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ABSTRACT  

Current solid-contact ion-selective electrodes (ISEs) suffer from signal-to-noise drift and short 

lifespans partly due to water uptake and the development of an aqueous layer between the 

transducer and ion-selective membrane. To address these challenges, we report on a nitrate ISE 

based on hydrophobic laser-induce graphene (LIG) coated with a poly(vinyl) chloride-based 

nitrate selective membrane. The hydrophobic LIG was created using a polyimide substrate and a 

double lasing process under ambient conditions (air at 23.0 ± 1.0 ºC) that resulted in a static water 

contact angle of 135.5 ± 0.7º (mean ± standard deviation) in wettability testing. The LIG–ISE 

displayed a Nernstian response of –58.17 ± 4.21 mV dec-1 and a limit-of-detection (LOD) of 6.01 

± 1.44 µM. Constant current chronopotentiometry and a water layer test were used to evaluate the 
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potential (emf) signal stability with similar performance to previously published work with 

graphene-based ISEs. Using a portable potentiostat, the sensor displayed comparable (p > 0.05) 

results to a U.S. Environmental Protection Agency (EPA) accepted analytical method when 

analyzing water samples collected from two lakes in Ames, Iowa. The sensors were stored in 

surface water samples for five weeks and displayed nonsignificant difference in performance 

(LOD and sensitivity).  These results, combined with a rapid, and low-cost fabrication technique 

make the development of hydrophobic LIG–ISEs appealing for a wide range of long-term in situ 

surface water quality applications.  

 
 
Introduction 
 

Ion-selective electrodes (ISEs), which convert ionic activity to electric potential (emf), are a 

common non-destructive method for ion detection in a wide range of industries. The pH meter, a 

selective glass electrode to the hydrogen ion (H+), is an early example of an ISE [1]. Researchers 

soon expanded beyond pH monitoring with the advent of selective membrane ISEs [2], and by the 

late 1960’s, several were available for various ions [3]. However, the use of a liquid junction in 

these ISEs limited their applications due to high maintenance and complications with 

miniaturization [4]. Solid-contact ISEs remove the inner liquid solutions allowing the ion-selective 

membrane to make direct contact with the transducing layer. The first example of a solid-contact 

ISE was the coated-wire electrode (CWE) [5]. Early CWEs had a simple design but possessed a 

problem with emf drift due to thermodynamically ill-defined (‘blocked’) interfaces, formation of 

oxygen half-cells, and/or the presence of a thin water layer between the electrode and ion-selective 

membrane [4, 6]. These issues with CWEs led to significant research into solid-contact ISEs 

including various conducting polymers [7, 8] and nanomaterials [9]. 



 3 

 Nanostructured conducting allotropes of carbon have proven a promising material for 

energy and sensing applications due to their mechanical strength, electrochemical properties, and 

inert nature [10]. Carbon materials such as carbon nanotubes [11], graphene [12], and graphene 

oxide [13] have been applied as solid contacts for ISEs. Graphene in particular is highly conductive 

with high mechanical strength that provides an excellent platform for sensing and biosensing [14]. 

In 2014, Lin et al. [15] first reported on a method to produce a 3D graphitic-like structure 

commonly referred to as laser-induced graphene (LIG). In this procedure, the sp3-carbon atoms in 

polyimide (PI, Kapton) are photothermally converted to sp2-carbon by a CO2 infrared laser (𝜆𝜆 = 

10.6 µm) producing a black porous 3D structure [16]. Further research has demonstrated the ability 

to form similar material with various lasers [17] and on carbon precursors such as cloth, paper, 

and food [18]. This maskless, direct writing, one-lasing process eliminates the need for annealing 

procedures and/or precious metal deposition commonly used on graphene produced through ink-

jet printing [19], aerosol-jet printing [20], and chemical vapor deposition (CVD) [21] methods to 

improve the electrical conductivity and electrocatalytic nature. LIG has become a popular substrate 

for sensing purpose due to its rapid and scalable production method and has been applied towards 

electrochemically sensing a variety of analytes including pathogens [22] and various molecules 

and proteins [23–26]. Ion sensing with LIG was first demonstrated by Garland et al. [27] in soil 

columns with the goal of deploying these in farm fields for fertilizer monitoring (NO3
- and NH4

+). 

