input to an X-Y recorder. The X-input representing the laser frequency 

scale was driven by the horizontal output of the ramp generator of the 

481A laser scanning electronics. 

The naphthalene (Merck & Co.) sample used in this work was zone 

refined and introduced into the sample cell by standard vacuum 

techniques. The vapor pressure of naphthalene at room temperature is 

about 70 mtorr. In order to increase the number density of the 

naphthalene sample and thus enhance the signal-to-noise of the DFTPA 

spectrum, the gas cell was heated to 35°C with heating tape raising the 

vapor pressure to 200 mtorr. 

Results and Discussion 

The reliability of our two-photon spectrometer may be evaluated by 

our studies on gaseous naphthalene. A low resolution two-photon 

excitation spectrum of naphthalene is shown in Figure 4. This spectrum 

was obtained by removing the electronic scanning étalon from the dye 

laser and stepping the laser frequency manually at 20 cm"^ intervals 



Figure 4. Low resolution (2 Â) two-photon excitation spectrum of 

naphthalene at 25°C 
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after each count period of 50 sec. The variation of laser power 

(fluctuations in the Hz range) was found to be on the order of 1%. 

Figure 4 represents the properly normalized (with respect to laser power 

squared) spectrum of the two-photon transition of naphthalene. 

The signal-to-noise ratio was better than 50 for most of the features. 

This is superior to that in the spectrum obtained by Bosel et (46) 

who studied the same system using an extracavity pulsed dye laser 

system. Further comparison of the two spectra shows excellent agreement 

in the position and shape of the major spectral features. 

The Doppler-free two-photon excitation of naphthalene at 35°C is 

shown in Figure 5. The transition frequency was around 33,500 cm~^ and 

the total scanning range was 11 GHz, with a scan rate of 14 MHz sec ^. 

The fluorescence signals were counted for 10 seconds to improve the 

signal-to-noise ratio. Each data point thus spans 140 MHz. Four 

successive scans were taken over the same spectral region and the 

computer averaged spectrum is shown in Figure 5, Judging from the 

position of the major feature of the successive scans, the reproduc

ibility of this system appears to be excellent. The spectrum in Figure 5 

has not been normalized since the power fluctuations over this narrow of 

a spectral region are extremely small. 

The full-width-at-half-maximum (FWHM) of the distinctive features in 

our spectrum were on the order of 300 MHz; this is less than the 2 GHz 

Doppler width. The lifetime of naphthalene under collision-free 

conditions has been measured to be 250 nsec (47). The lifetime-limited 

natural linewidth of naphthalene is thus about 3 MHz. The combined 



Figure 5. Doppler-free two-photon excitation spectrum of naphthal 

at 33,580 cm~^ 
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effects of laser width, frequency scan rate, and high density of states 

prevented us from resolving individual rovibronic lines. 

In order to compare the efficiencies of cw and pulsed laser systems, 

it is interesting to give an order-of-magnitude estimate of the relative 

number of fluorescence photons detected using the two laser systems. If 

one considers only peak power, the pulsed systems would certainly have 

an edge over cw systems. This does not imply, however, that cw systems 

cannot be used to study TPA in molecular systems. One must also take 

into account duty cycle when making any comparison. A typical high-

resolution nitrogen-pumped dye laser system has a peak power of 50 kW, 

pulse width of 10 nsec, and repetition rate of 10 Hz. Our intracavity 

cw dye laser system has 5 W continuous power inside the cavity. If one 

inserts these values into the expression for two-photon signal strength, 

the efficiency of the cw system comes within an order of magnitude of 

that of the pulsed system. Some additional advantage to the cw system 

results from the higher beam quality in the cw system which allows for 

better focusing. 

The experimental configuration described here in no way represents 

the optimum case. Several modifications can be Incorporated into the 

system which would increase its utility. These modifications include 

frequency stabilization (to a few MHz) of the dye laser by locking it to 

an external Fabry-Perot interferometer, wavelength calibration with a 

digital wavemeter to an uncertainty of one part in 10^, and if necessary, 

reduction of transient time broadening by increasing the size of the beam 

waist and improving the collection optics. 



Conclusion 

We have demonstrated the first DFTPA in a large aromatic 

molecule — naphthalene. The technique of intracavity cw DFTPA 

developed here displays adequate sensitivity for studies of low 

pressure gases. Elimination of beam overlap problems and use of a 

cw laser allow for higher resolution than attainable with pulsed 

laser systems. Even under low resolution conditions, the higher 

signal-to-noise ratios and each of normalization make the use of a 

cw laser system desirable. Features in Figure 5 show a width that 

is narrower than the Doppler width but wider than the lifetime or 

laser scan rate limited width. This shows that even for a large 

molecule DFTPA can lead to better upper state spectroscopic 

constants from the rotational contours obtained. 
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DETERMINATION OF ABSOLUTE RAMAN CROSS SECTIONS 

USING THE INVERSE RAMAN EFFECT 

Theory and Review of Related Work 

Inverse Raman spectroscopy is another of the nonlinear spectroscopic 

techniques that have become feasible because of the laser. The inverse 

Raman process can perhaps be best explained by comparing it to other types 

of Raman processes. Figure 6 depicts the events which occur in Raleigh 

scattering (Fig. 6a), conventional Raman scattering (Fig. 6b), stimulated 

Raman scattering (Fig. 6c), and inverse Raman scattering (Fig. 6d). 

The initial |a>, and final |b> states represent real vibrational 

energy states of the molecule. They are separated by energy E^. 

When the system is irradiated by a photon field at V|^, the system 

may abstract a photon from the field and move to an intermediate level 

|c>; this level may be real as in the case of resonance Raman scattering 

or it may be a virtual level. Once excited, the molecule may scatter a 

photon in one of two different manners. It may either scatter a photon 

of the same energy as the abstracted photon and return to its original 

level (Fig. 6a), or it may scatter a photon of different energy and move 

to a different energy level (Fig. 6b), The first case is known as 

Raleigh scattering and is the predominant process. The second case is 

referred to as Raman scattering. In the Raman case, the scattered photon 

will have the following relationship with abstracted photon: 

hvg = hV|_ ± E^ (5) 



Figure 6. Molecular processes taking place in (a) Raleigh scattering, 
(b) conventional Stokes Raman scattering, (c) stimulated 
Raman scattering, (d) inverse Raman scattering 
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The scattered light is historically referred to as Stokes scattering if it 

is at lower energy than and as anti-Stokes scattering if at higher 

energy than 

It should be pointed out at this time that the absorption and the 

scattering processes are not sequential in nature but are temporally 

inseparable. 

As the intensity of the photon field at is increased, the 

scattering at may become intense enough to cause stimulated 

scattering at Vg. This process is known as stimulated Raman scattering 

and is shown schematically in Figure 6c. Stimulated Raman scattering 

exhibits threshold behavior and only the strongest Raman transitions will 

undergo stimulated scattering. 

The inverse Raman process is shown in Figure 6d. It differs from 

both conventional and stimulated Raman processes in that two photon 

fields at Vg and are used to irradiate the sample instead of a single 

field at Vj^. may be supplied either as a spectral continuum or as a 

sharp laser line; is always a sharp line. These two fields must be 

coincident in space and time. The presence of a large field at Vg 

guarantees the stimulated condition and for each photon created by 

scattering at Vg, a photon at is annihilated. In this way, one may 

measure the absorption at Vj^ rather than the scattering at Vg. The 

length-dependent intensity of the probe laser at is described by 

(48): 

I|_(i) = lj_(0)exp{-g£} (6) 
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where z is the length of the sample and g (49) is the quantity: 

lo'p-io. N(do/dfi) 
g = 2 4 2 (7) 

She Awwg ng 

and Wg are the frequencies (in cm~^ ) of the probe and exciting 
2 

lasers, Pg is the power density (W/cm ) of the exciting laser, N is the 

number density (molecules/cm ) of the sample, da/dn is the Raman cross-
o 

section (cm /sr), Aw is the width of the Raman line, n^ is the refractive 

index of the sample at and h and c are Plank's constant and the speed 

of light in cgs units. 

It may not be obvious at this point why one would choose to do 

inverse Raman spectroscopy rather than conventional Raman but inverse 

Raman does offer some advantages over conventional Raman. Perhaps the 

largest problem associated with conventional Raman spectroscopy is that 

it is a very weak effect. Only on the order of 10'® of the incident 

intensity is Raman-scattered. In conventional Raman studies the 

collection optics are placed at 90° to the excitation field and can collect 

only a small portion of the already weak signal. Increasing the inter

action path length in an attempt to increase signal strength is only of 

marginal use since the efficiency of the collection optics decreases 

rapidly as one tries to collect signal from a larger area. Inverse Raman 

on the other hand is an absorption process and the signal increases 

linearly with increased path length. Since the absorption is occurring 

from a spatially well-defined laser beam, there is no problem with the 

collection optics. 
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It can be seen in Figure 6b that conventional Stokes Raman scattered 

photons are at a lower energy level than the excitation photons. This is 

also the case with fluorescence. As stated before, the Raman process is 

very weak; fluorescence, on the other hand, can be an extremely strong 

effect. For compounds that exhibit even weak fluorescence, the signal due 

to Raman scattering will be completely obscured. This may be a difficult 

problem since many interesting systems for Raman studies fluoresce 

strongly. Raman lines are typically quite sharp relative to fluorescence 

bands and can sometimes be discriminated from fluorescence in this manner. 

If not, it may be necessary to resort to wavelength modulation (50) or 

gated detection (51) to remove fluorescence interference. In the inverse 

Raman technique, the probe beam is at higher energy than the fluorescence 

so that no interference from fluorescence should be encountered with the 

possible exception of hot-band fluorescence. Even so, the small solid 

angle required to collect the entire laser beam at allows for a high 

degree of spatial filtering of whatever hot-band fluorescence there may be. 

Another advantage of the inverse Raman technique is that an entire 

spectrum may be taken in the time span of a single laser shot. This can 

be particularly advantageous for the study of rapidly transient species. 

In most of the early inverse Raman studies, was generated as a 

continuum. The first reported inverse Raman spectrum was obtained by 

Jones and Stoicheff (52). They made use of a high-power ruby laser and 

stimulated Raman scattering from toluene on the anti-Stokes side of the 

ruby as the two sources of photons. They were able to observe inverse 

Raman absorption for the benzene 992 cm"^ line, the pyridine 990 cm"^ line 
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and the nitromethane 918 cm~^ line. Duardo et |n_. (53) used the same 

liquid, acetonitrile, both to generate anti-Stokes scattering at 

w^ + 2940 cm"^ and as an absorber at w^ + 2250 cm'^. Two different liquids 

have even been placed in the same cell, one to generate the continuum and 

the other to act as the absorber (54). Other continuum sources include 

fluorescence from organic dyes (55,56), self-phase modulation of intense 

laser pulses in liquids and solids (57). Most of these techniques provide 

a rather weak continuum and may require several shots to achieve 

sufficient exposure for photographic detection. 

Yeung (48) has developed a system which provides a strong continuum 

source. In this arrangement, the second harmonic of a ruby laser is used 

to pump a broad-band dye laser. The output from the dye laser is then 

combined with the ruby fundamental to provide the two sources of photons. 

One of the main criteria by which any technique is judged is its 

sensitivity. There have been several attempts to detect minor components 

in a mixture using inverse Raman scattering. Gadow et (54) found 

little improvement over stimulated Raman. After a number of modifications 

to their technique, however, they were able to detect components in the 

concentration range of from 5x10" mole/liter for pyridine to 

1.0 mole/liter for aniline and acetophenone. There have been several 

attempts to increase the sensitivity of the inverse Raman process through 

resonance enhancement (54,58,59), These studies were plagued by a number 

of problems associated with the resonance condition; however, it is 

estimated (58) that with the use of resonance enhancement and 
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photoelectric detection, a detection limit on the order of 10"^ mole/ 

liter will be possible. 

As was stated earlier, inverse Raman spectroscopy can be a powerful 

took for obtaining Raman spectra from highly fluorescent species. This 

application is demonstrated in a study done by Werncke et (58). In 

this study they obtained inverse Raman spectra of a series of motor oils 

which were too highly fluorescent to study by conventional Raman 

techniques. Caution must be exercised when taking the inverse Raman 

spectra of fluorescing materials since the presence of fluorescence 

indicates an absorption mechanism other than inverse Raman absorption 

which may complicate spectral analysis. Other studies using the inverse 

Raman technique include those of Strizhevskii and Kondilenko (60) who 

studied polarization effects in inverse Raman scattering, and VonHolle 

(61) who used inverse Raman scattering to monitor the spontaneous 

decomposition of a liquid propellent. 

All of the inverse Raman studies mentioned to this point were done 

with both V|^ and supplied by pulsed sources. It may, however, be 

convenient to use a cw source for these photons since cw sources tend to 

be more stable than pulsed sources and would afford better signal-to-noise 

ratios. The main problem with using two cw sources is in the achieving of 

sufficient power density at Vj^ to create a measurable absorption. Stone 

(62) has observed Raman scattering from several liquids by continuous 

generation in optical fibers using two cw sources. This particular 

experimental arrangement has the advantage of a log interaction length 

between the photon fields. Other techniques which may allow the use of 
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two cw sources measure the inverse Raman absorption indirectly. In this 

way it is possible to measure a small signal in the presence of 

essentially no background rather than measuring a small change in a large 

signal. These techniques include photoacoustic detection (63) and Raman-

induced Kerr effect spectroscopy (RIKES) (64). 

A reasonable compromise between using two pulsed sources or two cw 

sources seems to be the use of a pulsed source to provide the high power 

necessary at and a more stable cw source to provide the field at Vg. 

This approach has been adopted by at least two groups (65,66). 

