
INFORMATION TO USERS 

This dissertation was produced from a microfilm copy of the original document. 
While the most advanced technological means to photograph and reproduce this 
document have been used, the quality is heavily dependent upon the quality of 
the original submitted. 

The following explanation of techniques is provided to help you understand 
markings or patterns which may appear on this reproduction. 

1. The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the 
missing page(s) or section, they are spliced into the film along with 

adjacent pages. This may have necessitated cutting thru an image and 
duplicating adjacent pages to insure you complete continuity. 

2. When an image on the film is obliterated with a large round black 
mark, it is an indication that the photographer suspected that the 

copy may have moved during exposure and thus cause a blurred 
image. You will find a good image of the page in the adjacent frame. 

3. When a map, drawing or chart, etc., was part of the material being 
photographed the photographer followed a definite method in 
"sectioning" the material. It is customary to begin photoing at the 
upper left hand corner of a large sheet and to continue photoing from 
left to right in equal sections with a small overlap. If necessary, 
sectioning is continued again — beginning below the first row and 
continuing on until complete. 

4. The majority of users indicate that the textual content is of greatest 
value, however, a somewhat higher quality reproduction could be 
made from "photographs" if essential to the understanding of the 
dissertation. Silver prints of "photographs" may be ordered at 
additional charge by writing the Order Department, giving the catalog 
number, title, author and specific pages you wish reproduced. 

University Microfilms 
300 North Zeeb Road 
Ann Arbor. Michigan 48106 

A Xerox Education Company 



72-26,934 

MYRON, Harold William, 1947-
THE ELECTRONIC STRUCTURE AND FERMI SURFACE OF 
RHENIUM TRIOXIDE. 

Iowa State University, Ph.D., 1972 
Physics, solid state 

University Microfilms, A XEROX Company , Ann Arbor, Michigan 



The electronic structure and Fermi surface of  

rhenium t r ioxide 

by 

Harold Wi l l iam Mvron 

A Dissertat ion Submit ted to the 

Graduate Facul ty in Part ia l  Ful f i l lment of  

The Requirements for  the Degree of  

DOCTOR OF PHILOSOPHY 

Department:  Physics 
Major;  Sol id State Physics 

For the Graduate Col lege 

Iowa State Universi ty 
Ames, Iowa 

Approved :  

In Charge of  Major Work 

For the Major Department 

1972 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



PLEASE NOTE: 

Some pages may have 

indist inet  pr int .  

Fi lmed as received. 

Universi ty Microf i lms, A Xerox Educat ion Company 



TABLE OF CONTENTS 

Page 

INTRODUCTION 1 

THE STRUCTURE AND CRYSTAL POTENTIAL OF ReO^ ^  

The Structure of  Rhenium Tr ioxide 4 

The Crystal  Potent ia l  of  Rhenium Tr ioxide 7 

The Muff in Tin Radi i  17 

KKR METHOD 21 

The Green's Funct ion Method 21 

The Var iat ional  Expression for  Energy 26 

Simpl i f icat ions for  Spher ical ly Symmetr ic Potent ia ls 29 

The KKR Method for  "Complex Crystals" 31 

Al ternat ive Def in i t ion for  the Structure Constants 33 

THE ENERGY BANDS OF RHENIUM TRIOXIDE 40 

THE FERMI SURFACE AND DE HAAS-VAN ALPHEN FREQUENCIES 49 

The Fermi Surface ^9 

The Pressure Der ivat ives of  de Haas-van Alphen Frequencies 49 

The de Haas-van Alphen Frequencies 56 

SUMMARY AND CONCLUSIONS 60 

BIBLIOGRAPHY 63 

ACKNOWLEDGMENTS 65 



1 

INTRODUCTION 

Dur ing the last  ten years there has been much interest  in the elec­

t r ical  and magnet ic propert ies of  the t ransi t ion metal  oxides. This 

c lass of  compounds has members which are ei ther insulators,  metals or  

go through an insulator to metal  t ransi t ion with increasing temperature.  

Rhenium t r ioxide was found to be an excel lent  metal  by Ferret t i  

et  a l .  (1) having an e lectr ical  conduct iv i ty of  2.5 x 10^ Q ^-cm '  at 

5 -1 
77 K. At room temperature,  the conduct iv i ty of  ReO^ approaches 10 n 

-cm which is  wi th in an order of  magnitude of  copper.  Tungsten t r ioxide 

is an insulator having one less conduct ion electron per uni t  cel l  than 

ReO^. However,  when an extra conduct ion electron per uni t  cel l  is  added 

to WO^ by way of  introducing a sodium atom the resul t ing compound NaWO^ 

i  s metal  1 ic.  

k 2 
Tungsten's e lectronic conf igurat ion 5d 6s has one less 5d electron 

than rhenium. When sodium is added to WO^, the pr imit ive lat t ice becomes 

s imple cubic wi th the sodium atoms located at  the corners of  the cube, and 

the WO^ has the same structural  conf igurat ion as ReO^. The e ight Na atoms, 

each having one 3s e lectron, are shared equal ly by eight nearest  neighbor 

uni t  cel ls.  This contr ibutes one more conduct ion electron per uni t  cel l .  

Thus ReO^ and NaWO^ have the same number of  conduct ion electrons per uni t  

cel l .  

Feinleib e^ al_.  (2)  have reported that  the opt ical  spectrum of  ReO^ 

is  qui te s imi lar  to that  of  Na^WO^ ( .3 ^  x 1.0) ,  Thus a band picture 

which explains NaWO^ should also be consistent wi th one that  explains 

ReOg. From Fromhold and Narath (3) and Feinleib e^ aj_.  (2)  the models 
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which at tempt to explain the conduct ion bands of  Na^WO^ are 

1) Sienko (4) model:  Sdftgg) states from the tungsten; 

2) Kel ler  (5) model;  6s states from the tungsten; 

3) Mackintosh (6) model:  3p states from the sodium; 

4) Fuchs (7) model :  3p states from the sodium; and 

5) Goodenough (8) model ;  : t  bonded oxygen and Sdftgg) states from 

the tungsten. 

Since there are no 3p states in the conduct ion band of  ReO^, models 

3 and 4 can immediately be el iminated. Fromhold and Narath (3) and 

Narath and Barham (9) deduced from NMR studies on NaWoy and ReO^ that  the 

conduct ion band states at  the Fermi level  are not s- l ike but are der ived 

mainly f rom atomic d states.  Therefore,  model 2 may a lso be excluded. 

In the present model we have included the s,  p and d states of  the 

rhenium atoms and the s, p and d states of  the oxygen atoms. This seems 

to be consistent wi th models 1 and 5 and also wi th the exper imental  work.  

Mattheiss (10,11) calculated the energy bands of  ReO^. His calcula­

t ion was broken up into the fo l lowing stages: 

1) Calculat ing the energy levels at  the high symmetry points of  the 

Br i l louin zone using nonrelat iv ist ic augmented plane wave method (APW); 

2)  F i t t ing the energy bands at  the high symmetry points of  the 

Br i l louin zone by the Slater-Koster (12) interpolat ion scheme to deter­

mine the eigenvalues of  the non-symmetry points;  

3) Ref i t t ing the Slater-Koster parameters to correspond wi th the 

exper imental  data of  Feinleib et  £]_.  (2)  and Marcus (13).  

In the present work we have also calculated the energy bands of  



ReOg for  the equi l ibr ium lat t ice constant.  Also,  the equi l ibr ium lat t ice 

constant g iven by Pearson (14) has been changed by 2% in order to detei  

mine the electronic propert ies of  ReO^ under pressure.  This corresponds 

to a hydrostat ic pressure of  113 kbar,  f rom the bulk compressibi l i ty  for  

ReOg determined by Schirber et  £l_.  (15).  We have used the method devel­

oped by Segal  1 (16) for  calculat ing the energy bands of  "complex crys­

ta ls" .  A "complex crystal"  has more than one atom per uni t  cel l .  

Segal I 's  method is  a modif icat ion of  the KKR method, developed indepen­

dent ly by Korr inga (17) and Kohn and Rostoker (18).  Segal I 's  method for  

calculat ing the matr ix elements of  a "complex crystal"  is  very s lowly 

convergent.  I t  became necessary to general ize a technique used by Ham 

and Segal  1 (19),  who der ived a technique for  faster convergence of  the 

matr ix elements for  a crystal  wi th one atom per uni t  cel l .  Using th is 

method, the energy bands have been calculated for  a uni form mesh in the 

B r i1 lou in zone. 