Results from this study show a rapid Nernstian response, and recoveries in soil of 96% and 95% 

for ammonium and nitrate, respectively. LIG has also been applied to sensing ions in urine [28] 

(K+ and NH4
+). Both potassium and ammonium LIG–ISEs accurately assessed hydration levels in 

real urine samples and displayed a shelf-life of up to three months under dry storage. Recently, 

LIG was utilized for multi-analyte sensing in sweat including potentiometrically monitoring ions 
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(K+) [29]. This study also reported using LIG as a pseudo reference electrode with 

electrochemically deposited Ag/AgCl, however, due to influence of Cl- ions on the pseudo 

reference electrode, results show a super-Nernstian sensitivity of 95 mV dec-1 for potassium. These 

previous studies have demonstrated the feasibility of LIG (fabricated via one-lasing process) as a 

transducer for ISEs; however, detailed fabrication of the LIG for this particular function is still 

lacking, and in particular, studies focused on developing hydrophobic LIG–ISEs for long-term 

environmental monitoring and the possible pitfalls associated with it (e.g., signal drift and sensor 

longevity) are still needed.  

 Herein, we report on a nitrate ISE using hydrophobic LIG fabricated by a double lasing 

process under ambient conditions (air at 23.0 ± 1.0 ºC). A CO2 laser and PI film were used to create 

the hydrophobic LIG in a direct writing process without the need for extraneous reagents, post-

fabrication annealing processes, or catalyst deposition. This LIG fabrication technique 

circumvents the need to perform additional chemical modification or lasing in an inert gas 

environment, demonstrating a more scalable method to create hydrophobic LIG than previous 

reports. Material characterizations show a 3D porous structure dominated by sp2-carbon with 

Raman spectra showing typical D, G, and 2D peaks of LIG. Wettability testing was performed 

with five liquids, and a modified Zisman plot was created to estimate the critical surface tension 

of the hydrophobic LIG. A PVC-based nitrate selective membrane that uses the quaternary 

ammonium salt tridodecylmethylammonium nitrate (TDMAN) was drop-casted onto the LIG to 

form a solid-contact at the interface. The hydrophobic LIG–ISE was calibrated using open circuit 

potentiometry (OCP) and was subjected to selectivity tests, stability characterization, and sensing 

nitrate in environmental water samples from two lakes in Ames, Iowa with comparable 

performance to a U.S. Environmental Protection Agency (EPA) accepted method. The results 
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obtained in this study demonstrate the potential hydrophobic LIG–ISEs have for long-term in situ 

monitoring of ions in surface waters.  

 

Materials and Methods 

All ion-selective membrane chemicals, potassium ferro/ferricyanide, sodium nitrite, and sodium 

sulfate were purchased from Millipore Sigma (Darmstadt, Germany). Sodium nitrate, sodium 

chloride, and sodium bicarbonate were purchased from Thermo Fisher Scientific (Massachusetts, 

USA). Commercial polyimide (PI) film with 5 mil thickness was purchased from McMaster-Carr 

(Ohio, USA).  

 Laser-Induced Graphene Fabrication   

Hydrophobic LIG electrodes were designed in CorelDraw (Corel Corporation, Canada) and 

fabricated with a 75 W M2 Fusion Epilog CO2 laser (Epilog Laser, Colorado, USA). The first 

lasing (i.e., hydrophilic LIG) was performed at 15% speed and 7% power followed immediately 

by a secondary lasing (i.e., hydrophobic LIG) at 20% speed and 3% power. Both laser treatments 

were performed in air (23.0 ± 1.0 ºC) with a +1 mm offset from the laser focal point and a total 

lens to material distance of ~41 mm at 1200 DPI. The working area of the electrodes (diameter of 

5 mm) was separated from the connection point with a fast-drying lacquer. Contacts of the LIG–

ISE were protected with a conductive silver ink (Cl-1001, Engineering Materials Systems Inc., 

Ohio, USA). After fabrication, the LIG electrodes were briefly rinsed with ethanol and dried under 

nitrogen gas. The nitrate-selective membrane was prepared by mixing 1.5 wt% 

tridodecylmethylammonium nitrate (TDMAN), 0.5 wt% methyltriphenylphosphonium bromide, 

5.75 wt% polyvinyl chloride (PVC), 16.25 wt% 2-nitrophenyl octyl ether (2-NPOE), and 76 wt% 

THF for a total mass of 1000 mg. After vortex mixing for ~1 min and sonicating for ~3 min, two 
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applications of 10 µL was drop-casted onto the freshly fabricated LIG and allowed to dry overnight 

in a vacuum desiccator. The hydrophobic LIG–ISEs were then conditioned in 1 mM NaNO3 for 

24 h prior to calibration.  

