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Abstract

Background

Infectious Bovine Keratoconjunctivitis (IBK) in beef cattle, commonly knownas pinkeye, is a bac-
terial disease caused byMoraxella bovis. IBK is characterized by excessive tearing and ulceration
of the cornea. Perforation of the cornea may also occur in severe cases. IBK is considered the most
important ocular disease in cattle production, due to the decreased growth performance of infected
individuals and its subsequent economic effects. IBK is an economically important, lowly heritable
categorical disease trait. Mass selection of unaffected animals has not been successful at reducing
disease incidence. Genome-wide studies can determine chromosomal regions associated with IBK
susceptibility. The objective of the study was to detect single-nucleotide polymorphism (SNP) mark-
ers in linkage disequilibrium (LD) with genetic variants associated with IBK in American Angus
cattle.

Results

The proportion of phenotypic variance explained by markers was 0.06 in the whole genome analysis
of IBK incidence classified as two, three or nine categories. Whole-genome analysis using any cate-
gorisation of (two, three or nine) IBK scores showed that locations on chromosomes 2, 12, 13 and 21
were associated with IBK disease. The genomic locations on chromosomes 13and 21 overlap with
QTLs associated with Bovine spongiform encephalopathy, clinical mastitis orsomatic cell count.



Conclusions

Results of these genome-wide analyses indicated that if the underlying genetic factors confer not only
IBK susceptibility but also IBK severity, treating IBK phenotypes as a two-categorical trait can cause
information loss in the genome-wide analysis. These results help our overallunderstanding of the
genetics of IBK and have the potential to provide information for future usein breeding schemes.
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Background

Infectious Bovine Keratoconjunctivitis (IBK), commonly known as pinkeye, is a highly contagious oc-
ular bacterial cattle disease which occurs in cattle populations throughout the world. IBK is caused by
the Gram negative bacteriumMoraxella bovis[1] and is characterized by excessive tearing, inflamma-
tion of the conjunctiva, and ulceration of the cornea in one or both eyes. As the disease progresses the
cornea becomes cloudy or white. In severe cases, perforation of the cornea may occur which can lead to
permanent blindness.

IBK is non-fatal; however, it is considered the most important ocular disease in cattle, due to the de-
creased growth performance of infected individuals. The United State National Animal Health Moni-
toring System survey [2] and Australian postal survey [3] reported IBK as an economically important
disease in animal production. Major economic losses are the result of inappetence and poor weight gain
in affected animals suffering from ocular pain and visual impairment [1]. It has been estimated that IBK
costs beef producers 150 million US$ in the United States [4] and 22 million AUD$ inAustralia [3] per
annum.

There has been little research to quantify genetic variation in susceptibility to IBK. Breed differences
in susceptibility to IBK have been demonstrated and Hereford cattle were found to be more susceptible
compared with all other purebreds (Angus, Braunvieh, Charolais, Gelbvieh, Limousin, Pinzgauer, Red
Poll and Simmental) andBos Indicusbreeds [5, 6]. Heritability estimates (0.10 - 0.25) different from
zero have been reported, highlighting the presence of within-breed genetic variation in susceptibility to
IBK.

Putative QTL on Chromosomes 1 (66 to 110 cM) and 20 (2 to 35 cM) have been reported [7] to be
associated with resistance to IBK. Reducing IBK through selection would beadvantageous, because
genetic gain is cumulative and permanent. Once the loci associated with susceptibility or resistance to
IBK are identified, relevant markers can be used for selection in breeding schemes.

In recent years, high-density single nucleotide polymorphism (SNP) genotyping assays for cattle have
become available [8]. In addition, statistical methodologies have been developed to make use of these
SNP panels to detect association between SNP and economically important traits. The use of genome-
wide studies helps identify chromosomal regions associated with disease incidence in immunity-related
diseases such as IBK. The objective of this study was to detect SNP markers in linkage disequilibrium
(LD) with genetic variants associated with IBK in Angus cattle.



Methods

Ethics statement

All animal procedures were approved by the Iowa State University AnimalCare and Use Committee.

