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INTRODUCTION

During the last ten years there has been much interest in the elec-
trical and magnetic properties of the transition metal oxides. This
class of compounds has members which are either insulators, metals or
go through an insulator to metal transition with increasing temperature.

Rhenium trioxide was found to be an excellent metal by Ferretti

6 1 -1

et al. (1) having an electrical conductivity of 2.5 x 10° Q -cm = at
77 K. At room temperature, the conductivity of ReO3 approaches IO5 Q-]
-cm_] which is within an order of magnitude of copper. Tungsten trioxide
is an insulator having one less conduction electron per unit cell than
Re03. However, when an extra conduction electron per unit cell is added
to WO3 by way of introducing a sodium atom the resulting compound Nawo3
is metallic.

Tungsten's electronic configuration Sd4652 has one less 5d electron
than rhenium. When sodium is added to w03, the primitive lattice becomes
simple cubic with the sodium atoms located at the corners of the cube, and

the WO3 has the same structural configuration as Re0 The eight Na atoms,

3
each having one 3s electron, are shared equally by eight nearest neighbor
unit cells. This contributes one more conduction electron per unit cell.

Thus ReO3 and Nawo3 have the same number of conduction electrons per unit

cell.

Feinleib et al. (2) have reported that the optical spectrum of ReO3
is quite similar to that of Naxwo3 (.3 < xxg 1.0). Thus a band picture
which explains NaW'O3 should also be consistent with one that explains

Re03. From Fromhold and Narath (3) and Feinleib et al. (2) the models



which attempt to explain the conduction bands of Naxwo3 are

1) Sienko (4) model: Sd(tzg) states from the tungsten;

2) Kelier (5) model: 6s states from the tungsten;

3) Mackintosh (6) model: 3p states from the sodium;

L) Fuchs (7) model: 3p states from the sodium; and

5) Goodenough (8) model: = bonded oxygen and Sd(tZQ) states from
the tungsten.

Since there are no 3p states in the conduction band of Re03, models
3 and 4 can immediately be eliminated. Fromhold and Narath (3) and
Narath and Barham (9) deduced from NMR studies on NaWo3 and ReO3 that the
conduction band states at the Fermi level are not s-like but are derived
mainly from atomic d states. Therefore, model 2 may also be excluded.
In the present model we have included the s, p and d states of the
rhenium atoms and the s, p and d states of the oxygen atoms. This seems
to be consistent with models 1 and 5 and also with the experimental work.

Mattheiss (10,11) calculated the energy bands of Re03. His calcula-
tion was broken up into the following stages:

1) Calculating the energy levels at the high symmetry points of the
Brillouin zone using nonrelativistic augmented plane wave method (APW);

2) Fitting the energy bands at the high symmetry points of the
Brillouin zone by the Slater-Koster (12) interpolation scheme to deter-
mine the eigenvalues of the non-symmetry points;

3) Refitting the Slater-Koster parameters to correspond with the

experimental data of Feinleib et al. (2) and Marcus (13).

in the present work we have also calculated the energy bands of



ReO3 for the equilibrium lattice constant. Also, the equilibrium lattice
constant g}ven by Pearson (14) has been changed by 2% in order to deter-
mine the electronic properties of ReO3 under pressure. This corresponds
to a hydrostatic pressure of 113 kbar, from the bulk compressibility for
ReO3 determined by Schirber et al. (15). We have used the method devel-
oped by Segall (16) for calculating the energy bands of '‘complex crys-
tals''., A 'complex crystal'' has more than one atom per unit cell.
Segall's method is a modification of the KKR method, developed indepen-
dently by Korringa (17) and Kohn and Rostoker (18). Segall's method for
calculating the matrix elements of a ''complex crystal' is very slowly
convergent. |t became necessary to generalize a technique used by Ham
and Segall (19), who derived a technique for faster convergence of the
matrix elements for a crystal with one atom per unit cell. Using this
method, the energy bands have been calculated for a uniform mesh in the
Brillouin zone.

From the energy eigenvalues we were able to calculate the density
of states and Fermi surface geometry of the ReO3 crystal as a function
of lattice parameter. The pressure derivatives of the de Haas-van Alphen
frequencies have also been calculated and have been compared to experimen-
tal results (15). Finally, the de Haas-van Alphen frequencies have been

calculated along the high symmetry directions.



THE STRUCTURE AND CRYSTAL POTENTIAL OF Re03

The Structure of Rhenium Trioxide

The rhenium trioxide unit cell is simple cubic as shown in Figure
1. The rhenium atom is located at the origin and the oxygen atoms are
located at the face centers. There are four atoms per unit cell; the
six oxygen atoms on the face centers are shared equally with their re-
spective adjacent unit cells. The unit cell can then be thought of as
a rhenium atom at the origin and three oxygen atoms on the cartesian
coordinate axes as shown in Figure 2. The rhenium atom is located at the
origin (0,0,0) and the oxygen atoms are at (a/2,0,0), (0,a/2,0), and
(0,0,a/2), where a is the lattice constant.

The basic translation vectors of a simple cubic lattice are

Fg = S13) * 5,3, + 5333 (1)
where

- A - A - A

a, = ai, a, = aj and a, = ak (2)

2 3

and S1s Soo and 53 are integers. The translation vectors are such that
the crystal potential, which is periodic throughout the crystal, has

the property that

V(F+ 7)) = v(F). (3)



Figure 1. The unit cell of Re0,. The white spheres are the oxygens and
the dotted sphere is” the rhenium.



= o/2$

Figure 2. The rhenium atom is at the origin and the oxygen atoms are at
(a/2,0,0)(0,a/2,0) and (0,0,a/2). The lattice parameter is a.



The reciprocal lattice vectors, the ''recips'', are defined as

E =n]7\. +nK +n2\‘

n 1 272 373 (4)

where Ny, N, and ng are integers such that

K, = rg = 2n [integer]. (5)
This relationship is satisfied if AP - ;j = 2n5ij. For a simple cubic

lattice the Brillouin zone is also simple cubic as shown in Figure 3.

The Crystal Potential of Rhenium Trioxide

In order to calculate the electronic states of ReO3 a crystal poten-
tial is constructed which is spherically symmetric within a radius, the
muffin tin radius, and equal to a constant outside of this radius.
This type of approximation to the crystal potential is called a muffin
tin potential.