 Surface Characterization 

X-ray photoelectron spectroscopy (XPS) measurements were performed using a Kratos 

Amicus/ESCA 3400 instrument. The samples were irradiated with 240 W unmonochromated Mg 

𝐾𝐾𝛼𝛼 X-rays. Photoelectrons emitted at 0º from the surface normal were energy analyzed using a 

DuPont type analyzer. The pass energy was set at 150 eV and a Shirley baseline was removed 

from all reported spectra. CasaXPS was used to process raw datafiles. Scanning electron 

microscopy (SEM) analysis was carried out using a FEI Quanta 250 field emission microscope 

and an accelerating voltage of 10 kV. The samples were coated with 2 nm of iridium to enhance 

conductivity.  

Raman measurements were performed by a Horiba XploRA Plus confocal Raman 

microscope. A 532 nm laser operating at 1.2 mW and a 50x objective (0.5 NA) was used to check 

the LIG with 30 s acquisition time and 3 accumulations. Raman spectra at 12 random locations on 

the LIG were collected. All Raman peaks were fitted to a Lorentzian function in Igor Pro 6.37. 

The ID/IG and I2D/IG ratios were calculated from the fitting results.  

A ramé-hart model 90 goniometer equipped with an automated dispensing system (ramé-

hart p/n 100-22, ramé-hart instrument co., Succasunna, NJ) was used for all static contact angle 

measurements using a 3 µL droplet. Images were generated and analyzed using DROPimage Pro 

software where the contact angle was estimated. The wettability of the hydrophobic LIG was tested 

using five solvents (DI water, methanol, dimethyl sulfoxide (DMSO), formamide, and glycerol 

(Sigma-Aldrich)). The static contact angles were plotted versus the surface energy of each liquid 
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to create a modified Zisman plot used to estimate the critical surface tension (𝛾𝛾𝑐𝑐) of the 

hydrophobic LIG.  

 Electrochemical Characterization and Nitrate Sensing 

Constant current chronopotentiometry, cyclic voltammetry (CV), and electrochemical impedance 

spectroscopy (EIS) measurements were performed on a CH Instruments electrochemical analyzer 

(model CHI7018E, CH Instruments Inc., Texas, USA). Open-circuit potentiometry (OCP) for 

calibration, selectivity testing, water layer testing, temperature and pH sensitivity, and surface 

water analysis were performed on a PalmSens 4 potentiostat (PalmSens, Netherlands) equipped 

with a MUX8-R2 multiplexer. Hydrophobic LIG working electrodes and an external Ag/AgCl 

electrode (3 M KCl liquid junction) as the reference electrode for all experiments. For 

chronopotentiometry, CV, and EIS analysis a platinum wire electrode (99.95% Pt, 0.5 mm dia.) 

functioned as the counter electrode.  

The LIG–ISE was calibrated from 10-7 to 10-1 by 0.5 log steps in DI water under agitation 

from a small magnetic stir bar (200 rpm) using stock solutions of NaNO3 added by pipette. 

Activities were calculated with the extended Debye-Hückel equation (Equation S3). Selectivity 

testing was performed using the fixed-interference method (FIM) [30] for four interfering ions 

(NO2
-, Cl-, HCO3

-, and SO4
2-) and a constant concentration of 1 mM while varying the nitrate 

concentrations. The selectivity coefficients were calculated using Equation S5. 