From the energy eigenvalues we were able to calculate the densi ty 

of  states and Fermi surface geometry of  the ReO^ crystal  as a funct ion 

of  lat t ice parameter.  The pressure der ivat ives of  the de Haas-van Alphen 

frequencies have also been calculated and have been compared to exper imen­

ta l  resul ts (15).  F inal ly,  the de Haas-van Alphen f requencies have been 

calculated along the high symmetry d i rect ions.  
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THE STRUCTURE AND CRYSTAL POTENTIAL OF ReO^ 

The Structure of  Rhenium Tr ioxide 

The rhenium t r ioxide uni t  cel l  is  simple cubic as shown in Figure 

1.  The rhenium atom is located at  the or ig in and the oxygen atoms are 

located at  the face centers.  There are four atoms per uni t  cel l ;  the 

s ix oxygen atoms on the face centers are shared equal ly wi th their  re­

spect ive adjacent uni t  cel ls.  The uni t  cel l  can then be thought of  as 

a rhenium atom at  the or ig in and three oxygen atoms on the cartesian 

coordinate axes as shown in Figure 2.  The rhenium atom is  located at  the 

or ig in (0,0,0) and the oxygen atoms are at  (a/2,0,0),  (0,a/2,0),  and 

(0,0,a/2),  where a is  the lat t ice constant.  

The basic t ranslat ion vectors of  a s imple cubic lat t ice are 

"s = ^1^1 + ^2^2 + ^3^3 (1) 

where 

A A A 

a^ = a i ,  = aj  and a^ = ak (2) 

and Sp Sg, and s^ are integers.  The t ranslat ion vectors are such that  

the crystal  potent ia l ,  which is  per iodic throughout the crystal ,  has 

the property that  

V(r  + r^)  = V(r) .  (3) 
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Figure 1.  The uni t  cel l  of  ReO_. The whi te spheres are the oxygens and 
the dotted sphere is  the rhenium. 



a Z  o 
e y 

a/2 

Figure 2.  The rhenium atom is at  the or ig in and the oxygen atoms are at  
(a/2,0,0)(0,a/2,0) and (0,0,a/2).  The lat t ice parameter is  a.  
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The reciprocal  lat t ice vectors,  the "recips",  are def ined as 

= n^A^ + ngAg + n^A^ (4) 

where n^,  n^ and n^ are integers such that  

•  r^ =  2 n  [ integer] .  (5) 

This re lat ionship is sat isf ied i f  Ai  -  a j  = 2nRj j .  For a s imple cubic 

lat t ice the Br i l louin zone is  also simple cubic as shown in Figure 3.  

The Crystal  Potent ia l  of  Rhenium Tr ioxide 

In order to calculate the electronic states of  ReO^ a crystal  poten­

t ia l  is constructed which is  spher ical ly symmetr ic wi th in a radius,  the 

muff in t in radius,  and equal  to a constant outs ide of  th is radius.  

This type of  approximat ion to the crystal  potent ia l  is  cal led a muff in 

t in potent ia l .  

The muff in t in potent ia l  is  calculated along the same l ines f i rst  

proposed by Mattheiss (20).  Start ing with the Hartree-Fock-Slater 

atomic charge densi t ies calculated by Herman and Ski l lman (21) we solve 

Poisson's equat ion 

V^U^dr -  r j l )  = -8npQ,( l r  -  r \ | )  (6) 

where r^ is  the posi t ion of  the j th atom in the uni t  cel l  wi th respect 

to the or ig in.  The potent ia l  due to one atom in the uni t  cel l  in atomic 
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units is  given by 

V°Xlr  -  r j  I) = — ^  - U^dr -  r j | )  + 6 f  —p°^(|r  -  r . | ) l  (7) 
r  -  r .  8:T 
'  J 

where CK denotes d i f ferent atomic species wi th in the uni t  cel l .  The 

f i rst  term in Equat ion 7 is  the nuclear term, the second term is the 

solut ion of  Poisson's equat ion.  Equat ion 6,  and the last  term is the 

exchange contr ibut ion to the potent ia l  which is  approximated by the 

Slater (22) exchange term. 

The total  crystal  potent ia l  is  calculated by summing d i rect ly the 

contr ibut ions from the neighbor ing rhenium and oxygen atoms. This sum 

is  carr ied out by the Lowdin (23) a lpha expansion. Using only the 

spher ical ly symmetr ic part  of  the Lowdin expansion, s ince we are con­

s ider ing the crystal  potent ia l  as spher ical ly symmetr ic,  the contr ibu­

t ion to the potent ia l  of  the I th atom in the uni t  cel l  due to the poten­

t ia l  V^Xjr  -  r j I  is given by 

I r  -  r ,  1) = '  J '  1? -  7  lv°=( IT -  ;  |)dr (8) 
J 2dlr  -  r .  1 d -  I r  -  r .  1 • '  

where d -  I r .  -  r .1 is the distance between the i th and j th atoms. Thus I  J ,  1 

the crystal  potent ia l  about any atom in the uni t  cel l  is  

v" (ir - 7 1) = v'='(17 - 7.1) + z V°(17-7.1). O) 
j=neighbors 

When ce = 1 we are summing about the rhenium sites and when OC = 2 about 
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the oxygen s i tes.  The number of  neighbors and their  distance from the 

rhenium and oxygen atoms are given in Tables 1 and 2 respect ively.  

For crystals wi th one atom per uni t  cel l  the value of  the poten­

t ia l  in the interst i t ia l  region is  determined by a spher ical  average. 

The average potent ia l  is  given by 

Sj*": V(r) dr 

V = ^  3 (10) 

'^WS "  *MT 

where R__ and R are the muff in t in (MT) and Wigner Sei tz (WS) radi i  
MT wS 

respect ively.  

For the case of  rhenium t r ioxide there are four MT radi i  so to a 

f i rst  approximat ion the average potent ia l  may be given as 

V = 1/4 EV. (11) 
i  

where 

i ;  _ ;  |2 v( l7-  7,1) dr  
MT. 

1;' ^ • (12) 

WS. MT. 
I I 

Numerical  integrat ion gives = -2.177 rydbergs and = -1.965 rydbergs;  

then employing the previously c i ted approximat ion to the average poten­

t ia l  we f ind that V = -2.01 rydbergs.  

In order to calculate the spher ical ly averaged potent ia l  in the 

interst i t ia l  region using Equat ion 12^ we must know the values of  the 

WS radi i  for  each atomic species.  These radi i  must be def ined so that  



n 

Table 1.  Distances of  neighbor atoms from rhenium 

Distance from 
Shel l  Type of  Number of  rhenium In 
number atom atoms per uni ts of  the 

shel l  lat t ice constant 

1 Oxygen (0) 6 1/2 

2 Rhenium (Re) 6 1 

3 0 24 ^5/2 

4 Re 12 •Jl 

5 0 30 3/2 

6 Re 8 h  

7 0 24 1/2/13 

8 Re 8 2 

9 0 48 /17/2 

10 Re 24 /s 

1 i  r\ 
V 48 J21/2 

12 Re 24 v̂ 6 

13 0 30 5/2 

14 0 72 s f l S / l  

15 Re 12 /8 

16 0 96 ^33/2 

17 Re 30 3 
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Table 2.  Distances of  neighbor atoms f rom oxygen 

Distance from 
Shel l  Type of  Number of  oxygen in uni ts 
number atom atoms per of  the lat t ice 

shel l  constant 

1 Rhenium (Re) 2 1/2 

2 Oxygen (0) 8 

CM 

3 0 6 1 

4 Re 8 ^5/2 

5 0 16 V6/2 

6 0 12 

7 Re 10 3/2 

8 0 12 / l0/2 

9 0 8 ^3 

10 Re 8 / l3/2 

^ 1 Q 32 / l4/2 

12 0 6 2 

13 Re 16 JI7/2 

14 0 24 / ]8/2 

15 0 24 J5/2 

16 Re 16 V21/2 
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the volume occupied by the sum of  a l l  the "Wigner Sei tz cel ls"  is  equal  

to the volume of  the uni t  cel l .  Construct ing such a set  of  radi i  is  

of  course possible,  but  the averaged interst i t ia l  potent ia l  using the 

previously out l ined scheme y ie lds a value for  the potent ia l  in th is 

region which is  incorrect .  This can be shown by the fo l lowing argu­

ments.  

