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I. INTRODUCTION
A. Types of Error

- Numerical calculations of problems in pure or in
applied mathemntics mey cause errors to enter into the
solution. The term error means a deviastion, of the numerical
solution obtained, from the exact solutlion., Unleas a
measure of such errors is possible, it is meaningless to
talk about such a solution., There 1s more than one source
for such errors. In order to distinguish between the
different types of errors, consider the system of linear
squations

(1.1) gi; 8y 4%y = by 1=1,2,3,***,n .,

First, such a system of equations may only idealize the
true relationship that exists bstween the x3. The exact
solutlion of such an ldeslized relstlionship may deviats from
the true values of the x4, This then may be a source of
error, Second, the “ij mey be parameters measured by
empirical means or computed directly from theoreticsl cone
siderations of measured observations. If the aiﬂ are not
known exactly or csnnot be repressnted exsctly, thia may be
a source of error of the solution.

These two sources of error are important in the
ultimate analysis of the total accumulative error, but, in
this thesis, it will be assumed that the expressed relation-

shlps between the varisbles are correct and that the 814 have
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been expressed exectly and within the digital capacity of
the computing devlces that will be used, This thesis will
be a study of errors which arve due to compubting procedures
of elementary operstions. Due to the limited capscity of
computing machines it is usually necesssry to roundwoff
products and quotients as they are performed, For example,
if the cepacity of & standard computing machine 1s elsht
digits, then (,123h5678)(.6l1196966) is exactly equal to
.0792555070812948, but 1t is rounded-off to ,07925551 in
order that subsequent operations with thisz number may be
performed on the mechine, The amount of error dus to
round-off is a funection of the number of diglts retained.
If it were possible to keep sll diglts, there would be no
error due to round~offj but since this is generally not
posaible, roundeoff errors coccurring at different stages
of the computing process must be duly considered since
they may sccufmlate to a sizable error in the final sclution,
Using most of the definitions, aymbols and basle
inequalities concerning pseudowoperatio. s as given by
J. Von Neumann and H, H. Goldstine (1) this thesis firat
gives some generalizations of thelir theory and then applies
it to the process of inverting matricea., In particuler,
a modification of the Bingham Method for inverting matricea
is introduced, Next a strict approach and a probabilistic

approach to the operation of scaling i1s presented. The
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last chapter is devotsed to the analysis of the effect of

pseudo~checkling the exact solution of & linear equation,
B. Digitel Numbers and Roundwoff

Since the computational work will be upon the a4 of
equation {1.1) and also upon the matrix with elements 814,
‘the nature of such numbers will now be given. The ajj are
/digital numbers, A digital number X is an s-place, base @,
digital aggregate with sign

SE © E{a;”bb"ﬁa)’

€ = ¢ 1; g3,%**,ag = 0,1,%++,p~1,

The sum and difference of two digital numbers will be
denoted by X + ¥ and will have their ordinary meaning, It
is true that the sum of two digital numbers may be an (a+l)-
place digital aggregate and therefore not a digital number;
but it will be assumed that such & number dces not exceed
the capacity of the computing machine 1in performing sube
sequent operations,

The product and quotlent of two dlgltal numbers will be
rounded-off to s-place aggregates and such quantities will
be called pseudo-products end pseudo-qQuotients. A pseudow
product will be denoted by X x ¥y and a pseudo-quotient by
X+ 7.

If a digital number X is multiplied by an integer

m(0,+ 1, + 2,*+**) & number mx is obtained which is not subject
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to round-off since such an operation 1ls thought of as
repeated additions or subtractions., It is timue that if m
is large, then mx mey exceed the capacity mf the machine
but by a slight revision of the addition or subtraction
operation mx can be computed with no round-off involved,

If two digital numbers are multiplied together and
rounded-off to an seplace aggregate, iﬁ is obvious that the
magnitude of the roundwoff error depends on the location
of the decimsl points or more generslly the g-adic points
of the two digital numbers, In all operations that follow,
therefore, it will generally be asgsumed that the decimel
point of B~adic point is located at the extreme left of all
s-place digital numbers, It 1s alweys possible toc force
thls condition upon digltal numbersa by the introduction of
proper scale factors, Scale factors will be introduced
later. If the B-adic point 1s at the extreme left, this
means that all digital numbers lie in the open interval
(=1,1). |

If two digitel numbers @ra multiplied, a 2s-place
number is obtained, If this is rounded~off to an seplace
number and if both digital multipllers hed their B-adic
point at their extreme lefts, then the roundeoff error is

numerically less than @:& .
e

Since rounding-off numbers 1s not uniformly performed,

the rules that follow will govern the roundeoff referred to
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in this thesis:. It is true that some automatic high-speed
ealculating machines do not have a rounding-off operation,
but it will elso be assumed for this thesis that all machines
thet are used will be able to perform the followling rules for
round-off.
1. If the discarded digits amount to 5 or more
then 5 in the position of the first discarded
diglt, then )l 1s added to the lest digit
retalined.
2, If the discarded digits smount to less than 5
in the position of the first dlscarded digilt,
no change is made in the digits retained.
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II. PSEUDO-OPERATIONS FOR SCALARS

Since it is necessary to compute powers of the matrix
A in order to determine its Inverse by the Bingham method,
a study of the properitles of pseudoemultiplication and
pseudow~divivion will be made, The laws of multiplication
and division of diglital numbers will be studied first. Later,
peeudo-raltiplication of matrices will be discussed. The
usual assoclative law of multiplication, distributive lew and
inverse relationship between multiplication and division are
affected by the paseudo-operstions. The commutative law of
maltiplication using pseudo-operstions remains valld, thet
is Xx¥ = ¥XX. This is true since X x ¥ means to compute
X ¥ end then round-off, Now since X ¥ and ¥ X are equal,
Xxy end ¥x X would be rounded~off to the ssme value,

The baslic inequalities involved are

(2.1) xxy -« X 7| < p-9/2
(2.2) I+ ¥ - /7| < p-8/2.

Using these inequalitiea, the distributive law of multipli-

caetion can be analyzed. It follows, for instance, thet
(X+¥) x 2 - {(xx2 + Fyxz) = (X + k& ~ (X + Y)z + X ¥
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sines the exact product (X + ¥7)Z has been added and subtracted
and the distributive law for exact multiplication is true,
Therefore,

[{(x + ¥ix% - (XxZ + Tx2Z)| < 3p~8/2 .
Since the left hand member 1s the differsnce of two se-place
npumbers, 1t is apparent thet such a difference 1s an integer
multiple of B~%, therefore,

Hx + 2 « (Xx2 + Fx%)| 2 B8,
These results can be found in the paper by J. Von Neumann and
H., H. Goldstine (1), As sn extension of these results, one
obtalins

(X, + Xg + 200 + ) *xF =~ (Xy*F + Xg*F + oo + Xpx y)|

(243)
( = Bn+1¥?ﬂ p~8

where En + Myélmaana the largest integer less than or equal to
(n + 1)/2, The distributive law may not hold then for pseudoe~
multiplication. Equation (2.3) gives the maximum error that
could occur,

Although the distributive law for pseudo-multiplication
,d@ea not always hold there is s particular case in which 1t
dogs, Since this cage will be utilized in the last chapter,
the following theorem will be proved.

THEOREM 1. If @ b (mod an integer) is e digitael number
then ax{b + ¢) = axb + 8» ¢, In other words, the dis«

tributive law for pseudo-multiplication holds in this case.
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Proof. Bince 8 x{b + ¢) is to be computed by exactly
multiplying & times (% + ¢) and then rounding-off the
product, one obtains

awx(b + ¢) =a(b + ) + ¢,
where €3 is the roundeoff error contributed by rounding-off

e

® ¢, The right member of the above equation is equal to
ab+ac+ ey since the distributive law holds for exact
multiplication, rBut
ab+ac+e,=axb+axc

alnce a5 = aAxF and 8 % + gy = &ax¢ bjr definition. This
completes the proof, -v

The assoclative law of pseudo-~multiplicetion can be
investigated as follows., 8ince
XX(F2r2) =X ¥ 2 =% x{yx%) -~ X({ynz) +X (¥y*2) -X7 %,
then
IZx(7x%) - X 7 2| < p~8/2 + |x| p~8/2 = p=8/2 (1 + [X]).
Also
(RaFIRF =T TE = (FxF)xF = (FxFT + (IxF)F -7 3,
80
[(ExFE - 7 Z| 5 8-8/2 + |E] p=8/2 = p=8/2 (1 + |%|).
This means that
(2.4)  IEx(FxE) - ExT)xEl < 878/2 [2 + 17| + 1F]].
it |X], |Z] < 1, then the left member of equation (2.4)
will be < 28~%, ©Now since the difference bmween‘ two digitel
numbers 1s an integer multip‘le of ﬁ““, the left member of



equation (2.l) will be < =%, If |X] = |Z] = 1, the left
member of equation (2.l4) will be zero. Thus, for all |[X|,

la‘ =1, — ey . - g
[ (X« )2 - XEx(¥=2)| < ™% .