CV and EIS analysis of the bare hydrophobic LIG were performed with 5 mM 

ferro/ferricyanide in 0.1 M KCl. CV scans were performed from –0.4 to 0.6 V at five scan rates 

from 10 to 200 mV s-1. EIS frequency range was 1 MHz to 1 Hz with an AC amplitude of 0.2 V 

and a DC voltage of 0 V. After drop casting the ion-selective membrane, EIS spectra were collected 
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with unconditioned, 24 h conditioned, 72 h conditioned hydrophobic LIG–ISEs (all in 0.1 M 

NaNO3) using the above parameters.  

Water Layer and Chronopotentiometry  

The potential stability of the ion-selective membrane and hydrophobic LIG substrate interface was 

studied using constant current chronopotentiometry and a water layer test [31]. For 

chronopotentiometry measurements, the LIG–ISEs were conditioned in 0.1 M NaNO3 for 24 h 

followed by applying a ± 1 nA current for 60 s each while recording the emf signal. For the water 

layer test, LIG–ISEs were conditioned in 10 mM NaNO3 for 24 h followed by monitoring the emf 

signal for 5 h in NaNO3, then 10 mM NaCl for 5 h, and finally 10 mM NaNO3 for 14 h. Electrodes 

were briefly rinsed with DI water in between transfers.  

Temperature and pH Sensitivity 

Temperature influence on the sensitivity of the LIG–ISEs were studied at three temperatures (23.0, 

30.0, and 45.0 ± 1.0 ºC) controlled by a hot plate and monitored with a glass thermometer (± 0.5 

ºC accuracy). The pH influence was tested at two nitrate concentrations levels (1 mM and 100 

mM) using National Institute of Standards and Technology (NIST) pH buffer solutions of 5.02, 

7.00, 8.95, and 10.01 pH (Thermo Fisher Scientific, Massachusetts, USA).  

Surface Water Analysis and Sensor Longevity  

Samples from two local lakes in Ames, Iowa were collected, stored at 2 – 8 ºC, and tested within 

48 h of collection. For potentiometric ion measurements, U.S. EPA method 9210a was followed. 

Potentiometric ion sensing results were confirmed by a secondary laboratory with a combined 

nitrate and nitrite detection Seal Analytical AQ2 method (EPA-114A Rev. 11) where nitrite levels 

were measured (EPA-116A Rev. 5) and subtracted from the combined measurement results to 

estimate nitrate concentration.  
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The LIG–ISEs were submerged in collected water samples for 5 weeks and tested weekly to 

monitor the change in LOD and sensitivity over time. The samples were stored in ambient lab 

conditions and sensors were calibrated in whole log steps from 10-6 to 10-2 with similar conditions 

as stated above. Cross sectional SEM images were obtained of fresh LIG–ISEs and those stored in 

water samples to visually compare the effect on membrane adhesion.  

Data Analysis  

All measurements were made in triplicate and were reported as mean ± standard deviation. Data 

analysis was performed using MATLAB (R2020a, The MathWorks Inc., Natick, MA). Mean 

response signals from the linear portion of the calibration curve were used to determine the 

sensitivity and the limit-of-detection (LOD) was calculated using the 3𝜎𝜎 method. The response 

time was calculated as the time required to reach 95% of the steady-state signal (t95). One-way 

analysis of variance (ANOVA) and Student’s t-test was performed with JMP Pro v.15 statistical 

software (SAS Institute, Cary, NC) using a significance level of 0.05. All figures were generated 

in SigmaPlot 14 (Systat Software Inc., San Jose, CA).  

 

Results and Discussion  
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Figure 1. (a), (b), and (c) SEM image after second laser treatment showing the rough flattened 
hydrophobic LIG. (d) Static contact angle photograph of DI water displaying the hydrophobic 
nature of the LIG. (e) XPS spectra showing predominately sp2-carbon. (f) Average Raman spectra 
displaying the typical D, G, and 2D peaks of LIG.  
 

 Surface Characterization 

The XPS analysis showed that LIG samples after second laser treatment (Figure 1e) are mainly 

consisted of sp2-cabon evidenced by the asymmetric main peak at 284.0 eV and the broad 𝜋𝜋 − 𝜋𝜋∗ 

peak at 290.0 eV. The sp3 type hydrocarbon and oxidized carbon are also present on the surface 

shown by the symmetric, slightly broader peaks ranging from 285.0 to 288.0 eV. Assuming that 

the carbon content of the polyimide film is 50 – 60% [32], it is likely that the other bonds (i.e., H, 

N, and O) were broken by the high temperatures and released as gases [16]. XPS analysis after the 

second laser treatment of the PI film resulted in 92.8% carbon.  