Phenotypic data

Records of IBK were collected from 860 animals born and raised in the Iowa State University Angus
research herd from spring 2004 through spring 2008. The IBK statusof each animal was determined at
weaning time and was scored subjectively into five categories for left and right eyes as follows:

yL/R,i =































1 normal cornea with no apparent lesions,

2 a lesion covering less than 1/3 of the cornea,

3 a lesion covering 1/3 to 2/3 of the cornea,

4 a lesion covering more than 2/3 of the cornea,

5 perforation of the cornea,

(1)

whereyL/R,i is the left (L) or right (R) eye IBK score of animali and i = 1, . . . ,n (Table 1). Infection
status was studied by pooling left and right eye IBK scores in various manners (Table 2).

Table 1 Number of animals diagnosed with different severities of Infectious Bovine Keratocon-
junctivitis for left, right or both eyes

Right eye
Left eye 1 2 3 4 5 Total

1 539 47 26 14 16 642
2 63 23 9 6 3 104
3 30 13 10 3 1 57
4 16 7 1 4 1 29
5 15 3 3 2 5 28

Total 663 93 49 29 26 860

Table 2 Number of animals diagnosed with different severities of Infectious Bovine Keratocon-
junctivitis classified within two, three or nine categories

IBK score
Category 1 2 3 4 5 6 7 8 9

2 539 321
3 539 227 94
9 539 110 79 52 54 10 8 3 5

First, left and right IBK scores were combined to form a classification involving two categories (c = 2):
Incidence was scored as 1 for both eyes unaffected and as 2 otherwise.

yc=2,i =







1 yL,i = 1 andyR,i = 1,

2 otherwise.
(2)



Second, left and right IBK scores were combined into a three category classification (c = 3): Incidence
was scored as 1 for both eyes unaffected, 2 for a single affected eyeand 3 for both affected eyes.

yc=3,i =























1 yL,i = 1 andyR,i = 1,

2 yL,i 6= 1 oryR,i 6= 1,

3 yL,i 6= 1 andyR,i 6= 1,

(3)

Third, left and right IBK scores were classified in nine categories (c = 9): Incidence was scored from 1
to 9 by adding the scores of the left and right eyes (yL,i + yR,i − 1).

yc=9,i =



































1

2
... yL,i + yR,i − 1,

8

9

(4)

50k SNP data

High-density (53,367) SNP genotypes of purebred American Angus cattlewere obtained using the
Bovine SNP50 Infinium II BeadChip (Illumina, Inc., San Diago CA). The Illumina A/B allele calls
were used to compute a covariate for each locus that had values 0, 1, or 2to represent the number
of B alleles. Missing genotypes represented less than 0.2% of total observations and were replaced
with average covariate values. All genotypes were retained in the analysisregardless of minor allele
frequency.

BayesB threshold model

The threshold model for ordered categorical data assumes the existenceof a set of ordered thresholds
τ0 = −∞ < τ1 < τ2 < . . . < τc−1 < τc = ∞ for the trait and an underlying or latent variablel i for
each animali. When the latent variable for animali is between thresholdsτj−1 andτj the categorical
phenotypeyi for animali takes valuej [9,10].

The BayesB [11] model for genome-wide analysis of continuous traits haspreviously been extended [12]
to analyze categorical phenotypes assuming a threshold model as described below. In this approach, the
latent variablel i corresponding toyi , the IBK categorical phenotype, is modeled as follows:

l i = x′
iβ +

K
∑

k=1

zikαk + ei , i = 1, .....,n (5)

whereβ is a px1 vector of fixed effects,x′
i is a known incidence row vector corresponding to fixed

effects inβ, K is the number of marker loci,zik is the value of the covariate for markerk in individual
i, αk is the random substitution effect for locusk, with αk ∼ N(0,σ 2

αk
) with probability 1-π or αk = 0

with probabilityπ . For a locus included in the model, the locus-specific variance,σ 2
αk

, is assumed to
have a scaled inverse chi-square distribution with degrees of freedomνα=4 and scale parameterS2

α =



σ2
g (να−2)

(1−π)
∑K

k=1 2pk(1−pk)να
, wherepk is the B allele frequency of markerk andσ 2

g is the additive genetic variance

explained by markers [13,14]. For a locus not in the model,σ 2
αk

is set to zero. A flat prior was assumed
for the fixed effects and thresholds, and the residual,ei , was assumed to be distributedN(0,σ 2

e = 1).