This result is given by J. Von Neumann and H. H, Goldatine (1),
To show thet the difference between these assoclated
pseudo-products can be a8 much as ™%, the following example
is cited using # = 10 and 8 = 3,
(.986 = +749) = .837 = .619,
986 x (. Th9 x .837) = .618 ,
The assoclative law of multiplication with n factors will now
be studled using right pseudo-multiplication., One obtains
the identity
((ore{(Xy x Xg)xXa) see)xXn = X3 Xg X *** ¥n
= {((eee((Xyx Xg)xXg) voo )"55;3&&:3" Xn
= ({oee((Fy < T xFp) o+ )Fnor)Fn
¢ ((seo((Fyx Xp)rFp) eoe P Fnma)Fan
- (("'((K:." Z‘E.a)";a) sev ) in»:fin
+ (sve((Xy xXp)xXs) **¢ )Xn.a%a
t eee# (X3 xXp) Xp Xy *+* Xn = Xy Xg *** Xne
Taking the abaolute value of both sides of this ildentity,

one obtalns

“(“'((gkxEﬂ)x“iﬂ)’*.)”iﬂnl)xin - Et ;.gs :ga e En‘
(2.5)
ﬁﬁ“a/z [-l + ‘Kg‘ * ixn Kn“z‘ G nee & ' ‘g( xi‘]

=0
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In & similar menner the upper bound to the numerical difference
between the pseudo-product multiplied in the reverse order
and the exact product ¢an be obtained, Combining these two
results, 1t follows that

((*eo ({Fax Ka)sEa) voe b Fn)oFa(Kux(ess (FnagxFn)ees )|

(2.6)

, .
soo2 poE meeml o B meend].
i=3 k=

Of particular interest is the case where X3 = @ for all i,
The left member of equation (2.6) cbviocusly reduces to zero
for this case, The left member of squation (2.5) 1s
numerically leas then B”ﬁ/a l} + |a]l + 00 + !§n~ug' which
is finlte even if n becomes infinite provided |a] < 1. For
example, if |a| = 1/2, regardless of how many times a is
pseudo-multiplied by itselfl, the difference between this
result and the exact product is less than or equal to B8,
It is obvious that sctually the difference approaches zero
A8 It ewep O,

Next, if one has to pseudo-multiply X by ¥ and pseudoe
divide by ¥, is there a preferred order?! In other words, is
it better to celculate (Xx¥) = 2 or {X+Z)xy or is the

order immaterial? Now since

('ﬁx‘i) é?»ﬁm(”ix"i) .;,‘é"..x"f +x"y‘m,
B ’ z z 7

then
{2.7) H{(X¥xy) = % = ?lg @—»3/2 (1 + |Z]"%).
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Next
(Fiehy -EL= (R :any - R+ 2) T+ (XL 8)y - AL
& z
ac
(2,8) X+ Eny - X} < p8/2 1 + IF]) .

z
Now, eince |Z| and |¥| < 1, equations (2.7) and (2.8) show
thet for all |2| and |¥] 5 1, generally speaking, it 1s better
to firat divide and then multiply. This result 1s also given
by J. Von Neumann end H, H, Goldstine (1),
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III. A MODIFICATION OF THE BINGHAM METHOD
FOR INVERTING MATRICES
A, Description of the Bingham Method

If A= (“13) is 2 given square matrix of order n, one
can form the matrix A\I -~ A, called the charscteristic metrix
of A, The determinant of thls matrix is celled the charact-
eristic function of A and is a polynomial of degree n in )\ .

Setting £(A) = |AI - A|, then £(A) = AR + ay An-l
+ ese 4 ap_3 A +an, From this, one sees thet an = £(0)
= |~Al; or that, ay = (~1)® |Als The algebraic equation,
£{\) = 0, is called the characteristic equation of the
matrix A, and the roots of this equation are called the
characteristic roots of A, The Cayley-~Hamilton Theorem,
upon which the Bingham Method of inverting matrices depends,
will now be stated but not proven.

The Cayley~Hamilton Theorem: Let

£A) = A® +a; ARl 4 cev 4 ang ) + 8y
be the characteristlc function of a matrix A, and let I and
0 be the unit metrix and gero metrix respectively with an
order equal to that of the order of A, Then the matric
polynomial equation

X0 4 0,%0%")1 & s.e- 4 Bpug X + 8l = O
is satisfied by X = A,

If A hes an inverss &”1, then the dstanminaht of A ia

not equel to zero. Therefore, &y $ O, so it follows that
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I = (=1/8n) (A" + A% 4+ cev 4 an.y A)
The right hand member can be written
Al(-1/8n) (AP 4+ 2,402 ¢ vev 4 an, 1)
which means that
(3.1) A7l = («1/an) (AP 4 2,A7%2 4+ 0es 4 any 1),
From this equation A"l can be computed if the values of the aj
and A! are known, To compute the a4, one must first compute
the trace of the matrix A4 and the traces of the powers of A,
The traces of the matrix A is defined by tr(a) = 2&;‘ Bije
Next define the numbers sy, 8g, *+*s, 8p by =
(3.2) 83 = tr(a), sg = tr(A®),ees, sp = tr(A),
The following recursion formulas, known as Newton's formulas,
can be used to compute the sy :
ay = =8y ,
8z = (=1/2)(a; 83 + 8g) ,
as = (-1/3)(agsy + a3 + 83) ,

(3~3) *

.
.

ap = (=1/n)(8ney8y + Bp.gBy + **¢ + 8385.3+8p).
One can summarize the rule for inverting matrices by the
Bingham Method as followss

1. Compute A¥, ke 1,2,3,+*+,n-1,

2. Compute the diaganal elements of AR,

3. Compute 8,,8g,%*%,8n by equation (3.2).
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s Compute a3 by equation {3.3).
5. Compute A*} by equation (3.1).
The following example will illustrate the use of the
Bimgham Method for inverting matrices,

31 0
A= 2 0 1
g =1 1
11 3 1
A" = 6 1 1
-2 «l 0
39

A% = 5

-1
8y = It 8a = 12 85 = 43

&y =
Bg = (=1/2)(~16 + 12) = 2
as = («1/3)(2(L) + (<4 )(22) + 13) = -1

11 3 1 3 1 0O
A"l = o (1/-1) 6 1 1 - l2 01 +2 [0
-2 =1 0 0«1 1 0
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11 1
- 2 33
-2 3 =2

B, Description of the Modifled RBingham Method

One of the principal differences between standard
elimination procedures used for computing the Iinverse of a
matrix and the Bingham Method is that the powers of the matrix
are compubted 1ln the Bingham Method., This poses gulte a
storage problem if the punch card method 18 used, It poses
quite a mesmory storage problem if electroniec methods are
used, This problem of storsge becomes increasingly more acute
83 n Increases in magnitude., Por this reason, 1t seems
necessary to modify the Bingham Method in order to conserve
the spsce avallsble as a memory. A modification which
reduces the storsge space reguired during any partlculer
Intervel of time is therefore presented here.

If the 1nieraa of the matrix A exists, it is given by
the following: |

A°l = (<1/an)(AR"1 4+ 23A0"2 4 @ AD=3 + cos 4 apy I).
Multiylying by &4, one obtains | |

auﬁ*l = o (AP"d 4 5 AD=2 4 a AD™3 4 sss 4 gp.y I).

Also

&nAnl + Bpay I = A {Anna + ﬁa&mmB + Y2 4 Bpag 1) .



lN,@f

Now let
By = AR"2 4 9,403 & eue 4 8., I,
or
By = 8neg I = A (AD"3 4 agan~l + vee 4 ay_s I).
Let
By = A3 4 6 AP M 4 vee 4 aple I,
or in general,
(34) By = AP"1"1 4 g An-1-2 4iiip m , 0 T, 1=1,2,000,ne1
if a, = 1 and A° = I,
The recurrence formula which enables one to compute
the By is ‘
(3.5) Biwg = ABy * 8p.y I.
The inverse of the matrix A 1a now computed by the
formula |
(3.6) Al = (-1/8n)(ABy + #pey I) .
The rule for inverting matrices by the modified Bingham
Method i1s summarized as follows:
1, Compute sy by formula (3.2).
2., Compute &3 by formule {3.3).
3. Compute Bpeg = A + 8,1,
Lo Gompute A%,
5. Compute sy by formule (3.2) and a, by
formula (3.3),
6. Compute By.s by recurrence formula (3.5).

7. Gompute A®, sg, ag and Bp., 1n this order
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and continue this procedure until B, and
ay have been computed, Then compute A™:
ﬁy formula (3.6).

This means that in the memory storsge, one must keep all
the éompu@sd a3 and 84, A, the current power of A and the
current Bp.ye. This cuts the maximum amount of storage space
required at any particular time by sbout the factor n/3., For
example, 1f n = 100, this would mean thet only esbout 1/33 of
the atoraga‘spaae regquired by the Bingham Method is required
for this modified method.

The following example will i1llustrate the use of the
Modifled Bingham Method for inverting metrices,

310
A= 2 01
0«1 1
8y = Lt 8y = <l
«<1 1 0
Bg = I By = Al + a,1 = a-.b,i
0 «1 =3
11 3 1
A® = 6 1 1
w2 w1l 0

83”13 ﬁn“g
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39
A% = 5
-1
ss = 43 By = =1
31 0| -1 1 0 (2 0 ©
it=a1ile 0 1 2 1) +lo 2 o
0«1 1 0 «1 =3 0 0 2
q..},;l‘l 2 o ol
= (-2 1-3] + [0 2 o
w2 3. 0 0 2
11 1
ﬂwa 3*3

=2 3 -2
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IV, PBEUDO-OPERATIONS FOR MATRICES
A, Definitions and Some Properties of Pseudo~Operations

for ¥atrices,

Since powers of the metrix 4 are needed to compute the
inverse of A, the errors involved in cbtaining these powers
are studied. Unless otherwise stated, digltal matrices are
the type referred to in the discussion, A metrix is said
to be a diglital matrix if its coefficlents ere digltal
numbers, Digital‘ﬁatriaaa ere designated by 4, B, ¢, P, and
so lorth,

To datarmine“tha calculated powers of a matrix, pseudo~
maltiplicetion éf matrices must be defined., The pseudo~
product of a digital matrix A by a digital matrix B has
coefficlents ¢j4 obtelned by the relationship

e13 nggl Kikx Kkj .

The right member of this eguation can be obtained in several
ways, If two digital numbers sre exsctly multiplled, the
result is a 2a~place number. Since subsequent operations
may use these numbers, the last awpiaaaa are ususlly dise
carded and the remaining s-places rounded-off as described
previously. On some sutomatlic machines, these digits

"apill off" to the right as the addends, meking up the

product, are computed, In other words, each of the
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pseudo-products ayp X ij is obteined as sn s~-place number
and the sum of these n diglitsl numbers is then computed, If
the round-off érrara for each of these products were a
maximum value and each of the same elign, then excessive errors
due to the round~off would occur, In order to improve the
estimate of the round-off error, it is assumed throughout

this thesis, unless otherwise stated, that the cyj are
computed by a method called double precisicon multiplication.

A description of thls procedure follows.