The muffin tin potential is calculated along the same lines first
proposed by Mattheiss (20). Starting with the Hartree-Fock-Slater

atomic charge densities calculated by Herman and Skillman (21) we solve
Poisson's equation

PPRUT - T = Broy(IF - T D) (6)

where F} is the position of the jth atom in the unit cell with respect

to the origin. The potential due to one atom in the unit cell in atomic



Y

Figure 3. Brillouin zone for the simple cubic bravais lattice, showing
high symmetry points and directions.



units is given by

T - T = < (T - rj|>+6(——p°‘(|r-r.\)> (7)
r.| ° 8n J

J

-
where @ denotes different atomic species within the unit cell. The
first term in Equation 7 is the nuclear term, the second term is the
solution of Poisson's equation, Equation 6, and the last term is the
exchange contribution to the potential which is approximated by the
Sltater (22) exchange term.

The total crystal potential is calculated by summing directly the
contributions from the neighboring rhenium and oxygen atoms. This sum
is carried out by the Lowdin (23) alpha expansion. Using only the
spherically symmetric part of the Lowdin expansion, since we are con-
sidering the crystal potential as spherically symmetric, the contribu-
tion to the potential of the ith atom in the unit cell due to the poten-

-—

tial Va(l? - rj! is aiven by

1 d+ |f -7, .
v‘?‘(\?-‘r’i\)= — ‘: _r," |7 - VT - FoDdr. (8)
J dIr - ril d - lr - ri\

where d = \F} - ?i\ is the distance between the ith and jth atoms. Thus

the crystal potential about any atom in the unit cell is

GAF-FD =R -Fh s 3 T - 7LD (9)
j=neighbors !

when @ = 1 we are summing about the rhenium sites and when @ = 2 about
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the oxygen sites. The number of neighbors and their distance from the
rhenium and oxygen atoms are given in Tables 1 and 2 respectively.

For crystals with one atom per unit cell the value of the poten-
tial in the interstitial region is determined by a spherical average.

The average potential is given by

R

BJ WS r2 v(r) dr
R
MT

V= (10)
3 3
Rws™ ~ Rut

h
where R and Rw

MT are the muffin tin (MT) and Wigner Seitz (WS) radii

S

respectively.
For the case of rhenium trioxide there are four MT radii so to a

first approximation the average potential may be given as

where
R
3081 7 - T2 v - F D) er
T

v, = 3 3 . (12)

Numerical integration gives V] = -2.177 rydbergs and Vé = -1.965 rydbergs;
then employing the previously cited approximation to the average poten-
tial we find that V = -2,01 rydbergs.

In order to calculate the spherically averaged potential in the

interstitial region using Equation 12, we must know the values of the

WS radii for each atomic species. These radii must be defined so that
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Table 1. Distances of neighbor atoms from rhenium

Distance from

Shell Type of Number of rhenium in
number atom atoms per units of the
shell lattice constant
1 Oxygen (0) 6 1/2
2 Rhenium (Re) 6 1
3 0 24 Js5/2
L Re 12 J2
5 0 30 3/2
6 Re 8 Jj
7 0 2L 172413
8 Re 8 2
9 0 48 N1772
10 Re 24 Js
ii S L8 V2172
12 Re 2L J6
13 0 30 5/2
14 0 72 J29/2
15 Re 12 J8
16 0 96 J33/2
17 Re 30 3
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Table 2. Distances of neighbor atoms from oxygen

Distance from

Shell Type of Number of oxygen in units
number atom atoms per of the lattice
shell constant
1 Rhenium (Re) 2 i/2
2 Oxygen (0) 8 J2/2
3 0 6 1
4 Re 8 J5/2
5 0 16 JV6/2
6 0 12 2
7 Re 10 3/2
8 0 12 1072
9 0 8 J3
10 Re 8 J13/2
M 0 32 J14/2
12 0 6 2
13 Re 16 J17/2
14 0 24 J18/2
15 0 2k J5/2
16 Re 16 V21/2
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the volume occupied by the sum of all the '‘Wigner Seitz cells' is equal
to the volume of the unit cell. C(Constructing such a set of radii is
of course possible, but the averaged interstitial potential using the
previously outlined scheme yields a value for the potential in this
region which is incorrect. This can be shown by the following argu-
ments.

Figure 4 shows a two dimensional unit cell with two different
atomic species. The muffin tin radii are drawn so that they are touching;
this insures that the largest amount of charge of an atomic species is
contained inside the MT radii. The WS radii are drawn so that the
volume occupied by the sum of all the "'Wigner Seitz cells'" is equal to
the volume of the unit cell. |f this is the case, then the WS radius
of an atom will enter inside the MT region of a neighboring atom. Then
there will be a contribution to the average interstitial potential which
is not due to anything in the interstitial region, but rather by the
notential inside the MT radius of a neighboring atom. This clearly
gives an average value to the potential in this region which is larger
than its true magnitude. A method different from the standard method
of averaging the interstitial potential is therefore needed.

The average potential in the interstitial region is rigorously

defined as

ri
Fiyr V() &r ‘
Vay = 7 (13)
INT
where VINT is the volume of the interstitial region. The potential
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UNIT CELL

INTERSTITIAL

7

’
2
2
7

N

Y
Z

Figure 4. A unit cell in two dimensions with two different atomic
species. The muffin tin and Wigner Seitz radii are shown.
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v(r) may be written as
V(r) = & V(K) e (14)

where V(K) is the Fourier transform of the potential. Substituting

Equation 14 into 13 we get

1 - —
_ ” iK - r 3
Vay = —v ] fo V(K) J(INT) © d’r. (15)
INT

it a function f(?) is periodic with respect to a lattice translation

then

[@r @ e T=0,

unit
cell

-

and then the integral in Equation 15 may be written as

iK-*r 3 o iK-r 3
I(INT) € dr == J(muffin tins) e dir.

Then Equation 15 may also be written as

_ P iK - r ;3
T T E, V() J (muffin tins) © drr. (16)
INT

If we represent the position of the vth atom in the unit cell as ry

then
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jmuffi Nt P ek Ty j e'f - (r - rv) &
rrin V Ymuffin
tins .
tins
iK-r v
=Xe v G(Krm. )

v

The function G(x) = 3/x3(sinx - x cos x) is the Fourier transform of a

three dimensional step function and rMTV is the MT radius of the vth

atom. The integral expression of G(x) is shown by Ziman (24) but can

be done quite easily if we let =T - ?v' Finally Equation 16 may be
written as
! iK-rT v
Vjy=-—— & V() Ze v G(Kr.") (17)
VlNT K#£O0 v

where V(K) is defined by Equation 14 and

8 3 1/3]
ViKY = - — rf: z G(Kr‘MTv) -!’p (k) + 6 (— 0 (k)) X
k> Ly YV LY \8x ¥/
e-iK L }. (18)

The terms in Equation 18 are the Fourier transforms of the nuclear,
Coulomb and Slater exchange contributions to the potential respectively.
The value of the potential in the interstitial region is then
calculated numerically using Equations 17 and 18 and its value is -.811

rydbergs. This value is more than half as much as the previously

quoted value and is consistent with the previous discussion of the
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interstitial potential.