The determination of absolute Raman cross-sections has long been of 

interest to conventional spectroscopists. In addition to its obvious 

application in Raman spectroscopy, Raman cross-sections have found use in 

predicting stimulated Raman gain coefficients (67), absolute two-photon 

absorption cross-sections (68), and intensities in coherent anti-Stokes 

Raman scattering (69). 

During the pre-laser era, only relative scattering intensities could 

be obtained due to ill-defined excitation intensities and uncertainties in 

the interaction volume. Still some absolute intensity standards were 

suggested to overcome these problems. Brandmuller and Schrotter (70) have 

suggested using Raman to Raleigh intensity ratios as a possibility, but 

this is not reliable due to small-range order of the molecules in 

liquids and intermolecular forces. The Hg J=1 to J=3 transition has been 

suggested by Udagawa et ai. (71) because of the availability of 

theoretical predictions, but this standard cannot be used for liquids. 

Even laser Raman measurements (72,73) are not free from problems, the 
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major ones being (i) calibration of detector response; (ii) efficiency of 

the spectrometer; (iii) definition of the angle of collection; (iv) 

neglect of the angular dependence of the scattering process; and (v) the 

temperature dependence of the Raman intensity. Several attempts have been 

made to determine accurate cross-sections by conventional Raman scattering 

with perhaps the best to date being that of Kato and Takuma (74). The 

heart of their system was two identical optical systems separated by a 

rotating section mirror. This mirror would alternately project 1:1 images 

of the interaction volume and a slit opening of a blackbody source onto 

the entrance slit of a double monochromator. The laser was then 

attenuated until a balance between the intensities was achieved. The 

cross-section could then be calculated by using a formula derived by 

these authors. This experimental arrangement eliminates the sources of 

error (i), (ii), and (iii) of those previously noted, but does not help 

with respect to problems (iv), and (v). The large discrepancies in 

reported cross-sections from various laboratories indicate that good 

precision may not prove the reliability of the method in absolute terms. 

The potential of inverse Raman spectroscopy for the determination of 

absolute Raman cross-sections has been pointed out by Yeung (48). This 

work made use of two pulsed sources and photographic detection. The use 

of photographic plates made calibration of the absorption difficult. The 

determination of peak laser powers and uncertainty about temporal overlap 

leads to uncertainties in the results. In the following section, an 

alternate experimental arrangement free from the limitation mentioned 

above is presented. 
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Experimental 

The experimental arrangement used in this study is shown in Figure 7 

and is similar in many ways to those used to measure two-photon absorption 

(75) or Stokes Raman gain (76). A laboratory-constructed, passively 

Q-switched, ruby laser (R) provided the photon field at The output of 

the ruby laser was directed by a dichroic beam splitter (M2) first through 

a 10 cm liquid cell (C) containing nitrobenzene and then into a factory-

calibrated Hardron ballistic thermopile (B). The thermopile measured the 

energy of each ruby pulse and recorded it on a stripchart recorder. 

The field at Vg was provided by a Spectra-Physics model 581 cw dye 

laser (D). This cw laser was gated by an intracavity Pockels cell (PC). 

The output of the dye laser was expanded lOX by an Oriel B-34-40 beam 

expander to match more closely the diameter of the ruby laser output. 

After passing through a 15 meter optical delay line, the expanded dye 

laser beam was combined with the ruby field by Ml making sure that there 

was complete overlap of the two beams while passing through the liquid 

cell. The output of the dye laser was then focused into a Bausch and Lomb 

1/4 meter double monochromator (S) with a spectral slit width of 2.0 nm 

centered about the dye laser wavelength, 

The dye laser intensity was monitored with an Amperex 56TVP photo-

multiplier tube (P) with high current base and displayed on a Tektronix 

7904 oscilloscope (0) using a 7A19 vertical amplifier and a 7B92 time 

base. The photomultiplier tube was capable of operating linearly at 

output currents up to 300 ma for a few microseconds. As mentioned before, 



Figure 7. Experimental arrangement used to measure the absolute Raman 

scattering cross section of nitrobenzene. Ruby laser (R); 

Pockels cell (PC); Ballistic thermopile (B); Sample cell (C); 

Monochromator (S); Photomultiplier tube (P); Oscilloscope (0); 

Trigger Generator (T); High voltage amplifier (A) 
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the dye laser was gated by a Pockels cell; this was necessary in order to 

center a "pulse" from the cw laser around the pulse from the ruby laser. 

If the dye laser were not gaged, the performance of the photomultiplier 

tube would degrade rapidly under such high illumination. By placing the 

Pockels cell inside the dye laser cavity, lasing was quenched by 

introducing high loss at the polarization of lasing when a high voltage 

DC field was applied to the Pockels cell from a Burleigh PZ-70 high 

voltage operational amplifier (A). When the ruby laser was fired, the 

delay generator (T) would clamp the output of the high voltage 

operational amplifier to ground for a few microseconds, gating out a 

"pulse" from the dye laser. The time of the delay generator was such that 

the dye laser was gated on several ysec before the ruby laser was fired, 

and gated off well after the ruby pulse. 

Results and Discussion 

A problem was encountered very early in this work. While monitoring 

the dye laser power as the ruby laser was fired, it was found that the 

dye laser output was quenched by a small amount of the ruby field which 

was being fed back into the dye laser cavity. This quenching masked any 

inverse Raman absorption that may have been present. To alleviate this 

problem, an optical delay line was placed in the path of the dye laser. 

The additional time required for the ruby field to reach the dye laser 

provided an unperturbed window in the dye laser output which bracketed the 

ruby pulse in the time domain. 
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Once this problem was solved, it appeared that inverse Raman 

absorption was very easy to obtain as the first oscilloscope traces 

showed an attenuation of the dye laser that was synchronous with the 

arrival of the ruby field in the liquid cell. However, as the dye laser 

was tuned off the Raman resonance, the attenuation did not disappear as 

would be expected. The observed behavior was a result of dielectric 

breakdown of the sample (77). This problem was eliminated by extensive 

filtering of the sample to remove suspended particulates. 

After tuning the dye laser in the region of Raman resonance, an 

unambiguous inverse Raman absorption was finally monitored. This was 

confirmed by the fact that the absorption disappeared when the dye laser 

was tuned off resonance or if the ruby field was blocked before entering 

the sample cell. 

Figure 8 shows a typical oscilloscope trace. The horizontal axis 

represents time (50 nsec/div.) and the vertical axis represents dye laser 

intensity increasing from top to bottom. The dot in the upper left 

represents zero-intensity output from the dye laser. The dye laser was 

gated on several microseconds before the beginning of the trace to allow 

it to stabilize at the intensity value at the beginning of the trace. 

The first drop in laser intensity is coincident with the arrival of the 

ruby field at the sample cell and represents inverse Raman absorption. 

The second drop in intensity represents the quenching of the dye laser by 

the ruby field and is the reason for the addition of the optical delay 

line. 



Figure 8. Oscilloscope trace of inverse Raman absorption 
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The data analysis is as follows. In order to determine a value for 

the absolute Raman cross-section, it is first necessary to measure the 

inverse Raman absorption g in equation 6. Values for and 1^(0) can 

be measured directly from the oscilloscope traces. By rearranging 

equation 7, one arrives at the following equation to describe the absolute 

Raman cross-section: 

? d ? 
3hc gAoxo n 

do/dO = -—7 ^ (8) 
lOrPgW^N 

In this work, Wg is 14402 cm~^ as determined by the ruby laser output. 

For the nitrobenzene line at 1345 cm'^ a)|^ is 15747 cm~\ From published 

conventional Raman studies, Aw has a value of 6.6 cm ^ (78). The number 

21 _3 
density N is calculated from density data to be 5,86x10 molecules cm" 

and the refractive index n^ is taken to be 1,55 (79). The length of the 

sample cell throughout this work was 10 cm. The final value which is 

needed to complete this calculation is the power density of the ruby field 

at the absorption peak. The ballistic thermopile records only the total 

energy of the pulse and must be divided by the full-width-at-half-maximum 

of the absorption peak as measured from the oscilloscope trace. Using 

equation 8 and correcting for a nonzero depolarization ratio of 0.15 

(80), the results of our effort for a total of 65 trials yield an 

absolute Raman cross-section of (2.37 + 0.51) x 10'^^ cm^ sr"^ for the 

1345 cm"^ line of nitrobenzene. 

This result is to be compared to the published values for nitro

benzene cross-sections of 1.56x10"^^ cm^ sr"^ (80) and 1.93x10'^^ 

2 -1 cm sr (67). Since no estimates of accuracy were given for these 
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values, there appears to be agreement between our value and theirs. When 

compared to typical reported Raman cross-sections, our reported 

uncertainty is quite high. This is because relatively high precision can 

be obtained by conventional techniques but the accuracy of such measure

ments, may not have been realistically estimated. In any case, 

improvements in the present uncertainty limit can be expected with 

refinements in our experimental technique. The most valuable of these 

refinements may be the addition of a second oscilloscope to monitor the 

peak shape of the ruby laser pulse, making the determination of laser 

power density more reliable. 

We now need to show that our method is in fact more reliable than the 

other methods for the determination of absolute Raman cross-sections by 

considering in detail the various sources of inaccuracy. 

The calibration of detector response and the efficiency of the 

spectrometer are not of concern when using the inverse Raman technique 

since we are measuring absorbance which is a relative measurement rather 

than measuring an absolute signal as in conventional Raman studies. 

The angular dependence of the scattering process has been properly 

taken care of. The two lasers have beam divergence of less than 5 mrad 

and are aligned to be propagating at 180°±1°. This is far better than 

the collection cone of a typical Raman spectrometer. 

Because of the short pulse duration and the larger cross-sectional 

areas of the laser beams in our method, the extent of heating of the 

sample is minimized relative to typical laser Raman methods. This 

minimizes the temperature effects on scattering intensity. 



45 

Both of the lasers used in our study are of sufficient resolution 

(less than 1 cm~^) to be centered at the peak of the nitrobenzene line, 

which has a width of 6.6 cin"\ Tuning of the dye laser to maximum inverse 

Raman absorption removes any inaccuracy in the absolute frequencies of the 

lasers due to such things as temperature shift of the ruby laser 

frequency. 

Complete spatial and temporal overlap of the two lasers is assured in 

our optical arrangement. The ruby has a diameter of 0.9 cm"^ and the dye 

laser has a diameter of 0.5 cm"\ This means that the entire probe laser 

can be covered by the pump laser, even if the two lasers are slightly 

misaligned. Time coincidence of the two lasers is assured since one of 

the two lasers is a continuous wave laser. This eliminates many of the 

synchronization problems encountered in earlier studies (48). 

Conclusion 

We have demonstrated that inverse Raman spectroscopy can be a 

valuable technique for the determination of absolute Raman cross-sections. 

Our experimental arrangement which couples a giant-pulse ruby laser with a 

cw dye laser eliminates many of the sources of inaccuracy associated with 

conventional as well as other inverse Raman cross-section determination 

methods. 
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RESONANCE ENHANCED THREE-PHOTON ABSORPTION 

OF MOLECULAR IODINE 

Theory and Review of Related Work 

Recently, several nonlinear spectroscopic techniques have been 

developed to study high-lying and Rydberg states of gaseous molecules. 

As discussed previously, these nonlinear effects are usually weak and 

require very high laser power to measure any appreciable signal. The 

information that can be gained about these molecular systems via these 

techniques is, however, of great importance since it is often unattain

able by other means. 

Among the molecular systems studied to date, a simple molecule, 

iodine, is often chosen by authors to demonstrate their technique. This 

choice is made for a number of reasons. First among these is the fact 

that being a homonuclear diatomic molecule, the spectrum of iodine is 

relatively easy to model theoretically when compared to heteronuclear 

polyatomic species. The spectrum of iodine is also reasonably simple 

which facilitates spectral analysis. Secondly, since iodine has been so 

extensively studied over the years, a tremendous amount of spectral data 

has been compiled which is useful for both predictive and confirmative 

purposes. The real advantage of the iodine system to the nonlinear 

spectroscopist is that resonance enhanced absorption through the low 

lying B state of iodine reduces the high power requirements for multi-

photon processes. 
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To avoid confusion, we must at this point carefully define the two 

different types of multiphoton absorption that will be discussed in this 

section. Those multiphoton processes which pass through a resonant 

intermediate state will be referred to as sequential multiphoton processes 

and those whose intermediate state is a virtual level will be referred to 

as simultaneous multiphoton processes. 

To better understand this resonance enhancement, it is helpful to 

look at it from a theoretical viewpoint. For the purpose of this 

description, we will discuss two-photon absorption; however, the same 

arguments will hold for higher order processes. The two-photon absorp

tion cross-section depends on the square modulus of a sum over all 

molecular ("intermediate") states (2): 

where e^ and eg are the polarizations of the photon vectors, the 

transition moment between states o and i, the transition moment 

between states i and f, the transition frequency between states o and 

i, and w-j and Wg the photon frequencies. This expansion diverges as 

approaches or Wg. The approach to resonance has been discussed by 

Bonch-Bruevich and Khodovoi (80), In the nonresonance case, the molecule 

has no energy level at ± -hw^ or ±/fiwg. After the molecule absorbs 

the first photon at hw^ inducing the o^i transition, it must absorb a 

second photon at hwg within the same constraint of the Heisenberg 

uncertainty principle: 

2 
(ei-Mpi)(M.f>eg) ^ 

Woi-^l 

(e2'Moi)(Mif'Gl) ' 

tOoi-Wg 
(9) 
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At = I - 0)-] (10) 

The small value of At can be thought of as the limiting factor which 

makes two-photon absorption in the absence of resonance an extremely 

weak effect. If the intermediate state is a real state, then -co-j <y^, 

where is the width of the intermediate level. At this point, the two 

transitions o-»-i and i->f can be thought of as separate one-photon 

processes. Under these conditions, the rate of the sequential two-photon 

process is described by: 

V • ' i f  

where is the natural lifetime of the intermediate state and r is 

the absorption rate of the designated process. 

