
Staged Tuning: A Hybrid (Compile/Install-time) Technique for
Improving Utilization of Performance-asymmetric Multicores

Tyler Sondag
Intel Labs*

tyler.n.sondag@intel.com

Hridesh Rajan
Iowa State University
hridesh@iastate.edu

Abstract
Emerging trends towards performance-asymmetric multicore pro-
cessors (AMPs) are posing new challenges, because for effective
utilization of AMPs, code sections of a program must be assigned
to cores such that the resource needs of the code sections closely
match the resources available at the assigned core. Computing
this assignment can be difficult especially in the presence of un-
known or many target AMPs. We observe that finding a mapping
between the code segment characteristics and the core character-
istics is inexpensive enough, compared to finding a mapping be-
tween the code segments and the cores, that it can be deferred un-
til installation-time for more precise decision. We present staged
tuning which combines extensive compile time analysis with in-
telligent binary customization at install-time. Staged tuning is like
staged compilation, just for core assignment. Our evaluation shows
that staged tuning is effective in improving the utilization of AMPs.
We see a 23% speedup over untuned workloads.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - Optimization; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.13 [Software Engineer-
ing]: Reusable Software; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features - Control structures; D.4.1 [Oper-
ating Systems]: Multiprocessing, Scheduling, Threads; D.4.8 [Op-
erating Systems]: Performance - Prediction

General Terms Performance, Measurement

Keywords behavior, performance-asymmetric multicores

1. Introduction
Single-ISA performance-asymmetric multicore processors (AMPs)
are a class of multicore processors where all cores support the
same instruction set but individual cores may have different char-
acteristics (clock frequency, cache size, in-order vs out-of-order,
etc.) [17, 24, 25, 29]. An example would be a 6-core processor
where 5 cores operate at 0.8GHz and one at 2.4GHz. AMPs have
been shown to be a more efficient alternative to homogeneous mul-
ticore processors in terms of overall performance, die space, heat,
and power consumption [17, 24, 25, 29]. Further, their potential
combination of cores suited for different tasks makes them better
suited to a wide range of problems [19, 24].

1.1 The Problems and Their Importance
In general, for effective utilization of AMPs, code sections of a pro-
gram must be executed on cores such that the resource requirements
of a section of code closely matches the resources provided by the
target core [25, 34]. To match these resource requirements, both
must be known. Figure 1 shows that we must determine what the
AMP looks like, how the code segments behave, and which cores
are the best fit for each code segment before matching them.

??

Asymmetric
Multicore Workload

 for(i=0:n)
 //mem intense

void foo(){
 for(i=0:n)
 //cpu intense
 for(i=0:n)
 //mem intense}

0.8GHz

0.8GHz

0.8GHz

0.8GHz

0.8GHz

2.4GHz

void foo(){
 coreSwitch(fast)
 for(i=0:n)
 //cpu intense
 coreSwitch(slow)

 }

Figure 1. Problem: Given an AMP and a program, how do we
determine which code sections execute on which AMP cores?

Programmers may manually perform assignments, however, of-
ten this is problematic. This tuning requires significant expertise to
determine the runtime characteristics of their code as well as the
details of the underlying asymmetry. This increases the burden on
programmers. This issue is even more troubling for legacy software
that are difficult to understand for maintainers tuning them [14].

An automated compile time technique could perform the map-
ping in some cases. However, portability is a significant challenge
when targeting several, possibly unknown, AMPs. For example,
suppose the AMP in Figure 1 was unknown. (the same binary likely
cannot run on all targets). Another challenge arises when target
AMPs are unknown at compile time.

Dynamic techniques have the advantage of being able to ob-
serve program behavior on the target AMPs. However, it is difficult
to both observe behavior and make decisions during runtime while
avoiding excessive overhead, which reduce the observed gains [9].