In determining G4 4» first form the true Zs-place
products 81y X by (k=l,*+v,n), then form their sum correctly
to aawﬁlaaaa and finally round-off this sum to s places, In
genersal

‘gl By X ‘5 ZPL Ty 'ﬁkji s p-8/2

if double precision 18 used and

n
| By X By, = a,, 5 .| < np~8/2
2, X By ;;1 1% Byyl /

if the pseudoc lnner product were obtained by ordinary pre«
cision multiplication., This result is given by J. Von
Neumann and H. H, Goldstine (1), This shows & definite
advantage for the double precision method. However, one
should keep in mind that it ls sometimes mueh more difficult
to perform double preclsion multipliecation,

If two digitel matrices A and B are multiplied together
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gccording to the laws of pseudo~multiplication and double
precision multiplieation is utilized, the pseudo-product
is denoted by AX B. The resulting matrix may not be a
digital matrix, If B = A, then the pseudo-product is
denoted by Ax A or A®, the latter being read the pseudo
A squared, the computed square of the digital metrix A,
the eampﬁteﬂ A squared or generally in this thesis as A
squared bar.

It is worthwhile to note that AX (B XC) and (A X B)XC
are generally not equel., Neither are A X (B + C) and A XB+AXC
generally equal but a very importaent case where the dls-
tributivg law holds for pseudo-multiplication of matrices
is given in the following theorem. |

THEOREM 2., Regardless of whether the symbol x refers
to ordinary or double precision multiplication,

AX{I +B) = A + AXB,

Proof. AX{(I + B) = A(I + B) + G where G is the error
matrix contributed to only by the round-off of AB, Theree
fore the right hand member can be writtaﬁ 8s A + AB + ¢
= A + AXB, This completes the proof.

B. Left end Right Pseudo~Multiplication

If the multiplication of two matrices could be per-
formed exactly then whether one computed Al by left
multiplieation, right multiplicetion or by squaring AL/ 2



if 1 is even, the results would be the same since matrices
are associative with respect to multiplication if exsct
multiplication 18 performed, For exampls, if A* 1s computed
by multiplying A times A®, A® times A or by squaring A®

the results are the seme. Since, however, the powers of

the matrices have thelr coefficlents rounded-off, 1t is
necessary to study the possible ways of computing Ai, In
this thesls only the posaibilitles of left and right
mnltipliaatian are considered,

DEFINITION 1. The computed ibh power of the matrix A
obtained by leflt multiplication, K% s 1a computed by the
formule

Eh = A x (A<(Ax(Axeven(Ax(AxA))ees)))
the right member emntaininé i factors.

DEFINITION 2, The computed 1th power of the matrix A
obtained by right multiplication, Ki , 1s computed by the
formula

Ié = (...({{AxA)xg)xg)x.».xa)g&
the right member containing 1 factors.

DEFINITION 3. The aymbol ({s,b,c)), ealled pseudo=~
gssoclator, 18 equal to ax{bxe) ~« {(axblxe .

DEFINITION L. The symbol [@,Q] ,c8lled pseudo-commutsator,
is equal to axb - bxa, |

DEFINITION 5., The symbol (a,ﬁ), called commutator, is

equal to ab - ba,
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The commutator is zero in & commutative algebra.

Since A% A 1s obtalned by exactly squaring and then
rounding-off the result,

AwA = A% 4+ E,

where E, 1s the error matrix dus to rounding-off the exact
product., In this thesis, E; represents the error matrix
due to round«off occurring when left multiplication 1s used,
end F3 refers to the error matrix obtained when right

multiplication is used. Using this notation, one obtains

Ax(A%A) = A(ARA) + Ep = A® + AE, + Eq
and

(A% AMA = (AXA)A + Fp = A® + EjA + Fy.

In order to study some of the properties of left aend right
pseudo-multiplication, some of the properties of pseudo=
assvcistors and psaud@%commutatara ere developed, The pseudoe-
associator {({(a,b,ec)) 1# studled first., It is assumed thet
a,b, and ¢ are from thé field of real numbers. If all
possible permutations of the letters are taken and these
are added together, thé result is zero,

That is,
({a,b,c)) + ({a,e,b)) + ((b,a,e)) + ((b,c,a)) + ({c,a,b))

+ ({c,b,8)) = 0O,
iIf e =8,

{((a,b,c)) = ax({bra) -« (axb)ka = 0,
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Also

((a,8,b)) = axf@axb) -~ {(axaldb
which 18 generally not zero., Nelther is ((b,2,a)) generally
equal to gero but it is of interest to note that

({a,a,b)) = ~((b,e,a}).
If b = ¢ = a, then the associator becomes ((a,a,a)) which is
obviously zero, Since ({(a,2,8)) = Kg - 82 and this 1s zero,
one can show by methematical induction thet 3% - ag = 0,
for all positive integral valuea of k.

Matricea are considered now, It is shown here how

Kﬁ - K% can be written in terms of the assoclators, For
insteance

B - Y = ((A,4,7%) + ((1°,4,4)),
and

K- Ep = ((A,A0,7])) + ((KR,4,4)) + ((B2,A,F%)),
In general, if 1 is odd
T - B = (AT ¢ ((RE™,4,4)) + ((R°,4,K37%))
+ ((RF7%0,5%)) + ((KRA,EE79)) + ((BR™%,4,K%))

bo v e s (G g g0 ey



If 1 13 even
B - KR o= ((a,A,F27%)) + ((BE™,a,4)) + ((R*,0,K17°%))
+ ((EE7°,0,8%)) + ((BR,A,KE7*)) + ((B3™*,A,E0)
boe e s (EYPLAEY ) ¢ (RY2 0,32y

Thus one sees that the differsnce between left and right
multiplication can be expressed as the sum of sppropriate
associators, However, since this does not give a measure
of the size of the difference between the two methods of
calculating powers of A, a different apprbaah is tried to
ascertain if there is any preference of one method over
the other.

Since X} = K] there is no preference of left multipli-
cation over righﬁ or vice-versa in determining the pseudow
square of the matrix A. Now higher computed powers of the

metrix A are considered., One ¢an write

AXE® - 4% = AxE® - a(E* - By)
where a2ll E4 have coefficients whish are numerically less
than B8~8/2, Using the maximum coefficlent norm as @
measure of the magnitude of“zg - A‘, the following result
is obteined:

‘MG, - A%) 5 pT%/2 + np™®/2 = g"%/2 (1 + n)

where @HKZ - A®) means the maximum coefficient norm, If
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right multiplication is used, the result
T A - A® =T A - (K® - Fo)a

18 obtained., All Py have coefficilents which are numericslly
less than p~%/2., Teking the meximum coefficlent norm, one
obtains

M(KR - A®) < p~8/2 + n p~8/2 = p=8/2 (1 + n) .
Thus 1t 18 seen that there is no preference for one method
over another 1f the norm M(A) 1s used &3 the messure of
error, This doea not mean that the results are identical
in both cases, but that, in genersl, the norm M(A) cannot
measure such a difference, To 1llustrate this, the following

examples are cited:

Example l.
03 .7 Wb
A = -ad .’.} "‘18
9 8
«31 .81 .72
A‘ = .58 aéﬁ ﬁ,M
«20 1,03 1.01
o3 W8 .7
P = t‘é 0,7 3

«2 1.0 1.0
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579 1.117 Bl
«330 +926 | «792
763 1,360 ‘10035

6 1,1 L8
s .
KL = ( 03 ,09 08

Ad =

84 1.4 1.0

«6 1.1 38
. 3 . 9 .8
8 1.3 1.0

0021 “p@l? -~
Kg - A&” “SQ3Q “ugaé *toa& -
037 +.040" ~,005

ey

.021 ey @1? ”Qm
Eﬁ - A = *tﬁ3@ - 026 *uﬂﬂﬁ
‘937 *a@é@ ”1395

In this example,
M(A] - A®) = ,ol}y
and
M(Xg - A%) = ,060.
This 1llustrates the case where left multiplication is
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preferred to right multiplication if the norm M(A) is the
megsure used,
Example 2,
8 0 .9
o 1.0-07
3 .8 .6

A =

W91 T2 1.26
QSl »uh *076
o4 1.28 .07

Qg ’? l’is
Qg th "'oa
7 1.3 W1

035& ~.168 “&3“5
1«125 1;336 “'.188

1.4 1.7 1.1

th - o2 ”t&‘
lwl 1*3 “na ]

1 1.7 1.1
n3 ~.2 “'3 f
1»01 1.2} *.2

(
|
|
|
|
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In this example,

ME] - A®) = ,095
and |

M(ER - A%) = .06,
so, for this particular cese, right multiplication 1s
preferred over left multiplicatlion if the maximum coef-
ficlent norm 13 uaed &s a m@aaure‘of tﬁe error, In genersal,

it can be shown that

M(Kg - Ak) = g=8/2 [1 +n+n® 40y nk'a]-
Also 1t c¢an be shown that

M{K% - Ak) = g=8/2 [1 +n+n® 4+ nk"2]¢
Thus, 1f the meximum coefficlent norm is used as s measure
of the size of the error matrices, one cannot formulate a
preference for either right or left multiplication. In any
particular caese, however, one method of multiplication
might be preferred over the other method. This was
illustrated above for the three by three case. Since one
cannot express & preference for elther method, left

multiplication is used for most cases that follows,
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Ve SYMMETRIC PROPEBRTIES

3ince there seems to be no particulsr preference for the
order of multiplication, the number of operationa required to
obtain the inverse of & matrix is dlscussed now,
Teble 1

Nuwber of Operations Necessary to Compute A=l
by the Bingham Method

Types of Celculations

Operatlon
. Additions Multiplications Divisions
Calculate AKX | .
k=1,2,3,4**,nel n®(n-1)® n®(n-2)
Calculste AD n{n-l1) ns
Calculate sy
1=1,2,3,e¢*,n ni{n«l)
Calculate oy
i=1,2,v+*,n (n/2){n=1) {n/2)}(n-1) nel
Celculate A™L ni{nel) n® {ne2) ne

+{nfen){n-2)

. ne o) 8
Total n“~n”*§§” - %” ﬂ‘*ﬂ““%f ‘%’ n®+n-1
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Table &