Figure 4 shows a two dimensional  uni t  cel l  wi th two di f ferent 

atomic species.  The muff in t in radi i  are drawn so that  they are touching; 

th is insures that  the largest amount of  charge of  an atomic species is  

contained inside the MT radi i .  The WS radi i  are drawn so that  the 

volume occupied by the sum of  a l l  the "Wigner Sei tz cel ls"  is  equal  to 

the volume of  the uni t  cel l .  I f  th is is the case, then the WS radius 

of  an atom wi l l  enter inside the MT region of  a neighbor ing atom. Then 

there wi l l  be a contr ibut ion to the average interst i t ia l  potent ia l  which 

is  not due to anything in the interst i t ia l  region, but rather by the 

potent ia l  inside the MT radius of  a neighbor ing atom. This c lear ly 

gives an average value to the potent ia l  in th is region which is  larger 

than i ts  true magnitude. A method d i f ferent from the standard method 

of  averaging the interst i t ia l  potent ia l  is  therefore needed. 

The average potent ia l  in the interst i t ia l  region is r igorously 

def ined as 

V •  

where is  the volume of  the interst i t ia l  region. The potent ia l  
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UNIT CELL 

INTERSTITIAL 
^REGION 

Figure 4.  A uni t  cel l  in two dimensions wi th two di f ferent atomic 
species. The muffin tin and Wigner Seitz radii are shown. 
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V(r) may be written as 

V(r)  = £ V(K) 
K f  0 

where V(K) is  the Four ier  t ransform of  the potent ia l .  Subst i tut ing 

Equat ion 14 into 13 we get 

V|NT ^  °  

i f  a funct ion f ( r )  is  per iodic wi th respect to a lat t ice translat ion 

then 

Jd r  f ( r )  e '  = 0 ,  
uni t  
ce 11 

and then the integral  in Equat ion 15 may be wr i t ten as 

P iK - r  3 iK • r  3 
J ( INT) ^  ^ J (muff in t ins) ^ 

Then Equat ion 15 may a lso be wr i t ten as 

^AV "  "  ~ J  V(K) I (muff in t ins) ® ^  
V|NT ^ °  

I f  we represent the posi t ion of  the vth atom in the uni t  cel l  as r^  

then 
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i  • •• d ' r  =. Z  e'K % j  e"^ '  "  'J  d'r  
"muff ' "  V • ' •^muff in 

t ins 

= Ze'K '  ' 'v CfKr^T^) .  
V 

The funct ion G(x) = 3/x^(sinx -  x cos x)  is  the Four ier  t ransform of  a 

three dimensional  step funct ion and is  the MT radius of  the vth 
M I 

atom. The integral  expression of  G(x) is  shown by Ziman (24) but  can 

be done qui te easi ly i f  we let  r '  = r  -  r^.  Final ly Equat ion 16 may be 

wr i t ten as 

1 
V„, s V(K) Z: e 'K •  ""v G(Kr. / )  (17) 

V , NTK ; ^ 0  

where V(K) is  def ined by Equat ion 14 and 

8"  r  _ r  H \1/3,  

-"K! = - —2 ^ -V ^ " 
fiK L V L  ̂o It 

e-:K '  ^  (18) 

The terms in Equat ion 18 are the Four ier  t ransforms of  the nuclear. 

Coulomb and Slater exchange contr ibut ions to the potent ia l  respect ively.  

The value of  the potent ia l  in the interst i t ia l  region is then 

calculated numerical ly using Equat ions 17 and 18 and i ts  value is  - .811 

rydbergs.  This value is more than hal f  as much as the previously 

quoted value and is  consistent wi th the previous discussion of  the 
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interst i t ia l  potent ia l .  

The Muff in Tin Padi i  

In metals wi th one atom per uni t  cel l  the muff in t in (MT) radi i  

are chosen as large as possible so that  twice the MT radius is  equal  

to the nearest  neighbor distance. Thus the rat io of  a l l  MT radi i  wi l l  

obviously be uni ty,  s ince a l l  the atoms in th is crystal  are ident ical .  

In the case of  rhenium t r ioxide i t  is not immediately obvious how the 

MT radi i  should be weighted so that  the sum of  the radi i  is  equal  to 

the nearest  neighbor distance. 

Mattheiss '  (10,11) reason for  choosing the rat io of  the MT radi i ,  

R(oxygen)^"7/6,  is  not t ransparent.  However,  i t  is plausible that  the 

rat io was chosen from the number of  conduct ion electrons in rhenium, 

f ive 5d and two 6s e lectrons, to the number in oxygen, two 2s and four 

2p electrons. Weight ing the MT radi i  to be equal  to the rat io of  

conduct ion electrons in each atomic species seems to be inadequate for  

the fo l lowing reason. Tight ly bound electron states cannot be approxi­

mated wel l  by a plane wave expansion in the interst i t ia l  region. These 

electrons must be inside the MT radi i .  I t  is unnecessary for  electrons 

which are not t ight ly bound to be ent i re ly wi th in the MT radi i ,  s ince 

these electron states can be approximated reasonably wel l  by a combina­

t ion of  plane waves in the interst i t ia l  region. Weight ing the MT radi i  

by the number of  conduct ion electrons does not guarantee that  the d 

electrons wi l l  not be in the interst i t ia l  region. 

In choosing the MT radii for this calculation we have plotted the 

^ 2 
number of  electrons, n^ = r  o^(r)dr,  for  a given angular momentum 
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as a funct ion of  distance from the nucleus. This is  shown in Figure 5.  

The broken curve represents the number of  5d^ electrons of  rhenium and 

2 4 
the two unbroken curves represent the 2s and 2p electrons of  oxygen 

wi th in a given shel l  of  radius r .  The MT radius of  rhenium should be 

chosen so that  the largest possible amount of  electronic charge is  

inside th is radius.  Mattheiss '  choice of  R^.-  of  rhenium gives 3-3 
Ml 

electrons inside the MT sphere whi le our choice is larger and includes 

3.8 electrons inside. 

Ideal ly we should choose the radius of  rhenium to be even larger,  

but then the corresponding oxygen radi i  would decrease and more oxygen 

s and p electrons would be outside the MT sphere.  Thus in order to 

represent these s and p wave funct ions fa i thful ly in the interst i t ia l  

region, more plane waves would have to be added to the formal ism. 

This would be computat ional ly prohibi t ive since the secular determinant 's 

order would increase by 50% for  one addi t ional  angular momentum state.  

Therefore we have increased the MT radius of  rhenium from the value 

quoted by Mattheiss so that  the MT sphere can hold more d- l ike charge 

and also increased the number of  angular momentum states of  oxygen 

to = 2 in order to represent the s and p electrons of  oxygen more 

accurately away f rom an oxygen state.  

In order to perform a real ist ic calculat ion of  the electronic 

states of  a crystal  under pressure,  the lat t ice parameter as a funct ion 

of  pressure is  required. Schirber et  (15) provided the bulk com­

pressibi l i ty ,  K = (5.3 ± .9)  X 10 ^/kbar,  of  ReO^ at  24°C. Assuming 

that  the value of  K remains l inear at  high pressure,  then the change in 
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Figure 5« Number o f  e lectrons for  cer ta in angular  momentum as a funct ion 
of  d is tance f rom the nucle i .  
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the la t t ice parameter  as a funct ion of  pressure is  g iven by da = -1/3 Kadp 

where da is  the change in  the la t t ice parameter  and dp is  the change in  

the pressure.  The values of  the la t t ice parameters and the muff in  t in  

sphere radi i  for  the equi l ibr ium lat t ice constant  and the 2% compressed 

la t t ice constant  are g iven in  Table 3.  

Table 3.  Parameters used in  calculat ing e lectronic energy bands.  

Pressure Lat t ice MT radi i  
kbar parameter  (au)  Rhenium (au) Oxygen (au)  

0 7.0705 2.0834 1.3994 

113 6.9290 1.9740 1.3911 
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KKR METHOD 

The Green's Funct ion Method 

The Green's funct ion method for  the solut ion of  the Schroedinger 

equat ion in  per iodic la t t ices was developed independent ly  by Korr inga 

(17)  and Kohn and Rostoker (18) .  This method is  commonly ca l led the 

KKR method.  