While each of these options does well in some use cases, we ar-
gue that a static automated staged approach can effectively and ef-
ficiently optimize programs for a wide range of target AMPs, even
when they are unknown at compile time, while putting no addi-
tional burden on the programmer and requiring no runtime analysis.
We observe that finding a mapping between the program segment
characteristics and the core characteristics is inexpensive enough,
compared to finding a mapping between the program segments and
the cores, that it can be deferred until installation-time for a more
precise decision. The extensive static analysis to find program char-
acteristics can be performed once, at compile time, and this data
used at low cost for any target AMP. Our approach, staged tuning,
performs a one time static analysis of a program at compile time
and propagates the results to any target AMP. Then, once the target
AMP is known, the program is quickly customized for the AMP us-
ing program and machine information previously computed. Staged
tuning is like staged compilation [7], just for core assignment.

The benefits of staged tuning include that it is

• easy to use – it requires no programmer effort or expertise in
program behavior or the underlying AMP

1 2015/6/29

• portable – expensive program analysis is done only once per
program and communicated to all target AMPs (including those
unknown at compile time),

• efficient – tuning stages that occur on the target AMP require no
additional expensive program analysis,

• low overhead – staged tuning requires no runtime monitoring
or analysis,

• faster – we implemented staged tuning and evaluated it on a
physical AMP by comparing to both the stock Linux scheduler
(SPEC CPU benchmarks within workloads are on average 23%
faster) and closely related work (on average 17% faster), and

• accurate – our staged approach creates core assignments finely
tuned to each target AMP (we evaluated staged tuning’s core
assignment for a wide range of potential AMPs and observed
greater than 90% accuracy).

We have performed an experimental evaluation of staged tuning
for a wide variety of potential AMPs. First, using a physical AMP
running in large workloads we see that SPEC CPU benchmarks
tuned using our technique show on average 23% speedup over
their original binaries. We also demonstrate benefits both in terms
of improved performance, reduced overheads, and flexibility over
previous work [47]. Furthermore, we see, for a wide range of
potential target AMPs, that the key piece of staged tuning, our core
assignment, is more than 90% accurate for nearly all targets.

The contributions of this work include the following:

• Staged tuning: a novel, fully automatic, compile+install time
optimization technique for asymmetric multicore processors
(AMPs),

• an implementation of this technique and demonstration of its
use on a real AMP,

• an evaluation of staged tuning on a real AMP showing signifi-
cant improvement over the stock Linux scheduler and over re-
lated work [47], and

• a thorough evaluation of the core piece of staged tuning, core
assignment, for a wide range of potential AMPs showing more
than 90% accuracy.

The rest of this paper is organized as follows. In Section 2
we describe each component of staged tuning in detail. Then,
in Section 3 we describe related work. In Section 4 we present
our evaluation of the accuracy of staged tuning as well as how
it compares to previous work. Finally, Section 6 concludes and
discusses future work.

2. Staged Tuning
The goal of staged tuning is to improve the utilization of AMPs,
which is important for realizing their potential. We aim to do so
while requiring no runtime analysis and no effort from program-
mers. The key idea behind staged tuning is to perform extensive
compile time program analysis but delay core mapping decisions
until the target AMP is known thereby automatically creating cus-
tom tuned binaries for each target AMP. This also means that the
expensive analysis only happens one time and the results are used
for each target AMP (even for AMPs that are unknown at compile
time). This technique also requires no runtime analysis. Further-
more, this approach puts no additional burden on the programmer.

The core ideas and insights behind staged tuning could be used
to detect program segments with similar behavior (demonstrated
later). This knowledge could potentially improve a wide range
optimizations. Here, we demonstrate how staged tuning is used for
a specific optimization, core assignment for AMPs.

Staged tuning consists of three major steps.

Program
Install

{(L1,M1),...,
 (LM,MM)}

La,...,Ly

Lb,...,Lz

OS/Machine
Install

Training Set

Neural Net.

Notation
Li : Loop i
Mi: Metric set i

Compile
Time

Program

0.8GHz

0.8GHz

0.8GHz

0.8GHz

0.8GHz

2.4GHz

AMP

Figure 2. An overview of staged tuning.