Number of Operations Necessary to Compute A=l

by the Modified Bingham Mdthod,

Types of Calculetions

Operations
Additions Multiplications Divisions
Calculate AKX n®(n-l ) n%(n-2)
Caleculate AD n{n=1) ne
Celeulate 84 n(n«1)
Calculate a4 n{n«1})/2 n{n-1)/2 n=1
1=1,2,+0¢,n
Calculate By (nt)[n+n“(n~1]*n {(n=3)n®
1”1.,2'.“ ,1’1*3
Caloulate A™1 n+n® (n«l1) n® n®

Totrl

B
3“‘*hna+‘ég~m %- n® el

Since the number of operstions in determining the

inverse of a matrix 1s more using the Binghem or modifled

Bingham Method than that for most of the other elimination

methods, techniques to eliminate some of these operations
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for certain classes of matrices will now be investigated.
Tebles 1 and & respectively glve the numbers of operations
that are required to compute A™! by the Bingham and modifled
Binghem Methods., The numbers given in these two tables do
not take into considerstion the types of matrices that one
might be inverting. For exemple, 1f one is required to invert
a triangulsr matrix, the number of operations required is
considerably reduced over that given in the tebles ss 1s
also the case for symmetric and positive definite matrices.
The case for symmetric matrices is donslidered at this time,
A few theorems concerning symmetric matrices are given.
THEOREM 3. If A is 8 symmetriec metrix, then A,
for all k, is symmetric if A¥ denotes the exact kth power
of the metrix A, This of course is well-known.
Proof. 1If aﬁa is the coefficlent of A¥ in the 1th

row and 3*” eolumn, then

4

813 ® ZT"' ZT Bioy BoyopPogos " B0y
which 18 equal to

2 o0y Bk Bopoyay *00 Byl
gince A 1is aymmetrie and its coefficlents satiafy the
commutative law of multiplication., The lest expression
k

however, ls equal to aji by definition., This completes

the proof that AE 19 symmetric for all k, In the actusl

calculetion of Ak, however, 1t is generally not practical
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to compute the coefficlents exactly.

The Question arises, then, whether Kk is a symmetric
matrix for all velues of k. In general, KX is not symmetric.
The following theorems sare noted, however,

THEOREM i, AX A is a symmetric matrix if A is s
symmetric metrix,

Proof. Let AxA = (8}4). Then

g -8
w:%%i By 8y = %;i 8 ypn By = By o The second term
is equal to the third term due to the commutivity of pseudo=-
products of numbers and the symmetric properties of the
matrix A, The last equality is true by definition,

THEOREM 5, AxB is a symmetric metrix if AB is
8 symmetric matrix and if double precision multiplication
is used to determine A» B,

Proof. Since AB is a symmetric matrix,

; B1uPyy = 2;1 8 1kPxy
Now, remembering that §§£ aiﬁ‘hkj is the same, before round-

off is performed, as %zi 84y bkj since double precision

maltiplication is used and y xb q 18 the seme before
k=1
round-off as Zf' 8 jPy1, one readily sees that fo aiﬁ‘bkj
k=)l k=1

0 ,
a %;1ajk‘bk1 have been rounded-off to the seme value. This



3.

proves the theorem.

Although it can be stated thet generally A¥ is not
symmetric even though A is aymﬁatric, 1t would be sdvantageous
if the symmetric properties of Ak were also true in XX s In
the first place, the amount of computation would be grsatly
reduced if only the upper triangular matrix coefficlents and
the disgonal coefficients had to be computed and the lower
triangular coefficlents obtained by & flipeover technique,

If such & technique is used, does it affect the accuracy of
A"l? As a partisl answer to this question, the errors due

to the flipeover technique in obteining the By are sbtudied.
Equation (3.l4) states that

Bﬁ. £ An»i-l + alan""ima dered Bp_ iy 1, im}_’z’tqn’n“l

and equation (3.5) is the recurrence formula
Bi.y = ABy + 8p.4 1.
DEFINITION 6, The computed By, written Bj, are
determined by means of the recurrence formule
Byuy = AXBy ¢ 8p.y I
whare
Bpey = Bp.y = I,
DEFINITION 7. If the By are computed by means of the

flip=over technique, the resulting matrix is referred to



i = (513 ) whers
\ Y
§1 By ’Bg + an“‘i“lfi'j it < §.
»
i
by = L

By 1> 5.
The recurrence formuls

¥ % -
Biea = 4By + Bp.y I
is used to compute the B, Using equetion (3.5) and the
definitions above, one obtalns

”
En..; & ﬁnw;, = I.

¥*
Bpneg = 'ﬁn»ﬂ
and in general
* ¥ —
%ma = Axﬁnng 4 Ry I.
The a3 1s assumed to be equal to the exsct a3, This means
that
*® %
Bo-s = Bnop = Ax Bnag ~ ABn.g = S
where &: is a matrix whose elements are numericelly less

than the round-off error 3*3/2* In general

* ”* »*
By =AX ‘gnui - Aﬁn-i .
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Furthermore, if the A3 are assumed to be exact, then
Bi - By = AxBiky - ABiig
= A "Ei;a - A {_ﬁisz - Speies = ASn-i.s

- LY B QAn'-i”‘ ga*]
Ir 4 = 1, this reduces to
By = By = Speg + ASpeg + ¢00 + A" 87,
3ince
,1* -~ ”

* L]
T - Al = (<1/8p)(Ax B, - AB,)
o , Nes
= (”l/ﬁh){an»& + ASp.g + v+ + ATTY 85)
Using the same technique, it can be shown that
A=l = A<l = (-1/83)(Sn.s + ASp.g + =o+ + A®"® 5;)
where the 34 have coelficlents ﬁhma« numericel values sare
less than or equal to p~%/2, In both cases
i 1 -8 n-s
ME-T e A1) < 2872 fLaw(a)wmia®) +eees M(a2"0)]
2|ax|
and
. a =8
M(K’“l - &*l) 4 &;—» [l*ﬁ(ﬁ)#M{Aﬂ) +tno-§M{An”u)] .
2‘&3&‘
. ﬂl* 1
Therefore, slthough the error matrices (A™* - A™:) and
(A=} - A=1l) may not have identical entries and the build
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up of such entries may be entirely different; nevertheless,
if one usges the maximum coefficient norm as a measure of

the error matrices then no difference can be detected in

the two techniques, This does not mean that In all cases
that one method 18 preferred over another but from the

above considerations and slso considering that the amount

of multiplications required is almost cut in helf, it

seems desirable to use the flipwover technique to compute
Bis A similar argument holds for computing the Ak,
Therefore, in computing the powers of A and the By the flip-

over technique is used in case A is & symmetric matrix.'
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VI. SCALING OPEBATIONS

A, Exect Considerations

Due to the limlted capacity of computing machines
it is necesazary to retain only & fixed number of digits
to meke subsequent celculatlions a practical operation.
For exemple, 1f the machine capacity is 6 digits and ir
632,145 is multiplied times 732,148, the exact result
is &62,823,697,&6@, This number is rounded-off to
L62,82l,000,000. Thus the magnitude of the error due
to round-off is 302,540. If 6.32145 is multiplied times
7.32148, the magnitude of the error due to round-off is
only .00003025, One sees then that the magnitude of the
error is not a good messure of the sccurscy. It ls pro-
posed, therefore, that one round-off in the sth decimal
place according to the method as prescribed in the intro-
duction, If it were required that & number be rounded-
off in the 61 Gecimal place and the machine capaclty
were § diglts, then one could sllow numbers whose magnitude
did not exceed 99.999999. One should strive to use the
full capacity of the machine and still have & consistent
meesure of the error due to roumd-off. If one rounds-off
in say the 8%1 decimal place and numbers ere written to
the base 10, then the maximum magnitude of the error is
10°8/2 .  In genersl, if numbers sre rounded-off in the

sth decimal place and the base of the number system is B8,



then the maximum errer due to round-off is p~%/2, It is
important, therefore, that one restrict the number of digits
to the left of the decimal point if numbers are roundede-off
in a certain decimsl position since ﬁha‘miahina capacity is
limited as to the number of diglts it cen mansge. All
numbers, therefore, are scaled sc that their absolute value
1s less than ons and the velue chosen for s 1s governed by
the number of digits the mschine can handle.

In the case of matrices, it 1s not only important that
the coefficlents are scaled such thet their absclube value is
less than or equel to onﬁ;ibut alse that the coefficlents of
carbain powers of the matrix are numerically less then or
equal to one in absolute velue, This csn be done by intro-
ducing eppropriate scale f#atora ag they are needed; but in
this thesis scale fectors will be introduced at the beginning

so that all If

x = 1,2,***n will have coefficients whose
absolute values are less than or equal to one,

Pirst, 1t 1s deaired that all Egj of the matrix A
satlisfy the inequality

where the k 1s selectsd in such & way that for a2ll relevant
powers of A the coefficients are nwnerically less than or

equal to one. One easlly obtains the following inequalities:

la3;l < n (207%) laf] < n® (10°3K) ,
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i
|a

1yl s o™t e .

Now let k be selected so that (nP=}) 10-PX 15 numerically
less than or equal to one for h = 1l,*+»,n., After asome
simplification, one obﬁaina that k must satisfy the
inequelity
{(6.1) k2 (1 -1/n) logy ghe

Second, let k be selected in such & way that all
coefficients of AP for h greater than some prescribed m
are zero after round~off, This is equivalent to saying
thet the absolute values of the coefficients are less
than p"%/2. If k is selected in this manner, its value
is governed by the inequallty )
(6.2) ¥>» {1l - lfh}laglﬁn + (s 16@169)/h + loglaa/h

h > m,

Exemple, If one uses equation (6,1) with n = 10, then
k> 1., This means that 1f a ten by ten matrix is considered
then each of the coefficlents must be numerically less than
or equal to .1 in order that higher powers have coeffliclents
less than or equal toe unity in sbsolute velue, This is very
restrictive, however, and in the long run the k given by
equation (6.,1) could be selected as 2 smaller number and yet
the coefficlents of the powers of A would not exceed unity.
This leads one to try a statistical approach to the problem,
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Such a dlscussion is glven in section B of this chapter,
B, S8tatlatical Considerations

In the previous section on aealing operations, it was
shown thet if eppropriste scale factors are introduced, one
can be certaln thet pseudo-~powers of the matrix A are digitsl
matrices with coefficlents numerically less than or equsl
to one, These scale factors however are too restrictive in
general and it 1s possible to choose smaller scale fectors
for a large number of ceses, The reason for desiring to
select the optimal scale fectors iz in order that & maximum
number of digits in each coefficlent be retained, For

example, if the digital number .333 is wultiplied by the scale

factor of f% the result is ,033, by ;%3 the result is ,003,
snd by .1 the result is ,000, Thus, as the scale factors
1000

change the number of none-zero retained digits may vary.
3ince one should retain as many digits a2s possible, it is
exceedingly important that scale factors be selected
appropristely.