The Muffin Tin Padii

In metals with one atom per unit cell the muffin tin (MT) radii
are chosen as large as possible so that twice the MT radius is equal
to the nearest neighbor distance. Thus the ratio of all MT radii will
obviously be unity, since all the atoms in this crystal are identical.
in the case of rhenium trioxide it is not immediately obvious how the
MT radii should be weighted so that the sum of the radii is equal to
the nearest neighbor distance.

Mattheiss' (10,11) reason for choosing the ratio of the MT radii,

R(rhenium)

R (oxygen) =7/6, is not transparent. However, it is plausible that the

ratio was chosen from the number of conduction electrons in rhenium,
five 5d and two 6s electrons, to the number in oxygen, two 2s and four
2p electrons. Weighting the MT radii to be equal to the ratio of
conduction electrons in each atomic species seems to be inadequate for
the following reason. Tightly bound electron states cannot be approxi-
mated well by a plane wave expansion in the interstitial region. These
electrons must be inside the MT radii. It is urnecessary for electrons
which are not tightly bound to be entirely within the MT radii, since
these electron states can be approximated reasonably well by a combina-
tion of plane waves in the interstitial region. Weighting the MT radii
by the number of conduction electrons does not guarantee that the d
electrons will not be in the interstitial region.

In choosing the MT radii for this calculation we have plotted the

«©

number of electrons, ny = hnjo rsz(r)dr, for a given angular momentum
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as a function of distance from the nucleus. This is shown in Figure 5.

5

The broken curve represents the number of 5d° electrons of rhenium and
the two unbroken curves represent the 252 and 2ph electrons of oxygen
within a given shell of radius r. The MT radius of rhenium should be
chosen so that the largest possible amount of electronic charge is
inside this radius. Mattheiss' choice of RMT of rhenium gives 3.3
electrons inside the MT sphere while our choice is larger and includes
3.8 electrons inside.

Ideally we should choose the radius of rhenium to be even larger,
but then the corresponding oxygen radii would decrease and more oxygen
s and p electrons would be outside the MT sphere. Thus in order to
represent these s and p wave functions faithfully in the interstitial
region, more plane waves would have to be added to the formalism.

This would be computationally prohibitive since the secular determinant's
order would increase by 50% for one additional angular momentum state.
Therefore we have increased the MT radius of rhenium from the value
quoted by Mattheiss so that the MT sphere can hold more d-like charge

and also increased the number of angular momentum states of oxygen

to 4 = 2 in order to represent the s and p electrons of oxygen more
accurately away from an oxygen state.

In order to perform a realistic calculation of the electronic
states of a crystal under pressure, the lattice parameter as a function
of pressure is required. Schirber et al. (15) provided the bulk com-
pressibility, ¥ = (5.3 * .9) x lo-h/kbar, of Rel, at 24°¢. Assuming

3
that the value of X remains linear at high pressure, then the change in
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the lattice parameter as a function of pressure is given by da = -1/3 Kadp
where da is the change in the lattice parameter and dp is the change in
the pressure. The values of the lattice parameters and the muffin tin
sphere radii for the equilibrium lattice constant and the 2% compressed

lattice constant are given in Table 3.

Table 3. Parameters used in calculating electronic energy bands.

Pressure Lattice MT radii
kbar parameter (au) Rhenium (au) Oxygen (au)
0] 7.0705 2.083L 1.3994

113 6.9290 1.9740 1.3911
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KKR METHOD

The Green's Function Method
The Green's function method for the solution of the Schroedinger
equation in periodic lattices was developed independently by Korringa
(17) and Kohn and Rostoker (18). This method is commonly called the
KKR method.
The Schroedinger equation for a particle in a periodic potential

v(r) is

(-2 + V() - E)¥(F) - 0. (19)

The solutions to Equation 19 satisfy the following boundary conditions

in the central polyhedron surrounding the origin:

bE+7T) =T sy ()
and
AN (r + rs) e, T Y (r)
———=| =--e s -
d(r + r ) 8r |n
s’ |n

Kohn and Rostoker have shown that a solution for Equation 19 is
§ () = JeF,FOIVEE(FN ST (20)

where V(r') and w(:') are respectively the scattering potential and the
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wave function within this potential. The Green's function G(?,F')
connects w(?) to w(F') and conversely.

Rewriting Equation 19 and substituting the value of w(?) from

Equation 20 into Equation 19 we get

VD = [P+ 86 TIVE) )T . 21)
I

(9 + B)6(F,7Y) = 6(F - 7) (22)

then Equation 21 is satisfied. Ffrom Equation 20 G(?,?') must also satis-
fy the same boundary conditions as the solutions to Equation 19.
From Jackson (25), the Green's function can be expanded in a series

of free particle eigenfunctions of the form

6(r,r') = Te, (F )y, (7 (23)

where n sums over the reciprocal lattice vectors. Substituting Equation

23 into Equation 22 we get

Ta (MI-R + 02 +ely (O =06F-7) (25)

n

since
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] — P -—
wn(r) = j:— exp |(Kn + k) - r
where T is the volume of the atomic polyhedron and K is any point in

the Brillouin zone. |If we multiply both sides of Equation 24 by

¢;(?) and integrate over solid angle we find

an(?') =

and

- 1 exp i(-lzn + i) . (? -
G(r,r') = = = Z
T n (K + k

(25)

(26)

27)

when Equations 25 and 26 are substituted into Equation 23. This is the

standard expansion of the Green's function in terms of the eigenfunctions

of the homogeneous boundary value oroblem.

Equation 27 may be expanded in the form

6(r,7") =T T (A, iJ (kr)j,, (k') +
im L'm! ?