First, at compile time, program behavior metrics are computed
for the program. These are computed once for each program and are
passed with the program to all target machines. Second, at OS (or
machine) install time, a neural network is trained for the current
AMP. This process is entirely automatic, requires no expertise,
is done only once for the entire lifetime of the machine, and is
used by all programs executing on the machine. Third, at program
install time (i.e., when the program is placed on the target machine)
the installer uses the pre-computed metrics and neural network to
assign program segments (loops) to types of cores in the AMP.
Then, the program is customized to switch cores when it transitions
between segments with different core type assignments. Each of
these steps is now described in detail.

2.1 Compile Time – Computing Similarity Metrics
At compile time, a static analysis computes approximate metrics
of program behavior (e.g., cache behavior, instruction type, etc.).1

The bottom left of Figure 2 shows that at compile time we take
as input a program and output a set of pairs each consisting of
a loop and its metric set. Enough metrics must be analyzed such
that we can approximate the behavior of each segment on any
target machine (with the same ISA). Fortunately, we can afford
to spend effort computing as many metrics as desired since this
analysis only happens once per program and the results are used
for all target machines. This analysis may be invoked automatically
post-compilation, manually by developers, or by the end-user if
no metrics are supplied with the program. In our evaluation, we
perform the analysis on binaries after compilation is complete.

The left of Figure 3 illustrates this stage in more detail. Here we
have a simple input program with two loops. Static analysis labels
these loops and computes a metric set for each. For loop nesting,
we compute metric sets for each nesting level separately.

for(i=0:n)
 foo();
for(i=0:n)
 bar();

M
a
ch

in
e
 1

M
a
ch

in
e
 N

...Neural Net

... ...

1

Neural Net

... ...

N

for(i=0:n)
 foo();
for(i=0:n)
 bar();

L1

L2

{
{

L1(x ,y ,z ,...)
L2(x ,y ,z ,...)

1 1 1

2 2 2
{

L1
L2

Lx ...

Ly ...

L1 Lx ...

Ly
L2 ...

Compile Time
Analysis

Program Install Time
Core Assignment

Behavior Metrics

Figure 3. Compile and program install time: At compile time,
loops and behavior metrics are determined. This information is sent
to each machine with the program. At program install time, a neural
network computes core assignment for each loop.

We now give a brief overview of the behavior metrics statically
computed for our evaluation. We believe these metrics are a reason-

1 We avoid using runtime profiles because they require representative inputs
which requires additional expertise and programmer effort.

2 2015/6/29

able subset of those necessary to approximate behavior in order to
demonstrate the utility of the approach. As we show in Section 4,
they work well in practice. Nevertheless, more metrics would most
likely be used in practice to give the best possible accuracy.
Instruction Latency The first metric estimates the average in-
struction execution time. Since we are dealing with a range of target
cores all with different implementations of operations (some with
in-order and some with out-of-order execution and other issues like
memory accesses) we cannot compute how long an instruction will
take. However, we can estimate that some instructions will take
longer than others (e.g., division takes longer than addition). Thus,
the goal becomes estimating some measure of execution time that
correlates with behavior on at least most target cores.