Raman spectra of the hydrophobic LIG (Figure 1f) displayed prominent D, G, and 2D 

bands, which are typical for LIG [15]. The D band (~ 1339 cm-1) originates from graphene lattice 
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defects sites, the G band (~ 1579 cm-1) arises from in-plane vibrations of sp2-carbon atoms and is 

present in all graphitic material, and the 2D band, or G’ band, (~ 2682 cm-1) originates from a two-

phonon double resonance process [33]. The ID/IG ratio was calculated as 1.1 ± 0.1, which indicates 

high disorder in the LIG structure [34]. Additionally, the I2D/IG ratio was calculated as 0.5 ± 0.03 

indicating a multilayer graphitic-like structure [35]. The Raman results were spatially uniform over 

different sampling locations. (See Table S1 for more details.)  

A sufficiently hydrophobic surface is one method of preventing an aqueous layer from 

developing between the interface of the solid-contact transducing layer and ion-selective 

membrane [36]. The hydrophobic LIG in this study displayed a static contact angle of 135.5 ± 0.7º 

for DI water. The static contact angle was measured for five solvents and results are shown in 

Figure 2. If these measurements are plotted against the surface energy of each liquid, a modified 

Zisman plot (Figure 2b) can be used to estimate the critical surface tension (𝛾𝛾𝑐𝑐) of the hydrophobic 

LIG by fitting a model using linear regression analysis and extrapolating to the intersection with 

the x-axis [37]. This value can then be used to quickly assume the behavior of a given liquid on 

the LIG surface. If 𝛾𝛾 < 𝛾𝛾𝑐𝑐, then the liquid should wet the LIG surface and vice versa for 𝛾𝛾 > 𝛾𝛾𝑐𝑐 

[38]. For the hydrophobic LIG, 𝛾𝛾𝑐𝑐 was estimated as 57.7 ± 0.03 mN m-1 suggesting that water 

(72.75 mN m-1) [39] should not wet the surface and methanol (22.95 mN m-1) [39] should, as 

experimental results confirm.  
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Figure 2. (a) Static contact angle measurements and corresponding photographs of water (135.5 
± 0.7º), glycerol (46.1 ± 0.3º), and formamide (26.3 ± 0.5º) droplets. (b) Modified Zisman plot 
used to estimate the critical surface tension (𝛾𝛾𝑐𝑐) of the hydrophobic LIG at the intersection of the 
linear regression line and the x-axis. 𝛾𝛾𝑐𝑐 was estimated as 57.7 ± 0.08 mN m-1. Data represents mean 
± standard deviation (n = 3).  
 

 Nitrate Calibration and Selectivity  

Open circuit potentiometry (OCP) was used to create calibration curves for the nitrate sensors in 

DI water by sequentially increasing the nitrate concentration in the electrochemical cell (Figure 3 

and Figure S5). The slope of the linear portion of the calibration curve was reported as the 

sensitivity using the average value of the steady-state signal for each concentration. According to 

the Nernst equation, at 25 ºC for a monovalent anion, the sensitivity for an ISE is –59.16 mV dec-

1 [40]. For the hydrophobic LIG–ISEs, the average sensitivity was –58.17 ± 4.21 mV dec-1. The 

slight sub-Nernstian response is possibly due to incomplete membrane conditioning or the 

diffusion of small molecules (e.g., H2O, CO2, O2) across the polymeric ion-selective membrane 

[41]. The LOD (3𝜎𝜎) was calculated as 6.01 ± 1.44 µM and the linear range was ~10-3.5 to 10-1 M 

with a response time (t95) of 12.52 ± 3.28 s. A slight improvement in sensitivity and LOD is 

demonstrated here with the hydrophobic LIG relative to other LIG-based nitrate ISEs [27], 

however the LOD is higher than nitrate ISEs based on conducting polymers or organosulfur 
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compounds such as tetrathiafulvalene (TTF) with similar emf signal drift (See Table S3 for more 

information). This is likely due to the larger bulk capacitance and smaller resistance of the 

hydrophobic LIG as compared to the slightly hydrophilic LIG produced from a diode laser (𝜆𝜆 =

405 𝑛𝑛𝑛𝑛) [42].  