Even though resonance enhancement lowers the high power requirement 

for multiphoton processes, it does not change the power dependence of the 

signal or the selection rules which govern the absorption process. 

As stated earlier, the iodine molecule has been the subject of much 

spectroscopic research over the years. The spectroscopy of iodine is 

discussed in an excellent paper by Mulliken (81) in which he critically 

reviews the research done on iodine before 1970. Since that time, there 

have been a number of laser spectroscopic studies done on iodine which 

take advantage of resonance enhancement in one way or another. 

Rousseau and Williams (82) have used a sequential two-photon 

technique to study the E state of molecular iodine via a resonant B state 

intermediate. Similar techniques employing two independently tunable dye 

lasers have been developed by Danyluk and King (83) and Williamson (84). 
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Sander and Wilson (85) have applied the photofragment spectroscopic 

technique to study the repulsive states of iodine after population by 

resonance enhanced two-photon absorption. Resonance-enhanced photo-

ionization of iodine has been reported by Petty et al^. (86), Dalby et al. 

(87) and Zandee et (88). In this chapter we report the first 

observation of D + X resonanced three-photon absorption in iodine. 

Experimental 

The experimental arrangement for this study is essentially the same 

as that used in the Doppler-free two-photon absorption study described 

earlier in this dissertation. We have, however, made several 

modifications on the laser system. A schematic diagram of the experi

mental apparatus is shown in Figure 9. The Spectra-Physics Model 580A 

continuous-wave dye laser was modified to incorporate the intracavity gas 

cell. The dye laser was pumped by a Control Laser Model 553A Ar^ laser 

operating at 5 W all lines. The intracavity gas cell shown in Figure 2 

was retrofitted with two Mel les Criot 10 mm diameter, 20 mm focal length, 

broadband anti-reflection coated, "best form" quartz lenses. These lenses 

were of higher quality than those used in the naphthalene experiment. 

This has the effect of reducing cavity losses and increasing the available 

intracavity power. A typical power inside the dye laser cavity was about 

3.5 W. The dye laser power was monitored by an Eppley thermopile from the 

reflected light off the dye jet. A Bausch & Lomb 1/4 m double-grating 

monochromator with 2 Â resolution was used to monitor the wavelength of 

the dye laser output. The fluorescence collected by the f/1 fused silica 



Figure 9. Experimental apparatus of a cw intracavity absorption laser system 
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collection lens was monitored by a Dry-Ice cooled Amperex 56DUVP photo-

multiplier tube. Two Corion SB-1 solar blind filters were used to block 

the scattered laser light and dye fluorescence. The signal from the 

photomultiplier tube was monitored by an Ortec Model 9315 photon counter. 

The background signal due to dark current and scattered light was about 

2 counts sec"^. 

The iodine sample was vacuum sublimed and introduced into the gas 

cell by standard vacuum techniques. The vapor pressure of Ig is about 

0.25 torr at room temperature. After tuning the laser to a strong 

feature, the alignment of the laser and the gas cell was adjusted to 

provide a clean TEM^^ mode dye laser output. It was necessary to preserve 

this mode structure throughout the entire tuning range of the dye laser. 

Spectra of Ig were obtained by manually tuning the dye laser at 2 A 

intervals and counting the fluorescence for fifty seconds to improve the 

signal-to-noise ratio. The highest counting rate (before normalization) 

was more than 500 counts sec'\ Spectra were obtained over the tuning 

ranges of Rh 6G and Rh 640 laser dyes. 

For experiments measuring the pressure dependence of the signal, the 

gas cell was fitted with a temperature controlled side arm and a MKS 

Baratron manometer to measure the pressure of the Ig vapor. Power 

dependency experiments were done by changing the power of the pump laser 

which resulted in a change in the dye laser power. Care was taken that 

the mode structure of the dye laser did not change with the changing pump 

laser power. 
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Results and Discussion 

In order to determine the source of the observed fluorescence signal, 

one of the first experiments that must be done is a power dependence 

study. Such a study done on several of the strong spectral features 

indicates that a three-photon process is responsible for the observed 

fluorescence. Although a power dependence study provides a good indication 

of the type of process being observed, one should be careful when inter

preting the experimental results. This is of particular importance when 

studying a rotationally resolved molecular system with a multimode laser. 

If the system under investigation has homogeneously broadened spectral 

widths larger than the bandwidth of the laser, e.Si., solid or liquid 

samples, the n-th power dependence of the signal on laser power should be 

strictly followed up to saturation. For a gaseous sample, the expected 

power dependence can be observed if one is using a single-frequency laser. 

For a multimode laser, the observed power dependence will be lower than 

that expected. This is a result of the fact that not all of the laser 

output will be participating in the excitation process. In our particular 

experimental arrangement, we have additional problems due to intracavity 

one-photon absorption. The laser modes that are strongly absorbed will be 

completely quenched if the pumping power cannot compensate for the loss. 
2 fi 

Our studies indicate a (power) * dependence of the fluorescence 

3 5 
signal in the Rh 640 region and a (power) * dependence in the Rh 6G 

region. Figure 10 shows a power dependence plot for one of the strong 

features in the Rh 66 region. Since Ig absorbs weakly in the Rh 640 



Figure 10. Power dependence plot of fluorescence signal in the 

Rh 6G region 
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region, the quenching effect is not as prominent there as in the Rh 6G 

region where, under weak pumping conditions, the dye laser will not lase 

at those modes which are strongly absorbed. Thus, we expect a larger 

power dependence in the regions which are strongly absorbed and vice versa. 

A pressure dependence study shows that the fluorescence signal is a 

linear function of iodine pressure up to 0.1 torr. At higher iodine 

pressures, self-quenching of the fluorescence signal becomes apparent. 

This quenching probably takes place via a mechanism proposed by Call ear 

and Metcalfe (89). 

If the observed fluorescence results from two-photon excitation, the 

parity selection rule requires that a collisionally-induced curve crossing 

occur for the molecule to reach a fluorescing u state. Under these 

conditions, a larger-than-linear power dependence would be expected. The 

nearest u state is the D state which is at too high an energy for 

collisions to be effective, particularly towards the low-frequency end of 

the spectrum. In light of this evidence, a two-photon mechanism can be 

ruled out. 

By placing additional cut-off filters in front of the photomultiplier 

tube, we were able to identify the peak wavelength of the fluorescence to 

be around 3200 A. Although no attempt was made to further characterize 

the fluorescence spectrum, its peak is consistent with reported D + X 

fluorescence (90). The parity selection rule for a three-photon process 

allows only transitions to states of opposite parity. This condition is 

satisfied by a three-photon D-«-X excitation mechanism. 
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The three-photon excitation spectra of Ig in the Rh 640 and Rh 6G 

regions are shown in Figures 11 and 12, respectively. The fluorescence 

intensities shown are normalized with respect to laser power cubed. The 

fluorescence intensities in Figures 11 and 12 have not been normalized 

with respect to each other since changing the laser dye also requires 

changing the dye laser mirrors. This changes the mode properties of the 

laser making normalization impossible. 

Three-photon absorption from rhodamine family dye lasers excites 

high into the vibrational manifold of the D state of Ig. Even though the 

available dye laser power is only a few watts, the resonance enhancement 

through the B state greatly reduces the power necessary to generate an 

observable three-photon absorption signal. One should also note that 

there may also be some resonance enhancement of the second absorption via 

the C state of Ig (81, 85). 

Tables 1 and 2 list the transition frequencies and vibrational 

assignments for the D-t-X three-photon absorption in the Rh 640 and Rh 6G 

spectral regions, respectively. Least squares fitting of the strongest 

features was employed to arrive at the following set of spectroscopic 

constants for the D states: VgQ = 40,998 cm"\ =113 cm'\ and 

(DQ'XO'=0.045 cm"^. These values can be compared to values of 

VQQ 41,200 cm"! (81, 90), and Wo'=104 cm"\ cm"'' (91). The 

deviation of the theoretically calculated transition frequencies 

(Q Branch) are within the resolution (2 Â) of the wavelength measurement 

for the majority of the spectral features. Since a three-photon 



Figure 11. Low resolution (2 Â) three-photon excitation spectrum of 

12 in the Rh 640 dye spectral region 
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Figure 12. Low resolution (2 Â) three-photon excitation spectrum 

of Ig in the Rh 6G dye spectral region 
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Table 1. Vibrational assignments of Ig D X three-photon transitions in the Rh 640 spectral region 

Frequencies (cm"^) Vibrational quantum numbers Intensities 

D state B state X state 

44813 44 2 5 14 
44880 46 4 6 13 
45042 44 1 4 12 
45096 48 5 6 13 
45164 47 4 5 10 
45246 50 5 6 10 
45370 47 2 4 27 
45480 50 4 5 15 
45507 52 6 6 17 
45604 49 3 4 12 
45688 48 1 3 26 
45772 51 3 4 9 
45870 48 0 2 14 
46011 51 2 3 19 
46110 54 4 4 52 
46166 58 8 6 15 
46195 57 6 5 19 
46295 52 1 2 21 
46438 55 3 3 26 
46539 52 0 1 20 
46583 60 7 5 20 
46612 55 2 2 23 
46845 61 6 4 44 
46948 56 1 1 47 
47007 58 3 2 65 



Table 1. (Continued) 

Frequencies (cm"^) Vibrational quantum numbers Intensities 

D state B state X state 

47125 61 5 3 55 
47155 64 7 4 58 
47214 56 0 0 42 
47259 66 9 5 52 
47304 69 n 6 49 
47363 60 2 1 54 
47393 62 4 2 58 
47453 65 6 3 51 
47499 67 8 4 100 
47589 60 1 0 42 
47619 70 10 5 49 
47650 66 7 3 46 
47786 65 5 2 40 
47832 68 7 3 68 



Table 2. Vibrational assignments of Ig D X three-photon transitions in the Rh 6G spectral region 

Frequencies (cm"^) Vibrational quantum numbers Intensities 

D state B state . X state 

48001 66 4 1 7 
48093 76 14 6 4 
48124 71 8 3 3 
48233 76 12 5 3 
48279 66 3 0 4 
48357 69 5 1 7 
48420 74 9 3 5 
48561 79 13 5 3 
48671 70 4 0 2 
48766 79 12 4 8 
48990 73 5 0 2 
49102 80 11 3 6 
49215 87 18 6 4 
49312 78 8 1 2 
49361 76 6 0 5 
49410 81 10 2 6 
49491 86 14 4 2 
49622 91 19 6 3 
49672 89 17 5 3 
49771 84 11 2 4 
49887 93 20 6 3 
50070 87 12 2 14 
50171 96 21 6 5 
50221 95 19 5 7 



Table 2 .  (Continued) 

Frequencies (cm~^) Vibrational quantum numbers Intensities 

D state B state X state 

50373 88 11 1 16 
50458 87 9 0 10 
50526 98 20 5 10 
50577 94 16 3 16 
50629 88 10 0 27 
50697 93 14 2 14 
50783 100 21 5 27 
50886 99 19 4 32 
50956 94 12 1 35 
51025 92 11 0 25 
51112 95 13 1 40 
51182 100 18 3 51 
51270 99 16 2 69 
51357 97 14 1 77 
51428 102 19 3 49 
51481 105 21 4 62 
51534 101 17 2 52 
51587 108 24 5 82 
51676 106 22 4 100 
51730 105 20 3 53 
51801 104 18 2 50 
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absorption has seven rotational branches (92), the present vibrational 

assignments are satisfactory. 

Since the completion of this work, single frequency ring dye lasers 

have become available with sufficient power to perhaps allow this 

experiment to be conducted outside of the laser cavity. This technique 

would eliminate the problems associated with laser quenching as well as 

allow for a high resolution study which can resolve rotational structure 

of the spectrum. Such an experiment can provide better spectroscopic 

constants and added information on the potential surface of the D state. 

Conclusion 

In this chapter we have demonstrated the first observation of D + X 

resonance enhanced three-photon absorption of molecular iodine. Three-

photon excitation spectra of iodine were presented and vibrational 

assignments made for all of the major features. With this information, 

we were able to refine some of the spectroscopic constants for the D 

state of the iodine molecule. Information of this type could help in 

the development of new iodine lasers. 
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PART II, APPLICATION OF DIGITAL IMAGE PROCESSING TECHNIQUES 

TO SPATIALLY RESOLVED ABSORPTION SPECTROSCOPY 
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APPLICATION OF DIGITAL IMAGE PROCESSING TECHNIQUES 

TO SPATIALLY RESOLVED ABSORPTION SPECTROSCOPY 

Introduction 

The ability to make real time species concentration measurements 

with good spatial resolution is of fundamental importance to understanding 

the dynamics of many physical systems. Optical spectroscopic techniques 

of various types are often employed to make these measurements. To this 

end, techniques such as atomic and molecular emission (93,94), 

absorption (95), fluorescence (96), and scattering (97) have been applied 

to study a wide range of systems and problems. These techniques provide 

an excellent means for making actual concentration measurements, but their 

implementation to systems which require spatial resolution is often quite 

tedious. To date, nearly all spatial information is obtained one point at 

a time by some sort of rastering mechanism. Aside from being a slow 

process, this type of technique is probably fine for studies on systems 

which exhibit steady state behavior or, if dynamic in nature, are very 

reproducible. If, however, the system under study is not reproducible, 

point by point measurements may be of little utility. Such measurements 

may provide an average picture of the systems behavior, but this average 

may bear little resemblance to individual events. 

From this, one can see that it would be useful to have some 

diagnostic system that is capable of instantaneous spatial mapping. To 

accomplish this, some sort of multidimensional detection device coupled 

with an imaging system is required. Devices of this type have been 
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available for many years in the form of photographic emulsions. Although 

photographic detection provides simultaneous detection, is low cost, and 

is available in a number of format sizes, it suffers from a number of 

problems. Low sensitivity, the requirement of frequent emulsion 

calibrations and tedious two-dimensional densitometry severely limit its 

practicality. 