We explored several options for this measure including instruc-
tion type groups (as in previous work [47]) and estimations derived
from monitoring behavior of small programs on modern architec-
tures [18]. The most effective technique we found uses cycle counts
on 486 CPUs from an instruction reference [43]. These metric also
considers instruction operands (e.g., memory vs. register).
Instruction Cache The next metrics are several rough static
estimates of instruction cache behavior. This includes an analysis
of both the best and worst cases for simple caches with several
levels of associativity (analysis is similar to the work by Ferdinand
and Wilhelm [15] on cache behavior prediction). The predicted hit
rate for each analysis is used. In future, more sophisticated cache
analysis such as [46, 48] can also be incorporated.
Data Cache Approximate data cache behavior is also used. The
idea is to statically analyze reuse distances of data accesses [5].
Reuse distance refers to the number of unique accesses between the
current accesses and the previous access to the same location. How-
ever, since our analysis is static, instead of looking at execution pro-
files, we analyze instruction operands to compute an approximate
best case reuse distance. This reuse distance is then used to place
each access into a bucket of similar data accesses (e.g., all accesses
with a distance between 22 and 23 are put in the same bucket).
This is similar to part of the MICA technique for clustering whole
benchmarks [20]. We use six buckets that collect accesses within
a specific range – [0, 20), [20, 21), . . . , [25,∞). The average (per
instruction) number of accesses in each bucket is used.
ILP We include rough static approximations of instruction level
parallelism (ILP). Similar to the cache reuse distance analysis, we
look at operands for each instruction. Again, we use only static ap-
proximations. For each register and memory location accessed by
each instruction we perform a backwards search for dependencies.
A worst case analysis is used, however, we do not look at some
forms of dependence such as blocking of functional units. Like data
cache analysis, each instruction is placed into one of five buckets
depending on the distance to the previous dependency.
Loop Size The final two metrics are simple and look at loop size
in terms of total instruction and basic block count. These metrics
on their own do not predict behavior well. However, adding them
to the metric set improves accuracy.

2.2 OS/Machine Install Time – Network Training
At some point, staged tuning must map a sets of metric values to
types of cores. A goal for staged tuning was to make this process
entirely automatic but also take advantage of knowledge about the
target AMP. Since some target AMPs are unknown, we chose a
machine-learning based approach. Thus, at OS or machine install
time, a neural network is trained.2 This process is entirely auto-
matic, requires no expertise, and is only done once per machine.

2 Another form of machine learning could potentially be used instead,
neural networks are simply the technique we chose due to prior experience.

This neural network is then used for determining the core assign-
ment of program segments for all programs to be optimized for this
machine. The top of Figure 2 shows that at OS/machine install time
we take as input the training set and output a neural network. Like
the output of the compile time stage, the training set consists of
pairs of loops and their metrics. To determine the desired network
outputs, each loop in the training set is run on the current machine
and its behavior observed (we run entire programs but only monitor
the loops in the training set). This could be integrated into the OS
installation or performed manually after installation. Alternatively,
users could download networks computed for similar systems.

A neural network (or artificial neural network) is a model
that mimics certain aspects of a biological neural network (i.e.,
a brain) [38]. This network has layers. The first and last layers are
the input and output layers respectively. The layers in between are
called hidden layers. Data is fed into nodes in the input layer. Data
is passed through the network where each node takes inputs from
the previous layer, multiplies each by some weight, aggregates the
result, and passes the result through an activation function [38]. To
give desired outputs, the network is trained using a training set con-
sisting of inputs and desired outputs. This training set is repeatedly
sent through the network. Each time, weights are adjusted to bring
the actual outputs closer to the desired outputs. This continues until
a desired error rate is reached.

For our use, the size of the input layer is equal to the number of
similarity metrics we have. We have found that networks with three
hidden layers, each roughly the same size as the input layer, work
best. While we observed that periodic functions (e.g., sin, cos) help
achieve the desired error rate most quickly, the output networks
were much less accurate than networks using the sigmoid logistic
function or similar approximations. The size of the output layer is
equal to the number of desired core assignment “groups”. In this
work, we have one group corresponding to each type of core in the
AMP. More groups could be used (e.g., one for program segments
that don’t have a core preference), but we have not explored that.

Training
Set

Behavior 1 Behavior N

Neural
Network
Trainer

Execute

Neural
Network

... ...

Loop 1

Metrics 1

Loop N

Metrics N

Figure 4. OS install time. To determine desired outputs, loops in
the training set are executed and behavior is gathered.

For example, in Figure 4 the network has two output nodes.
Thus, loops will be divided into two groups, each corresponding to
a type of core in the AMP. Each node in the output layer computes
a probability that the input belongs to the corresponding group
(should execute on the corresponding type of core). So, if we have
two output nodes, n1 and n2 we say the input belongs to group c1
if out(n1) > out(n2) where out gives a node’s output value.