 

Figure 3. Calibration curve for NO3
-. The average sensitivity was –58.17 ± 4.21 mV dec-1 and 

LOD was 6.01 ± 1.44 µM with a response time (t95) of 12.52 ± 3.28 s. Data represents mean ± 
standard deviation (n = 3)  
 

The fixed interference method (FIM), with a constant interfering ion concentration of 1 

mM, was used for all interference testing. The selectivity coefficients (Table 1) are similar to 

previously reported work intended for agricultural applications [43, 44] with Cl- and NO2
- showing 

the largest interference. NO2
- is typically not present at large concentrations in surface waters due 

to multiple rapid oxidation pathways [45] and may not be a cause for concern. However, the 
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presence of Cl- can create challenges for nitrate ISEs especially intended for environmental 

monitoring. In areas with high concentrations of Cl- ions, desalination techniques [46] may need 

to be implemented to accurately estimate nitrate levels in situ.  

 

Table 1.  Selectivity coefficients (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝑁𝑁3−,𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃 ) at 1 mM interfering ion concentration. Values 

given are mean ± standard deviations (n = 3).   
 

Ion, j 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝑵𝑵𝑵𝑵𝟑𝟑
−,𝒋𝒋

𝑷𝑷𝑷𝑷𝑷𝑷  

𝐶𝐶𝐶𝐶− –1.70 ± 0.09 

𝑁𝑁𝑁𝑁2− –1.61 ± 0.05 

𝐻𝐻𝐻𝐻𝐻𝐻3− –2.93 ± 0.08 

𝑆𝑆𝑆𝑆42− –2.43 ± 0.16 

 

 Electrochemical Impedance Spectroscopy and Cyclic Voltammetry  

EIS analysis of ISEs has been proposed to determine physical damage, biofouling, and leaching of 

membrane components offering a simple and rapid way to characterize ISE functionality in situ 

[47]. This is particularly beneficial for ISEs for wide usage in, possibly remote, environmental 

settings where issues with physical damaging and biofouling are prevalent. EIS has also been used 

to show the water uptake of polymeric ion-selective membranes [48]. The high water uptake of 

PVC-based is a drawback that can lead to water layer formation, emf signal instability, and 

membrane delamination [49]. Samples of unconditioned, 24 h conditioned, and 72 h conditioned 

LIG–ISEs were used to evaluate the water uptake during conditioning of the electrodes. Figure 4 

shows the resulting EIS spectra and the change in bulk resistance from unconditioned ISEs (2.222 
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± 0.028 𝑘𝑘Ω) to conditioned (3.254 ± 0.363 𝑘𝑘Ω for 24 h, 3.208 ± 0.323 𝑘𝑘Ω for 72 h). The inset 

shows the bare hydrophobic LIG charge transfer resistance (𝑅𝑅𝑐𝑐𝑐𝑐, 0.291 ± 0.057 𝑘𝑘Ω). A 

nonsignificant (p = 0.8778) change is shown between the 24 h and 72 h conditioning step. These 

results are somewhat expected based on in-depth studies of water uptake by polymeric membranes 

showing uptake beginning only after 10 min upon contact with the aqueous solutions with the 

majority occurring in the first 10 h [50]. CV analysis of bare hydrophobic LIG (Figure S4) displays 

quasi-reversible behavior with a peak separation of 167.0 ± 9.5 mV at 10 mV s-1 and an 

electroactive surface area (ESA) of 0.278 ± 0.038 cm2. The ESA is approximately 70% larger than 

the geometric area (0.196 cm2) and is likely due to the unordered porous nature of LIG, allowing 

for more exposure of edge plane sites to the redox solution [51].  

 

Figure 4. Representative EIS spectra of unconditioned, 24 h conditioned, and 72 h conditioned 
hydrophobic LIG–ISEs in 0.1 M NaNO3 with a nonsignificant difference between the 24 h and 
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72 h conditioned LIG–ISEs. Inset shows a representative EIS spectra of bare hydrophobic LIG in 
5 mM ferri/ferrocyanide in 0.1 M KCl with an 𝑅𝑅𝑐𝑐𝑐𝑐 of 0.291 ± 0.057 kΩ.  
 