Over the last decade, there has been much interest in TV-type multi

channel imaging detectors. The primary advantage of the imaging detectors 

is that they can be readily interfaced to digital computers providing not 

only simultaneous detection, but also rapid data manipulation. The 

primary disadvantage of these devices are their limited format size, 

integration time, and dynamic range. The question which must now be 

addressed is which of the spectroscopic techniques is most compatible with 

this type of detector for spatially resolved measurements. Emission is a 

possibility, but in order to get sufficient depth of field for measure

ments made on thick systems, high f-number collection optics must be used. 

This has the effect of greatly reducing the strength of the available 

signal. Fluorescence and Raman scattering are probably also poor choices 

since it is difficult to supply sufficient excitation photon flux over a 

large imaged area to provide a significant signal. Absorption seems to 

be the best of the available choices, particularly if one uses a tunable 

dye laser as the primary light source. As an expanded laser beam passes 

through the system under study, the laser will be absorbed by the species 

of interest. If one measures the intensity distribution of the laser in 

the presence and absence of absorbing species, one can determine the 



70 

species distribution in the system. The collimated nature of the laser 

beam not only preserves spatial integrity, but also allows the imaging 

device to be moved far away from the system under study minimizing the 

problems associated with stray light. In addition, since we are measuring 

absorption, there are no stringent requirements on laser power as would be 

the case for fluorescence or Raman scattering-type measurements. 

In this chapter, we will explore the possibility of using a TV-type 

imaging detector coupled with absorption techniques for making spatially 

resolved species distribution measurements in a variety of systems. We 

will give examples of this technique as applied to the mapping of atomic 

and molecular species in flames as well as atomic species in laser-

generated vapor plumes. We will also discuss the applicability of this 

technique to systems not studied in this work. 

Review 

Any digital image processor consists of five basic elements: a 

sampling aperture, scanner, transducer, analog-to-digital converter, and 

some type of output medium (98). Image processors are divided into two 

basic categories, scan-in and scan-out. Scan-in processors illuminate 

only one picture element (pixel) at a time and all of the light is 

collected for the transducer. Since only one pixel is illuminated at a 

time, this type of imaging is analogous to obtaining spatial maps by a 

rastering mechanism. No simultaneous detection is possible with this 

type of system and it will be discussed no further. 
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In a scan-out processor, the entire image is illuminated simul

taneously and the transducer is allowed to "see" only one pixel at a 

time. Scan-out processors can be further divided into two categories. 

The first category includes devices that have no image storage capability 

and thus cannot be used for simultaneous detection. The various types of 

image dissector tubes fall into this category. Devices in the second 

category have image storage capabilities and it is these detectors in 

which we have the most interest. Included in this category are such 

devices as vidicons, image isocons and orthocons, and numerous solid-state 

imaging devices. The choice of which particular device is best suited for 

a particular application must depend on a number of factors including 

sensitivity, dynamic range, signal-to-noise ratio, resolution, spectral 

response and cost. An excellent review of the theory of operation and 

capabilities of these devices has been presented by Talmi (99) to which 

the reader is referred for a more complete review. The imaging device 

used in this study will be a silicon-target vidicon camera. 

Digital image processing techniques have been developed to deal with 

problems in three major categories (100): image digitization and coding, 

image enhancement and restoration, and image segmentation and description. 

Over the last few years much has been written about the various aspects 

of digital image processing. The main emphasis in these publications has 

been on the mathematical treatment associated with image enhancement and 

segmentation. These subjects are reviewed in a number of excellent books 

(98,100,101,102). 
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Real world applications of digital image processing techniques are 

widely varied. One area which has received much attention is the field 

of biomedical image processing. Successful application in this area 

include white blood cell analysis (103), ultrasound imaging (104), and 

CAT scanning (105). LANDSTAT type satellites (106) which relay infor

mation to earth about such things as land-use, mineral resources, and 

weather patterns are another useful application of digital image proc

essing technology. Other successful applications include document 

reproduction (107) and industrial automation (108). 

Digital image processing has also found use in spectroscopic 

applications. One-dimensional image processors have been successfully 

applied to astronomical studies (109), flame multielement atomic emission 

(110,111,112) and absorption (113), molecular absorption (114), and pico

second flash photolysis (115). Two-dimensional processors have been 

coupled with Eschell spectrometers for multielemental analysis (116,117) 

and with fluorometers for obtaining simultaneous excitation and emission 

spectra (118). 

The first system on which we will demonstrate our diagnostic 

technique is the laminar flow slot burner common to many atomic absorption 

instruments. The need for species distribution maps of both natural flame 

products and species introduced into the flame has been well established 

in the literature. This information can provide valuable insight into the 

mechanics of the combustion process as well as the behavior of foreign 

species introduced into a combustion environment. Papers by Rann and 

Hambly (119), Chakrabarti et £[_. (120), and Fasse! et al. (121,122) 
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provide excellent examples of the use of absorption techniques to study 

the distribution of atomic and molecular species in this type of flame. 

All of these studies were done using some sort of rastering mechanism to 

move either the flame or the light source; a tedious process, the need 

for which we hope to eliminate with our technique. 

The second system on which we will demonstrate our diagnostic tech

nique is vapor plumes generated by laser evaporation. When focused on the 

surface of a sample, absorbed laser radiation will cause the vaporization 

of a small amount of material. This material has found utility as an 

analytical sample source. The vapor cloud has been analyzed by a number 

of different techniques, some of which include emission (93,123,124,125), 

direct absorption (95,126,127,128), absorption after being swept into a 

secondary flame source (129), fluorescence (130), and mass spectral 

analysis (131). The transient nature of these vapor plumes complicates 

fundamental studies on their formation and decay. We hope that the large 

amount of data that can be gathered simultaneously by our diagnostic 

technique may aid in these types of studies. 

Experimental 

Digital image processor 

The digital image processor is made up of three basic elements, the 

vidicon camera, the image conversion interface (ICI) and the computer. 

Figure 13 is a schematic diagram of the digital image processor. For this 

study, we utilized a Cohu Model 4415-200 vidicon camera. This camera has 

a 525 line/frame, 30 frame/sec, 2:1 interlaced scanning format controlled 



Figure 13. Block diagram of the digital image processor 
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by an internal sync generator. The jumper-selectable automatic sensi

tivity and black level controls were disabled to prevent these functions 

from interfering with our measurements. The camera was equipped with an 

RCA Model 4522H 25 mm silicon-diode array vidicon tube. This high sensi

tivity vidicon tube is useful from 380-1100 nm and has high resistance to 

blooming and image burn-in. The active area of the tube measures 

10 X13 mm. 

Since the vidicon camera provides an analog output signal, it is 

necessary to have some means of sampling and digitizing this signal for 

image storage and processing. This is the function of the ICI. The ICI 

was designed and constructed in the laboratory in order to provide the 

versatility required for this work. The timing and control portion of the 

ICI is responsible for recognizing the beginning of a new frame of data, 

control over which parts of the frame are to be digitized, and timing of 

all portions of the circuit. The signal conversion portion consists of 

three primary devices, a sample and hold to sample the analog video 

signal, an amplifier to condition the signal, and an analog-to-digital 

converter to change the analog signal to digital form. In addition, the 

ICI contains 16Kx8 bits of static random access memory which forms a 

storage buffer for the image as it is digitized. This buffer is necessary 

because the computer is not able to store the data as fast as it is 

digitized by the ICI. Once digitized, the image is transferred to the 

computer for storage or manipulation. 

The computer used in this work was a POP 11/10 with 28K of memory, 

laboratory peripheral interface, and dual floppy-disk drive. The image 
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processor can digitize a 120x 120 pixel image with gray scale resolution 

of 256 levels in 16 msec. Transfer of this image to the computer takes 

approximately 0.5 sec. Since the vidicon camera is an integrating device, 

all image data are recorded simultaneously. The vidicon may be illumi

nated continuously if one wishes to make time averaged measurements, or in 

a pulsed fashion if time resolution of the image is required. The only 

limit on the time resolution attainable is the width of the light pulse. 

A complete description of the digital image processor is given in 

Appendix A. This appendix contains detailed circuit and timing diagrams 

as well as a description of the operation of each portion of the image 

processor. 

Diagnostics of laminar flow slot burners 

In order to test the operation of our digital image processor, 

the first system that we studied was a premixed slot burner of the type 

common to many atomic absorption instruments. Besides offering a long 

absorption path, this type of burner has simple geometry and a non-

turbulent flame which makes it an ideal demonstration case. 

The experimental apparatus used for this study is shown schmatically 

in Figure 14. A Control Model 554A Ar^ laser was used to pump a Spectra 

Physics Model 375 continuous wave tunable dye laser. The output of the 

dye laser was passed through a 15 cm focal length lens LI. The dye User 

beam was directed by mirrors Ml and M2 to a 2 mm pin hole which blocked 

all but the central portion of the diverging dye laser beam. The portion 

of the dye laser beam which passed through the pin hole was then expanded 

to a diameter of 25 mm by lenses L2 and L3 after which it passed along 



Figure 14. Experimental arrangement used for flame diagnostics 
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the surface of the burner parallel to the long axis of the burner. The 

laser beam then passed through a filter (F) which served to block back

ground radiation from the flame and struck an opal glass diffuser (D). 

The lens of the vidicon camera collected the light scattered by the 

diffuser and created a 1:1 image of the diffuser on the surface of the 

vidicon tube. The diffuser was placed in front of the vidicon to destroy 

the coherence of the laser beam. This helps to eliminate interference 

effects which can occur when narrow band coherent light shines on an 

imaging tube. The slot burner used was a Varian Techtron burner with 

burner heads for both nitrous oxide-acetylene and air-acetylene flames. 

Rotameter type flow meters were used to measure the flow rates of both 

fuel and oxidant. 

Flame maps were obtained in the following manner. First, the slot 

burner was ignited with whatever fuel mixture was to be used for the 

particular experiment. The analyte solution was then aspirated into the 

flame and the dye laser was tuned to resonance with the particular atomic 

or molecular absorption line to be studied. This was easily done by 

monitoring the output of the vidicon camera on an oscilloscope; a decrease 

in signal strength indicates an absorption. Once the laser was tuned on 

resonance with the absorption line of interest, the computer program PTAKE 

was used to digitize as many frames of data as desired (usually 50 frames 

for these flame studies). The analyte was then removed from the flame 

and the burner rinsed with distilled water. A sample blank was then 

aspirated into the flame and the same number of frames were again 

digitized, this time in the absence of the absorbing species. The 
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computer program FCON was used to convert the two data files representing 

I and IQ, respectively, to a file containing the absorption image of the 

flame. The program PSMO was used to smooth the absorbance file when 

desired. Programs PSPOT and PGRPH were used to generate absorbance contour 

plots for display on an oscilloscope or X-Y recorder, respectively. 

Appendix B contains listings of all the source programs used in these 

experiments along with an explanation of all the interactive responses 

required for their operation. 

Diagnostics of laser generated vapor plumes 

Vapor plumes generated by laser vaporization represent an excellent 

test of the applicability of our diagnostic technique to the study of 

rapidly transient species. The experimental apparatus used for this 

experiment is shown schematically in Figure 15. The laser used for vapor

ization of the sample was a Phase-R Model DL-2100C coaxial flashlamp pumped 

-5 
dye laser. The dye solution used was 6x10 M Rh 640 in absolute ethanol. 

The maximum energy for the 800 nsec output pulse was 0.1 J. The laser 

pulse was reflected by mirror M3 and focused on to the surface of the 

sample by lens L3 which has a focal length of 5 cm. The sample cell was 

constructed from an aluminum block with dimensions of 2.5x2.5x3.0 in. 

The focusing lens was mounted on one end of the cell and the sample was 

introduced from the other end of the cell on a 0.75 in diameter rod which 

could be rotated to expose a new sample surface for vaporization. Two 

1.0 in diameter antireflection coated windows were mounted on opposite 



Figure 15. Experimental arrangement for laser generated vapor 

plume diagnostics 
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sides of the cell block perpendicular to the sample surface. The entire 

cell could be evacuated to 10" torr. 

Since the vapor plume generated by the pulsed laser was a transient 

species, it was necessary to pulse the probe laser to obtain space-time 

profiles of these plumes. The probe laser was a Spectra-Physics Model 

580A single frequency ring dye laser pumped by a Control Model 554A Ar* 

laser. This dye laser was capable of output powers on the order of 

500 mW using 4 W of pump laser power. The probe laser had frequency 

stability of 40 MHz peak-to-peak. The output of this probe dye laser was 

gated on and off by a Coherent Associates Model 304 Bragg cell and Model 

305D Bragg cell driver. When gated off, all of the radiation from the 

ring laser was diffracted into zeroth order by the Bragg cell and blocked 

by a beam catcher. When gated on, the Bragg cell diffracted approxi

mately 70% of the output radiation into first order which was then 

directed to the rest of the experiment by mirrors Ml and M2. After being 

expanded to a diameter of 50 mm by lenses LI and L2, the output of the 

ring laser passed through the sample cell across the surface of the 

sample. After passing out of the sample cell, the laser passed through 

a filter used to block stray light and onto the surface of the vidicon 

tube. 

A laboratory constructed pulse and delay generator was used to con

trol the pulse width of the probe laser as well as the delay between the 

vaporization pulse and the probe pulse. The width of the probe laser 

pulse was adjustable from 0 to 140 usee, and the delay from 0 to 1.2 msec. 
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Appendix A contains construction details and calibration curves for the 

pulse and delay generator. 