Our training set consists of a set of benchmarks (we use the
SPEC CPU benchmarks, however any set of programs could be
used or crafted for this purpose) and precomputed metrics for the
loops in each benchmark (shown on the left of Figure 4). Each loop
is a single training example in our training set. These metrics for
each loop make up the inputs of each member of the training set.
Since the outputs are probabilities for which type of core the loop
should be assigned to, we need a way to determine, for each loop
in our training set, which type of core is ideal.

3 2015/6/29

To determine the desired core assignment, execution behavior
is monitored for each loop (top right of Figure 4). To do so, each
loop is instrumented to gather performance data. We monitor in-
structions (actually µops) per cycle, however, other metrics could
easily be used if desired. After execution, the behavior of all exe-
cutions (e.g., nested loops that executed many times) are averaged.
This is done once for each type of core. Suppose the performance
data gathered was IPC (instructions per cycle) and that two types
of cores exist. Then, a single threshold of “IPC change” is used.
That is, any loop whose IPC difference when executed on the two
core types is above this threshold goes in one group (i.e., is as-
signed to the core giving higher IPC). The other loops go in the
other group (i.e., the core giving lower IPC). The idea is that the
most computationally intensive loops should execute on the fastest
cores while others (perhaps memory intensive loops) could save re-
sources by executing on the slower cores (and see less slowdown
than the computationally intense loops). For more types of cores,
more complex criteria would be used (e.g., multiple thresholds).

To avoid over-fitting, values that lie close to, within ε, from
the threshold(s) are set with equal probability for the groups (core
types) on either side of the threshold. For example, if we have a
threshold of 0.5 and two loops with IPCs of 0.49 and 0.51, we want
these loops to be considered similar (and they likely have similar
metric values). Informing the neural network otherwise may hurt
accuracy. In our experiments, ε ranges from 0.01 when cores only
differ in frequency to 0.03 for cores with significant differences.
These values avoid over-fitting loops that lie directly on either side
of the threshold while at the same time avoid capturing too many
loops as being fit for either group (core type).

Once we have determined the desired output for each loop, the
network is trained (bottom right of Figure 4). This entire step is
lengthy due to gathering the actual behavior of each loop. Fortu-
nately, this step only needs to be done one time, when the machine
is set up. Throughout the entire lifetime of the machine, the same
neural network may be used. Additionally, it would be reasonable
that users could obtain a pre-trained network based on their ma-
chine configuration.

We can influence the core assignment distribution through the
training set (by adjusting the threshold used to determine the de-
sired outputs). This means the distribution of loops assigned to each
core type can be tuned based on the distribution of core types in the
target AMP and/or the desired behavior. For example, suppose we
have an AMP with two core types (e.g., fast and power efficient).
If we want efficient power use, we may only put segments in the
“fast” core’s group when the benefits of doing so are large.

2.3 Program Install Time – Core Assignment
The final stage, core assignment, happens at program install time
(when the program is placed on the target machine). This stage is
automatic and only happens once per program, per target machine.
The bottom right of Figure 2 shows that loops and their metrics
along with the neural network are input. The output of this stage is
a modified program where loops are assigned to cores in the AMP.
This process can be built into install scripts or done by end-users.

This stage is illustrated in more detail on the right of Figure 3.
During this stage, the metrics for the program (computed at compile
time) are submitted to the neural network (trained at OS install
time) to compute the core assignment. A benefit is that, since all
expensive analysis is completed before this stage, core assignments
are computed very quickly (on average < 0.025s). This stage also
only occurs once per program statically (at install time).

For dealing with loop nesting, we determine an assignment for
each nesting level. Then, these assignments are merged if deemed
appropriate. For example, if an outer loop has the same assignment
as its inner loop, we ignore the assignment for the inner loop. If the

assignments are different (or if the outer loop contains many inner
loops) we use heuristics (strength of the core assignment) to choose
if one of the assignments or both will be used.