In any p#rtieular case, the probeblility is of course,
either zero or one that the selected scale factor is adequate
to produce a metrix whose pseudo~powers are digitel matrices,
Some ecalculating machines are automstleslly shut off when
the machine capacity ls exceeded, A machine could be wired

to shut off as soon as the entry is numerically grester than
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or equal to one, Thus & machine could be wired to shut off
as soon as the coefficlents of the pseudo~powers of the
matrix exceed one in absolute value., If this oeccurs,
subsequent caleulationa would have té be programmad and
some of the previous cslculstions recomputed, This 1s
costly since machine time is valuable, One is confronted,
therefore, with two slternatives in what to do with scale
factors,

First, one can select & scale factor sccording to the
discussion In the preceding sectlon and say with certsinty
that all pseudow~powers are digitel metrices., An argument
egainst using this scale factor is that valuable digits
may be discarded, Second, 1f one selects the scale factor
by probabilistice methods, one may select a smeller scale
factor but then not be certalin that pssudo-powers are
digital matrices, If one meskes certeain sssumptions about
1) the distribution from which the coefficlents are taken
and 2) the order of the metrix, then a stetement can be
made ebout the probablility that the pseudo-powers are
digital matrices., Since this probability 1is & measure of
whether the machine willl stop during the calculation process,
it can be used to determine whether the scale factor is
acceptable., Por example, it may be that one is willing to
accept 8 given scele factor if in the long run the machine

will perform all of the caleculations 95 per cent of the
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time without shut off being necessary. To decide between the
two alternatives, it is necessary to study the characteristics
of the sum of n products subject to certain restrictions on
the varisbles as well as assumptions on the ralevant‘ﬁiaw
tributions,

In order thet & relevant probabilistic statement can be
made about the sum of n products, some statistlcal properties
are derived. It is assumed thet each of the factors contained
 in the products is an independent rendom vsrisble from a
uniform distribution,

Briefly, if x4y and y4 are distributed uniformly from
~k to k, what is P({%%l x3¥4] £ 1)7 It should be noted that
if k is less than 1/\{n, the probability is unity. If n is
equal to one and k is greater than one, then the P{|xqysl=< 1)
is equal to (1 + 1n k®)/k® ., For exemple, If k 1s equal to
e, the P(lx3yyy] £ 1) is equal to 0.406. If k 1s equal to
e®?, the P{|xyy3! 5 1) is equal ﬁe 0.023,

Let Y ”%gi Xy, where X4y is the product of two

independent random variables taken from the uniform dig-
tribution lying in the interval (<k,k)., Then one is
interested in finding the cumulative distribution of Y.
The expected values of X, E(x!), are computed first. One

has

k
(6.3) E(Xi) ﬂﬁkﬁX;X; f(x“x‘) dx;ing‘
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The distribution function, £(x4), 1s equal to g; and
the joint density function for x, and xu, [(xyx,), is
equal ba(ﬁ;)‘. BEquation (6.3) sen be written as

k
E{x}) w{éa ( xi dx ] *

2k J_y
"

| —— if 1 1ia even,
1+1]

= O if 1 ia odd.

Next, the E(Y¥1) are computed. Since the X3 are independent,
E{¥) = nBE(X} = O.
Al so
E(Y®) = nE(X®) + n(n-1) E(X)*
= k*/9 .

This value 13 importent since it is the varlsnce of ¥, If

1 1s an odd integer, E(Y) is zero since sll terms involve
the expected veslues of odd powers of X and each of these are

zeroc. In genersl,

k
(6.4) E(Y*1) = .E.L%L!.L. : n(nﬁi}“v(nngmﬁ) T(l [g(xam]ﬁm
o | : m=
T (apt )Pm gyt

m=l m=]

k
where Z:ﬁ apBy 18 equal to 21 and all possible selections of
=

0y and By are made. The value of k 18 determined by the

numbey of different selectlionas one mekes for ay and ﬁk .
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Using equation {6.l;) the first three non-zero values
for E(YY) are
E(Y®) = nk*/9,
E(Y*) = nk®/25 + 3n(n-1) k°/81
and
E(Y°) = nk*®* /49 + n(n-1)x*®/15 + Sn(n-1)(n-2)k*®/2)3.
Now it 1s assumed that the cumulative density function
F(Y) can be represented by 2 Gram-Charlier series and a
justification is given later.  Suppose £(Y) is the density
function and suppose its mean and verisnce sre MK and o #,
If one lets ¥ = (Y =~ »)/s , then Y has zerc mean end unit
variance. The Gram-Charlier series is a series in the
derivatives of the normal distribution of Y. 1Ir niiﬁ)
represents the 10 derivative of the standsrd normel density
n{¥,0,1) then in general
ny(¥) = By (TIng(¥),
where Hi(¥) 1s the 1®R Hermite polynomial snd

. | .1/2 1®
ng(¥) = -2~ o / .
\EZ |
The first seven Hermite polynomisls aret
B, (y) = 1,
Hi(y) = - ¥,

ﬂﬂ(y) e y' - l,
Hal{y) = - y® + 3y,
Ho(y) = 3* =~ 63% + 3,
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H(y) = ~y° + 10y® - 15 y,
Ho(y) = 3 - 15y* + 455° - 15,
The Gram-Charlier hypothesis (2) assumes that under
rather general conditions f(Y) may be put in the form

(6.5) £(¥) = ng(¥) + %namcf) v 20 (H(3) 4 oo

where

\§ = o °
ey = (~1)j HylY) £(¥) a ¥,
It can be shown that

ey = 1,

0;“@;”0’

and

e, = Moot <15 my/ct + 30,
In addition, the cumulative distribution funetion F(Y) can

be written
; " = Y 2 (3) V! e (u} LEXY
(6.6) F(Y) = $(Y) + .5?. 77 (¥) + m‘ () +

where ¥ 1
. -3 x°
$(Y) = f — dx

Next, the c¢j are computed and are expressed as follows

in terms of the number of products, ni



6o = 1,
ey = Cq * Ogm+y = O (m =1,2,""*),
o= b,
25n
‘ 912
¢ - SN r
6 ausnﬁ kit

Therefore, using equation (6.6), the Gram~Charlier

series for the cumilative distributlon is

W
[V

-tR s
Fylu) = | 1 e $/2 g6+ 2| (m) 2 e~t"/2 g¢
“oo \Zm 100n 7~ F3

(6.7)

u Y
- 23 -j. (H,) 1ot /2 dt + v
15(245n®) J-= 2
Since ¥ = (Y =pm)/o, m= 0 and o2 = nk*/9, then ¥ = 3¥/k®{m.
Therefore,
= p(3— = _wNE
P(Y 5 u) P{l@m“‘“) P(Y = 3 ) .

Now since one 1s to compute the probability that the
numerical sum of the n products 1s less than or equsl to
one, the quantity P(]Y] < 1) is to be computed. For example,
if k=1 andn =1, it is certain that Y is numerically less
than or equal to one, If one computes P{|Y| < 1) by
equation (6.7), the result is 0.996. This value compares
favorably with the exect probability.

If n = 100, then in order to be assured that the square

of & matrix have coefficlents numericslly less then one,
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each coefficlent of the originel matrix must be less than
0.1 in absolute value, If one insists that the coefficlents
be this smell, then this is a very rigid restriction indeed.
In general, the coefficients cen be much larger and still
the square of the matrix be a digital metrix., It 1s assumed
for the moment thet the three terms of the right member of
equetion (6.7) actuslly represent the cumulative distribution
of Y. If this is true, then one finds that if the coel-
ficients of the original matrix sre numerically less than
0.4, then the probability that the square of the matrix be
a digital matrix is 0.,95. Thus it is seen that if the
firat three terms of equation (6.7) actually represent the
cumulative distribution of ¥, that the use of probabilistic
considerations for determining scele factors is superior to
using astrict considerations,

8ince the first three terms of the (Gram-Charlier series
are the same as the corresponding terms of the asymptotie
Bdgeworth series, the theory of the Hdgeworth series is
appealed to, since 1# is apparently of wider scope,

If one uses the ssme notation as Cramer [;2) p.59] ’

then for the cumulative distribution under consideration
In k® « 1n x

Vi{x) = k¥ » x» 0,
2x®
mlfnka = in (-x) -X® <x <0,
2x®

= 0 -x® > x = ¥*,
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3ince the cumulative distribution satisfies the conditlions

of Theorem 2 given in Cramer [(23 p.S@] then by Cremer (3) it
can be written as an ssymptotic expansion in powers of

n“l/a with & remsinder term of the same order of megnitude

as the first term neglected., Remember that n is the order

of the matrix. ¥Xow if the order of the matrix is allowed

to increase without limit, then the difference between the
distribution function and the partial sum of a fixed number
of terms of the series can be made arbitrarily small. But

no means of evaluating the remainder is available,

Row in practice, one wants to use a fixed number of
terms in the series-~usually not more than three or four-
and also the order of the metrix is fixed., The two facts
are not compatible with the asymptotic nature of the Fdge~
worth series and in ganaral then the accuracy of the
probabilistic ststewent is not known.