The Schroedinger equat ion for  a par t ic le in a per iodic potent ia l  

V(r)  is  

( -V^ + V(r)  -  E) i t r ( r )  -  0 .  (19) 

The solut ions to Equat ion 19 sat is fy  the fo l lowing boundary condi t ions 

in  the centra l  polyhedron surrounding the or ig in:  

I f  ( f  + r ^ )  = e '  ""s ijr (r) 

and 

di j r  (  r  + r^  )  

ô(r  + r^)  
= -  e ik 

2t(r )  

Kohn and Rostoker have shown that  a solut ion for  Equat ion 19 is  

i l f ( r )  = jG(r , r ' )V(r ' )^( r ' )d^r '  (20)  

where V(r ' )  and t ( r ' )  are respect ively the scat ter ing potent ia l  and the 
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wave funct ion wi th in th is  potent ia l .  The Green's funct ion G(r , r ' )  

connects i l i ( r )  to  and conversely.  

Rewri t ing Equat ion 19 and subst i tut ing the value of  i t r ( r )  f rom 

Equat ion 20 in to Equat ion 19 we get  

V(r)^(r )  = J(V^ + E)G(r , r ' )V(r ' )^( r ' )d^r '  ( 2 1 )  

I f  

(V + E)G(r , r '  )  = 6(r  -  r '  )  (22)  

then Equat ion 21 is  sat is f ied.  From Equat ion 20 G(r , r ' )  must  a lso sat is­

fy  the same boundary condi t ions as the solut ions to Equat ion 19-

From Jackson ( 25 ) ,  the Green's funct ion can be expanded in  a ser ies 

of  f ree par t ic le e igenfunct ions of  the form 

G(r , r ' )  = "C a^(r ' )i)r^(r )  (23)  
n 

where n sums over the rec iprocal  la t t ice vectors.  Subst i tut ing Equat ion 

23 in to Equat ion 22 we get  

Ta (r ' ) [ - (K + k)^ + E]  i)f  ( r )  = ô(r  -  r '  )  (24)  
n n n 

n 

s i  nee 
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l i r^( r )  = exp i  (K^ + k)  •  r  (25)  
V  T  

where t  is  the volume of  the atomic polyhedron and k  is  any point  in  

the Br i l lou in zone.  I f  we mul t ip ly  both s ides of  Equat ion 24 by 

i | f^( r )  and in tegrate over sol id  angle we f ind 

•hi"  ( r ' )  

and 

_ _ 1 exp i  (K + k)  •  ( r  -  r ' )  
G(r , r ' )  E % z-T (27)  

T n (K^ + k)  -  E 

when Equat ions 25 and 26 are subst i tuted into Equat ion 23- This is  the 

standard expansion of  the Green's funct ion in  terms of  the e igenfunct ions 

of  the homogeneous boundary value problem. 

Equat ion 27 may be expanded in  the form 

+ r< r '  (28) 

where K: =  J e  for  E >  0 and K = iV^E for  E <  0.  j^^x)  and 7)^(x)  are 

spher ical  Bessel  funct ions and the st ructure constants A- .  are 
'Cm m 

f ixed funct ions of  E and k  for  a character is t ic  la t t ice,  except  for  



2 k  

seal ing factors.  

In order to f ind an expression for  these st ructure constants,  we 

must  use the p lane wave expansion on Equat ion 27- The p lane wave ex­

pansion is  

e 'K '  R = 4% 2  2 (KR)Y,M(A)Y,%(K).  (29)  
L M=-L ^  LM 

Expanding e '^^n ^  and e '^^n ^  "" by Equat ion 29 and sub­

s t i t u t i n g  i n t o  E q u a t i o n  2 7  w e  g e t  

(4n)2 ,  
G(r ,7 ' )  Z L  i^-L X (30)  

T  L,  

j \ ( lVkl r ) jL . ( |K^+kl r ' )Y,_^(r )Y,_.^ ; ' (^)YLf : , (Kn'^k)Y^_.^. (K^+k) 

(K/k)^ -  E 

I f  we def ine a quant i ty  D("r ,7 ' )  as 

D ( r , r ' )  =  G ( r ' , r ' )  -  G ^ ( r , r ' )  ( 3 1 )  

where 

, ( 7 - . ) . - - " ^  ( 3 2 )  

°  4,  17 -  1 

K  r j ^ ( K r ) n ^ ( K r ' ) y ^ _ ^ ( f ) V ^ , ^ ; ( f ' )  f o r  r <  r '  

t  L  j^(Kr ' )n^(Kr)Y^( f ' )Y^,_^,( f )  for  r '  < r  
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then (v^ + E)D(r , r ' )  = 0,  s ince (v^ + E)G^(r , r ' )  = 6(r  -  r ' ) .  Conse­

quent ly  D(r , r ' )  sat is f ies the homogenous wave equat ion and for  

r  < t in '  ^  general  so lut ion of  the homogeneous equat ion for  

D(r , r ' )  has the form 

o(7,7.) . Ï r ̂ j,jMj,,(Kr.)y,^{f)v,,„!(?•) 03) 
"V  ̂  m ^  ^ m 

for  r  < r ' .  Together wi th Equat ion 33,  31,  and 32,  the Green's funct ion 

g iven by Equat ion 27 becomes 

G(r .P)  = r  X 
v  ̂ m •T/ J  m 

which is  the expansion of  the Green's funct ion as previously c i ted.  

To f ind an expression for  the st ructure constants,  equate Equat ions 

30 and 2 8 ,  mult ip ly  by Y.  ( r )Y, ,  , ( r ' )  and in tegrate over so l id  angle 
m 'C 

to  get  

( i+n)^ i^"^ '  
A ,  t 1 X (34)  

'  '  T (Kr) j_^,  (Kr ' )  

_  J , ( lVg|r ) j , ,  ( lK„ .g l r ' )Y^(nk)V, ,^ ,  (^k)  

n (K^+k)^ -  E 

7,^(Kr ' )  
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for r < r' < R . . The structure constants are the same for any 
muffin tin. 

pa i  r  of  r  and T ' .  

As ment ioned previously,  the st ructure constants are funct ions of  

energy and posi t ion in the Br i l lou in zone only.  These constants,  once 

calculated and stored,  may be used over on any crysta l  which has the 

same la t t ice.  

The Var iat ional  Expression for  Energy 

I f  we def ine a quant i ty  A as 

A = J^i l f  ( r )V(r) i i t  ( r )d^r  (35)  

- " ('r^V(7)G(r,r' )V(r' )'ir(r' )d^rd^r' 

and vary A wi th respect  to ^  ( r )  and set  

ÔA = 0 (36)  

we get  the in tegral  def in i t ion of  the wave funct ion.  Equat ion 20.  

According to the previously c i ted work of  Kohn and Rostoker A is  the 

var iat ional  funct ion.  In order to evaluate A i t  is  necessary to t rans­

form the expression for  A f rom volume to sur face integrals.  This may 

be done wi th the a id of  Green's Theorem 

J (UV^V-VV^U) d^ r  = J(U grad V-V grad U) •  ds* (37)  
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We le t  U = G(r , r ' ) ,  V = i ) r ( r ' )  and le t  r  — r '  and subst i tute back in to 

Equat ion 37 to get  

j (G(r , r ' )9 '^ t ( r ' ) -^( r ' )v '^G(r , r ' ) )d^r '  

= J(G(r , r ' )grad'^(r ' ) -^( r ' )grad'G(r , r ' ) )  •  ds '  .  

I f  we now add -JeG( r ,7 ' )d^r  to both s ides of  Equat ion 38 and us ing 

Equat ions 19 and 22 when r  -*  7 '  we get  the fo l lowing:  

t ( r ) - jG(r \ r ' )V(r ' ) i (T ' )d^r '  

= j (^(T ' )grad'G(r / r ' ) -G(r , r ' )grad'^(r ' ) )  •  ds ' .  

Now i f  we consider  the expression 

Jd^nl t  { r ) \ l { 7 ) G { 7 , 7 * )  = Jd^ r  (V^+E) i j r  "  (  r )  G ( " r ,  r  '  )  

and apply Green's Theorem and Equat ion 22 we get  

Jd^r i t  ( r ) \ / ( r )G(r ,7)  = J (G ( ' r , ' r ' )gradt  ( ' r ) - i | r  ( r )gradG (  r ,  r  '  )  )  •  ds.  