Finally, the program is modified to include the core switching
code based on the computed core assignment. When the program
is run, it takes advantage of the core assignment with no runtime
monitoring or analysis overhead.

3. Closely Related Work
Prior to quantitatively comparing staged tuning with the closest
related work, we qualitatively compare and contrast with closely
related ideas.

Sondag and Rajan proposed phased-based tuning, a hybrid
(static and dynamic) analysis for improving utilization of AMPs [44,
45, 47]. Their technique exploits similarity between code segments
to reduce dynamic analysis overhead. A static analysis partitions
program segments into groups of similarly behaved segments.
Then, dynamic analysis is assigns entire groups to cores of the
AMP based on the observed behavior of a sample of program seg-
ments in the group. Staged tuning also statically “groups” program
segments that we believe will behave similarly. However, instead
of computing core assignments at runtime, we do so at program
install time to further decrease runtime overhead (and remove dy-
namic analysis overhead).

Becchi et al. [3] propose a dynamic assignment technique mak-
ing use of the instructions per cycle (IPC) of program segments.
Their work focuses on the load balance across cores whereas we
aim to maximize throughput. Shelepov et al. [9] propose a tech-
nique which does not require dynamic monitoring (uses static per-
formance estimates). However, this technique assigns cores at a per
benchmark granularity and thus does not consider program phase
behavior. Li et al. [25] and Koufaty et al. [23] focus on load balanc-
ing in the OS scheduler. They modify the OS scheduler based on
the asymmetry of the cores. While this produces an efficient sys-
tem, the scheduler needs knowledge of the underlying architecture.
Our work differs from these in the following way. First, this work
is not directly concerned with load balancing. Second, this work
focuses on scheduling the different phases of a program’s behavior.

Tam et al. [49] determine core assignments based on increasing
cache sharing. They use cycles per instruction as a metric to im-
prove sharing for symmetric multicores. Kumar et al. propose a
temporal dynamic approach [33]. After pre-defined time intervals,
a sampling phase is triggered. After this phase, the system makes
assignment decisions for all processes. After a fixed period of time,
this procedure repeats (throughout the program’s entire execution).
Staged tuning differs in that it does not require runtime monitoring.

Cao et al. [6] studied using AMPs for virtual machine (VM)
services. They found that small/simple cores are well suited for
VM services since VM code is often asynchronous, parallel, non-
critical, and poorly utilizes larger more complex cores. Our work
differs in that we target code from non-managed languages. As part
of future work, it would be interesting to explore how staged tuning
behaves for VM services.

Other related works focus on providing and choosing from mul-
tiple variants of code segments for heterogeneous systems. San-
drieser et al. [41] proposed using “explicit platform descriptions”,
which allow “mainstream” programmers to implement a single an-
notated program that experts later tune for a heterogeneous sys-
tem (runtime systems may pick between implementation variants).
Benkner et al. [39] propose a component model for providing mul-
tiple versions of performance-critical code parts of applications and
using various techniques to select the most suitable version for the
given heterogeneous system. Staged tuning differs in that it is auto-
matic and focuses on single-ISA AMPs. Jiménez et al. developed
a scheduler aimed at making use of heterogeneity in terms of CPU

4 2015/6/29

and GPU [51]. Their work is targeted at a specific type of hetero-
geneous multicores with different ISAs whereas our work focuses
on single ISA performance asymmetric multicores. Since they fo-
cus on cores with different ISAs they require the programmer to
note which functions can be executed on both core types or provide
implementations for both core types.

Among this work, we find phase-based tuning [47] most similar
and thus choose it for our quantitative comparisons.

4. Evaluation
Our hypothesis is that staged tuning improves utilization of AMPs
over the stock Linux scheduler and the most similar prior work [47].
We also hypothesize that its key piece, core assignment, is accurate
for a wide range of potential AMPs.

To evaluate these hypotheses, we first compare staged tuning to
the stock Linux scheduler on a physical AMP. We also compare
to a similar technique, phase-based tuning [47]. Next, we evaluate
the main component of our technique, core assignment, for a wide
range of potential AMPs.