In defense, however, of the use of the first three
terma of the series, the writer wishes to remind the reader
that for any particuler matrix, the prcobabillity is either
one cr zero that the scele factor accomplishes its purpose,
This discussion 18 not to be usad to sscertain the exact
probability; but it 1s to be used only as a means of glving
the programwer aome ldea 83 to what percent of the time the
machines shut off automatically. Automstic shut off occuras

when the capsacity of the machine is exceeded,



It should be noted thet the discussion in this sectlon
pertains to the square of a matrix, Higher powers are more
difficult end the writer professes ignorance of the results
for higher powers, unless rash {(or rasher}}) assumptions are

made on the coefflicients of powers of A,
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VII, COMPARISON OF EXACT SOLUTIONS AND P3EUDO-30OLUTIONS
OF A LINEAR EQUATION

A, Discussion of Some of the Problems

1r ona,eomputaa the inverse of a matrix, the question
arises as to the accurscy of the result. In order to test
the accurauy‘or the computed inverse, one can pseudo=
multiply the original matrix times the computed inverse
using ordinary or double precision multiplicetion., If this
matrix pseudo~product is the identity metrix, then the
computed inverse is usually considered to be satisfactory.
If the pseudo~product is not the ldentity matrix, then the
computed inverse may or may not be of suffisclent accuracy.
By the very nature of the computational processes, the

coefficlents of the computed inverse are calculated to
s-places, This mesns that unless the exect inverse is a
digitel metrix that one cannot obtain 1t by the usual
machine calculations, Therefore, since it is generally
impossible to obtaln the exact inverse, the following
gquestlions arises

1. Does the computed inverase satisfy the

equation X*ix A = I%
2. Does the exact inverse satiafy the
equation A™1x A = I?
3. 16T < a =1, 18T =271 ¢
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L. 1f ik 2= I, are the roundede-off
coefficients of A"} equal to the coeffilcients
of Tt ¢

5. If double precision multiplication is
used, what 1s the effect upon pseudo-
checking the computed inverse?

6. What is the effect of rounding-off the
exact solutlion and then pseudo~checking
this rounded~off solution?

The answers to these questions are not complete. In
order to obtein & partiel answer, the individual linear
equations of the linear system
(7.1) Zfi 3&3 Xy = by 1=1,2,"**",n

J=1
are analyzed., The Kij, and by (ﬁad an integer) are digital
numbers. Throughout this chapter, all Kij are assumed to

be different from zero.

B, Definitions and Some Properties of

Pgseudo-~Solutions

For the [lrst pert of this discussion one of the n
equations, ssy the ith one, is considered,
DEFINITION 8., A set {xa} which exactly satisfies

gz% Qijxj = by for a fixed {
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is said to be an exact solution. Any point on the hyperplane
is an exact solution,
DEFINITION 9. Any set {xp(j,kj)} is said to be &

pseudo~solution 1if
% P

{7.2) 2 Byg*x (jnkj) = by,
J=1

where kj is as yet undefined,

Throughout this chapter, ordinary precision multiplication
is used unless specifically stated otherwise,

If one or more numbers of the set (x?(J.kJ)} also

satlsfy the condition
(7.3) 8q4% X?(Jskj) = ay4 XP(jukj) I=1,2,***,n

then xp{j,kd) i1a denoted by xpa(j,kj)«

It is obvious that there exist exact solutions to a
linear equetion, Any point on the hyperplane is an exact
solutlion, It should also be noted that the exsct solutions
are not necessarily pseudo~solutions of the equations, For
example,

Xy * Xg « Xg = ,1
has an exsct solution (.07,.07,.04), but this point 1s not
& pseudo~sclution since ,1 + ,1 - 0 f «1. Thus, one sees
that, although exaset sclutions exlist, an exsct solution may

not be a pseudoe~solution.
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The next question that arises 1s whether pseudo-
solutlons exist for & linear equation, The answer to this
question 1s in the affirmative. The following ergument is
surficient to show the existence of pseudo-golutions, Pick
n - 1 of the xF(J,kj} arbitrarily. ﬁaxt, rewrite equation
(7.2) as follows:

n=1 _ P N P, .

g;i IVLE {J,kj} + 8. x x (n,k,) = by
8ince the summation (meod an integer) in the preceding

equation is & digitel number, this equation can be written

where dy (mod en integer) is a digitel number, If this
equation 1s solved for xP{n,kn), one finds that xP(n,kn)

may lie anywhere in the open interwvel

Cﬂi-n g2, §1‘+-§:§‘)~
n

@in 284n Bin 283
Therefore, the existence of pseudowsolutions 1s established,
Next, the propertles or characteristics of pseudo~-solutions
and exact solutions are studied.
THECREM 6, The sets {xpc(j,kj)} are pseudo~solutions
whieh lie on the hyperplene of exact solutions.
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Proof. B8ince {xPG(J,kJ)} is e pseudo-solution,
> Tygx x0(3,ky) = by ;

i 13 s5 g ‘

but by equation (7.3)

J%. aﬂij X 196(33353} = jgl Ki,j 8%(5:1&3) = by .

The last equallty shows th&t‘(x?cfj,kj)} is en exasct solution.
This completes the proof,

THEOREM 7. The points {x?e(j,kj ﬁ-ars at the centers
of n«dimensional rectangular parellelepipeds, hereafter
referred to as n~topes, which contaln all the pseudow
solutions,

Proof. If, and only if, the xP(j.kJ) are selected so
that

xPC(1,ky) = B=8/28yy < xP(4,ky) < xPO(Y,ky) + p8/2Hy

is equation (7.2) satisfied. Since only such velues as those
that lie in the interwval indicated above satisfy equation
(7.2) then this means that there exlstas an n-tope with
center at {xyg(j,kj)} which contains pseudo~solutions,

The {x¥%(3,k;)} form a lattice of points. If one
conslders a particular exact solution of the linesr
equation or equivalently if one conalders a particular
point on the hyperplane, there is at least one-{x?a{j,kjj}
which is closest to the specified point. If there are
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several such points, then selsct one arbitrarily from those
thet are closest, Thie point is danignatad{jxyg(j,ﬂi} and
the n-tope with this point as 1ts center 1s called the
principal n~tope.

To recapitulate, {xj} is an exsect soclution, {xp(J,kj)}
is a pseudo-solution, {xPC(j,kJ)} is the center of an
n-tope whose interior pcints are paseudo=~solutions and
{?Pe(j.aj} is the center of the principal n~-tope.

The n-topes are ﬁ'”/lﬁ'ijl units on & side. To dis-
tingulsh between the centers of the n~topes and to show

thelr relative positions the following formula ia glvens
(7h)  =FOU, k) = 2F0(3,0) + 1yB=8/15, |
kj =0, 1, £ 2,'"

§=1,2,3,""",n
1 fized.
One should not infer from equation (7.l) that if the kj
are selected arbitrarlily thet this translates one from
the scenter of the principal netope to the center of another
n«tope, If
xF0(1,kg) = =PC(1,0) + wyp~?/[7, |
then

noo_ oy n o_ o w8 o
2 g = C(1,ky) = L " x(xF(3,0) + 1,87/ [5441).

By Theorem 1, the distributive law may be applied to the
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right member of the equation since 3;Jx xPC(3,0) has no

round«off error. Therefore, one obtainsg
‘ n
Y PC , - PC ' - -8 /1=
By 4% X k,) = B,4%X X o) + 8,5k YRR
Ji::l 1) (3, 3 ;;1 13 (3, ) ijl i3 3 g /l 13'

8ince the left member and the first term of the right member
of this eguation are both equal to bi; thlis means thet the
kj mast be melected so that

n - -
(7.5) % aij X kj/!‘nij‘ = 0.

The symbols used in xyﬁﬁj,kj) ere clarified now., The
P in the superscript denotes that a salutian is a pseudo~-
solution. The C in the superscript denotes that the point
is the center of one of the ne-topes., The ] refers to the
jth coordinate and the kJ's give the displacement from the
center of the principal n-~tope. Other properties of exact
and pseudo-solutions sre now cbnaidcro&.

THEOREM 8. fAn—éxaat solution of a linear equation
lies inaside the principsl n-tope if and only 1if
gzijx 3’»3””:& »
Proof. ‘If x4 lies inside the principal n-tope, then



by equation (7.2) and Theorem 7. Next if

ééi E&j x xj = by

and 1f one sets
xy = x70(4,0) + vy p78/2]T, ]
then one sees that this can be true only if
n - -
%;i agyx vy ﬁ”ﬁ/ziaij{ = 0,
This is true, however, only if ‘”3' is less than or equal to
ene., If this is true, however, the point lies inside the
prineipal n~tope, This completes the proof.

It has already been shown by means of en example thet
there are points on the hyperplane of exact sclutions that
are not pseudo~scluticneg. In order to give an snalytic
description of the eriterion for an exsct solution to be &
pseudo-solution the following analysia is given.

The general coordinste of any peoint on the hyperplane
can be written

xy = xFC(3,0) + kg p-8/|&; 4] + my p-8/2(5y,|
where the kj are integers which satisfy equastion (7.5)
and the my are any real numbers which satisfy the condltilon
that
(7.6) ;;fl my ayqlayl = o.



Equations (7.5) and (7.6) assure one that the point {xj}
1s on the hyperplane.

If the my are all numericslly less than one, the exact
solutlion obvliously lies inside one of the n~topes., If only
one of the my is numerically grester than one, then the
point is ocutside the n~tope and therefore 1s not a pseudo=
solution, Other cases, where more than one my are numericelly
greater than one, may or may not produce exsct solutions

which are not pseudo~solutions,

Gs Criterion for an BExsct Solution to he a

Paeudo-Solubtion

To get & better understanding of when an exsct solution
1s a pseudow~solution, the following definition and theorem
are glven.

DEFINITION 10, The symbol [xﬂm means the closeat
even: integer to x, If x is an odd integer, then the selection
of the closest even Iinteger is optional except in the
following slituation. If x is equal to an my which 1s an cdd
integer, then the closest even Iinteger 1s selescted, if
pogsible, s8c as to setlsfy the condition thet the exact
solution be & pseudo-solution,

This condition 1s given in the following theorem.

THEOREM 9, The exmct solution of a linear equation
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ig & pseudo-solutlon if and only if

= 7 |negative 811 B

(7.7) 2 |positive 1
'“13‘

E

where the my sre the same aanthag@ in equation (7.56).

Proof. The summation ;§£“§13 nj/fgiji is equel to
zero since x4 is an exset soclution. Let 3 equsl the
number of positive and r the number of negative numbsers
contained in’ the summation, The positive numbers are
designated by pi,Pas***,pg 2nd the negative ones by
Nyshgy,sre,nyp » Noxt, set

lpaf + 91 = ps

and
[!nst]g + bty = -ny .