The joint posterior density ofβ,α,τ , σ 2
α andl [10] is given by:

p(β,α, l,τ ,σ 2
α, |y) =

n
∏

i=1

[Pr(yi = j|l i ,τ )p(l i|β,α)] p(β,α,τ ,σ 2
α) (6)

whereα,σ 2
α,τ andl are the vectors of marker effects, marker variances, thresholds and liabilities.

Given the threshold model, the conditional probability Pr(yi = j|l i ,τ ) in equation (6) is either 1 or zero,
and following Albert and Chib [15] this probability can be written as:

Pr(yi = j|l i ,τ ) =

c
∑

j=1

I(τj−1 < l i < τj)I(yi = j), (7)

whereI(.) is an indicator function taking the value 1 when expression (.) is true and 0 otherwise.

It is assumed that, given the location parametersβ andα, the density function of the latent variablel i in
equation (6) is normal:

p(l i|β,α) = N(x′
iβ +

K
∑

k=1

zikαk, 1). (8)

The density of the joint prior distribution in equation (6) has the form

p(β,α,τ ,σ 2
α) = p(β)p(α)p(τ )p(σ 2

α). (9)

A Gibbs sampler was used to construct an irreducible, Markov chain with thejoint posterior as its
stationary distribution [10,16,17]. Inferences were made from the Markov chain. In the Gibbs sampler,
samples are obtained from the full conditional posteriors rather than the joint posterior [10,16,17]. The
full conditional posteriors used in this paper are described below.

The full conditional posterior for the fixed effectβm given all other unknowns is a normal distribution:

p(βm|β−m,α) = N(β̂m, (x′
mxm)−1) (10)

where

β̂m =

x′
m(l−[ X−mβ−m +

K
∑

k=1
zkαk] )

x′
mxm

, (11)

X−m is the matrixX with the column associated withm deleted, andβ−m is β with the mth element
deleted.

At locusk, following Meuwissenet al [11], the locus-specific marker variance,σ 2
αk

, and the SNP effect,
αk, were sampled from their joint full conditional posterior distribution. The strategy they used was to
sampleσ 2

αk
from the marginal of the full conditional posterior and then sampleαk from the conditional

posterior given the sampled value forσ 2
αk

[11].



This full-conditional distribution does not have a closed form, and thus the Metropolis-Hasting (MH)
algorithm is used to sampleσ 2

αk
. Meuwissen et al [11] used the prior distribution ofσ 2

αk
as the proposal

distribution in the MH algorithm. Here we used the proposal distribution described by Habieret al. [14].
Given the sampled value ofσ 2

αk
, the marker effectαk was sampled from its conditional posterior:

αk|σ
2
αk

=

{

0 σ 2
αk

= 0,

∼ N(
z′

krk

Ck
,C−1

k ) σ 2
αk

> 0,
(12)

whererk = l−[ Xβ +
K
∑

k′ 6=k
zk′αk′ ] andCk = z′

kzk + (σ 2
αk

)−1 [14].

Following Cowles [18], the latent variables and thresholds were sampled jointly from their joint full
conditional distribution. Cowles [18] samples the thresholds from the marginal of this full conditional
posterior, which is obtained by integrating out the latent variables [19]. The marginal full conditional
does not have a closed form and an MH algorithm is used to draw samples ofthe thresholds [18]. Then,
given the sampled values of the thresholds, each of the latent variables is sampled from its conditional
posterior, which is truncated normal:

p(l i|β,α,τ , l−i , y) ∝ N(x′
iβ +

K
∑

j=1

zikαk, 1)





c
∑

j=1

I(τj−1 < l i < τj)I(yi = j)



 , (13)

as described by Devroye [20].

Genetic variance and heritability

The posterior means of the genetic variance and of the heritability for the latent variable were estimated
from the Markov Chain Monte Carlo (MCMC) samples as follows. In each MCMC step, the vectorg of
breeding values of all animals was sampled as:

g(t) =

K
∑

k=1

zkα
(t)
k , (14)

whereα
(t)
k is the sampled value ofαk in stept. Now, vectorg(t) was used to sample the genetic variance

σ 2(t)
g as

σ 2(t)
g =

∑n
i (g

(t)
i − ḡ(t))2

n
, (15)

where

ḡ(t) =

∑n
i g(t)

i

n
.