Vapor plume maps were obtained in the following manner. First, the 

sample is attached to the end of the sample holder rod with double-sided 

adhesive tape and inserted into the sample cell. The probe laser was 

tuned to absorption resonance by aspirating a solution of the analyte 

species into a flame placed in the probe beam and tuning the laser until 

visible laser excited fluorescence was observed in the flame. The power 

of the probe laser and width of the probe pulse were then adjusted to 

expose the vidicon tube to near saturation over the entire surface of the 

tube. After setting the desired delay, two frames of data are digitized, 

one with the production of a vapor plume and one without. These frames 

of data represent I and IQ, respectively. The computer program PCON is 

used to convert these two frames of data to an absorbance image of the 

vapor plume at the specified time delay. The computer program PSMO was 

used to smooth the absorbance file when desired. Programs PSPOT and 

PGRPH were used to generate absorbance contour maps for display on an 

oscilloscope or X-Y recorder, respectively. 

Results and Discussion 

In order to properly evaluate the utility of a new diagnostic 

technique, it is necessary to measure important performance parameters of 

the diagnostic instrument itself. One problem associated with vidicon 

cameras is limited dynamic range. This problem can be particularly 

troublesome when applied to emission experiments where signals can vary 
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over several orders of magnitude. Since our diagnostic system measures 

absorbance, the vidicon need not have a dynamic range of much over ten 

for most applications. Figure 16 shows an absorbance linearity curve for 

our digital image processor. This linearity curve was obtained by 

inserting calibrated neutral density filters in front of the vidicon 

camera. Figure 16 shows excellent linearity up to absorbance values of 

1.5. Such linearity should be sufficient for studies on all but the most 

optically dense systems. 

Conventional absorption instruments contain lock-in detection 

systems which enable them to discriminate against flame background. 

Lock-in detection is not possible with our detection system, so it might 

be expected that flame background would be a problem. The collimated 

nature of the laser allows the vidicon camera to be moved far away from 

the flame source, thus greatly reducing the amount of flame background 

radiation that reaches the camera. In addition, the high intensity of 

the laser allows the camera aperature to be nearly closed, further 

reducing the amount of collected stray light. It was found that by 

simply placing a narrow-line filter in front of the camera, the flame 

background from even the most luminous flames was undetectable by the 

vidicon camera. In light of these results, flame background radiation 

is not considered as great a problem as might have been expected. 

A vidicon camera with an uncooled tube provides an inherently noisy 

output signal. This noise propagates through the data treatment to the 

final absorbance maps. Figure 17 shows four flame contour maps. The raw 

data absorbance map shows a considerable amount of noise. The other 



Figure 16. Absorbance linearity curve for the digital image 

processor 
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three absorbance maps were generated after smoothing the raw absorbance 

data with the computer program PSMO. Examples of 5, 7, and 9 point data 

smooths are shown. As can be seen in Figure 17, the most dramatic 

improvement in noise level is between the raw absorbance map and the 

5 point smoothed map. The 7 and 9 point smoothed maps provide little 

improvement over the 5 point smoothed map. It can also be seen that the 

smoothing routine, while doing an excellent job in removing noise 

spikes, does not change the shape of the actual absorbance contours. All 

the absorbance contours shown in this chapter have been treated with a 

5 point data smooth to provide better definition. 

The first system on which we demonstrated the utility of our 

diagnostic technique was the laminar flow slot burner. Due to wavelength 

constraints imposed by the dye laser, we were unable to do any species 

distribution studies on natural products of the flame. Our studies were 

therefore directed toward obtaining absorbance maps of atomic and 

molecular species in salted flames. Our first experiments involved 

measurement of the distribution of two stable monoxide species, YO and 

ScO, in flames under a variety of conditions. The absorption spectra of 

these species in flames was first reported by Fiorino e^al_. (132). 

Yttrium, scandium, and many other elements have been shown to form very 

stable monoxide species in flames. The formation of these species is 

known to be very dependent upon the stoichiometry of the flame (121). 

We, therefore, thought that these systems would be an excellent choice 

with which to demonstrate our diagnostic technique. 



Figure 17. Effect of smoothing function on flame contour maps 

A -- 0.1 absorbance units 

B — 0.2 absorbance units 

C -- 0.3 absorbance units 

D -- 0.4 absorbance units 
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Figure 18 shows absorbance contour maps of ScO and YO at 6036.2À 

and 5972.2A, respectively, in a nitrous oxide-acetylene flame. Comparing 

the contours of the fuel-rich and fuel-lean flames, it is apparent that 

the fuel-lean environment is much more conducive to metal monoxide 

formation than is the fuel-rich environment. This effect has been 

attributed to two mechanisms operating in the flame. First, in a fuel-

rich environment, the excess carbon containing radicals and hydrogen 

scavenge the available oxygen in the system because their reaction is 

exothermic. This reduces the oxygen available for metal monoxide 

formation. Secondly, direct chemical reduction of the metal monoxide by 

the excess carbon available in a fuel-rich environment reduces the 

concentration of metal monoxide (121). 

If the first of these two mechanisms is valid, then the introduction 

of any species into the flame that will act as an oxygen scavenger will 

tend to lower the concentration of metal monoxide in the flame. To test 

this hypothesis, we once again obtained absorbance maps of ScO and YO in 

fuel-lean nitrous oxide-acetylene flames, after which each of the sample 

solutions was doped with an equal amount of the other element. Absor

bance maps were then obtained while aspirating the doped solutions into 

the flame. If the hypothesis is to hold, one would expect to see a 

reduction in metal monoxide absorption at the appropriate wavelengths due 

to competition for the available oxygen by the dopant species. Figure 19 

shows the results of this experiment. The top two flame maps indicate YO 

absorption and the bottom two indicate ScO absorption. In the maps on 

left, only the species being measured was aspirated into the flame, on 



Figure 18. Effect of flame stoichiometry on flame absorbance maps 

of ScO and YO 
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Figure 19. Effect of added oxygen scavengers on the flame maps 

of ScO and YO 
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the right, the doped solutions were aspirated into the flame. It is 

obvious from Figure 19 that the expected effect was indeed observed. 

The two frames on the right in Figure 19 definitely show lower absor-

bances than do the two frames on the left. 

A technique which is sometimes used to prevent the formation of 

metal monoxides or hydroxides in a flame is to complex the analyte with 

some organic complexing agent. These chelates form strong complexes with 

the metal atom preventing it from reacting with other species in the 

flame. Combustion of the organic chelate forms a localized fuel-rich 

environment around the metal atom, further inhibiting metal monoxide 

formation. This phenomenon is illustrated in Figure 20. The flame map 

on the left indicates the ScO distribution in a fuel-lean air-acetylene 

flame when aspirating a solution containing Sc. The map on the right 

illustrates the ScO distribution when a solution of Sc complexed with 

EDTA is aspirated into the same flame. One can see that there is little, 

if any, ScO present in this region of the flame when the Sc chelate is 

aspirated into the flame. 

Another subject on which we will demonstrate our diagnostic system 

is the problem of molecular interference in atomic absorption spectros

copy. A good example of this phenomenon is the interference of CaOH 

absorption in atomic absorption measurements on barium at 5536A. This 

interference has been studied by Billings (133) and Koirtyohann and 

Pickett (134). Koirtyohann and Pickett report that the absorption 

observed from a 1% solution of CaCl is about the same as what would be 

expected from a 75 ppm solution of barium. The question now posed is 



Figure 20. Effect of a chelating agent on the flame absorbance map 

of ScO 
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Figure 21. Absorbance maps of Ba and CaOH at 5536A in an air-

acetylene flame 
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where in the flame does this relationship hold true. In order to deter

mine if there is an optimum position in the flame to measure barium 

absorption while minimizing the interference from CaOH absorption, we 

obtained flame maps for both species in an air-acetylene flame. The CaOH 

map was obtained by aspirating a 1% solution of CaOH into the flame and 

the Ba map was obtained by aspirating a 75 ppm solution of BaCl. These 

two flame maps are shown in Figure 21. From Figure 21, it appears that 

the optimum position to look in the flame to minimize CaOH interference 

is about 3-4 mm above the burner head. The region of maximum CaOH 

absorption appears to be higher in the flame than is the region of 

maximum Ba absorption. As reported, solutions of 1% Ca and 75 ppm Ba 

have approximately equal absorbances. The absorbance values shown for Ba 

in Figure 21 are probably lower than the actual absorbance values because 

of the width of the laser output frequency. 

Although systems such as the laminar flow slot burner can be easily 

studied by our diagnostic system, they are steady state in nature and 

thus do not take full advantage of its power. The real advantage of our 

diagnostic technique over rastering techniques lies in the fact that we 

are able to make simultaneous measurements from all points to be 

measured. This is of particular advantage when studying transient 

species. One such system to which we will apply our technique are vapor 

plumes generated by laser evaporation. The measurement of plume for

mation and decay has been undertaken to one extent or another by a 

number of groups. Three basic techniques have been used for these 

studies. They include atomic absorption (95,128), emission (135,136), 

and photography (137,138). 
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Photography has the advantage, as does our diagnostic system, of 

being able to record data from all points in the plume simultaneously. 

The photographic studies, however, have taken pictures of the plume using 

the luminosity of the plume as the light source for the plume. A number 

of things contribute to this luminosity, including atomic and molecular 

emission as well as black-body radiation. Photographic detection there

fore provides only information about the bulk of the plume, but provides 

no information about the distribution of specific species in the plume. 

Emission and atomic absorption studies have been done by probing one 

small region of the vapor plume at a time and rastering either the plume 

or light beam position. Although these techniques are element specific, 

they provide only an average picture of what is happening spatially in 

individual plumes. 

In order to test the applicability of our diagnostic technique on 

vapor plume systems, we constructed a laser vaporization system as 

described in the experimental section of this chapter. Again, due to 

wavelength constraints imposed by our probe dye laser, we were somewhat 

limited as to the choice of elemental system to study. We choose to use 

sodium samples since the sodium D line absorption lies in a very 

efficient region for our probe laser, 5890A. For most of our studies, 

we used a fresh sodium target transferred to the sample chamber under 

nitrogen dry box conditions. In order to obtain sufficient illumination 

of the vidicon camera, a probe pulse of 50 ysec was required. This 

placed a 50 ysec time resolution limit on any of our measurements. 
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The first task was to determine the experimental conditions under-

which plume formation could be monitored. Argon was used as an inert 

atmosphere over the sample. The argon pressure was varied from 10"^ torr 

to 1000 torr and plume absorption measurements were taken at a series of 

time delays following plume formation. An argon pressure of 500 torr was 

found to confine a structured plume to time delays of approximately 

1.5 msec after plume formation. 

Figure 22 shows a time lapse sequence of the formation of a sodium 

vapor plume (generated by a 0.1 J 800 nsec laser pulse) under a 500 torr 

argon atmosphere. The imaged area in each frame measures 10x13 mm. The 

contour gradient in these plumes is sufficiently steep that the 

individual contours must be shown in separate frames in order to resolve 

the contour levels. Contours in columns 1, 2, and 3 are drawn at absor-

bance values of 0.05, 0.10, and 0.15, respectively. Contours in rows 

A, B, C, D, and E represent time delays of 0.2, 0.4, 0.6, 0.8, and 

1.0 msec, respectively. Within a single row, all frames are taken from 

a single vapor plume. Each individual row, however, represents a new 

vapor plume. 

Certain trends in plume formation can be seen in Figure 22. As one 

looks at longer and longer time delays, the region of maximum absorption 

moves farther and farther away from the sample surface (denoted by the 

heavy line) with the exception of row E. This anomaly is simply a 

function of experimental variation and was not observed in other 

sequences taken under the same conditions. Another effect that is seen 

in Figure 22 is that all the vapor plumes tend to adopt some sort of 



Figure 22. Time lapse sequence of the formation of a sodium vapor 

plume under a 500 torr Ar atmosphere 

Column Absorbance Row Time Delay 

1 0,05 A 0.2 msec 

2 0.10 B 0.4 msec 

3 0.15 C 0.6 msec 

D 0.8 msec 

E 0.9 msec 
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mushroom or fi lamented shape. Although certain average trends are 

evident in Figure 22, it is obvious that there is a large amount of plume-

to-plume variation which may not be realized by conventional rastering 

techniques. As one lowers the pressure of the argon buffer gas, the 

plume is observed to be less confined and expand more rapidly. By 

lowering the Ar pressure to 100 torr, a structured vapor plume could only 

be measured to time delays of 0.3-0.4 msec as contrasted to delays of 

greater than 1 msec for plumes formed at 500 torr. Figure 23 shows a 

comparison of two representative vapor plumes, one created at 500 torr 

and the other at 100 torr take 0.2 msec after the vaporization pulse. 

One can see from this figure that the plume formed at 100 torr is some

what larger and shows less structure than the plume formed at 500 torr. 

Vapor plumes formed under vacuum conditions could not be mapped with our 

system in its present configuration since the plume expands so rapidly 

that all structure disappeared during the 50 ysec required to make a 

measurement even with no additional delay. 

It was noted in these studies that there was quite a bit of plume-

to-plume variation as different regions of the sodium sample were 

vaporized. It was initially thought that the difficulty in obtaining a 

uniform sodium surface was the cause of the problem. In an attempt to 

solve this problem, we tried using a polished single crystal Nag yWOg 

sample in the hope that it would provide a more uniform plume. After 

obtaining plume maps from this sample, it was found that this sample did 

not provide any appreciable improvement over the fresh sodium sample. At 

this point, it is believed that the most likely cause of the observed 



Figure 23. Comparison of vapor plumes generated at 500 torr and 

100 torr after 0.2 msec delay, absorbance level 0.05 
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variation is a result of an irreproducible vaporization pulse. Although 

shot-to-shot power variations were on the order of only 5%, the multimode 

nature of the laser beam produces unpredictable effects on the focusing 

and hence vaporization properties of the laser pulse. For more 

reproducible plume formation, a TEMQQ mode vaporization laser should 

probably be used. Although the scope of our plume mapping experiments 

was somewhat limited, we feel that we have shown that our diagnostic 

technique can provide a valuable means of studying these types of 

systems. 