+ Kéulém'jL(Kr)n{,(Krl)]Y{,m(?)Y.{,'mT(p') ‘FOI" r < I"|

where K = VE for E> 0 and kK = iW-E for E < O. ja(x) and né(x) are

spherical Bessel functions and the structure constants A‘?m gt are

il 4,

fixed functions of E and k for a characteristic lattice, except for
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scaling factors.
In order to find an expression for these structure constants, we

must use the plane wave expansion on Equation 27. The plane wave ex-

pansion is

— - +L

e K" Ronrz = ity k)Y, Ry, Z(K). (29)
L LM LM
L M=-L
) - . - _: - ™ .=
Expanding e'(Kn + k) " and e I(Kn + k) r by Equation 29 and sub-
stituting into Equation 27 we get
. (4m)? L
G(r,r') = - r Z i X (30)
T L, ML',M!
5, (R 4R 05, R ARy (DY sy SR 3y, (R 5
L n L' n LM L'M! LM  n L'M'* ''n

— — 2
(Kn+k) - E
If we define a quantity D(¥,T') as

D(F,7') = 6(F,7) - 6, (F,7") (31)

where

- 1 cos (|7 -7 ])
Go(r,r') = - — (32)

= L) .

A v A
i Kpt ok '
K Z;JL(Kr)nL( r )Y&m(r)Y&.ml(f ) for r <r

PO Y A
K : 1 ¢ : '
{f;JL(Kr )nL(Kr)YLm(r )YL'm'(r) for rt < r



25

then (V2 + E)D(?,?') = 0, since (v2 + E)GO(?,?') = 8(? - ?'). Conse-
quently D(:,?') satisfies the homogenous wave equation and for
r < Rmuffin tin? @ general solution of the homogeneous equation for

D(?,:') has the form

p(r,r) = Z T A

tmsptmt g (5P, (kr1)Y, (r)Y: - YY) (33)
L,m 4t,m' M

for r < r'. Together with Equation 33, 31, and 32, the Green's function

given by Equation 27 becomes

G(F.::l) = Z z [A o |j (Kr)j |(Krl)+K6 |6 |j (Kr)‘f) (Krl)] x
L,m 4t ,m Zm;2'm'" L 1 2" 'mmt L £

Yy (Y, 0 (F)

which is the expansion of the Green's function as previously cited.

To find an expression for the structure constants, equate Equations

30 and 28, multiply by Yo (r)Y (ﬁ') and integrate over solid angle
to get
—p
Apmsntmt =~ X (34)

T 3, (Kr) gy, (krt)

5, (R #R10)5,, (K +K[r)y, K3V, (K 3K)
n (E;+§)2 -
n, (Kr')
- K8, ,.8 =%

'L(Kr')
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forr< r! <R The structure constants are the same for any

muffin tin:
—
pair of r and T,
As mentioned previously, the structure constants are functions of

energy and position in the Brillouin zone only. These constants, once

calculated and stored, may be used over on any crystal which has the

same lattice.

The Variational Expression for Energy

[f we define a quantity A as
R GGG s (35)
- L OVEEE TN E) (P P e e
and vary A with respect to ¢*(?) and set
oA = 0 (36)
we get the integral definition of the wave function, Equation 20.
According to the previously cited work of Kohn and Rostoker A is the

variational function. |In order to evaluate A it is necessary to trans-

form the expression for A from volume to surface integrals. This may

be done with the aid of Green's Theorem

j(uvzv-vvzu)d3r = [(u grad v-v grad U) - ds (37)
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We let U = G(?,:'), vV = w(?‘) and let r = r' and substitute back into

Equation 37 to get

n

JEETT () -y (P9 Ze (7))
= [(6(F,r")grad'¢(r*)-¢(r*)grad'c(r,r')) - ds' . (38)

| f we now add -jEG(?,?')d3r to both sides of Equation 38 and using

Equations 19 and 22 when T = r! we get the following:
¢ (D) =J6(FFOVE) (P e
= [(¢(F')grad'G(r,7")-G(F,7" )grad'y(F')) - ds'. (39)
Now if we consider the expression
[ (OV@EET) = [PrEebe)y (e, (40}
and apply Green's Theorem and Equation 22 we get

(@ OVECET) = [(6(F,F)grady” (F-y (Fgrads(F,71)) - ds. (41)

Finally rewriting A as

_ - - r 3 3
A= Tim A= Jrep, -2ed T (MY x
€0 i
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(D] g PP a(ETIVE)(ED]
|

and substituting Equations 39 and L1 into this expression for A we get

S € I
A=1lim A = j ds ds' -y (r) —ix (L2)
=0 ¢ S(Ri-Ze) S'(ri-e) dr dr

y(r')— G(ryr')=G(r,r')— ¢(r') |,
ar! ar!
where Ri is the muffin tin radius. Equation 42 implicitly assumes that

the interstitial potential is constant.

Using a trial wave function

n

¥(¥) = Tcb, (43)
i=0

and substituting y{(r) into the expression for A, we

noo.
A= T C.C.A. . (Lk)
i,j=0 bJots)

where Ai ] is Hermitian and is defined as
b

(45)
A = [T OVOYOE [ A OVEETIVEN, (P
A
The condition — = 0 follows from Equation 36, and yields the linear
aC.

. i
equations
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ZA..C.=0,1=0,l,...,n (L6)
13
J
From the theory of linear equations, we know that a homogeneous
system of n equations in the same number of unknowns has nontrivial

solutions if, and only if, the determinant of its coefficients is zero.

The equation

det A; j =0 (47)

3

then determines the stationary energy eigenvalues as a function of k.

Simplifications for Spherically Symmetric Potentials
As previously discussed, the crystal potential or muffin tin
potential is spherically symmetric within a muffin tin radius and equal

to zero in the interstitial region. |If V(:) is spherically symmetric

then

- V(‘?‘) for I?I < Ri
v(r) = (L8)

0 otherwise

where Riis the muffin tin radius.

For this class of potentials the trial wave function is

Lmax  +4 - R
9 = g,o > CmRL(lr‘)Y{m(r) for r <R; (49)
=0 m=-1

where RL(I?l) is defined as
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(l d 2 d L(1+1) - -
S r— vir]) - E)R&(lrl) =0 (50)

r dr dr r
Substituting the value of the Green's function, Equation 28,
and the trial wave function, Equation 49, into the variational expression
for energy, Equation 45, and taking the limit ¢ = 0, then the matrix

elements of A are given by

Masgrm = Cadp i DU g iid g+ By 8y )

Apmstimd g+ Op g O M) Ly 1 (51)

where

) 1 dRL(r)

LL"’

R&(r) dr r = R..

Dividing each row of the matrix by (L%j 'j&') and each column by

1

¢LJ{H-j£') and setting the determinant equal to zero, according to

Equation b7, we obtain the stationary energy eigenvalues as a function

of E when
n, -n,L
(A A2
Det ALm;L'm' M Ké&&'émm' .o . = 0. (52)
J‘L -JI,L‘?/

This result of the KKR method enables us to calculate the electronic

energy states of a crystal which has one atom per unit cell. However,
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the present calculation of Re0, requires some modifications of the

3

Green's function method which will be shown in the next section.