This means that the g3 and tj are numerically less than one.

Now since
8

, r

FEE 2 n, = 0
g?; P ;1 7
one obtalns

8
+ Gg ~ n + ¢, = 0
LB g s 2 lnglge e -
But sinece it 1s glven that

8 T
L] n ﬂ{}
2P - g
and since g3 and tj are numerically less than one, then

this means that the exact solutlion 18 & pseudo-solution,
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To prove the only if part, one observes that since the

sxact solution 1s 2 pseudo-sclution that
xy = x'0(3,0) + ky B8/ Tyl + my pB/2T |
can be written
xy = xFC(4,0) + kg p=8/|a 4| + (2wy + ry)p=t/2]T,,l

where the ij are integers which satisfy equstion (7.5)
and the ry are resl numbers numericelly less than one.
The fact that the my cen be written as 2wy + rj is
equivelent to smying that

l, -

fad
 Hi

ya [poaitive Eﬁma/rﬁijl] g " Z[!mgmim 5
1]
This completes the proof,
To illustrate, the following examplea are clted.
Example 1, If
myagy /legal = 1.7,
maaye /legel = 3.2,
maeys /lagsl = 0.3
and
meag, /lagel = «5.2,
then

% mgaij /[au{ = Oy
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Since

[LﬂE¢‘hﬂE*[mﬂEw D&mﬂﬁ

this 1llustrates the case where the exsct sclution is a
pseudo-golution.
Example 2., If
myeyy /lagy] = 1.6,
metye /logel = 1.7,
maays /lajal = ~2.h

and
ma8yy/logel = =049,
then
m,8 By4] = O
£, mtag Mlaggl = o
S8ince

.8l + o7 # [-2l] o+ Qle0uol]

this i1llustrates the case where the exsct solution is not

a pseudowsolution,

D. Discussion of the Two, Three and Four

Dimensional Cases

Since the wvolumes and ratios of volumes of two and
higher dimensionel figures ars discussed 1n Section E of
this chapter, 1t is important that the effect upon the
volumes end ratios of the volumes be determined when certaln

transformations are applied to the evefflcients of the
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linear equation. The object 1s to bry to simplify the
coefficlents of the linesr equation and yet not change the
ratios of the wolumes, For example, 1t ia much more con-
venient to refer to a linear equation which hes all pesitive
coefricients except one., 3Since any linear equation cen be
changed to this form by means of an orthogonal transformeation
which deoes not affect volumes, all subsequent linear equations
discussed are of this form. Although thias is a big help,
further changes are desired.

To facilitate thess changes, volumes and ratios of
volumes are briefly discussed, As in Minkowski (L), for
example, the volume of an n dimensional convex body is
the n«fold integral‘/; dxys+esdxp, The volume of a convex
sub-region of this hady would be obtalned of course merely
by integrating over a different reglon, It can be readily
seen, therefore, that a gsubstitution xijw‘Eiliwnuld not
change the ratios of the volumes, but would iaplama each of
the coefficlents of the linear equation by plus or minus
- one. Iﬁ is aléo readily seen that 1t is no less general to
consider the hyperplane as passing through the origin,
Therefore, for the remainder of this chapter, equations of
the type
(7.8) Xy + Xg +Xg + *%% # Xp.y v Xp = O
are analyzed, It is important to note that throughout this

thesis, equation (7.8) is referred to as the n dimensionsl
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hyperplane or the n dimensional case.

It is also important to note that by translation,
the entire hyperplene can be generated by & region near
the origin., In the snelysis that follows, therefore, only
this portion of the hyperplane 1s cmsaidered. or example,
ir

Xy =~ xg = 0

is the equation, then the line segment wliose end points are
(0,0) and (2,2), is the generating region. Using geometrical
considerations one sees that all exact solutions are pseudo-
solutions for this case.

Next, the equation

Xy + Xg =~ X3 = 0

is considered. The generating reglon is the parallslogram
whose vertices are the polnts {(0,0,0),(2,0,2),(0,2,2) and
(2,2,4). Since the my of equation (7.6) must alsoc satiafy
equation (7.8) and since it is easier to refer to the xy
of the equation, for the remsinder of the chapter the
analysis is mede by letting the x4 vary., Before proceeding
it seems advisable to make the following definition.

DEFINITION 1l. The symbol Iy where I ls an integer
means all numbers in the closed intervel [I,I + i} .

That 1s, i xg = 3y then

3sxg sl
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Now going back to the squation
Xy + Xg - X3 = 0,
one gsees that the generating region can be broken up into
elght sub-reglions whish have properties as indicated in the
following tablet

Table 3
Anslysis of the Genersting Region of tne Plane

Range of Values FPseudo=Solution
Region ; X3 Xa Xp yos ne
1 Oy Oum Opm x
2 Opm O 1y b 4
3 Oy 1y 1y x
b Oy 1y 2y x
5 1y Oy 1y x
6 1y Oy 2y x
7 1y ly 2y x
8 Iy 1y 3 x

8ince each of these regions has the same area, this
means that three-fourths of the srea in the generating
region contain points which ere pseudo-solutions and one=
fourth of the ares contains points which are outside the
3«topes, 3uch peints are not pseudé-solutions,

The hyperplane

Xy + Xg + Xg = X, = 0
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is discussed now, The convex body whose vertices are
(0,0,0,0),(2,0,0,2),(0,2,0,2),(0,0,2,2),(2,2,0,4),(2,0,2,4),
(0,2,2,4) anad (2,2,2,6) is the generating region. In the
last example, only thbsa sub-regions of the generating
region which were possible were listed but to better
1llustrate the situstion, this time all forty-eight sube
rogicma'ara listed and the impossible ones classifled

accordingly.

IS

Table L

Anelysis of the Generating Region of the
Four Dimensional Hyperplane

Hange of Values Fseudo~Bolutions

Reglon X3 Xa Xs Xg Yeos Ko Imposasible

1 O O O O x

2 " L] 24 1 M x

3 n W " 2y x

L " % % 3 x

5 R x

6 4 # B SM x

7 " " Iy Oy x

8 " " " 1y x

9 " " " 2y x
10 " " " 3y x
11 " " " Ly x
12 L] L] ) SM x

ot
W
=
ot
=
Eﬁ
]
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Table 4 (cont.)

Range of Values Fseuﬁo*Sal‘ut‘ioha
Region X3  Xg X  Xg Yes  No Tmpossible
iy Oy 1w Oy 1y x
15 " # " 2M x
16 " " " 3y x
17 " " " Ly x
18 " " " 5w x
19 W 1y Oy x
20 L R x
21 nooos e o x
22 " " " 3y x
23 ”n " " h‘ﬁ | x
2 " " "5y x
25 ly Oy Oy Oy x
36 ] L " J'M
27 " n % 3” x
28 " # 9 3y z
29 L " #® h»m x
30 " " " Su x
k) | " "1y Oy x
32 " " " 1p x
33 " " " 2mM x
3y " " "3y x

3 5 ] " #" )"‘M x
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Table i (econt.)

Range of Values - Pseudo=Solutions

Region x; ™ X Xs X Yes  No Tmpossible
36 1y OM 1y 5y x
37 " 1y Oy Oy x
38 " " " im | x
39 " " " 2y X

l‘_@ u " " 3?@ x

L1 " " " iy x

h‘ 2 ;] # ] sx x
L3 " 1y Oy x
Wl " " " 1y x
45 " " u 2y x
L6 " " " 3y %

7 D R ¥ ‘ x

148 " " " Sy x

Regions 1,3,8,10,14,16,21,23,26,28,33,35,39,41,46 and 1,8
each have s volume of 1/6. Regions 2,9,15,22,27,34,40 and
447 esch have & volume of 2/3,

The writer tabulated the results for the five and
six dimensional cases but sinece it would reguire 4li8 lines
of type to display them, they are not given here. In
general, if one tabulates the k dimensional case, it takes

(k-1)2¥ 1ines of type.
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Ee The Limit of the Ratlo of Certain Volumes as the

Dimension Increases Without Bound

This section is devoted to determining the distribution
of the number of congruent sube-regions in the generating
region, the classiflcatlion of such sub~regions according
to whether they conteln pseudoe-solutions or not and the
determination of the ratle of the volume of the sub-regions
which ocontein pseudo~solutions to the total volume of the
generating region. The limit of this ratio is determined
as the dimension of the hyperplane increases without limit,

THEOREM 10, If the equation
(7.9) Xy + Xg + *cr + Xp = Xpgy = O
is conaldered, the distribution of the number of congruent
aub«ragibns in the generating region whioch aontaiﬁ pseudo=

solutiona is Ci‘“‘, G§+1, e, Gg*a’ *++e, and ag“'x

according
to thelr position in the unit n-tope. That 1s, in the ghth
position of the unit n-topes which make up the generating

region, there are Gg*m

congruent regions whieh contain pgeuda*
solutions,

Proofs 1If Xn4y = Oy, there ls only one way of selecting
the x3(1 = 1,°**,n) such thst the true solution is a pseudo-
solutions This can be done only by letting sach
xy = Oy (1=1,***.n), If Xp.3 = ly, then the exact solution
iz a pseudo~solution if and only if one of the xy=ly (1=1,%++,n)

This can be done in Cg ways, I Xp4y = 2, then the exact
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sclution 18 & pseudoe-sclution if only one of the

xgy = 1y (1=1,++s,n), This can be done in ¢} ways, 1If
Xpa1 = BM’ then the exesct solution 18 & pseudo«solution

if two of thé xy = ly {i=1,***,n). Thls ocan be done in
Gz ways. In general, if xn,3 = Iy, then there are
0“[i+&qm/g (¢® < 1) ways of getting @& pseudo-solution.
This means that the totel number of sub-reglons of the
generating n-tope in which the exact soluticn ls a passudoe

golution is

Op + 01 4 O3 + ts + Cn3oclp/2 * Cn1-¢) /2 »

where 0 < ¢ < 1,

Kﬁw»ena;muat show how these numbers are distributed
according to their position in the n-tope. For example,
one of the asuberegions which is under consideration at this

time 18 the region between the n dimensional hyperplanes
n n
2{; x4y = 1 and 2{; x4 = 2 end inside the unit n-tope.
S im}

If an integral number of the x4, say w of them, are

picked equal to 1y, then thet part of the unit n-topes

between the hyperplsnes f x3 = w and i Xg =w+ 1 is
=] i=1

referred to throughout the remainder of this thesis as the

firast position of the sube~regions. The second position of

the sub-regions is that part of the unit n«topes which liles

between the hyperplanes j&' X4 = w + 1 and EE:\xi = W+ 2,
i=] i=]
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The gth position 1s that part of the unit n~topes which
lles between the hyperplanes ;E X3 =W+ g ~1 and
=]
gEf x4y = w + g, This region contains pseudo-sclutions
=]
only if
Ean.g:g = 2w, .