 Water Layer Test and Chronopotentiometry  

The water layer test (or aqueous layer test) proposed by Fibbioli et al. [31] has become a common 

validation step in the development of solid-contact ISEs. Results from this test can help determine 

if a truly solid contact has formed between the ion-selective membrane and the under lying 

transducer. The formation of an inner water layer can develop upon contact with the aqueous 

sample, and conditions of the fabrication process (e.g., humidity) have also shown to influence the 

possibility of an aqueous layer to develop [41]. When a water layer forms, ISEs will experience 

long equilibration times, substantial emf signal drift, and/or sensitivity to CO2 partial pressure. 

Over time the later can continue to spread over the interface affecting the adhesion of the 

membrane and ultimately lead to delamination. For this study, LIG–ISEs were conditioned for 24 

h in 10 mM NaNO3, followed by monitoring the emf for 5 h. The electrodes were then transferred 

to 10 mM NaCl for 5 h, and finally back to 10 mM NaNO3 for 14 h, all while monitoring the emf 

signal. Figure 5 shows the resulting time versus emf response with a drift upon return to the 10 

mM NaNO3 of 0.328 ± 0.040 mV h-1. The initial jump when changing solutions is due to the 

change in phase boundary potential at the membrane/solution interface and is a function of the 

selectivity coefficient and the concentrations of the primary and interfering ions. The hydrophobic 

nature of the double lased LIG appears to hinder the development of a water layer and shows 

smaller drift relative to previously reported solid-contact nitrate ISEs intended for long-term use 

[52].  

Potential stability of the emf response can also be influenced by the degree to which the 

solid contact can be polarized [53]. The small input current (typically < pA) from the high 

impedance voltmeter should have minimal effect for emf stability. As shown in Equation S4, the 
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emf signal drift is related to the capacitance of the solid contact where an increase in capacitance 

will lead to less drift in the emf response. This is particularly prudent when designing solid contact 

ISEs for continuous monitoring of ions over an extended period of time. Following Bobocka [54], 

which has become a common method in solid-contact ISE characterization, an applied current of 

±1 nA should be sufficient to polarize an electrode and evaluate the emf stability. For these tests, 

each current was applied for 60 s while recording the emf response (Figure S6). The potential drift 

was 10.5 ± 0.96 µV s-1 and the calculated capacitance was 95.24 ± 8.24 µF, which are similar to 

previously published work with graphene-based ISEs [13, 55], however, it is much lower than 

other carbon-based solid contacts [56, 57]. Increasing the capacitance with conducting polymers 

or nanoparticles could further improve the emf stability of the LIG–ISEs and may have the added 

benefit of achieving Eº reproducibility, eventually leading to calibration free LIG–ISEs [58] and 

will be the focus of future work.  
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Figure 5. Representative 24 h water layer test. Solutions were 10 mM (A) NaNO3, (B) NaCl, and 
(C) NaNO3. The drift was 0.328 ± 0.040 mV h-1 upon return to 10 mM NaNO3.  
 

 Temperature and pH Dependance  

Calibration curves were performed at three different temperatures (23.0, 30.0, and 45.0 ± 1.0 ºC) 

in DI water to evaluate the effects on the LIG–ISEs sensitivity (Figure 6a). The increase of 

temperature resulted in a higher sensitivity which was expected as the Nernst equation has a 

positive linear dependance on temperature. Similar to previous works [59], the ion-selective 

membrane here has shown a temperature dependance of 0.11 mV ºC-1.  

Ion-selective membranes can be affected by pH by altering the membrane charge leading 

to signal interference. Furthermore, gases such as CO2 can penetrate into developed water layers, 

causing change of the pH inside the layer and ultimately alter the emf signal [60]. Water pH is 
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typically within a narrow range, for example, river and ground water ranges from pH 6 to pH 8 

[61]. The effect of pH was tested at two different nitrate levels (1 mM and 100 mM) in buffer 

solutions of pH 5.02, 7.00, 8.95, and 10.01. Figure 6b shows the response for the LIG–ISEs, a 

nonsignificant difference between the responses was observed for 1 mM (p = 0.3487) and 100 mM 

(p = 0.4231) nitrate concentration levels.  
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Figure 6. (a) Temperature effect on the sensitivity at 23.0, 30.0, and 45.0 ± 1.0 ºC, showing a 
sensitivity dependance of 0.11 mV ºC-1. (b) Emf response at pH levels 5.02, 7.00, 8.98, and 10.01 
showing a nonsignificant difference between responses at each concentration level. Data 
represents mean ± standard deviation (n = 3).   
 