F inal ly  rewr i t ing A as 

A = lim A^ = Jr<R.-2e^^ n|r"(r)V(r) x 
6"^ I  
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_pd^r 'G(r , r '  )V(r '  ) i l r (T '  )1  
i  

and subst i tut ing Equat ions 39 and 41 in to th is  expression for  A we get  

( r )  _ S \  
A = l im A = J ds J  ds '  1 -  i!r  ( r )  — 

c-O ^ S(R.-2e)  S ' ( r . -€) l  ôr  dr j  

(42)  

| i l r (7 ' )  G(r j r ' ) -G (7, r ' )  t ( ' ' '  )  ]  ^  
ôr '  ôr '  

where R.  is  the muff in  t in  radius.  Equat ion 42 impl ic i t ly  assumes that  

the in terst i t ia l  potent ia l  is  constant .  

Using a t r ia l  wave funct ion 

t ( r )  = r  C-(| l .  (43)  
i=0 '  '  

and subst i tut ing y(r )  in to the expression i S . ^ 1  ^  

n 
A = E C'. 'C.A.  .  (44) 

i  J=0 '  J ' ' J  

where A.  .  is  Hermît îan and is  def ined as 
* ^  J  

(45)  

i j  ̂  Jr^ i  ( r )d3r-J^ j^ ,4; ( r^V(r^G(r \T ' )V(r^)4 j  ( r ' )d^rd^r ' .  

ÔA 
The condi t ion = 0 fo l lows f rom Equat ion 36,  and y ie lds the l inear 

ÔC, 
equat  ions 
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EA..C.  = 0,  i  = 0,1, . . . ,n  (46) 
j  U J 

From the theory of  l inear equat ions,  we know that  a homogeneous 

system of  n equat ions in  the same number o f  unknowns has nontr iv ia l  

solut ions i f ,  and only i f ,  the determinant  o f  i ts  coef f ic ients is  zero.  

The equat ion 

det  A. .  = 0 (4?)  
'  J J  

then determines the stat ionary energy e igenvalues as a funct ion of  k .  

Simpl i f icat ions for  Spher ical ly  Symmetr ic  Potent ia ls  

As previously d iscussed,  the crysta l  potent ia l  or  muff in  t in  

potent ia l  is  spher ical ly  symmetr ic  wi th in a muff in  t in  radius and equal  

to  zero in  the in terst i t ia l  region.  I f  V(r)  is  spher ical ly  symmetr ic  

then 

V( |T| )  for  | r |  < R 
V(r)  = (48)  

0 otherwise 

where R. is  the muff in  t in  radius.  
I  

For th is  c lass of  potent ia ls  the t r ia l  wave funct ion is  

tmax +-1 
f c . r r < R ,  ( 4 9 )  

>0=0 m=-1 

where R^( | r | )  is  def ined as 
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/ I d  .  d  t ( t + 1 )  

( —2 — r — + 2— + V( l r | ) - E )R^ ( l r | ) = 0  ( 5 0  
^ r dr dr r 

Substituting the value of the Green's function. Equation 28, 

and the trial wave function. Equation 49, into the variational expression 

for energy. Equation 45, and taking the limit e -* 0, then the matrix 

elements of A. are given by 

A 

(51)  

where 

- I 
R^(r) dr Jr = R. 

Dividing each row of the matrix by (L„j,-jo') and each column by 

(L^,j^,-j^,) and setting the determinant equal to zero, according to 

Equation 47, we obtain the stationary energy eigenvalues as a function 

of l< when 

mm' . , . , 
= 0- ( 52 )  

This result of the KKR method enables us to calculate the electronic 

energy states of a crystal which has one atom per unit cell. However, 
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Green's funct ion method which wi l l  be shown in  the next  sect ion.  

developed a method which calculates the e lectronic energy states of  

"complex crysta ls" .  A "complex crysta l "  for  th is  work is  one which 

has more than one atom per uni t  ce l l .  Segal  1 's  theory,  when appl ied,  

can determine the band s t ructure of  compounds,  which up to that  t ime 

could not  be ascerta ined by s imple KKR. 

Segal  1 's  var iat ional  expression for  energy is  g iven by 

A = 1 i  m A 

The KKR Method for  "Complex Crysta ls"  

Fol lowing the work of  Korr inga,  Kohn and Rostoker,  Segal  1(16)  

e 

where 

dS •  ( r )  t  ( r ) l  
'  ôr  3r  '  

and 

Ô 

=  J s n ( R - € )  
ô r '  

i l ,  ( " î " ' ( " r ' )  G ( r , r ' ) ] .  
'  Br '  

Equat ion 53 is  a product  of  sums of  sur face integrals.  The i th  atom 

in the uni t  ce l l  has contr ibut ions in  A with every other  atom in the 
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uni t  ce l l  and a lso a sel f  in teract ion.  These sel f  in teract ions 

(S.  -  ) (S.  )  are s imply the var iat ional  expressions as g iven by Kohn 
I I , €  

and Rostoker.  The t r ia l  wave funct ion in  th is  case is  g iven by 

*(:) = ''T E c (17-: i)Y (% ). iriï i < r 
1=0 m=-t ^ ^ J -c-m J J J 

The vector  a^ is  the posi t ion vector  of  the j th  atom wi th respect  to 

the or ig in.  I f  we now def ine a vector  r^.  to  be the posi t ion vector  

wi th respect  to  the j th  atom in  the uni t  ce l l ,  then 

r .  = r -a.  and r ' . ,  = r ' -a.  
J J J J 

The Green's funct ion which connects the j th  atom to the j ' th  atom is  

def ined as 

= c i 7 , r ' )  =  G(; . -T j , - (a. , -Z))  

where G(T-, r ' )  is  g iven by Equat ion 27,  then 

/ .  .  ,  \  1  exp i  (K +k ) - {a , -a .  , )exp i  (K + !< ) •  (7 . -7 : ,  )  

^  ^  "  7 n (K^+TZ)^ -  E 

Just  as before the Green's funct ion may be expanded as 

-o,m -o ,m'  J J .  
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for  ( r .  + r j , )  < la^. -a^J.  

Using the plane wave expansion on Equation S I  »  equating Equations 57 

and 58, multiplying by , ) and integrating over solid angle, 

we find that the nondiagonal structure constants are given by 

/- .,\ expi(K +k)-a -a.,) 

\  S ^  ' '— X (59)  
' T j^(Krj )j^, (KrJ , ) n (K^+1t) - E 

Following the procedure outlined in previous sections, the stationary 

energy eigenvalues as a function of k for a "complex crystal" are given 

by 

U.J') = 0. 
r=R. 

J 

The expression in  Equat ion 59 is  a per fect ly  val id  expression 

for  the values of  the st ructure constants.  However when these expressions 

are evaluated numer ical ly ,  even wi th the use of  a h igh speed computer ,  

the convergence of  the quant i t ies is  very s low indeed.  I t  therefore 

becomes necessary to spl i t  up the Green's funct ion in to a sum over 

real  and rec iprocal  space.  This is  done wi th the a id of  a procedure 

developed by Ewald (26)  and wi l l  be shown in  the next  sect ion.  

Al ternat ive Def in i t ion for  the Structure Constants 

The Green's funct ion g iven by Equat ion 57 's  a sum over rec iprocal  

la t t ice vectors.  In order to t ransform the Green's funct ion into a 
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sum over real  and rec iprocal  la t t ice vectors,  i t  is  necessary to t rans­

form Equat ion 57 in to a sum over real  space vectors.  

Equat ion 57 may be t ransformed into an expression which only 

depends on one vector ,  R. . , ,  i f  we le t  R.. ,  = r . - r . ,  and subst i tute 
JJ ' JJ J J 

th is  in to Equat ion 57 we get  

.  Hm (60) 
€-*4-0 T n (K +k)^-  (E+i  e) 

n 

1 ô(K +k- ]^expi  (K-(R.  .  ,+a.-a.  ,  )  )  
= 1 i  m -  ~ S J — 

€-4-0 T n -  (E-*- ie)  
dK. 