The heritabilityh2(t) was then sampled as

h2(t) =
σ 2(t)

g

σ
2(t)
g + 1

. (16)



The arithmetic means of these samples were used to estimate their posterior means.

Window variance

The genetic variance attributed to a genomic window is defined as follows. First, the breeding value for
a genomic window is defined as

gw =
∑

k∈W

zkαk, (17)

whereαk is the effect of SNPk andW is the set of indices of SNPs that belong to genomic windoww.
The genetic variance attributed for genomic windoww is now defined as

σ 2
gw

=

∑n
i (gwi − ḡw)2

n
, (18)

where

ḡw =

∑n
i gwi

n
.

Samples of window variances were obtained using (15) but withg(t) computed with only the sampled
SNP effects for windoww [21] . These samples were used to compute posterior means and posterior
probabilities for percent window variances and were used for inferences on locations of causal variants.

Bioinformatics and identification of candidate genes

SNP effects from genome-wide analysis were obtained using the thresholdmodel
in GenSel software [22] and the estimated effects were uploaded into SNPLOTz
(http://www.animalgenome.org/tools/snplotz). SNPLOTz visualized the estimated SNPeffects and their
genomic location and was dynamically linked to Gbrowse (http://www.animalgenome.org/gbrowse),
which allowed visualization of SNP with other types of genome features (i.e., annotated genes, curated
QTL, transcripts, etc.) [23]. The SNP positions within a chromosome were based onBos taurusgenome
assembly (UMD 3.1).

Results and discussion

The distribution of IBK records by left and right eyes are presented in Table 1. The rates for severity
of IBK that was scored into five categories from cornea with no apparent lesions to perforation of the
cornea were 75, 12, 7, 3 and 3 % for left eye and 77, 11, 6, 3 and 3 % for right eye. These results
indicated similarity between left and right eyes for IBK incidence rates. Rodriguez [24] studied the
effects of IBK incidence severity on production traits in Angus breed andfound similar incidence rates
between left and right eyes.

The distribution of IBK scores classified in two, three or nine categories ofinfection can be seen in
Table 2. The rates of unaffected, affected, only one-eye affected and two-eye affected animals were
63, 37, 26 and 11%, respectively. The severity score of IBK within the nine category classification
system varied from 12.8% to 0.58% for infected animals. These results werefound to be similar with
those from Rodriguez [24]; however, higher than those (3.7%) from Snowderet al. [6], that studied
environmental effects and genetic factors influencing the incidence of IBK among nine breeds including
Angus. A significant between-breed difference in IBK incidence has been reported [25], with purebred



Herefords (22.4%) being more susceptible compared to other pure (Simmental 7.6%, Charolais 6.5%,
Angus 3.7%, Limousin 3.4%) and composite breeds. Thus, sufficient genetic variation for resistance to
IBK exists in these breeds to consider selection.

Inference on heritability

The posterior distribution of heritability for each of the IBK scores classified into two, three or nine
categories is shown in Figure 1, along with the posterior mean (PM), posterior standard deviation and
95% posterior probability interval (PPI), defined to be the range of posterior density falling between the
2.5th and 97.5th percentile.

Figure 1 Posterior inference on heritability of Infectious Bovine Keratoconjunctivitis scores clas-
sified within two, three or nine categories in American Angus cattle. PM: Posterior mean,SD:
Posterior standard deviation,PPI: 95% posterior probability interval.

The posterior distribution of heritabilities seemed similar across the different classification of IBK
scores. Posterior means of heritabilities for two- (0.064) and nine-category (0.064) IBK scores were
the same; however, they were slightly lower than 0.066 for three-categoryIBK scores. The 95% PPI
of heritabilities overlapped, which indicates that there is no significant difference among heritability
estimates of IBK incidence based on different classifications.