The KKR Method for ''Complex Crystals'

Following the work of Korringa, Kohn and Rostoker, Segall(16)
developed a method which calculates the electronic energy states of
‘'complex crystals''. A '‘complex crystal'' for this work is one which
has more than one atom per -unit cell. Segall's theory, when applied,
can determine the band structure of compounds, which up to that time
could not be ascertained by simple KKR.

Segall's variational expression for energy is given by

A=1lim A€
€=0
= [SI,Z Freod S ,Ze][sl,é T Sn,GJ
where
n -t Yo - a a P
S = | dS * [¢ (r) — - — ¢ (r)]
1,2¢ Sn(R-Ze) L ar  or |

and

§(F)-u, ) — (7)1
ar! ar!

1e an(R_é) ds' - [6(¥,r")

Equation 53 is a product of sums of surface integrals. The ith atom

in the unit cell has contributions in A with every other atom in the

(53)
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unit cell and also a self interaction. These self interactions

(Si 2€)(Si €) are simply the variational expressions as given by Kohn
3 3

and Rostoker. The trial wave function in this case is given by

Ifmax +4

- GY. () e A
() = = T cC R, 9 (|F-a Dy, (F- =30, 1753 | <R, (54)
=0 m==% im z a J

—
The vector aj is the position vector of the jth atom with respect to
the origin. If we now define a vector ?} to be the position vector

with respect to the jth atom in the unit cell, then

'-a.. (55)

The Green's function which connects the jth atom to the j'th atom is

defined as

(]
C
.
|9
~.
~~
]
A
-
N
|
[p]
~~
!
.
Tl
e
]
(2]
—
-
|
-
—
[\]
W
.
N
N
—~
\Ji
oN
~

where G(F,7') is given by Equation 27, then

P, 1 expi(K +K)- (3, -a )expn(K +K) - (r -TH)
G(J:J )(r.,r!,) = "_E n _.l i (57)
I TN (Kn+12)

Just as before the Green's function may be expanded as

(ri))

G(j’jl)(rj,rj,) = Z > A( )|J£|(Kl’ \JL,(Kr )Y (r )Y)(,m ;

L,m L' ,m' {’m.

(58)
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-t -t
|.

for (r.+r! < la.-a.

(F+710) < 155-3;,

Using the plane wave expansion on Equation 57, equating Equations 57
and 58, multiplying by YL:(pj)YLM(#j') and integrating over solid angle,

we find that the nondiagonal structure constants are given by

.. expi (K +k)-3.-a.,)
AX(,I-']anL';' = - P2 -~ L ) o _— X (59)
’ T lkr) (ert) 0 KRBT - E

(l-i»vr)zi’{'-‘r’l

. ) . - - . Vo et A
J{,(IKn+k|rj)J{,'(IKn+klrj‘)YLm(Kn+k)YL o Ko
Following the procedure outlined in previous sections, the stationary

energy eigenvalues as a function of K for a ""complex crystal'' are given

by

| o L D]
| . ey m M L.
Det A(J’Jl)|+s<5,,|5 5, e A A S - 0.
[ “am;2'm Jit A Tmmt L, L. ()| r=R
l Jp wd,b U i
The expression in Equation 59 is a perfectly valid expression
for the values of the structure constants. However when these expressions
are evaluated numerically, even with the use of a high speed computer,
the convergence of the quantities is very slow indeed. It therefore
becomes necessary to split up the Green's function into a sum over

real and reciprocal space. This is done with the aid of a procedure

developed by Ewald (26) and will be shown in the next section.

Alternative Definition for the Structure Constants
The Green's function given by Equation 57 is a sum over reciprocal

lattice vectors. In order to transform the Green's function into a
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sum over real and reciprocal lattice vectors, it is necessary to trans-
form Equation 57 into a sum over real space vectors.

Equation 57 may be transformed into an expression which only

depends on one vector, E..,, if we let E.., = F.—F., and substitute
JJ JJ 3
this into Equation 57 we get
.. 1 expi(R +k)- (R.. +a.-a. )
! - I 1
G(J’J )(R--.) =4+ lim - —-F — nd 5 R (60)
1 e=0 1 (K+K)"-(E+ic)
1 8K +K-Kexpi (K- R, . ,+3.-3.,))
- ]im - — zj‘ n 5 11 N | dK.
e=+0 T n K™ = (E+ie)
Using the identities
L TRARR e
3 e n do = §(K +k-K)
(27)
and
] -l Y -t -
— Zexpi(K <o) = Z6(p-r)
T N S

and substituting these expressions into the last equation we find that

.. 1 expik-r_expik- (R.., -t +a.-2.,)
1 N i i -
G(J’J )(R--|) - ]im - 3 ZJ ; IJ S L i dK.
3J e=0+ (27)° s K- - (E+ic)

(61)

After integrating, we find that
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- 1 expik-T expik|R. . -T +a.-a.
L N ! !
S )(RJ.J.,) — I"S i T i, (62)
Ln s R..,-r_+a.-a,
jit sy !

C ) o -
this is the form of the Green's function G(J’J )(rj,r'j) as a sum over

the basis vectors of the crystal. Using a relationship derived by

Ewald (26)
RI: 'ﬁ-?s )
— Qo = exp[-(ﬁ-? )2§2+K/2+§2] dg (63)
|R-7, Jx “o(c) >

and substituting Equation 63 into 62 we find

. I - = o

(j,J') iker - - - = .2 2

G = - e s expl-(r.. +a.-a.-r ) E (64)
2ﬂ3/2 s jO(C) bJooJys

+ Kz/kgzjdg.

Following the procedure of Ham and Segall (19), who derived the struc-
ture constants for one atom per unit cell, the Green's function may be
separated by splitting the limits of integration from 0(C) to 3n>
and from %n% to o,

Then ¢U23 ") 2 U3 M) L (G539 @) Lhare

(j,.jl)(])_ —_— --0 -4_.._—. 22
G = - el (Rjj'+aj aj rs) 3

+
Pl
~

)
-
Q.