Throughout this chapter, we have commented on how slow a process 

source mapping by rastering techniques can be compared to our system. 

At this point it is useful to make a direct time comparison to see what 

kind of advantage we really hold. As a case in point, we will do the 

calculation on the time required to do a flame mapping experiment. Our 

digital image processor creates a 14,400 point image of the system. 

Since we are measuring absorbance I and IQ, measurements must be made 

for each point to be mapped resulting in a total of 28,800 points which 

must be measured. To achieve a total sampling time per point of 1 sec, 

our image processor must sum together 60 frames of data, this process 

requires a total data acquisition time of 30 seconds. To achieve the 

same total sampling time for each data point, the total data acquisi

tion time by rastering techniques would be 8 hours. 

Even though our diagnostic system performed quite well, there are a 

few changes which could be made to improve its performance and broaden 

its applicability. One of these improvements, the use of a TEMQQ mode 
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vaporization laser, has already been mentioned. The use of a nitrogen or 

YAG pumped dye laser system as the probe would not only increase the 

time resolution attainable in transient system studies, but would also 

allow a much wider range of species to be studied because of their 

broader tuning range. Associated with a change to this type of probe 

laser, however, are possible problems with pulse-to-pulse variations 

which are minimal with the present cw or gated cw probe laser system. 

There are several logical extensions to this work, the most obvious 

of which may perhaps be studies in turbulent combustion processes where 

the simultaneous nature of our detection would be useful. Other systems 

which come to mind include mapping of absorbing species in inductively 

coupled and DC plasma sources. All of the systems mentioned up to this 

point require absorption in the visible or ultraviolet regions of the 

spectra, but what about vibrational type measurements? Spectroscopic 

techniques such as inverse Raman and Raman-induced Kerr effect 

spectroscopy (RIKES) present the possibility at least of making 

spatially resolved Raman measurements in condensed phase systems, where 

application to vapor phase systems is questionable at this point. 

Conclusion 

In this chapter we have shown that the technique of simultaneous 

spatially resolved absorption spectroscopy, combining the use of a 

tunable dye laser as the primary light source and a vidicon camera as 

the two-dimensional detector, can be a powerful diagnostic tool for the 

study of a number of different physical systems. This technique is 
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faster than conventional and can reap more information from a single 

event than conventional rastering techniques. Examples of the power of 

this system displayed include studies on the distribution of atomic and 

molecular species in flames and atomic species in laser-generated vapor 

plumes. Suggestions for improvements on the system and further 

applications have been given. 
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CONCLUSIONS 

In this dissertation, we have presented four examples of new laser-

based spectroscopic techniques. In the first chapter, we demonstrated 

the possibility of obtaining Doppler free spectral of large organic 

molecules by an intracavity absorption technique. A new technique 

for determining absolute Raman cross-sections utilizing the inverse 

Raman effect was presented in the second chapter. This technique is 

free from many of the problems associated with conventional Raman 

cross-section measurements. In the third chapter, we demonstrated D<-X 

resonance enhanced three-photon absorption of molecular iodine. This 

study allowed us to refine some of the spectral constants for the 

D state of this molecule. In the final chapter, we demonstrated the 

possibility of using simultaneous spatially resolved absorption 

spectroscopy as a diagnostic tool for the mapping of atomic and 

molecular species in physical systems. 

Although laser-based spectroscopic techniques should not be viewed 

as a panacea, their application has provided valuable answers to 

previously unanswered questions. 
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APPENDIX A: CIRCUIT DIAGRAMS AND DESCRIPTIONS 

This Appendix contains circuit descriptions and diagrams for the 

image conversion interface (ICI), and associated pulse and delay genera

tion circuits. The circuit diagrams will be shown and discussed in 

detail in order to facilitate modification or repair of the ICI. 

Image Conversion Interface 

Digitization format 

The vidicon camera has a 525 line/frame, 30 frame/sec, 2:1 inter

laced scanning format. The ICI digitizes only the odd-numbered lines of 

the frame. This gives vertical resolution of 240 picture elements. The 

ICI is capable of digitizing 60 points per line. In order to increase 

the effective horizontal resolution, every other line of data is staggered 

by one-half of a digitization cycle. The data acquisition format is 

shown in Figure A1 where dashed lines represent nondigitized lines of 

data, solid lines represent digitized lines, and X's represent points of 

digitization. With the staggered data format, the ICI is capable of 

effective 120x120 pixel resolution. 

Timing and control circuits 

Since the vidicon camera is free running at the standard television 

raster rate of thirty frames per second, it is necessary for the ICI to 

recognize the start of a new frame of data. This is the first function 

of the timing and control circuit that will be discussed. The vidicon 

camera provides a horizontal blanking output signal which contains 
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Figure Al. ICI digitization format 
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information defining the start of a new frame, and those segments of the 

video signal that contain valid information. The start of frame 

recognition circuit consists of three integrated circuits shown in 

Figure A2 as 28HZ, 28HY, and 28HX. To enable the ICI, a zero-going TTL 

pulse must be applied to ICI bus M, This enables 28HZ and clears 28HX, 

The start of a new frame is characterized by a single 3 ysec zero-

going pulse in the horizontal blanketing signal (line A Figure A3). The 

horizontal blanking signal triggers 28HZ on the falling edge of all zero-

going pulses, producing a 10 ysec pulse which enables 28HY for this 

10 ysec period. The output of 28HZ is shown in line B of Figure A3. The 

rising edge of pulses in the horizontal blanking signal triggers 28HY 

when enabled. Since 28HY is only enabled for 10 ysec periods, only 

zero-going pulses of less than 10 ysec in duration will trigger 28HY. 

The 3 ysec start of frame pulse is the only pulse which fits this 

criterion and is, therefore, the only pulse that will trigger 28HY 

(line C of Figure A3). Once triggered, 28HY produces a 35 nsec zero-

going pulse which sets 28HZ enabling the rest of the ICI circuitry. 

The second function of the timing and control circuitry is to control 

which portions of the frame of video information are to be digitized. 

This function is performed by the integrated circuits shown in Figure A2 

as 28GV, 28GW, 28GX, 28GY, and 28GZ. Once the ICI has been enabled by 

the start of frame recognition circuit, output Q^l of 28HY is held LOW 

(line C, Figure A3) and ORed with the horizontal blanking signal 

(line A, Figure A3) at 28HY. When both inputs of 28HY are held LOW, 

output Y1 will be HIGH indicating that valid video information is being 



Figure A2. ICI timing and control circuit 
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transmitted (line E, Figure A3). Y1 of 28HW is ANDed with the outputs 

of the point and line counters, LDONE and FDONE, respectively, at 28HV. 

When all three inputs of 28HV are HIGH, output Y1 is held LOW and the 

clock circuit 28GT is enabled. The clock circuit will be disabled for 

any of the following reasons: invalid video present (A1 LOW), point 

count finished (Bl LOW), or line count finished (CI LOW). 

The point and line count circuits are identical, each containing two 

four-bit binary counters and a ÏÏ-K flip-flop. Each of the circuits may 

be preset to a desired count state. The point count circuit (Figure A2, 

circuits 28GV, 28GW, 28GX) is preset at the beginning of each line of 

video information, and the line count circuit (Figure A2, circuits 28GV, 

28GY, 28GZ) is preset at the beginning of each new frame of data. The 

point count circuit is advanced by Y2 of 28HV at the start of each analog 

to digital conversion until the desired number of points have been taken 

and the point count flip-flop disables the clock circuit by holding Bl of 

28HV LOW. The clock is normally disabled just prior to the end of the 

line of video data as seen in lines E and F of Figure A3. The line count 

circuit is advanced at the end of each line of data by Y1 of 28HV. When 

the appropriate number of lines have been digitized, the line count flip-

flop disables 28HV by holding CI of 28HV LOW (line G, Figure A3). 

The final function of the timing and control circuitry is to 

determine when data conversion for each point should begin. In order to 

gain more horizontal resolution, the ICI uses a staggered data acquisi

tion format as discussed earlier. Figure A3, line F, shows the data 

valid for two successive lines of data. Line H shows the output of the 
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clock circuit 28GT. The output of 28HX toggles on each line of data as 

shown in line I. In order to affect the offset described above, Q of 

28HX (line I, Figure A3) and Y1 of 28GT (line H, Figure A3) are 

exclusive-ORed together at 28FT, resulting an output at Y1 of 28FT shown 

in Figure A3, line J. This output is used to trigger one-shot 28FV on 

the falling edge of the waveform, resulting in an output at Q shown in 

Figure A3 as line K. The outputs of 28FV are ANDed with Y2 of 28FT to 

remove unwanted pulses generated when 28HX toggles. The output of this 

AND gate is shown in Figure A3, line L, and is used as a start 

conversion signal. 

Signal conversion circuit 

The purpose of the signal conversion circuitry of the ICI is to 

convert the analog video signal from the vidicon camera to digital form 

so that it can be stored in the ICI for eventual storage and processing 

in the computer. There are three primary devices in the signal 

conversion circuit, including a sample and hold, an amplifier, and an 

analog-to-digital converter. The wiring diagram for the signal conver

sion circuit is shown in Figure A4. 

In order to perform an analog-to-digital conversion on a rapidly 

changing analog signal, one must provide some means of temporary storage 

of the analog signal at the point at which one wishes to perform the 

signal conversion. This is the function of a sample and hold device. 

The ICI utilizes a Date! Model SHM-UH sample and hold module capable of 

holding a 5 VFS analog signal. The 0.0 to 0.7 volt video signal from 

the vidicon is fed into the analog input of the sample and hold. The 



Figure A4. ICI signal conversion circuit 



SHM-UH 

74SI40 

A B C D L  / A  B C D  

35K 
AMAr-

ELECTAONIC 
SWITCH G8 pF VIDEO 

VWV 
ANALOG 
INPUT 

ANALOG 
OUTPUT 

.025 
SAMPLE 
SWITCH 
DRIVER 

ADC-G8B 

EOC 
€ -

DIGITAL/ANALOG 
CONVERTER 

PROGRA <ER 

S^NALOG 
INPUT 

7474 

-=IPR ID-

ICL ICK : 
iQp 

28FZ 

OUTPUT REGISTER CLOCK — 

MSB (5)1 

74368 
3l 6 _7[ 

13 EI-2 

E3-4 

10 20 3C 40 

28 FY 

\K 
BL 

7475 
28FX 

p y y y 

B B B 8 
5 13 19 21 

-{k ANALOG 

ID ?D 3D 4D 
EI-2 

E34 
10 20 30 4Q 

B 8 B 8 
D N V X 

7475 
28FW 

-̂ BK 

W 
ro 



133 

timing and control circuitry starts an analog-to-digital conversion by 

applying a 35 nsec zero going TTL pulse to buffer 28GY from Q of 28FV. 

This causes the sample and hold to track the video signal for the 

duration of the pulse and to hold the value of the input signal constant 

at the analog output upon completion of the pulse. 

The analog amplifier is included in the signal conversion circuit to 

convert the 0.0 to 0.7 volt signal from the sample and hold to a 0.0 to 

-5.0 volt signal compatible with the analog to digital converter (ADC), 

The amplifier consists of a Fairchild uA715 high speed operational 

amplifier configured as an inverter with gain of seven. The output of 

the amplifier is connected to the analog input of the ADC, 

Analog-to-digital conversion in the ICI is performed by a Datel 

Model ADC-G8B successive approximation type ADC. The converter has eight 

bits of resolution and a conversion time of 800 nsec. Conversion is 

initiated by the application of a 35 nsec positive going TTL pulse from 

Y3 of 28HV to pin 3 of the ADC (line L, Figure A3). The conversion is 

complete 800 nsec after the start of conversion as indicated by the end 

of conversion output of the ADC going LOW (line M, Figure A3). At this 

time, the data available at the output of the converter is a valid digital 

representation of the sampled analog signal. The end of conversion signal 

also serves to gate the latch circuits, 28FX and 28FW, which act as a one-

word storage buffer for the data while it is being stored in the memory 

of the ICI. 
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Memory and address generation 

The memory of the ICI contains 16K 8 bits of static random-access 

semiconductor memory (Texas Instruments TMS 4034 NL). This memory is 

configured as sixteen IK 8 bit memory boards with only one board being 

enabled at a time. The wiring diagrams for the memory and address 

generating circuits are shown in Figures A5 and A6. 

Address generation will be the first function of the memory and 

address generation circuits to be discussed. Since 1024 bits of infor

mation are stored in each of the individual memory chips, ten bits of 

address information are required to describe all of the memory locations. 

An additional four fits of address information are required to address 

the proper memory board. This address information is generated by a 

series of four four-bit binary counters: 20BW, 20BX, 20BY, 20BZ. 

These counters are cleared before the start of a new frame of data and 

before unloading the data buffer into the computer. The address is 

incremented after each analog of digital conversion by the end of 

conversion signal, or by the computer after transfer of a data point to 

the computer. The ten least significant bits of the counter output are 

used to address the memory chips via buffers 20AY and 20AZ. The four 

most significant bits of counter output are used to address 20DY, a 

4-line to 16-line decoder/demultiplexer which serves to enable one 

memory board at a time. 

The second function of the memory and address generating circuitry 

to be discussed is memory timing. The timing diagram for the memory 

write cycle is shown in line K of Figure A3. Prior to an address change 



Figure A5. ICI memory and data output buffer circuits 
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Figure A6, ICI address generation circuit 
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in the write mode the R/W input must be in the read state (HIGH). This 

eliminates the possibility of writing data into an unwanted location. 