But this can occur in (Ggwl + Gg) ways. Since ngl + ﬂg
n+a
g

regions which are In the unit n~topes that conteln only

is squal to €, =, this means that there are ﬂé*‘ gt position
pseudo=sclutions, This completes the procof.

What portion of the generating region of the hyperw
plane given by equation (7.9) conteins polnts which are
pseudo-solutions? Thlis question hes already been anawered
for the two and three dimensional cases, To answer this
question for higher dimensions it is first shown that some
of the volumes of the sub-reglons are congruent.,

By translating any one of the unit nwtapqa under
consideration to the origin it is noted that the coordinates
of the vertices are either plus or minus one-half, Also,
it 183 noted that the ccoordinstes of the vertices of the

suberegion in the gth

position are opposite in sign to the
coordinates of the vertices of the sub-reglon in the

(n - g)t position, Thet is, an orthogonal transformation
Xg = =xg 1= 1,***,n maps these regions into each other,
Since the Jacobisn of this transformetion is plus or minus

one, the volumes are preserved,.
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To distinguish between the volumes in the various
positions, the symbol Vij is introduced, and 1t refers to
the volume in the 1% position of the unit (J - 1)=tope.

In the three dimensional case, there are fowr unit
2-topes which make up the generating reglon., Eech of these
unit 2«-topes has its area subdivided into two areas, Of the
four areas in the first position, three of them contain
points which are pseudo-solutions. Of the four areas in
the second position, three of them contain points which are
pseudo~golutions. Therefore, the ratio of the area of the
paseudo~solutions to the totel area is

SVas + 3Vas =3
Lvia + 4Vas I :

In the four dimensionsl cage, there are eight unit
J«topes which make up the generasting reglion. Each of these
unit 3~topes has 1ts volume subdivided into three volumes.
Of the eight volumes in tha.firat position, four of them
contain points whieh'&pw pseudo~solutions, There are six
volumes in ths second position which contalin only polints
whiech are pseudo~sclutions, There are four volumes in the
third position which contaln only peointe which are pseudo-
solutions. Therefore, the ratio of the volume econtalning
pseudo=solutions to the totsl volume is

WWag + 6Vgq + h¥ay |
8?;‘ + QVQQ + Bv‘aq




-73-

Since

Vie = Vay
and

Vie + Vaq + Voo = 1,
one obtains after substituting in the above ratio and
simplifying thet the ratioc is

3400 - 2/3 Vyq)
Since Vy, is the volume of the corner of s unit cube, its
value is one-sixth, Therefore, the ratio is

341 - 1/9) = 2/3 .,
This means that 2/3 of the generating region of the four
dimensional hyperplane consists of points which are pseudo-
solutions,

In the five dimensional case, there are sixteen unit,
i~-topes which make up the generating region., BEach of these
unit li~topes has its volume divided into four volumes, Of
the sixteen volumes in the first position five of them contain
points which are pseudo~solutions. There sre ten volumes in
thnvaaeﬁnd position which contain only points which are
pseudo-solutions, There are ten volumes in the third position
and five in the fourth position which contain only points
which are pseudo-solutions, Thersfore, the ratio of the
volume contalning pseudo-solutions to the total volume of

ths generating region is
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SVyg + 10Vas + 10Vag + 5V) g .
16V g + 16V, + 16¥3g + 16V o

Now since

V15 = Vg Vag = V35

Vo = 1,
o vt

5/8 (1 - Vls‘) .

and

the ratio becomes

If the number of variables is 2m thers are 22™~! untt
(2m - 1l)~topes which meke up the generating region. BRach
of these unit (2m - l)-topes has its volume subdivided into
(2m - 1) volumes, Of the 22®1 golumes of the generating
reglon which lle in the g~th position, Qam of them contain
points which are pseudo-solutions., Therefore, the ratio of
the velume contalning pseudo~solutions to the total wolume
is |
(7.10) Of™ ¥y om + 5% Vo on ++*++ 0301 Vouy,om .

22m=1 [

Vi,om * Va 2m Yottt Vopa Em]
Since

Vi,om = Vomet,2m o
2me1

v, . =1
Z_::. i,2m



and
2m am
Gy = Copey

then this ratio ocan be written

2m veen opdR . 2m
{7.11) am; - (3@1 vi,&m Lo R T 2(1%‘_1 vmhl’em + Qm Vm’;gm .
2" 4

Now if one eliminates Vﬁ,am from equation (7.11) the ratio

becomes

(7,12}

2m , )
¢ im , g2m 2m _ .2m
B 1 4 2 (Gl - Cy ) v $roep 2 (cmpl - Cp ) v

Ziie}, . 1,3& ; m-l,zm
2 s ] 2m
Gm Gm

But since 6%“ - Ggﬁ is negative for (i=1,2,*++,m-1) the
ratio 1s always less than C2%/221, Although this ratio
i1s computed for the even dimensional cases, it 1s important
to note that the coefficlient of the bracket in equation
(7.12) is the same value for the 2m«1 dimensional case as
it is for the 2m dimensional case. This 1s due to the fact
that the middle terms of the binomisl coefficients for n
equal to 2me-l are one~half of the middle term for n equal
to 2m,

Now the‘v&tie‘cg?/agm“l 1s studied as m .., 0o . The
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limit ean be eveluated by first writing

om (2m)i
(7.13) 1im Cp = lim 2x_o-2m (2m)2ml/2
B Tlw)2 - T 2
gom=1 | - ] V&
ox aammml/aj 2

but this is zero since the asymptotle value of ml 1s
WEE\»“mm“*l/a by Stirling's formula, This leads to the
theorem,

THEOREM 11, The ratio of the volumes of the subreglons
which contain pseudo~solutions te the total volume of the
generating région apprepaches zero &8s the dimension of the
hyperplane Increases without bound,

In eddition 1t 1s of interest to note that the
sequence Gﬁﬁ/égm”l 18 a monotonic decreasing sequence,
To show this, one observes that the ratioc of two successlive
terms is equal to

(2m #+ 1)(2m + 2) = (m + 1/2)
(m#1) () m+1

which is alwsys less than one since m is 8 positive integer.
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VIII., SUMMARY

Regardless of whether the solution of a linear system
of equations is obtained by elimination methods, iterative
methods or by first solving for the inverse of the coef«
ficlent matrix and then multiplying this inverse times the
column matrix of constents, the probiem of pseudo~-
mltiplication and pseudo~division elweys confronte one,
This problem is the basis for the research in this thesis.

In Chapters I and II pseudo-operations for scalars
are defined and msome o0ld and new preoperties of these
pseundo=operations are derived,

Chspter III first gives a2 desoription of the Binghanm
Method for inverting a matrix., The essentisl difference
between thls method and well-known eliminatlion methods 1is
that the Bingham Method requires the computation of a
finite number of powers of the matrix, To be more explicit
the first n-l powers and the diagonal elements of the neth
power of the matrix must be computed, Since memory storage
spece ls a2 oritical item in performing calculations with
automatic scalculators, the writer suggests a modiflcation
of the Bingham Method, This Modified Bingham Method requires
only about 3/n as much storage spsos as thet required by the
usuel Bingham Method,

Pseudo-operstions for matrices are defined and aome of
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thelr properitlies developed in Chapter IV, Left and right
paeudo-multiplicetion of maﬁriaaa,luaeﬁ to determine come
puted powers of the matrix, are expressed in terms of
pseudo~asscciators,

In Chapter V the number of ﬁdditiena, maltiplications
and divislions required to compute the inverse of a matrix
by the Bingham end Modified Binghem Methods is given, It
is observed that if the matrix A is symmetric then the
pseudo-product, A XA, is symmetric, It is elso shown thét
if AB is symmetric and if double precision multiplication
13 used, then Ax B is symmetric, These facts help to reduce
by approximately one-half the number of operations necesssry
to compute the inverse of & symmetric matrix,

If a matrix A 18 pseudo-multiplied times 1tself it is
often desirable to obtaln & matrix whose cosfficients are
numerically less than one. This can be done by dividing
sach coefficient of the matrix A by an appropriate scale
factor, The question arlses as to the value of such a
gcale fector, 1In Chapter VI criteria for obtaining sppropri-
ate sceale factors are glven using both striot and probabl-
liatic considerations,

In Chapter VII & comparison 1s made of exact sclutlons
and pssudo~solutions of a linear equation, Located on the

hyperplane of exasect solutions are & set of points
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{x = {xw(,},kj)}} which form s lattice structure. It

1s shown that each {xm(j,kj )} 1s the center of an n
dimensicnal rectanguler parasllelepiped, called an n~tope.
Inside each of these n-topes are points which are pseudo-
solutions of the linear equation., Whether the points on

the hyperplane lle inslde one of these n-topes is a function
of the dimension of the hyperplsne, It is proved that as
the dimaﬁaion of the hyperplane inereases without bound that
the ratio of the volume of the gensrating reglon which con-
tains only paau&muaoluﬁiona te the total volume of the

generating region approaches zero,
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IX., SUGGESTIONS FOR FPURTHER STUDY

Although this thesls has made considerable progress in
the discussion of pseudo-splutions of a linesr equation,
it is reslized by the writer that the questions proposed in
Chapter VII were only partially answered. It ls suggested
that lattice structure snd ideals be utilized in eny
further investigetion. Minkowski (lj) gives an excellent
introduction to thege toplics. In addition, perhaps one
could find classes of metrices for which definite answers

to the questions posed in Chapter VII can be given,
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