Ui
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and

1

1. 3! k-7 *® - - - -
G(J’J )(2) = - /2 zelk rS J‘r‘ e[—(R.-'+a_-a_'-rs)2§2 (65)
2372 ¢ ink N R B
+ k2 /gt 1de.
Another identity derived by Ewald (26) which is valid for £ from
0(C) to 3m5 for n > 0 is
o = = = 20 keT
Y exp[-(R,., ,+a.~a.~-r le s =
: pL-(R; ;i *+a;-a;=r )8
ik- (R.. +a.-2.) 3/2

€ ( JJ| J J)ﬂ} - - 2 2 L - —t - -

3 Z}exp[-(Kn+k) /LE +|Kn'(Rjj,+aj-aj.)], (66)

TE n

H HB
when this is substituted into G(J’J ) (1) and the integration is performed

then
§ (R KR, . +3.-3.) - (R +K)%/7
G _ L egmge n 3T ) Je v
G*“-? =-—-e/Mg sra— . (67)
T n (K +k)“=E
n
: : (G531 )
If we use the plane wave expansion, Equation 29, on G and
. .y
G(J’J )(2), equate the sum of these quantities to
s e . ey A 5.., cosKR
cU") g oo G5 ey R - S (68)
L,M JJ 4J Ln R

ve A
multiply both sides by YLM(Rjj‘)’ integrate over spherical harmonics

and taking the limit of Rjjl - 0, we find that
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(G,3") _ (G,i") (G,3")(2) (3)
Dm = Dim * Dy * 85516, 090000 - (69)
The values of the D coefficients are
A Lx eE/n
D (J!J )(])=-‘_iL Ex
LM L
T Jf n
—-— — — — Ead g 2
- - H . - - =4 A=
X +k|Le|(Kn+k) (aj aj')e (Kn+k) /nY ® 45 (70)
n LM 'n
— 2 2
(Kn+k) - E
_2L+l - -
(3,59 (@) KT = 2,z by fm 2T
D = —— 2 e slr -a.+a.,l Y (r -a.+a.,) x (71)
LM JEEL s s J J LM s
R 24 . €7 (r _-a.+a,,) +E/L
J, e E re® (Fs35%350) 3
215
and
1 . .5
-n2 =) (E/n)
~ (3) - —_ <« _ 172\
Y00 “ . (72)
27 s=0 s!(2s-1)
The sum in Equation 71 has the term s=0 omitted if j=j'.
In order to use the D coefficients in the secular determinant, it
is necessary to find the relationship between the A(j’jl) and D (53"
Lim;4'm! LM
coefficients. Using the plane wave expansion Equation 29
ik“ﬁ__| A A e
= K
e "] hﬁx,zml iy ( Rjj,)YLm(RJJ.,)YLm(QK,d)K)
3

multiplying both sides of this equation by YLM(QK’¢K) and integrating
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over solid angle we get

1 - =
. A r 1TKeR..
i (K = ' ]
i ( Rjj')YLH(Rjj') il je ji YLM(QK’¢K)dQK
ﬁ.., is defined as R.., = ?.-?5,. If this is substituted into the
JJ JJ J J

previous equation and the plane wave expansion applied twice, then

(K A )-l”r s YV (ke )G, (ReD DY, (F)) (73)
J{’( Rjjl)YLM(Rjjl - -i—L L,m ! J‘t rj JLI rjl Lm j X
' ,m'
Ay LM
YL'm'(rj')c&m;L'm'
where

ctM = Tday (8,,0.)Y,7(6.,0)Y ., 6 ,0) (74)
Lm;f'm! J K LMY KT " 4m 2T LM TR

The coefficients C vanish unless m = Mtm', i&-é‘| < L < 4+4' and
{+£'+L is an even integer. Equating Equations 68 and 59 and using
Equations 70-72, we get the relation between the A and D coefficients,
3 HE iy 4 | H |
aUsd) _ptt s qbp (Ged') M

Lmyd'm! 2m:2tm'®
; LM LM m;4'm

(75)

The coefficients as defined in Equation 74 may be evaluated by

using the composition relation for spherical harmonics
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[ 2L+1) 2e+1) 22+ 5 fu 2 2\ Lo e
Y, Y, Y, o=
LM 4m L m! Ln 000 Mmm'

If we let m = -m then YL-m = (-l)mYLz and the C coefficients are given by

(76)

LM (2L+1) (22+1) (22'+1)\ % (L et L
c

) = (~1)
m;ttm! L 000 M-m m'

where J] J2 J3 are the Wigner -3J symbols.
m] mzm
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THE ENERGY BANDS OF RHENIUM TRIOXIDE

The energy eigenvalues of ReO3 were calculated along the high
symmetry directions of the Brillouin zone as shown in Figure 3. Eigen-
values were then calculated at a uniform mesh of 56 spaced points in
the 1/48th zone and were then interpolated to give the energy levels
at 106 points in the Brillouin zone. The mesh points for which the
energy eigenvalues were calculated are shown in Figures 6 and 7. The
interpolation was done by using spline fits (27) through the points
at which eigenvalues had been calculated.

This process was done twice, once corresponding to the ReO3
crystal with an equilibrium lattice constant and the second time with
the lattice constant compressed by 2% corresponding to a hydrostatic
pressure of 113kbar. The d bands, spin-orbit coupling not included as
Mattheiss has done (10), are shown in Figures 8 and 9.

During the investigation of the density of states and the inter-
polated bands, it was observed that these bands were consistently lower
than the calculated energies. The interpolated eigenvalues along the
I' to ¥ directiocn are lower than the calculated bands by .00l rydberg.
This causes the eigenvalues along other directions in the interpolated
mesh to be lower than the calculated values at these points by as much
as .004 or .005 rydberg in the kz = 0 plane. This in turn causes a drop
in the calculated value of the Fermi energy by many times more.

It was apparent that the Fermi energy would have to be determined
by counting the number of states of the original mesh. There are 1000

mesh points in the Brillouin zone, so there will also be one thousand
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Figure 6. The 1/48th Brillouin zone showing the six layers in which
energy eigenvalues were determined.
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kz = .2
Layer 3
o A
Layer 4
k; = .4 A
Layer S5

k, =.5
Layer

Figure 7. C(ross sections of the 1/48th zone showing points at which
energy eigenvalues were determined.
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states which the one electron, which goes into the conduction band,

will just fill at the Fermi energy. The Fermi energies were then

determined to be at .108 Ry and .184 Ry instead of .097 Ry and .175 Ry,

as determined from the interpolated bands, for the zero and high pressure

bands respectively. The most probable reason for the failure of the

Spline interpolation scheme is that the original mesh is not fine enough.
The density of states curves of ReO3 for the equilibrium lattice

constant and the lattice constant compressed by 2% are shown in Figures

10 and 11 respectively. The Fermi energy was found to lie at .108

Ry and .184 Ry which are .036 and .037 Ry above the bottom of the

bands at the I point for the zero and high pressure cases respectively.