Using the ident i t ies 

(2«) 

and 

1 

'  ̂  r  = Ô(K+C-K) 
5 «J n  

-  Z expi(K •o)  = L  6(p-r  )  
T n "  S ^  

and subst i tut ing these expressions in to the last  equat ion we f ind that  

. , \  1  e x p i k " r  e x p i K * (R.. , - r  +a.-a. , )  
g'J'J '(R..,) - lim TZj 1 u—s ' ' dK. 

JJ €-0-K (2n)^ s K -  (E-t - ic)  
( 6 1 )  

After  in tegrat ing,  we f ind that  
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% 1  expi l<"7 expl  k1^.  .  .-" r  +a.-a.  ,  
G ' J ' J ' ( R j j . )  =  - - s — ,  j L  ;  '  '  .  < " >  

4 n s  . - r ^ + a ^ . - a ^ .  ,  1  

th is  is  the form of  the Green's funct ion ^ ^ ^ j  '  '  j  ̂ a  sum over 

the basis vectors of  the crysta l .  Using a re lat ionship der ived by 

Ewald (26)  

2 .  ,  
~ T~ I exp[-(R-r  )  |  +K/4§ ]  dÇ (63)  

I R-r^ I V K 0(C) 

and subst i tut ing Equat ion 63 in to 62 we f ind 

G^- '^- '  ^  ^  E ""s r  exp[- ( r*  +â*-â*-r*)^Ç^ (64) 
s • ' o ( C )  J J  J  J  s  

+ K^A|^]d§.  

Fol lowing the procedure of  Ham and Segal  1 (19) ,  who der ived the st ruc­

ture constants for  one atom per uni t  ce l l ,  the Green's funct ion may be 

separated by spl i t t ing the l imi ts  of  in tegrat ion f rom 0(C) to  

and f rom to a.  

Then where 

g 'J 'J '»» ,  '  Se'^-"s f^e[- {R, . ,  
S 0(C )  J J  J  J  S  
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and 

( j , j ' ) ( 2 )  ^  _  

2^,3/2 JJ J J ^  
(65 )  

+ K^A|^3d§.  

Another ident i ty  der ived by Ewald (26)  which is  val id  for  Ç f rom 

0(C) to  for  TJ >  0 is  

E exp[-(R_ ,+aj -a^.- r^)Ç^]e ' '^  '^s =  

i  k-  (R. .  ,+a.  -a.  )  ̂ /2  

E exp[-(K +k)^/ i+ |^+iK •  (R.  .  ,+a.-a.  , ) ] ,  (66)  
n ^  n j j  J J 

when th is  is  subst i tuted into ^ ^ ^ ^  and the in tegrat ion is  performed 

then 

T n (K^+k) -E 

I f  we use the p lane wave expansion.  Equat ion 29,  on G)  (0 

Q(j j j  ) (2)^ equate the sum of  these quant i t ies to 

a* I \  / * * i \  A  C O  S  K R  

^ - Z °LM •* J, (*(R:: '^^LM^^ii ^ 
L ,M JJ JJ Un R 

mul t ip ly  b o t h  s i d es by Y (R. . , ) ,  in tegrate over spher ical  harmonics 
L M  J  J  

and tak i  nq the l imi t  of  R.  .  ,  — 0 ,  we f ind that  
JJ 
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The values of  the D coef f ic ients are 

4 j t  6^/1? 

D i * -  Sx 
•-" T /e*- n 

iK +k| ' -e ' (V^) 'h-^ j ' )e-(V^) ' /^Y/^(K  ̂ k)  (70)  
' n Ln n 

(K^+k)^ -  E 

.2 /-» -» -« \2  _ , i  _2 
J dÇ [e '^  ( r^-a.+a. , )  +E/4§ ^ 

W-

and 

(3)  
-?f  ® (E/ t ] )^  

2 JT s=0 s i  (2s- l  )  
(72)  

The sum in  Equat ion 71 has the term s=0 omit ted i f  j= j ' .  

In order to use the D coef f ic ients in  the secular  determinant ,  i t  
/ • • j \  /  «  !  I  \  

is  necessary to f ind the re lat ionship between the A,  ,  ,  and D, _ 
'  -Cm;- t 'm'  LM 

coef f ic ients.  Using the p lane wave expansion Equat ion 29 

m 

mult ip ly ing both s ides of  th is  equat ion by Y,^. (9 ,( j )  )  and in tegrat ing 
LM ^ n. 
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over solid angle we get 

R... is defined as R.., = r.-ri,. If this is substituted into the 
JJ' JJ J J 

previous equation and the plane wave expansion applied twice, then 

t \ m '  

Y ( r '  )  
V'm' ̂ j ' 

(73)  

where 

The coefficients C vanish unless m = M+m', |-t—C'j < L < and 

t+t' + L is an even integer. Equating Equations 58 and 59 and using 

Equations 70-72, we get the relation between the A and D coefficients. 

L,M 

The coefficients as defined in Equation 74 may be evaluated by 

using the composition relation for spherical harmonics 
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J" = 
(2L+1)(2t+1)(2t '  + 1) \  i  

k n  

I  v\ 

0 0 0 

I L  I  V  

M m m'  

I f  we le t  m -•  -m then Y,  = ( -1 ) '^Y,  and the C coef f ic ients are g iven by 
-C,~n -Cm 

.LM /  i \m 
^(2L+1) (2t+1)  (2t '  + 1) \  ^  I l  I  l ' \  I l  I  V \  

(76) 
k n  lO 0 0 i M-m m7 

where Hi  ^2 are the Wigner -3J symbols.  
I m ̂  rn^ ni* ,  
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THE ENERGY BANDS OF RHENIUM TRI OX I  DE 

The energy e igenvalues of  ReO^ were calculated along the h igh 

symmetry d i rect ions of  the Br i l lou in zone as shown in  Figure 3.  Eigen­

values were then calculated at  a uni form mesh of  56 spaced points in  

the l /48th zone and were then in terpolated to g ive the energy levels 

at  10^ points in  the Br i l lou in zone.  The mesh points for  which the 

energy e igenvalues were calculated are shown in  Figures 6 and 7-  The 

in terpolat ion was done by using spl ine f i ts  (27) through the points 

at  which e igenvalues had been calculated.  

This process was done twice,  once corresponding to the ReO^ 

crysta l  wi th an equi l ibr ium lat t ice constant  and the second t ime wi th 

the la t t ice constant  compressed by 2% corresponding to a hydrostat ic  

pressure of  113kbar.  The d bands,  sp in-orbi t  coupl ing not  inc luded as 

Mattheiss has done (10) ,  are shown in  Figures 8 and 9-

Dur ing the invest igat ion of  the densi ty  of  s tates and the in ter­

polated bands,  i t  was observed that  these bands were consistent ly  lower 

than the calculated energies.  The in terpolated eigenvalues a long the 

r  to X d i rect ion are lower than the calculated bands by .001 rydberg.  

This causes the eigenvalues a long other  d i rect ions in  the in terpolated 

mesh to be lower than the calculated values at  these points by as much 

as .004 or  .OO5 rydberg in  the = 0 plane.  This in  turn causes a drop 

in  the calculated value of  the Fermi energy by many t imes more.  

I t  was apparent  that  the Fermi energy would have to be determined 

by count ing the number o f  states of  the or ig inal  mesh.  There are 1000 

mesh points in  the Br i l lou in zone,  so there wi l l  a lso be one thousand 
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r X 

Figure 6.  The 1/48th Br i l lou in zone showing the s ix  layers in  which 
energy e igenvalues were determined.  
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k% = 0 

Layer I 

kj  = .1 

Layer 2 

kz = .2 

Layer 3 

kj  = .3  

Layer 4 

kj = .4 

Layer 5 

k^ = .5 

Layer 6 

A 
X R 

Figure 7- Cross sect ions of  the l /48th zone showing points at  which 
energy eigenvalues were determined. 
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Figure 8,  The e lectronic energy bands of  ReO^ for  the equi l ibr ium lat t ice constant.  
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states which the one electron, which goes into the conduction band, 

will just fill at the Fermi energy. The Fermi energies were then 

determined to be at .108 Ry and .184 Ry instead of .097 Ry and .175 Ry^ 

as determined from the interpolated bands, for the zero and high pressure 

bands respectively. The most probable reason for the failure of the 

Spline interpolation scheme is that the original mesh is not fine enough. 