After the change of address, the R/W input remains HIGH for a period of 

300 nsec as governed by one-shot 20DW. After this address set up time, 

the R/W input is held LOW for a write period of 530 nsec, as governed 

by one-shot 20CV, after which it returns to the HIGH state for a 

minimum address hold time of 50 nsec before the address is incremented. 

During the read cycle, the R/W input is held in the HIGH state at all 

times. The output of the memory is buffered by 20AV, 20AW, 20EX, and 

20EY to invert the signal and make it compatible with the computer logic, 

negative TTL. 

ICI bus system 

The ICI contains a 44-line internal data bus and a 16-line 

transfer bus for communication with the PDP-11 computer. Internal bus 

lines are denoted by a 'B' prefix and the computer-ICI bus lines are 

denoted by a 'C prefix (e^-a.,, BM or Cll). Table A1 lists the 

configuration of the internal bus and Table A2 lists the configuration 

of the computer-ICI bus. 



Table Al. ICI internai bus assignments 

Bus Function Bus Function 

BX D1 in BIO A5 

BV D2 in Bll A6 

BN D3 in B17 A7 

BD D4 in B16 A8 

B21 D5 i n B15 A9 

B19 D6 in B9 R/W 

B13 D7 in B14 CE 

B5 D8 in BF Video In 

BY D1 out BH Analog GRD 

BW D2 out BJ HORZ. Blank 

BP D3 out B1 +5 V supply 

BE D4 out BA +5 V supply 

B20 D5 out B22 GRD 

B18 D6 out BZ GRD 

B12 D7 out BB +15 V supply 

B4 DB out BC -15 V supply 

B2 AO BK End of conversion 

B8 A1 BL End of conversion 

B7 A2 BM Interface enable 

B6 A3 BS Line count load 

B3 A4 BT Ext. data ready 
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Table A2. Computer-ICI bus assignments 

Bus Function® 

Cl 0 in (data in LSB) 

C2 1 in (data in) 

C3 2 in (data in) 

C4 3 in (data in) 

C5 4 in (data in) 

C6 5 in (data in) 

C7 6 in (data in) 

C8 7 in (data in MSB) 

C9 Internai data accept (IDA) 

CIO 0 out (Address clear) 

Cil 1 out (Data buffer inhibit) 

013 External data ready (EDR) 

Cl 7 3 out (Interface enable) 

Cl 8 4 out (Line count load) 

C23 Ground 

C24 Ground 

^In and out relative to the computer. 
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Pulse and Delay Generator 

The function of the pulse and delay generator when used in 

conjunction with the ICI is to trigger the vaporization laser and the 

Bragg cell. The pulse and delay generator shown in Figure A7 is 

enabled by a pulse from the computer which sets the 74107 flip-flop. 

The next frame to be digitized is preceded 16 msec by a pulse in the 

vertical blanking signal from the vidicon camera. This pulse 

triggers two 74121 one-shots. The output pulse from one of the one-

shots defines the time delay between the vaporization pulse and the 

probe pulse. The other defines the position in time of the probe 

pulse. These two one-shots in turn trigger two additional one-shots 

which fire the vaporization laser, enable the ICI, and gate the Bragg 

cell. Figure A8 is a calibration curve for the delay circuit, and 

Figure 9 is a calibration curve for the width of the Bragg cell gate. 



Figure A7. Pulse and delay generator circuit 
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Figure A8. Delay calibration curve for pulse and delay circuit 
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Figure A9. Probe pulse width calibration plot for the pulse and delay circuit 
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APPENDIX B: COMPUTER PROGRAMS 

This Appendix contains descriptions and source file listings of 

computer programs used in the experiments discussed in Part II of 

this dissertation. Operating instructions for these programs are 

included with all user responses being underlined. 

Program PTAKE 

PTAKE is a FORTRAN language program which is used to control the 

operation of the ICI. PTAKE determines the number of frames to be 

digitized and then calls subroutine VIDMAC, a MACRO program which 

digitizes the video data and transfers it to the computer for storage. 

A source file listing of PTAKE and VIDMAC are given on the following 

pages. 

To operate: 

.RUN PTAKE <CR> 

ENTER # OF FRAMES TO BE TAKEN 1<=N<=128 

*50 <CR> 

*DEV;FILE.EXT=<CR> 

STOP -
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K*********  PROGRAM PTAKEE * *********  

r  THIS PROGRAM ALLOWS THE OPERATOR TO CHOOSE 
THE NUMBER OF- FRAMES WHICH ARE TO BE TAKEN 

C 
c  
c 

WRITE (5 ,10)  
10 FORMAT('  ENTER # OF FRAMES TO BE TAKEN 1<=N<=128' , / )  

READ (5 ,20)  N 
20 FORMAT(13)  

CALL VIDMAC(N) 
30 CONTINUE 

STOP 
END 
.GLOBL VIDMAC 
.MCALL , ,V2, , , .REGDEF 
. .V2, ,  
,REGDEF 
.MCALL .EXIT,•CSIGEN,.CLOSE,«WRITW 
STATUS=170410 
IBUFF=170412 
0BUFF=170414 

VIDMAC » I O I \ f T 

MOV (3(R5)  +  ,R2 
vCSIGEN »DSPACE,*DEXT 
MOV #15360, ,R0 
MOV »ARRAY,R1 
MOV *000001,(Rl)+ 
DEC RO 
BNE LOOPl 

TST (R5)+ 

VID:  MOV 
MOV 

LOOPl:MOV 
ÎLOAD LOC OF ARRAY 
;CLR ARRAY 
5DEC COUNTER 

L00P2tM0V #15360, ,R0 
#ARRAY,R1 
STATUS 
•177774,OBUFF 
STATUS 
in 77745,OBUFF 

;SET POINT COUNTER 
?LOAD LOC OF ARRAY 
;CLR STATUS REG 

MOV 
CLR 
MOV 
CLR 
MOV 

5CLR & RESET 
;CLR STATUS REG 
7ENABLE INTERFACE 

LOOP: TSTB STATUS ?TEST FOR DATA READY 
BPL LOOP 
CLR STATUS 
BIC #000001,OBUF 
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3IS *000001,OBUFF 
3IS #000002,OBUFF 

L00P3ÎCLR 
BIS 
ADD 
DEC 
BNE 
DEC 
BNE 
MOV 
MOV 

STATUS 
#000002,STATUS 
IBUFF,<Rl) f  
RO 
L00P3 
R2 
L00P2 
*ARRAY,R2 
f -64, ,R3 

;CLR STATUS REG 
;READ INPUT BUFFER 
JSUM TO MEMORY 
5DEC POINT COUNTER 

ÎDEC FRAME COUNTER 

L00P4ÎM0V R3,R4 
ADD 8=64. ,  R4 

? 

r 
,WRITW *AREA,#0,R2,$240. ,R4 

#480, ,R2 
R3 
L00P4 

ADD 
INC 
BNE 
V CLOSE #0 
.EXIT 

AREA; .WORD 
DEXTI .RAD50/  

0 , 0 , 0 , 0 , 0  
DAT/ 

array:  .BLKW 15360,  
DSPACE=. 
RTS PC 
.  END 
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Programs PCON and FCON 

PCON and FCON are FORTRAN language programs used to convert the 

I and Iq intensity files generated with PTAKE into an absorbance file. 

3 
The file created contains absorbance times 10 . Although PCON and 

FCON serve the same purpose, PCON may be used only for single 

exposure files while FCON may be used for single as well as multiple 

exposure files. It is advantageous to use PCON whenever possible 

since its execution time is much less than that of FCON. Source file 

listings of PCON and FCON are given on the following pages. 

To operate: 

.RUN PCON <CR> 

OUTPUT FILE = IFILE, IZFILE 

*DEV;ABSFILE.EXT=DEV:IFILE.EXT.DEV;IZFILE.EXT <CR> 

STOP -

.RUN FCON <CR> 

OUTPUT FILE = IFILE, IZFILE 

*DEV:ABSFILE.EXT=DEV:IFILE.EXT,DEV:IZFILE.EXT <CR> 

STOP -
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C **********  PRpORAM PCON **********  
C 
C 
c THIS PROGRAM READS IN TWO DATA FILES CORRESPONDING TO 
C I  AND IZERO, IT  THEN CONVERTS THEM TO AN OUTPUT FILE 
C IN ABSORBANCE UNITS 
C 
C 
C 

REAL*4 LOOT<256)  
INTEGER*2 IBUFF(240) , IZBUFF(240) ,  SPEC(39) ,OBUFF(240)  
REAL*4 EXT(2)  
DATA EXT/6RDATDATy6RDATDAT/ 

C 
C CREATE LOG TABLE 
C 

DO 10 N=ly256 
10 L0GT(N)=AL0G10(FL0AT(N))  
15 WRITE(5»20)  
20 FORMATC OUTPUT FILE=IFXLEv IZFILE'»/ / )  
30 IF( ICSI(SPEC,EXT, , ,0) ,NE,0)G0 TO 30 
C 
C ALLOCATE CHANNELS 
C 

ICHAN=IGETC()  
IZCHAN-IGETC(> 
JCHAN=IGETC()  

FETCH DEVICE HANDLERS 
C 

IF( IFETCH(SPEC(16)) ,NE,0)  STOP '  BAD FETCH' 
IF( IFETCH(SPEC(20)) ,NE,0)  STOP '  BAD FETCH' 
IF( IFETCH(SPEC(1)) ,NE,0)  STOP '  BAD FETCH' 

C 
C CREATE OR OPEN FILES FOR I /O 
C 

IF( IENTER(JCHAN,SPEC<1), -1) .LT,0)  STOP '  ENTER FAIL'  
IF(L00KUP(ICHAN»SPEC(16)) ,LT,0)ST0P 'BAD LOOKUPl '  
1F<L00KUP(IZCHAN,SPEC(20)) ,LT.0)ST0P '  BAD L00KUP2 

C 
C 
C 

READ INPUT FILES 

DO 50 J=l ,60 
K=J-1 
IF ( IREADW(240, IBUFF,K, ICHAN),LT,0)STOP '  BAD READ' 
IF  ( IREADW(240, IZBUFF,K, IZCHAN),LT,0)ST0P'  BAD READ 
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CALCULATE ABSORBANCE 

DO 40 L=l ,240 
IF(( IZBUFF(L) ,GT,256) .0R,( IZBUFF(L) ,LT.1)) IZBUFF(L)  
IF  (  (  IBUFF (L) ,GT,  256 ) ,0R,(  IBUFF (L) ,  LT ,1) )  IBUFF (  L )  =-; i  
X=(LOOT(IZBUFF < L) ) -LOOT(IBUFF < L) ) )*1000.  
OBUFF(L)=IFIX<X) 

WRITE OUTPUT FILE 

IF ( IWRITW(240,0BUFF,K,JCHAN),LT.0)ST0P'  BAD WRITE'  
CALL CLOSEC(ICHAN) 
CALL CLOSEC(IZCHAN) 
CALL CLOSEC(JCHAN) 
CALL IFREEC(ICHAN) 
CALL IFREEC(IZCHAN) 
CALL IFREEC(JCHAN) 
GO TO 15 
STOP 
END 
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C **********  PROGRAM FCON **********  
C 
C 
C THIS PROGRAM READS IN TWO DATA FILES CORRESPONDING TO 
C I  AND IZERO, IT THEN CONVERTS THEM TO AN OUTPUT FILE 
C IN ABSORBANCE UNITS 
C 
C 
C 

INTEGER*2 IBUFF(240) , IZBUFF(240)» SPEC(39) ,0BUFF(240)  
REAL*4 EXT(2)  
DATA EXT/6RDATDAT,6RDATDAT/ 

15 WRITE(5,20)  
20 FORMAT('  OUTPUT FILE^IFILE, IZFILE' , / / )  
30 IF( ICSI(SPEC,EXT, , ,0) ,NE,0)GO TO 30 
C 
C ALLOCATE CHANNELS 
C 

'CHAN=IGKTC()  
TZCHAN=IGETC()  
JCHAN=IGETC()  

C 
C FETCH DEVICE HANDLERS 
C 

IF( IFETCH(SPEC(16)) ,NE,0)  STOP '  BAD FETCH' 
IF( IFETCH(SPEC(20)) .NE.0)  STOP '  BAD FETCH' 
IF( IFETCH(SPEC(l ) ) .NE.O) STOP '  BAD FETCH' 

C 
C CREATE OR OPEN FILES FOR I /O 
C 

IF( IENTER(JCHAN,SPEC<1), -1) ,LT,0)  STOP '  ENTER FAIL'  
IF(L00KUP(ICHAN,SPEC(16)) .LT,0)ST0P 'BAD LOOKUP1'  
IF(LOOKUP(IZCHAN*SPEC(20))•LT.O)STOP '  BAD L00KUP2'  

C 
C READ INPUT FILES 
C 

DO 50 J=l ,60 
K=J-1 
IF ( IREADW(240, IBUFF,K, ICHAN).LT,0)ST0P '  BAD READ' 
IF  ( IREADW(240, IZBUFF,K, IZCHAN).LT.0)ST0P'  BAD READ' 

C 
C CALCULATE ABSORBANCE 
C 

DO 40 L=l ,240 
X=AL0G10(FL0AT(IZBUFF(L)) /FL0AT(IBUFF<L)))  

40 0BUFF(L)=IFIX(X*1000)  
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C WFÏITE OUTPUT FILE 
C 
50 IF ( IWRITW(240,0BUFF,K,JCHAN),LT,0)ST0P'  BAD WRITE'  

CALL CLOSEC(ICHAN) 
CALL CLOSEC(IZCHAN) 
CALL CLOSEC(JCHAN) 
CALL IFREEC(ICHAN) 
CALL IFREEC(IZCHAN) 
CALL [FREEC(JCHAN) 
GO TO 15 
STOP 
END 
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Program PSMO 

PSMO is a FORTRAN language program which performs a 5-15 point 

two-dimensional smooth of an absorbance file generated by PCON or 

FCON. PSMO is effective for removal of noise spikes without changing 

the general shape of the absorbance contours. Subroutine SMOOTH which 

performs the actual smoothing function is based upon a third-degree 

polynomial least squares approximation algorithem (139). Source file 

listings of PSMO and SMOOTH are given in the following pages. 