The high pressure energy band of Re0, calculated by changing the lattice

3
constant by 2% (see Table 3) has shifted the energy upward by .075 Ry
at the T point and the width of the d band has increased slightly from
R25l to rZS"

£ - - S A - - H
f the density of states at the Fermi energy for the

The vaiues o
zero and high pressure cases are found to be 28.8 states/Ry-unit cell
and 38.4 states /Ry-unit cell. Since we have considered 2 spin states
per band the density of states at the Fermi energy, for each case, can
also be quoted to be 14.4 states of one spin/Ry-unit cell and 19.2 states
of one spin/Ry-unit cell,

Recently Keller (28) has measured the specific heat of ReO3 at low

temperatures. The electronic specific heat can be written as

c, =T (77)
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per mole where 7y is related to the density of states at the Fermi energy

by

y =3 CKWNGE), (78)

where V is the molar volume, k; is the Boltzman constant and N(EF) is
the density of states at the Fermi energy. Keller obtained a value
for ¥ of 2.85 mJ/mole—degZ. Using the value of the density of states
at the Fermi energy, for the equilibrium lattice constant, we obtain
a value for y of 2.68 mJ/nDle-degz. This value is 6% smaller than
the experimental value of Keller.
The small difference in the experimental and theoretical values
for ¥ may be accounted for by mass enhancement of the electron via
the electron phonon interaction which has not been included here. Since

Re0, is a good metal whose conductivity is within an order of magnitude

W

£
]

[¢)

o’ cpper at room temperature, we would not expect electrons and phonons
to scatter appreciably and hence we obtain rather good agreement with
the experimental value for v. Using Mattheiss' (10,11) density of
states at the Fermi energy, the value for y is 2.50 mJ/mole-degZ.

When the lattice constant is reduced by 2%, corresponding to a
hydrostatic pressure of 113 kbar, the value of ¥ is 3.30 mJ/mole-degz.
If we assume that the electron phonon interaction will again enhance
the density of states by 6% at the Fermi energy, then the predicted

value of ¥ is 3.51 mJ/mole-deg2 at a pressure of 113 kbar. Since the

number of states in the entire Brillouin zone is only 1000, N(EF) may

be off by 50 to 100%.
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THE FERMI SURFACE AND DE HAAS-VAN ALPHEN FREQUENCIES

The Fermi Surface

The Fermi surface of ReO3 has three sheets corresponding to the
three bands which cross the Fermi energy. Following the notation of
Mattheiss, the three sheets are labeled &, 8 and y. The & and B
sheets are closed electron surfaces while the ¥ sheet is multiply
connected. Figure 12 shows a slice of the three sheets of the Fermi
surface along the [001] direction with the plane through the points
I's X and M.

Three dimensional sketches of the @, B and y sheets of the ReO3
Fermi surface are illustrated by Mattheiss (10) and Phillips and Shanks
(29) and are shown in Figures 13a, b and c. In the (100) planes the
@ sheet is almost circular while the B sheet is square with rounded
edges in the [110] direction. This is shown in Figure 14. The ¥
sheet gives rise to a multiply connected piece of Fermi surface whose
features are best described as 3 mutually orthogonal intersecting
cylinders centered about the T point. As seen from Figure 12, all the

sheets of the Fermi surface are centered aroud the T point.

The Pressure Derivatives of de Haas-van Alphen Frequencies

The sheets of the Fermi surface calculated by decreasing the
lattice constant by 2% have the same general features as the original
sheets of the Fermi surface. Free-electron scaling (15) predicts that
the same fraction of the Brillouin zone remain filled by the electrons

as a function of pressure.
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Figure 12. The cross sections of the 3 sheets of the Fermi surface in
the [001] direction through the plane determined by the
points I'y X and M.



Figure 13,

FERMI SURFACE OF ReO4

Three~dimensional sketches of the three electron sheets of the Fermi surface in Re0
(after Mattheiss (10)).

3

1S



52

Figure 14. Central [110] and {100] cross sections of the ReO3 Fermi
surface.
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Scaling then requires that the logarithmic derivative of the de

Haas-van Alphen (dHvA) frequencies with respect to pressure

dinF K
- - Ln(FZ/F])/Ln(az/a]) (79)
dp 3

increase at a rate of two-thirds the volume compressibility for all
cross sections of the Fermi surface.

This can easily be shown by the following arguments. Since the
frequency in MG is related to the extremal areas by

F=374.1 x A (80)

(extremal)’

then

A
FZ/F] - (extremalll.

(81)
A(extrema])Z

Since the scaling model predicts that the same fraction of the Brillouin

zone remain filled then it follows that

A(extremal)l - A(extremallg

(82)
zone 1 Azone 2
or
2
A(extremal)] = alz . (83)

A(extremal)z )
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Substituting back into equations 79 and 81, we get

dinF

2/3 K

it

dp

or when K = 5.3 x 10" kbar™

dLnF _’+ -]
3.6 x 10" kbar . (84

1]

dp

This is the scaling prediction.

Experimental work by Schirber et al. (15) on ReO3 shows that free-
electron scaling fails to predict the rate at which all sheets of the
Fermi surface change with respect to pressure. The experimental values
and our results of the pressure derivatives of the Fermi surface cross
sections are given in Table 4.

Even though the very simple free-electron scaling model predicts
the same pressure derivatives for all the Fermi surface cross sections,
it does give excellent agreement with the experiment and the results
of this work for the ¢ sheet in both the [001] and [111] field direc-
tions. The pressure derivative calculated in this work of the 75 orbit,
the hole orbit, in the [001] field direction also agrees quite well with
the scaling prediction.

The failure of the scaling prediction occurs in both the 7 and
B orbits in the [001] field direction. There have been attempted
measurements of the pressure derivatives of the B orbits but the ampli-

tudes have not been sufficient to obtain a pressure derivative (15).
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Table 4. Theoretical and experimental values for pressure derivatives
of cross sectional areas of the Fermi surface of Re0

3
. -4 -1
Cross Field dinF/dp (10 ~ kbar ')
section direction Experiment (15) Theory
a {o01] L.o £ .3 3.74
(inl L.o £ .4 3.64
B foo1? none 6.42
71 foo1] 1.5 £ .5 0.64
75 foo1] none 3.76

Scaling prediction . 3.6 x ]O-u kbar-]
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The de Haas-van Alphen Frequencies

The angular dependence of the de Haas-van Alphen (dHvA) frequencies
have been measured by Marcus (13), Graebner and Greiner (30) and Phillips
and Shanks (29). The calculated and experimental values of the dHvA
frequencies in ReO3 for high symmetry directions are shown in Table 5.