There are very few studies reporting estimates of heritability for IBK incidence in the literature. Our
heritability estimates were lower, but in good agreement with the estimates (0.06 - 0.10) obtained from
Rodriguez [24]. However, our heritability estimates are lower than the heritability estimates of 0.10-
0.25 obtained by Snowderet al. [6] based on the models including only animal effect, and animal and
maternal effects for Angus cattle. In the same study, Snowderet al. [6] also found high heritability
estimates (0.20-0.28) for Hereford and low heritability (0.0 - 0.13) estimates for Red Poll, Charolais,
Simmental, Limousin, Gelbvieh, Pinzgauer, Braunvieh breeds. Aliet al. [26] indicated that estimates of
heritability for IBK were small to moderate (0.17 - 0.19) for both pre-weaningand post-weaning calves
in a Hereford and Shorthorn composite population. These differences between heritability estimates
could be attributed partly by the differences in phenotypes measured, failure to accurately distinguish
between phenotypes of healthy and sick animals; false assumption that disease observed is the primary
infection, lack of knowledge of the influence of passive immunity on diseaseincidence, susceptibility
of disease biased by time, age, or season dependency and/or differences in the models of analyses used
in these studies [6,24].

Effect of different categorisation of infectious bovine keratoconjunctivitis on the whole-genome
analysis

Genome-wide Manhattan plots that display the proportion of genetic varianceexplained by all 2,648
1-Mb SNP windows with respect to their genomic positions are shown for IBKscores classified as
two, three or nine categories in Figure 2. Additional Table S1, S2 and S3 in the Additional file 1
also present the information about the top thirty 1-Mb SNP windows explaining0.20% or more of the
genetic variance observed in IBK classifications. The top thirty 1-Mb SNP windows explained 13.3,
14.5 and 14.0% of genetic variance observed in IBK scores classified astwo, three or nine categories,
respectively. As seen from Figure 2 and Tables in the Additional file 1, whole-genome analysis for each
categorisation (two, three or nine) of IBK scores indicated that similar genomic regions were associated



with IBK incidence although the variance explained by each region differed slightly according to the
categorisation used.

Figure 2 Plot of the proportion of window variance accounted for bygenome locations for two,
three or nine IBK scores in American Angus cattle.Each spot on the plot indicates the proportion of
genetic variance contributed by a SNP window defined based onBos taurusgenome assembly (UMD
3.1). The colors represent SNP windows from chromosome 1 to X.

Two-category classification of IBK was performed by considering all animals whose IBK status was at
least as severe as the threshold level to be ’affected’, while considering all animals whose IBK status
was less severe than the threshold level to be ’unaffected’. It was alsoassumed that animals with IBK
had the same levels of exposure to the genetic risk factors. In the two-category classification, however,
some animals considered ’affected’ could be in more severe states than other ’affected’ animals [27].
This additional information could be used in the miltiple-category classification ofIBK, whereas it was
lost upon two-category classification. In the linkage analyses of two-, three- and multiple-categorical
traits, Corbetel al. [27] indicated that two-category classification of multiple-categorical traits could
lead to crippling power loss, especially in the case of many loci of small effects. In particular, if the
underlying genetic factors for any trait confer not only IBK susceptibilitybut also IBK severity, treating
IBK phenotypes as multi-categorical could provide additional information in genome-wide analysis.

Association analysis for infectious bovine keratoconjunctivitis

Figure 2 and Tables in the Additional file 1 indicated many genomic regions with different degree of
association with IBK incidence in American Angus breed. Casas and Stone [7] had previously reported
presence of QTL for IBK tolerance on chromosome 1 and 20. Casas andSnowder [25] further indicated
that the region on chromosome 20 might be associated with general resistance to bacterial diseases
(including IBK). In this present study, several SNP windows associated with IBK disease status were
identified on chromosome 1 (Additional file 1). However, three SNP windows([109.01 Mb] - [109.87
Mb], [110.04 Mb] - [110.98 Mb] and [112.04 Mb] - [113.00 Mb]) on chromosome 1 overlapped pre-
viously described QTL region for IBK susceptibility [7]. There are two annotated genes within these
1-Mb SNP windows on chromosome 1;PTX3(pentraxin 3) andIL12A (interleukin 12A, natural killer
cell stimulatory factor 1, cytotoxic lymphocyte maturation factor 1, p35).