To operate: 

.RUN PSMO <CR> 

OUTPUT FILE = INPUT FILE 

*DEV:OFILE.EXT=DEV:IFILE.EXT <CR> 

*5 <CR> 

STOP -
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:  **********  PROGRAM PSMO **********  
C 
c 
c 
C THIS PROGRAM READS IN AN ABSORBANCE FILE 
C AND PERFORMS AN N POINT TWO-DIMENSIONAL 
C SMOOTH OF THE DATA 
C 
C 
C 

INTEGER*:? SPEC(39) , IBUFF(240)  ,DATBUF(240,60)  
INTEGER*2 NBUFF(150)>SBUFF<150)rOBUFF(240)  
REAL*4 EXT(2)  
COMMON NBUFF,SBUFF 
DATA EX I /6RDATDATr 6RDATDAT/ 
WRITE(5,120)  

120 FORMAT=IFILE')  
130 IF ( ICSI(SPEC,EXT, ,y0) ,NE,0)G0 TO 130 
C 
C ALLOCATE CHANNELS 
C 

JCHAN=IGETC()  
ICHAN=IGETC()  

C 
C FETCH DEVICE HANDLERS 
C 

IF( IFETCH(SPEC(1)) ,NE,0)  STOP '  BAD FETCH' 
IF( IFETCH(SPEC(16)) ,NE,0)ST0P '  BAD FETCH' 

C 
C CREATE OR OPEN FILES FOR I /O 
C 

IF( IENTER(JCHAN,SPEC(1) , -1) .LT,0)  STOP '  ENTER FAIL'  
IF(LOOKUP(ICHAN»SPEC<16))J„T.O)STOP '  BAD LOOKUP' 
READ (5 ,140)  NPTS 

140 FORMAT(12)  
DO 170 J=l ,60 
K-J-1 
TF ( IREADW(240, IBUFF,K, ICHAN),LT,0)ST0P '  BAD READ' 
DO 170 N=l ,4 
DO 170 M^l ,60 

170 DATBUF(K*4+N,M)=IBUFF((N- l )*60+M) 
DO 210 J=l ,240 
DO 200 K-1,60 

200 NBUFF(K)=DATBUF< J  » K)  
CALL SMOOTH <60,NPTS) 
DO 210 K=l ,60 

210 DATBUF(J,K)=SBUFF(K) 
DO 330 J=l ,60 
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DC) 300 K=l ,240,2 
300 NBUFF((Kf l ) /2)=DATBUF(K,J)  

CALL SMOOTH (60,NPTS) 
DO 310 K=l ,240,2 

310 DATBUF (K,J)  =-=SBUFF < (KM >/2 ) 
DO 320 K=2,240,2 

320 NBUFF(K/2)=DATBUF(KyJ)  
CALL SMOOTH (60,NPTS) 
DO 330 K=2,240,2 

330 BATBUFF < K » J)=SBUFF(K/2 > 
DO 410 N=l ,60 
DO 400 M=ly4 
DO 400 L=l ,60 

400 0BUFF((M-1)*60+L)=DATBUF((N-1)*4HM,L)  
410 IF( IWRITW(240,0BUFFyN lyJCHAN),LT,0)ST0P '  BAD WRITE 

CALL CLOSEC(JCHAN) 
STOP 
END 
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: :  * * ********  SUBROUTINE SMOOTH * *********  

c 
c 
C THIS SUBROUTINE PERFORMS AN N POINT SMOOTH 
C WHEN CALLED BY PROGRAM PSMO 
C 
C 
C 

SUBROUTINE SMOOTH (N,M) 
DIMENSION YY(150)  
INTE(3ER*2 DATA<150) ,D(150)  ,Y(150) ,C(6,16) 
COMMON DATA,Y 
DATA C/  
1-3,-2,-21,-36,-11,-78,12,3,14,9,0,-13, 
217,6,39,44,9,42,12,7,54,69,16,87, 
3-3,6,59,84,21,122,0,3,54,89,24,147, 
40,-2,39,84,25,162,0,0,14,69,24,167, 
50,0,-21,44,21,162,0,0,0,9,16,147, 
60,0,0,-36,9,122,0,0,0,0,0,87, 
70,0,0,0,—11,42,0,OyO,0)0, -13,  
30,0,0,0,0,-78,35,21,231,429,143,1105/ 

J=M/2  
L-Ji l  
LL=J-1 
DO 1  K=1,J 

I. D<K)=0 
DO 2 K=1,J 

2 D(K+J+N)=0 
DO 3  K==1,N 

o D<K+J)=DATA(K) 
DO S K=L,N+L 
YY(K-J)=0 
DO 4 KK^1,M 

4 YY(K-J)=YY(K-J)+FLOAT(C(LL,KK))*FLOAT< D(K-J+KK))  
YY(K-J)=YY< K-J) /C(LL,16)  

5  Y(K-J)=IFIX(YY(K-J)) 
RETURN 
END 
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Programs PGRPH and PSPOT 

PGRPH and PSPOT are FORTRAN language programs used to plot 

absorbance contours on an X-Y recorder or an oscilloscope, 

respectively. After entering the input file information, the 

operator must input the contour level to be plotted. This is entered 

3 
as an integer number equal to absorbance times 10 . Source file 

listings of PGRPH and PSPOT are given on the following pages. 

To operate: 

.RUN PGRPH <CR> 

=IFILE.EXT 

*DEV:IFILE.EXT <CR> 

*100 <CR> 

STOP -

.RUN PSPOT <CR> 

=IFILE.EXT 

*DEV;IFILE.EXT <CR> 

*100 <CR> 

STOP — 
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S********* PROGRAM PGRPH **********  

THIS PROGRAM READS IN AN ABSORBANCE FILE 
AND DISPLAYS ISOABSORBANCE CONTOURS ON AN 
X-Y PLOTTER 

INTEGER*:? SPEC (39) ,  I  BUFF (  240 )  x DATBUF (  240,60 > 
REAL*4 EXT(2)  
DATA EXT/6RDATDATv 6RDATDAT/ 
WRITE(5,120) 

120 FORMAT ( '  ==IFILE')  
30 IF  ( ICS I  •: SPEC,  EXT ,  ,,0),NE,0)G0 TO 130 

C ALLOCATE CHANNEL 
C 

ICHAN=IGETC()  

C FETCH DEVICE HANDLERS 

:F<IFETCH(SPEC(16)),NE.0)ST0P '  BAD FETCH' 
C 
C OPEN FILE FOR INPUT 
C 

IF(LOOKUP(ICHAN» SPEC(16)) ,LT,0)STOP '  BAD LOOKUP' 
DO 170 J=l,60 
K-J-1 
IF  ( IREADW(240»IBUFF,K»ICHAN)•LT,0)STOP '  BAD READ' 
DO 170 N=l,4 
DO 170 M=l,60 

170 DATBUF(K*4+N,M)=IBUFF((N- l )*60+M) 
150 WRITE (5,160) 
160 FORMAT('  CONTOUR LEVEL?')  

READ (5, ISO)LEVEL 
180 FORMAT<15) 

CALL REL (0,0) 
DO 300 J=l,240,2 
CALL LED(J, ' I6 ' )  
DO 200 K=l,58 
IZ=8 
IF(< DATBUF(J,K)» LT•LEVEL)•AND.(DATBUF(J,K+1),GE. 

1LEVEL))  CALL MARK(J,K, IZ)  
200 IF((DATBUF(J,K) ,GE.LEVEL),AND,(DATBUF(J,K+1) ,LT.  

1LEVEL))  CALL MARK(J,K, IZ)  
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90 300 K=l,58 
ÎZ=0 

IFÎ(BATBUFÎJJ^K).LT.LEVEL).AND.(BATBUF(JJ,K+1).GE. 
ILEVEL)) CAU. MARK(JJ,K,iZ) 

300 IF< <»ATBUF<JJ»K>.GE.LEVEL).AND.<BATBUF(JJ,K+1).LT. 
ILEVEL)) CALL MARK(JJ,K,IZ) 

GO TO 150 
STOP 
END 

C 
c 

SUBROUTINE MARK<IY,IX,IZ) 
CALL XYDAC <2048fIZ-f J 6*1X , 2048+3*1Y ) 
ICMF=0 
CALL SETR<4»0f500.fIC«F> 
CALL L«AIT<IC«F»0) 
CALL REL (0,1) 
ICMF=0 
CALL SETR(4,0,200.»IC«F) 
CALL LUAIT(ICMF,0) 
CALL REL (0,0) 
ICMF=0 
CALL SETR(4,0,100.,ICHF> 
CALL LUAIT(ICMF,0) 
RETURN 
END 

C 
C 

SUBROUTINE WAIT(A) 
ICMF=0 
CALL SETR(4,0,A,ICMF) 
CALL LWAIT(ICMF,0) 
RETURN 
END 
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PROGRAM PSPOV **********  
C 
C 
C 
C rms PROGRAM READS IN AN ABSORBANCE FILE 
C AND DISPLAYS ISOABSORBANCE CONTOURS ON 
C AN OSCILLOSCOPE 
C 
c 
c 

INTEGER*! '  SPEC(39) ,  IBUFF(240)  yDATBUF(240,60)  
REAL*4 EXT(2)  
DATA EXT/6RDATDAT,6RDATDAT/ 
WRITE(5,120)  

120 FORMATC " IFILE')  
130 IF (ICSI(SPEC,EXT,,,0),NE,0)G0 TO 130 
C 
C ALLOCATE CHANNEL 
C 

: [CHAN=:IGETC( > 
C 
C FETCH DEVICE HANDLERS 
C 

IF( IFETCH(SPEC(16)) ,NE,0)ST0P '  BAD FETCH' 
C 
C OPEN INPUT FILE 
C 

IF(LOOKUP(ICHAN,SPEC(16)) ,LT,0)STOP '  BAD LOOKUP' 
DO 170 J=l ,60 
K--J-1 
IF  ( IREADW(240, IBUFF,K, ICHAN>,LT,0)ST0P '  BAD READ' 
DO 170 N=l,4 
DO 170 M=ly60 

170 DATBUF(K*4+N,M)=IBUFF((N-1)*60+M) 
150 WRITE (5 ,160)  
160 FORMATC CONTOUR LEVEL?')  

READ (5,180)LEVEL 
180 FORMAT(IS)  

CALL REL (0 ,1)  
CALL WAIT (10. )  
CALL XYDAC (2048,2048) 
CALL WAIT (10, )  
CALL REL (0,0) 
DO 800 N~2048,3016 
CALL XYDAC(N,2048)  

800 CALL WAIT(1, )  
DO 810 N-2048,2768 
CALL XYDAC(3016,N)  

810 CALL WAIT (1 . )  
DO 820 N-l,96a 
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:ALL XYDAC(3016-Ny 2768)  
820 CALL WAIT (1 . )  

DO 830 N=l ,720 
CALL XYDAC (2048,2768-N> 

830 CALL WAIT (1 , )  
CALL REL (0 ,1)  
DO 300 J=l ,240,2 
CALL LED(J, ' I6 ' )  
no 200 K=l ,58 
IZ--8 
CALL MARK (J,K,IZ) 
IF(<DATBUF(J,K) ,LT,LEVEL),AND,(DATBUF(J,K+1) ,GE,  

1LEVEL))  CALL INTEN 
200 IF(<DATBUF(JyK),GE,LEVEL),AND.(DATBUF(J,K+1) ,LT.  

1LEVEL))  CALL INTEN 
BO 300 K=l ,58 
IZ=0 
JJ=J+1 
CALL MARK(JJ,K, IZ)  
IF<(DATBUF(JJ,K) ,LT,LEVEL),AND,(BATBUF(JJ,K+1)»GE, 

ILEVED) CALL INTEN 
300 IF < (  DATBUF (  JJ ,K),GE, LEVEL ) ,  AND, (  DATBUF (JJ,K41)  <• LT.  

ILEVED) CALL INTEN 
CALL XYDAC (0 ,0)  
GO TO 150 
STOP 
END 

C 
C 

SUBROUTINE MARK(IY, IX, IZ)  
CALL XYDAC(2048+IZ+16*IX,2048+3*IY)  
RETURN 
END 

C 
C 

SUBROUTINE WAIT(A) 
ICMF=0 
CALL SETR(4,0,A, ICMF) 
CALL LWAIT( ICMF,0)  
RETURN 
END 

C 
C 

SUBROUTINE INTEN 
CALL REL(OvO) 
CALL WAITCIO,)  
CALL REL (0 ,1)  
CALL WAIT(10,)  
RETURN 
END 
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**********  PROGRAM FRAME **********  
C 
C 
C THIS PROGRAM IS USED IN CONJUNCTION WITH 
C PSPOT, THE PURPOSE OF THIS PROGRAM IS TO 
C DISPLAY A CONTINIOUS FRAME TO THE OSCILLOSCOPE 
C SO THAT THE CONTROLS MAY BE SET TO GIVE 
C PROPER ASPECT RATIO AND CENTERING 
c; 
C 

CALL REL (0 ,0)  
700 DO 800 N=2048,3016 
800 CALL XYDAC(N,2048) 

DO 810 N=2048,2768 
810 CALL XYDAC(3016,N) 

DO 820 N=l,968 
320 CALL XYDAC(3016-N,2768) 

DO 830 N=l,720 
830 CALL XYDAC(2048,2768-N) 

GO TO 700 
STOP 
END 