The calculated values of the frequencies agree reasonably well
with the experimental values. The largest discrepancy (~ 10%) occurs
in & branch in the [001] direction. The B branch has the smallest
discrepancy with an error of approximately 1.5% in the [001] direction.

The a, B and 7 branches all give rise to electron orbits as shown
in Figures 13a, b, and c. The 7y orbit is a hole orbit and its fre-
quency has only been calculated here in the [001] direction. Marcus (13)
and Graebner and Greiner {38) have not reported this orbit, but the
agreement with our calculation and the work of Phillips and Shanks is
within 6%. The 73 and 7y orbits have not been investigated here.

We have calculated the angular dependence of the dHvA frequencies
from zero to 80 MG for field directions lying in the (010) and (110)
planes. These results have been plotted on the same graph as the exper-
imental results of Phillips and Shanks (25) and are shown in Figure 15.
The dotted lines are the experimental results and the solid lines are
the calculated results of this work.

The calculated & frequencies lie above the corresponding experimen-
tal points by approximately 5 MG. The shape of the experimental and
calculated curves are very close except near the [111] direction in the

(ITO) plane. The Q branch of the Fermi surface as shown in Figures
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Table 5. de Haas-van Alphen frequencies in ReO3 for high symmetry
directions

Frequency in MG

Phillips and Graebner and
Orientation Branch Calculated Shanks (29) Marcus (13) Greiner (30)
Loo1] a L6.8 L1.5 Li.4 42.0
7 L3.7 48.8 L8.8 L9.5
B 60.5 61.6 61.8 60.0
7y 92.9 87.8 - -
1l o 49.8 L6.3 L6.1 --
B 72.7 73.2 73.4 75.0
(1101 a 51.0 46.3 L6.2 L7.5
g 63.5 70.3 73.5 --

7 ~- 71.1 71.1 --
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12-14 are nearly spherical and therefore we obtain dHvA frequencies
which do not vary a great deal as a function of field direction.

Comparison of the B branch of the Fermi surface with the experi-
mental results is quite good. The largest variation of our theoretical
curve from the experimental work is ~ 49%. However, the comparison of
the angular dependence of B8 branch in the (010) and (ITO) planes is
usually 1%. The orbits of this branch for different field directions
are multiple valued functions and their extremal orbits were extremely
difficult to calculate.

The 71 frequency branch is also an electron surface which arises
from the arms of the y branch of the Fermi surface. The largest error
between the experimental and calculated values of this orbit occurs
in the [001] field direction (~ 5 MG). As we move away from the [001]
direction in both the (010) and (1710) plane the discrepancy decreases.
This frequency branch extends to the [111] direction in the (170) plane.
Marcus (13) and Phillips and Shanks (29) report that the 7y branch is
also centered around the [110] direction in the (110) plane. We were

unable to locate the 7 branch in this direction.
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SUMMARY AND CONCLUSIONS

This investigation has dealt with the electronic band structure of
the transition metal oxide ReO3 and the relationship of the band struc-
ture to the electronic properties of this crystal for its equilibrium
lattice constant and a compressed lattice constant. We have employed
the KKR method to calculate the band structure of this compound.
Throughout this investigation there have been no adjustable parameters
or fits to any experimental data. Thus this has been an attempt at
a genuine '"first principles' calculation of the electronic structure of
Re03.

The energy eigenvalues of the ReO3 crystal were calculated twice
at a uniform mesh of 56 points in the 1/48th zone, once corresponding
to the crystal with the equilibrium lattice constant and the second
time with the lattice constant compressed by 2% corresponding to a
hydrostatic pressure of 113 kbar. The Fermi energy was found to lie
at .108 Ry and .184 Ry which are .036 and .037 Ry above the bottom of
the bands at the I' point for the equilibrium and compressed cases
respectively. The shape of the energy bands for both cases are very
similar. The energies of the compressed crystal are shifted upward by
.075 Ry at the T point and the width of the d band has decreased by
approximately .01 Ry at M.

Using the density of states at the Fermi energy, for the equili-
brium lattice constant, we obtain a value for ¥, the electronic contri=-

bution to the specific heat, to be 2.68 mJ/mole-degz. This is 6%

smaller than the experimental value of Keller (28). The small difference
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in the experimental and calculated values for y may be accounted for by
the mass enhancement of the electrons via the electron phonon inter-
action which.we have not included here. The gap seen in the density of
states for the non equilibrium lattice constant, Figure 11, is not a
true gap in the density of states. This gap arises because the number
of states used to determine this curve was only 1000. The interpolation
scheme failed since the original mesh was not fine enough. The gap
occurs since there were no eigenvalues present in this energy range.

The Fermi surface of ReO3 has three sheets corresponding to the
three bands which cross the Fermi energy, Figures 12-14. The O sheet
is a closed electron surface centered around T" and is a nearly spherical
electron surface. The B sheet is also a closed electron surface cen-
tered around I'. It is has a square-like shape with rounded edges in
the [110] direction of the (001) plane. The y sheet is a multiply
connected piece of Fermi surface. Its features are best described as
ree mutually orthogonal intersecting cyvlinders centered about the T
point.

The calculated values of the de Haas-van Alphen frequencies agree
reasonably well with the experimental values (13) and (29-30). The
largest discrepancy occurs in the Q branch in the [001] direction
(~ 10%). The B branch has the smallest error of 1.5% in the [001]
direction. 7y is a hole orbit whose value has been calculated here
only in the [001] direction. Its agreement with the work of Phillips
and Shanks is within 6%. The 71 frequency branch which arises from the

arms of the ¥ branch of the Fermi surface has a maximum deviation from
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experiment of 5MG in the [001] field direction. As we move away from
the [001] direction in both the (010) and (110) plane, the discrepancy
decreases.

Free-electron scaling predicts that the fraction of the Brillouin
zone which remains filled by the electrons is independent of pressure.
This requires that the logarithmic derivative of the de Hass-van Alphen
frequencies with respect to pressure be equal to two thirds times the
bulk compressibility. Even though the free-electron scaling model pre-
dicts the same pressure derivatives for all branches of the Fermi
surface it does give excellent agreement with the experimental work by
Schirber et al. (15) and the results of this calculation for the
a sheet in the [001] and [111] field directions and the 7, hole orbit
in the [001] field direction. The failure of the scaling prediction
occurs for both the 73 and B orbits according to the results of this

work. Pressure data available from experimental work (15) for the 7

orbit also shows marked deviation from the free-electron scaling model.
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