PTX3 has been reported to be rapidly produced and released by several cell types, in particular by
mononuclear phagocytes, dendritic cells, fibroblasts and endothelial cells[28, 29] and recognizes mi-
crobial moieties, opsonizes fungi and selected Gram-positive and Gram-negative bacteria and activates
complement. Opsonization resulted in facilitated pathogen recognition and innateimmune cell activa-
tion; moreover, opsonization byPTX3is likely to be involved in the activation of an appropriate adaptive
immune response [29].IL12A, an immunomodulatory cytokine secreted by antigen presenting cells, is
critical for differentiation of T helper (Th)1 and Th2 lymphocytes [30].IL12 has been shown to aug-
ment the growth of activated T- and natural killer (NK)-cells [31], stimulate interferon gamma (IFN-γ )
production by T-cells and NK cells, and suppress the expansion of Th2 cell clones [32]. This informa-
tion aboutPTX3and IL12A genes indicates that they could be strong biological as well as positional
candidates involved in response to IBK infections.

It is important to note that in the present study there were no common 1-Mb SNPwindows on chro-
mosome 20 for IBK incidence. While this result was not consistent with the results from the previous
studies [7,25] about IBK incidence, the difference may be in part due todesign differences between this



study (a single breed of purebredBos taurusanimals) and the previous studies (a singleBos taurusx
Bos indicussire bred to multiple breeds of cows). These differences in results may indicate different
metabolic pathways or different segregating QTL (within breed vs. across breed) for IBK incidence.

In the present work, five 1-Mb SNP windows (Table 3), which were identified as being associated with
IBK incidence, were determined as common windows within the thirty SNP windowsfor IBK classifica-
tions (Tables in Additional file 1):rs109448194- rs42270183andrs41642303- rs110857971on chro-
mosome 2,rs108956311- rs43705367on chromosome 12,rs29021773- rs109429649on chromosome
13 andrs41966737- rs41640647on chromosome 21. The percentage of genetic variance explained
by these five 1-Mb SNP windows based on two-, three- and nine-category of IBK incidence were 0.30,
0.45 and 0.27%, and 0.89, 0.28 and 0.32% for two SNP windows on chromosome 2; 0.90, 1.01 and
1.11% for SNP window on chromosome 12; 1.42, 0.50 and 0.37% for SNP window on chromosome 13
and 0.40, 0.26 and 0.29% for SNP window on chromosome 21, respectively. These results showed that
same genomic regions could have different degree of association with IBKincidence based on the two-,
three-, or nine-category classification of IBK incidence, which means IBK could have separate sets of
genes controlling affection and severity of the incidence.



Table 3 Common 1-Mb SNP windows from the analyses of IBK incidence across two, three and nine categories
rs number of Position of rs number of Position of Number of Proportion of genetic variance in IBK classified in

Chromosome Mb first SNP first SNP last SNP last SNP SNP in window Two categories Three categories Nine categories
2 19 rs109448194 19105629 rs42270183 19965497 19 0.30 0.45 0.27
2 22 rs41642303 22087692 rs110857971 22768217 14 0.89 0.28 0.32
12 53 rs108956311 53009331 rs43705367 53986983 23 0.90 1.01 1.11
13 14 rs29021773 14356314 rs109429649 14923596 11 1.42 0.50 0.37
21 19 rs41966737 19002483 rs41640647 19983053 27 0.40 0.26 0.29

The SNP loci were based onBos taurusgenome assembly (UMD 3.1)