The density of states curves of ReO^ for the equilibrium lattice 

constant and the lattice constant compressed by 2% are shown in Figures 

10 and 11 respectively. The Fermi energy was found to lie at .108 

Ry and .184 Ry which are .036 and .037 Ry above the bottom of the 

bands at the F point for the zero and high pressure cases respectively. 

The high pressure energy band of ReO^ calculated by changing the lattice 

constant by 2% (see Table 3) has shifted the energy upward by .075 Ry 

at the r point and the width of the d band has increased slightly from 

' ^25 '  ^25 '  * 

The values of the density of states at the Fermi energy for the 

zero and high pressure cases are found to be 28.8 states/Ry-unit cell 

and 38.4 states /Ry-unit cell. Since we have considered 2 spin states 

per band the density of states at the Fermi energy, for each case, can 

also be quoted to be 14.4 states of one spin/Ry-unit cell and 19.2 states 

of one spin/Ry-unit cell. 

Recent ly Kel ler  (28) has measured the speci f ic  heat of  ReO^ at  low 

temperatures.  The e lectronic speci f ic  heat can be wr i t ten as 

Ce = rT (77) 
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per mole where 7 is  related to the densi ty of  states at  the Fermi energy 

by 

7 = J  JT^kgVN (Ep.)  ,  (78)  

where V is  the molar volume, kg is  the Bol tzman constant and N(Ep.)  is  

the densi ty of  states at  the Fermi energy.  Kel ler  obtained a value 

2 
for  7 of 2.85 mJ/mole-deg .  Using the value of  the densi ty of  states 

at  the Fermi energy,  for  the equi l ibr ium lat t ice constant,  we obtain 

2 
a value for  7 of 2.68 mj/mole-deg .  This value is  6% smal ler  than 

the exper imental  value of  Kel ler .  

The smal l  d i f ference in the exper imental  and theoret ical  values 

for  7 may be accounted for  by mass enhancement of  the electron v ia 

the electron phonon interact ion which has not been included here.  Since 

ReOg is  a good metal  whose conduct iv i ty is  wi th in an order of  magnitude 

of  copper at  roo^ temperaf j re,  ws would net expect e lectrons and phonons 

to scatter appreciably and hence we obtain rather good agreement wi th 

the exper imental  value for  7. Using Mattheiss '  (10,11) densi ty of  

2 
states at  the Fermi energy,  the value for  7 is  2.50 mJ/mole-deg .  

When the lat t ice constant is  reduced by 2%, corresponding to a 

2 
hydrostat ic pressure of  1 1 3  kbar,  the value of  7  is  3 - 3 0  mJ/mole-deg .  

I f  we assume that  the electron phonon interact ion wi l l  again enhance 

the densi ty of  states by 6% at  the Fermi energy,  then the predicted 

2 
value of  7  is  3-51 mj/mole-deg at  a pressure of  113 kbar.  Since the 

number of  states in the ent i re Br i l louin zone is  only 1000, N(Ep) may 

be of f  by 50 to 100%. 



49 

THE FERMI SURFACE AND DE HAAS-VAN ALPHEN FREQUENCIES 

The Fermi Surface 

The Fermi surface of  ReO^ has three sheets corresponding to the 

three bands which cross the Fermi energy.  Fol lowing the notat ion of  

Mattheiss,  the three sheets are labeled o.,  3 and y.  The o. and p 

sheets are c losed electron surfaces whi le the y sheet is  mult ip ly 

connected. Figure 12 shows a s l ice of  the three sheets of  the Fermi 

surface along the [OOl]  d i rect ion with the plane through the points 

r ,  X and M. 

Three dimensional  sketches of  the a, p and y sheets of  the ReO^ 

Fermi surface are i l lustrated by Mattheiss (10) and Phi l l ips and Shanks 

(29) and are shown in Figures 13a, b and c.  In the (100) planes the 

o. sheet is  almost c i rcular whi le the 0 sheet is  square wi th rounded 

edges in the [IIO] direction. This is shown in Figure 14. The y 

sheet g ives r ise to a mult ip ly connected piece of  Fermi surface whose 

features are best descr ibed as 3 mutual ly orthogonal  intersect ing 

Cyl inders centered about the F point .  As seen f rom Figure 12, a l l  the 

sheets of  the Fermi surface are centered aroud the T point .  

The Pressure Der ivat ives of  de Haas-van Alphen Frequencies 

The sheets of  the Fermi surface calculated by decreasing the 

lat t ice constant by 2% have the same general  features as the or ig inal  

sheets of  the Fermi surface. Free-electron scal ing (15) predicts that  

the same f ract ion of  the Br i l louin zone remain f i l led by the electrons 

as a funct ion of  pressure.  
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Figure 13. Three-dimensional  sketches of  the three electron sheets of  the Fermi surface in PeO. 
(af ter  Mattheiss (10)) ,  
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Figure 14. Central  [110] and [100] cross sect ions of  the ReO^ Fermi 
surface. 
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Scal ing then requires that  the logar i thmic der ivat ive of  the de 

Haas-van Alphen (dHvA) f requencies wi th respect to pressure 

d^nF K: 
=  tn(F_/F,) / tn(a_/a,)  (79) 

dp 3 

increase at  a rate of  two-thirds the volume compressibi l i ty  for  a l l  

cross sect ions of  the Fermi surface. 

This can easi ly be shown by the fo l lowing arguments.  Since the 

frequency in MG is  related to the extremal areas by 

F - 374-' * A(extrema,) '  

then 

F^/F,  = (extremal)  1^ (81) 

^(extremal)2 

Since the scal ing model predicts that  the same f ract ion of  the Br i l louin 

zone remain f i l led then i t  fol lows that 

or  

A A 
(extremal )  1 _ (extremal )2 

A A 
zone 1 zone 2 

Ay a.  
(extremal)1 ^ _±_ _ 

^(extremal)2 ®2 
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Subst i tut ing back into equat ions 79 and 81, we get 

dtnF 
-  2/3 K 

dp 

-k  -1  
or when K = 5.3 x 10 kbar 

dtnp _i  1 
= 3.6 X 10 kbar .  (84) 

dp 

This is  the scal ing predict ion.  

Exper imental  work by Schirber e_t (15) on ReO^ shows that  f ree-

electron scal ing fa i ls  to predict  the rate at  which a l l  sheets of  the 

Fermi surface change wi th respect to pressure.  The exper imental  values 

and our resul ts of  the pressure der ivat ives of  the Fermi surface cross 

sect ions are given in Table 4.  

Even though the very s imple f ree-electron scal ing model predicts 

the same pressure der ivat ives for  a l l  the Fermi surface cross sect ions,  

i t  does give excel lent  agreement wi th the exper iment and the resul ts 

of  th is work for  the C X  sheet in both the [001] and [111] f ie ld direc­

t ions.  The pressure der ivat ive calculated in th is work of  the orbi t ,  

the hole orbi t ,  in the [OOl]  f ie ld direct ion also agrees qui te wel l  wi th 

the scal ing predict ion.  

The fa i lure of  the scal ing predict ion occurs in both the and 

3 orbi ts in the [OOl]  f ie ld direct ion.  There have been at tempted 

measurements of  the pressure der ivat ives of  the 3 orbi ts but the ampl i ­

tudes have not been suf f ic ient  to obtain a pressure der ivat ive (15).  
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Table 4.  Theoret ical  and exper imental  values for  pressure der ivat ives 
of  cross sect ional  areas of  the Fermi surface of  ReO_ 

Cross Field dtnF/dp (10 ^  kbar ' )  
sect ion direct ion Exper iment (15) Theory 

a [001] 4.0 ± .3 3.74 

[111] 4.0 ± .4 3.64 

[OOP none 6.42 

[001] 1.5 ± .5 0.64 

72 [001] none 3.76 

-4 - I  
Scal ing predict ion ^  3-D x 10 kbar 
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The de Haas-van Alphen Frequencies 

The angular dependence of  the de Haas-van Alphen (dHvA) f requencies 

have been measured by Marcus (13),  Graebner and Greiner (30) and Phi l l ips 

and Shanks (29).  The calculated and exper imental  values of  the dHvA 

frequencies in ReO  ̂ for high symmetry directions are shown in Table 5-

The calculated values of  the frequencies agree reasonably wel l  

wi th the exper imental  values. The largest discrepancy (~ 10%) occurs 

in a branch in the [0013 direct ion.  The p branch has the smal lest  

discrepancy wi th an error of  approximately 1.5% in the [001] d i rect ion.  