Surface Water Analysis and Sensor Longevity 
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Samples from two lakes in Ames, Iowa were collected and tested according to U.S. EPA method 

9210a with the hydrophobic LIG–ISEs to validate the sensors performance in real samples. The 

LIG–ISEs were calibrated in the water samples and the emf response was monitored for 5 min in 

each sample. Results are comparable with an EPA accepted analytical method performed by a 

secondary laboratory, as the concentrations are within the standard deviation of the LIG–ISEs 

measurement. The LIG–ISEs were then stored in water samples for five weeks with calibration 

performed weekly to monitor the effect on the LOD and sensitivity, which demonstrate 

nonsignificant change on these performance parameters over a 3-week period, and the sensors 

remained operational for up to five weeks. A statistically significant change in the sensitivity of 

the sensor was observed beyond week three while LOD showed nonsignificant change. This is a 

slightly shorter storage time compared to some nitrate ISEs; however, these reports do not clarify 

storage and testing conditions or use unfeasible testing protocols for ISEs intended for in situ 

monitoring of nutrients (Table S3). SEM cross-sectional images were also taken of freshly 

prepared LIG – ISEs, and those stored in water samples for five weeks (Figure 7c and 7d, 

respectively). Membrane detachment can be seen clearly in the LIG–ISEs that were stored in 

surface water samples and could possibly explain the statistically significant change in membrane 

sensitivity observed after week 3 of storage. Further studies are investigating how to improve the 

LIG–ISE longevity to monitor nutrients in surface waters in situ. 



 22 

 

Figure 7. (a) Results from analysis of surface water from two lakes showing comparable (p > 
0.05) performance between the analytical method (blue bars) and LIG–ISEs (red bars). (b) 
Sensitivity and LOD monitoring over five weeks of storage in surface water samples displaying 
minimal change (p > 0.05) over the five weeks. (c) SEM cross-sectional image of an unconditioned 
LIG–ISE and (d) SEM cross-sectional of an LIG–ISE after storage in surface water sample for 
five weeks showing the beginning of membrane delamination. Data represents mean ± standard 
deviation (n = 3). 
 

Conclusion  

Higher temporal and spatial in situ monitoring of ions, particularly N, P, and K, would allow 

accurate and precise application of fertilizers reducing costs to farmers and offering researchers a 

tool to study nutrient run-off and the consequences associated with it. The present study explored 

implementing hydrophobic LIG fabricated via a double lasing process for monitoring ions in 

surface water samples. Nitrate was chosen as the ion of interest for this study due to the importance 
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in fertilizer application, plant growth, and nutrient run-off research. The development of 

sufficiently selective anion selective membranes is still a challenge, and with the current platform, 

selectivity studies show notable interference from Cl-, suggesting the possible necessity for 

desalinization in certain situations. Stability and longevity experiments displayed favorable results 

comparable to an EPA standard analytical method and demonstrates the potential applicability that 

hydrophobic LIG–ISEs have for low-cost long-term in situ monitoring of ions in water sources. 

The technique does not require post-fabrication annealing process nor the deposition of expensive 

metals to increase the electrical conductivity or electrocatalytic nature commonly used with other 

graphene-based sensors. The maskless lithography-free double lasing fabrication process, 

performed in an ambient environment, utilizes a laser commonly found in machine shops, 

demonstrating the feasibility of implementing a facile and scalable roll-to-roll manufacturing 

procedure for hydrophobic LIG. Future development of LIG–ISEs will focus increasing emf signal 

stability and work towards calibration-free sensors and the integration with wireless networks to 

perform long-term in-field studies. This could eventually lead to low-cost solid-contact ISEs for 

precision agriculture and surface water quality monitoring.  

 

Associated Content 
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