Several candidate genes in the five 1-Mb SNP windows were identified andlisted with their functions
in Table 4. Examining the first 1-Mb SNP window [19.10 - 19.97 Mb] on chromosome 2 indicated
two genes;AGPS(alkylglycerone phosphate synthase),NFE2L2(nuclear factor (erythroid-derived 2)-
like 2). AGPSis a peroxisomal enzyme which is required for the synthesis of plasmalogens. Liegel et
al. [33] indicated that a mutation based on a G to A substitution at the +5 position of intron 14 in the
AGPSgene resulted in severe plasmalogen deficiency which is the cause of cataracts and male sterility
in the blind sterile 2 mice having spontaneous autosomal recessive mutation.NFE2L2 (also called
NRF2) is a basic leucine zipper transcription factor that mediates the cytoprotective cellular antioxidant
response [34]. Wangyet al. indicated thatNFE2L2was an essential transcription factor in protecting
living organisms from oxidative stress-related disease. Ungvariet al. [35] showed that polymorphisms
in the regulatory regions ofNFE2L2are associated with susceptibility to infection-induced asthma in
the study of relationship between air pollution,NFE2L2gene polymorphisms and childhood asthma in
a Hungarian population. They also found remarkable differences in the genotype distributions of these
polymorphisms between different polluted regions, which indicate an environment-dependent regulation
of the antioxidant defense mechanisms. ThisNFE2L2gene could be associated with susceptibility to
IBK incidence because several factors including the environment, season, fly concentration, the presence
of the pathogen, strain of the pathogen and background of the animal playa role in the incidence,
penetrance, and severity of IBK [36]. In addition, Schwalfenber [37] reported the role of vitamin D in
the prevention of viral, fungal and bacterial (such as ocular) infections. He indicated that 1,25(OH)2D,
active form of vitamin D, has been shown to increase the induction of genesencoding for humanβ
defensin which promotes resistance to eye infection byP.aeruginosa. Epidemiological studies have
linked vitamin D deficiency to increased rates of cancer, as well as autoimmuneand infectious diseases
[37]. Vitamin D-mediated protection from pro-oxidant stress was determinedto be indirect due to the
induction ofNFE2L2 [38] and it was found thatNFE2L2expression was down-regulated in prostate
cancer and suppression ofNFE2L2promotes prostate tumor development in TRAMP mice [39].

Table 4 Positional candidate genes (PCG) within 1-Mb SNP window (SNPW) and their putative
functions
Chromosome SNPW PCG Gene ontology

2 19.11 - 19.97 AGPS It encodes a protein that catalyzes the step of lipid biosynthesis
and the removal of long chain acid anion

NFE2L2 It encodes a transcription factor which is a member ofa small
family of basic Leucine (bZIP) proteins

2 22.09 - 22.77 WIPF1 It encodes a protein that plays an important role in the organization
of the actin cytoskeleton

OLA1 It hydrolyzes ATP and can hydrolyze GTP with lower efficiency
SP3 regulates transcription by binding consensus GC and GT-box

elements in target genes
12 53.01 - 53.99 SCEL It encodes a tissue-specific basic helix-loop-helix (bHLH) protein

with a pivotal role in hemopoises
EDNRB it mediates actin by association with G-Protein that activates

a phosphaidylinositol-calcium second messenger system
13 14.36 - 14.92 VAMP7 It encodes a transmembrane protein that is a member of soluble

N-ethylmeleimide-sensitive factor attachment protein receptor
(SNARE) family

21 19.00 - 19.98 NTRK3 It encodes a member of a neurotrophic tyrosine receptor kinase family
MIR1179 It involved in post transcriptional regulation of gene expression
MIR7-1 It involved in post transcriptional regulation of gene expression

The second SNP window [22.09 - 22.77 Mb] harbors 3 genes;WIPF1 (WAS/WASL interacting pro-
tein family, member 1),OLA1 (Obg-like ATPase 1),SP3(Sp3 transcription factor).WIPF1encodes a
protein that plays an important role in the organization of the actin cytoskeleton. Wickramarachchiet
al. [40] indicated that deficiency of actin regulators can result in defects limitedto the immune system or
sometimes to a single immune cell type and lack of an actin cytoskeletal regulator can cause immunode-



ficiency, autoimmunity, autoinflammatory disease, or a combination of these manifestations. In addition,
Dustin and Cooper [41] pointed out that the actin cytoskeleton seems to play two critical roles in the ac-
tivation of T cells: T cell shape development and movement, including formationof the immunological
synapse and the formation of a scaffold for signaling components.OLA1 is a negative regulator of the
antioxidative process. Knockdown ofOLA1 in human cells elicited an increased resistance to oxidizing
agents. Zhangaet al. [42] also reported that knockdown ofOLA1, a newly discovered regulatory pro-
tein of oxidative stress response, inhibits cell migration and invasion ability in breast cancer cells.Sp
factors are able to stimulate transcription from proximal promoters or from distal enhancers. They can
also physically interact with other transcription factors. van Looet al. [43] studied the impact of the
absence of the widely expressed transcription factorSP3on the developing hematopoietic system in the
mouse. They showed that the absence ofSP3results in cell-autonomous differentiation defects in the
erythroid and myeloid cell lineage.WIPF1, OLA1andSP3genes are found to be associated with defects
in immune system or cell lineage making them biological candidate for IBK disease.