The a,  p and 7^ branches a l l  give r ise to electron orbi ts as shown 

in Figures 13a, b,  and c.  The 7^ orbi t  is  a hole orbi t  and i ts  f re­

quency has only been calculated here in the [001] d i rect ion.  Marcus (13) 

and Graebner and Greiner (30) have not reported th is orbi t ,  but the 

agreement wi th our calculat ion and the work of  Phi l l ips and Shanks is  

wi th in 6%. The 7^ and 7^ orbi ts have not been invest igated here.  

We have calculated the angular dependence of  the dHvA f requencies 

f rom zero to 80 MG for  f ie ld direct ions ly ing in the (010) and (110) 

p lanes. These resul ts have been plot ted on the same graph as the exper­

imental  resul ts of  Phi l l ips and Shanks (23) and are shown in Figure 15-

The dotted l ines are the exper imental  resul ts and the sol id l ines are 

the calculated resul ts of  th is work.  

The calculated cc f requencies l ie above the corresponding exper imen­

ta l  points by approximately 5 MG. The shape of  the exper imental  and 

calculated curves are very c lose except near the [111] d i rect ion in the 

(110) p lane. The O i  branch of  the Fermi surface as shown in Figures 
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(010) PLANE n o  P L A N E  

F(M6 

Figure 15 

[OOl] ^01] [III] [110] 

Variat ions of  the de Haas-van Alphen frequencies between 40 
and 80 MG. The sol id l ines are the calculated values and 
the dotted l ines are the exper imental  resul ts of  Phi l l ips 
and Shanks (29)•  
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Table 5» de Haas-van Alphen frequencies in ReO, for high symmetry 

di rections 

Orientât  ion B ranch Calculated 

Frequency in MG 
Phi l l ips and 

Shanks (29) Marcus (13) 
Graebner and 
Greiner (30) 

[001] a. 46.8 41.5 41.4 42.0 

^1 
43.7 48.8 48.8 49.5 

3 60.5 61.6 61.8 60.0 

^2 
92.9 87.8 — — — — 

[111] a 49.8 46.3 46.1 

3 72.7 73.2 73.4 75.0 

[ I IOJ a 51.0 46.3 46.2 47.5 

3 68.5 70.3 73.5 

^1 
71.1 71.1 
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12-14 are near ly spher ical  and therefore we obtain dHvA f requencies 

which do not vary a great deal  as a funct ion of  f ie ld direct ion.  

Comparison of  the 3 branch of  the Fermi surface wi th the exper i ­

mental  resul ts is  qui te good. The largest var iat ion of  our theoret ical  

curve from the exper imental  work is  ~ 4%. However,  the comparison of  

the angular dependence of  p branch in the (010) and (110) planes is  

usual ly 1%. The orbi ts of  th is branch for  d i f ferent f ie ld direct ions 

are mult ip le valued funct ions and their  extremal orbi ts were extremely 

d i f f icul t  to calculate.  

The 7^ f requency branch is  also an electron surface which ar ises 

from the arms of  the y branch of  the Fermi surface. The largest error 

between the exper imental  and calculated values of  th is orbi t  occurs 

in the [OOl]  f ie ld direct ion (~ 5 MG). As we move away f rom the [001] 

d i rect ion in both the (010) and (110) plane the discrepancy decreases. 

This f requency branch extends to the [111] d i rect ion in the (110) plane-

Marcus (13) and Phi l l ips and Shanks (29) report  that  the 7,  branch is 

also centered around the [ l lO] direct ion in the (110) p lane. We were 

unable to locate the 7^ branch in th is direct ion.  
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SUMMARY AND CONCLUSIONS 

This invest igat ion has deal t  wi th the electronic band structure of  

the t ransi t ion metal  oxide ReO^ and the relat ionship of  the band struc­

ture to the electronic propert ies of  th is crystal  for  i ts  equi l ibr ium 

lat t ice constant and a compressed lat t ice constant.  We have employed 

the KKR method to calculate the band structure of  th is compound. 

Throughout th is invest igat ion there have been no adjustable parameters 

or  f i ts  to any exper imental  data.  Thus th is has been an at tempt at  

a genuine " f i rst  pr inciples" calculat ion of  the electronic structure of  

ReOg. 

The energy eigenvalues of  the ReO^ crystal  were calculated twice 

at  a uni form mesh of  56 points in the l /48th zone, once corresponding 

to the crystal  wi th the equi l ibr ium lat t ice constant and the second 

t ime wi th the lat t ice constant compressed by 2% corresponding to a 

hydrostat ic pressure of  113 kbar.  The Fermi energy was found to l ie 

at  .108 Ry and .184 Ry which are .036 and .037 Ry above the bottom of  

the bands at  the F point  for  the equi l ibr ium and compressed cases 

respect ively.  The shape of  the energy bands for  both cases are very 

s imi lar .  The energies of  the compressed crystal  are shi f ted upward by 

.075 Ry at  the T point  and the width of  the d band has decreased by 

approximately .01 Ry at  M. 

Using the densi ty of  states at  the Fermi energy,  for  the equi l i ­

br ium lat t ice constant,  we obtain a value for  7 ,  the electronic contr i -

2 
but ion to the speci f ic  heat,  to be 2.68 mJ/mole-deg .  This is  6% 

smal ler  than the exper imental  value of  Kel ler  (28).  The smal l  d i f ference 
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in the exper imental  and calculated values for  7 may be accounted for  by 

the mass enhancement of  the electrons v ia the electron phonon inter­

act ion which we have not included here.  The gap seen in the densi ty of  

states for  the non equi l ibr ium lat t ice constant.  Figure 11, is  not a 

t rue gap in the densi ty of  states.  This gap ar ises because the number 

of  states used to determine th is curve was only 1000. The interpolat ion 

scheme fa i led since the or ig inal  mesh was not  f ine enough. The gap 

occurs s ince there were no eigenvalues present in th is energy range. 

The Fermi surface of  ReO^ has three sheets corresponding to the 

three bands which cross the Fermi energy.  Figures 12-14. The d sheet 

is  a c losed electron surface centered around F and is  a near ly spher ical  

e lectron surface. The 3 sheet is  also a c losed electron surface cen­

tered around F.  i t  is has a square- l ike shape wi th rounded edges in 

the [no]  direct ion of  the (001) p lane. The 7 sheet is  a mult ip ly 

connected piece of  Fermi surface. I ts features are best descr ibed as 

three mutual ly orthogonal  intersect ing cyl inders centered about the F 

point .  

The calculated values of  the de Haas-van Alphen frequencies agree 

reasonably wel l  wi th the exper imental  values (13) and (29-30).  The 

largest discrepancy occurs in the C( branch in the [OOl]  d i rect ion 

(~ 10%). The 3 branch has the smal lest  error of  1.5% in the [001] 

d i rect ion.  7^ is  a hole orbi t  whose value has been calculated here 

only in the [OOl]  d i rect ion.  I ts agreement wi th the work of  Phi l l ips 

and Shanks is  wi th in 6%. The 7^ f requency branch which ar ises from the 

arms of  the 7 branch of  the Fermi surface has a maximum deviat ion from 



62 

exper iment of  5MG in the [OOl]  f ie ld direct ion.  As we move away f rom 

the [001] d i rect ion in both the (010) and (110) p lane, the discrepancy 

decreases. 

Free-electron scal ing predicts that  the f ract ion of  the Br i l louin 

zone which remains f i l led by the electrons is independent of  pressure.  

This requires that  the logar i thmic der ivat ive of  the de Hass-van Alphen 

f requencies wi th respect to pressure be equal  to two th i rds t imes the 

bulk compressibi l i ty .  Even though the f ree-electron scal ing model pre­

dicts the same pressure der ivat ives for  a l l  branches of  the Fermi 

surface i t  does give excel lent  agreement wi th the exper imental  work by 

Schirber e_t £ l_.  (15) and the resul ts of  th is calculat ion for  the 

CC sheet in the [001] and [111] f ie ld direct ions and the hole orbi t  

in the [001] f ie ld direct ion.  The fa i lure of  the scal ing predict ion 

occurs for  both the y^ and P orbi ts according to the resul ts of  th is 

work.  Pressure data avai lable from exper imental  work (15) for  the 

orbi t  a lso shows marked deviat ion from the f ree-electron scal ing model.  
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