Two genes were identified within the SNP window [53.01 - 53.99 Mb] on chromosome 12;SCEL(sci-
ellin), EDNRB(endothelin receptor type B). Sciellin is a protein that is encoded by theSCELgene. it is
a precursor of the cornified enveloped. The cornified envelope is an insoluble protein complex formed
under the plasma membrane in the uppermost layers of stratified squamous epithelium and plays a major
role in the barrier properties of the stratum corneum [44]. Champliaudet al.[45] reported proteins inter-
acting with sciellin and identified vitamin D-upregulated protein 1 (VDUP1), whichplays multiple roles
in a wide range of cellular processes such as proliferation or apoptosis.Recently, it has been reported
that VDUP1 is also involved in the immune system via positive regulation of natural killer develop-
ment [46]. The endothelin receptor B (EDNRB) gene encodes a g-protein-coupled receptor-mediated
endothelin, inducing development and transformation of the neural crestcell-specific lineage. Hyper-
methylation of theEDNRBpromotor has been shown in multiple tumor types, andEDNRBhas been
proposed as a putative tumor suppressor gene [47].

One gene is located within SNP window [14.36 - 14.92 Mb] on chromosome 13;VAMP7 (vesicle-
associated membrane protein 7).VAMP7 inhibits the release of lytic granules and severely impairs
natural killer (NK) cell cytotoxic activity which is used to eliminate cancer and virus-infected cells.
Furthermore,VAMP7is involved in IFN secretion in NK cells, which indicates thatVAMP7is involved
in many fusion processes and thus plays a general function in NK cell activity [48]. In addition, this
SNP window lies in the region where putative QTLs that affect Bovine spongiform encephalopathy at
22.997-61.84 cM resides [49]. These findings indicate that these genescould be candidates for IBK
susceptibility based on their functions.

The SNP window [19.00 - 19.98 Mb] on chromosome 21 harbors three genes that encode proteins;
NTRK3(neurotrophic tyrosine kinase, receptor, type 3),MIR1179(microRNA mir-1179),MIR7-1(mi-
croRNA mir-7-1).NTRK3gene encodes a member of theNTRKfamily. These neurotrophins (NTs) re-
ceptors are best known for their role in the differentiation and survivalof various types of neurons [50].
In the study of latitude-driven adaptation for both schizophrenia and vitaminD related genes, Amato
et al. found 9 genes includingNTRK3in common among those ones related to latitude, vitamin D and
schizophrenia. MicroRNAs (miRNAs) are small 21-23 nucleotide-long noncoding RNAs involved in
several biological process including development, differentiation, apoptosis, survival, motility, invasion
and proliferation. Many miRNAs are implicated as proto-oncogenes or as tumour suppressors and aber-
rantly expressed in various cancer types. MIR7 has been characterized as a tumor suppressor in several
human cancers. This SNP window also lies in the region where putative QTLsthat affect clinical masti-
tis at 12.60-35.89 cM and somatic cell scores at 12.601-29.77 cM, have been identified by Schulmanet
al. [51] and Schnabelet al. [52], respectively. These results indicate that genetic variant(s) that reside in
this chromosomal region could be associated with bacterial disease such asIBK in cattle.



Conclusions

The present analyses, using Bovine SNP50 Infinium II BeadChips, identified several 1-Mb SNP regions
and genes within these regions that were associated with IBK. They may be of interest for breeding
schemes as they could be used to identify animals susceptible to IBK.

IBK disease is a lowly heritable complex trait that is polygenic in nature, wheremany loci with small
effects are expected and disease incidence is affected by the environment. Such traits require a large
number of individuals to enhance the power of the genome-wide analysis and obtain good statistical
support for the detection of the causal loci.
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