4.1 Staged Tuning for a Physical AMP
Research Question 1: Does staged tuning improve performance
on an AMP over the stock Linux scheduler?

We now briefly describe the experimental setup for evaluating
this question and then discuss the observed benefits.

4.1.1 Experimental Setup
Machine setup We created a physical AMP using the six core
Opteron 2431 with five cores frequency scaled down to 0.80GHz
and one at 2.40GHz. We chose this system because of all our
options, the frequency range is the largest (“fast” core frequency is
3x “slow” core) and the core type ratio is realistic (highly skewed).
While this AMP may not be as ideal as something that would be
produced for this purpose, we believe it is the best AMP we could
construct with our resources without resorting to simulation.

Workload setup Workloads are constructed as follows. For a
workload of size n we have n benchmarks running simultaneously
at all times. In our experiments, n = 24. When a benchmark com-
pletes, another randomly selected benchmark is started. The goal
is to maintain a fixed number of running benchmarks. Workloads
run for a fixed amount of time, in this case 60 minutes. We capture
the selected benchmarks so that the same experiments can be re-
played for different configurations (i.e., Linux scheduler vs. staged
tuning). This is similar to previous work [47].

Throughout these experiments, the benchmarks share (or com-
pete for) the different types of cores. Thus, if any benchmark is
greedy (takes a “fast” core when other more suited benchmarks are
competing for it) overall throughput will suffer. Note that we do
not introduce parallelism or directly enforce that all types of cores
are kept busy (though indirectly this is usually the case). However,
these topics would be interesting to explore in future work.

The benchmarks we used are those from the SPEC CPU 2000
suite3. This suite is used instead of more recent suites (e.g., SPEC
CPU 2006) since it runs in a reasonable amount of time under fine
grained monitoring (necessary for determining ideal assignment)
on our older machines.

Neural Network Training We use the FANN library [32] for
constructing and training our neural networks. In our experiments,
we compute a grouping (i.e., core assignment) for each individ-
ual benchmark. To do so, we use a technique called leave-one-out
cross-validation [38, pp.663]. That is, when computing a grouping

3 excluding perlbmk, gcc, eon, fma3d, and sixtrack which either do not
execute or analyze properly

for a benchmark, we train a new neural network with the rest of
the benchmarks (i.e., we exclude the current benchmark and all its
loops from the training set – also excluding all other runs under
different input sets). In this way, the neural networks used for our
experiments for each benchmark are not trained with the bench-
mark being analyzed. In practice, the training set could include a
more wide range of program types.

The ideal neural network outputs for the training set are deter-
mined as follows. First, a threshold IPC difference is determined
such that if a segment’s IPC difference between the core types is
below the threshold it will achieve enough efficiency on the faster
core to justify taking the space on the single faster core. Loops
with IPC differences on either side of this threshold are assigned to
the different types of cores.

4.1.2 Performance of Staged Tuning
Runtime Overheads Additional space is required in the binary
for the dynamic optimization code (after installation, storage of
behavior metrics is not necessary). Staged tuning only requires on
average 2.95% space overhead.

Figure 5. Space overhead of optimization code.

Figure 5 shows the runtime space overhead of staged tuning per
benchmark. The figure shows that nearly all benchmarks have less
than 4% space overhead (most are around 2%). A few benchmarks
have a significantly higher space overhead. Some of these are small
programs (e.g., swim and mcf) whereas the others have many non-
nested loops (e.g., applu and lucas).

Extra time is spent executing dynamic optimization code, this is
time overhead. To measure this, we set all core switches to “all
cores” (new code is executed and makes the same library calls
but no core switches occur). Figure 6 shows the time overheads
of individual benchmarks running in isolation.

Figure 6. Time overhead of dynamic optimization code.

We see that most benchmarks have extremely low time over-
heads even when running in isolation. Most benchmarks have be-
low 0.3% time overhead and several have no noticeable overhead.

5 2015/6/29

Static Overhead Sending compile time computed similarity met-
rics with programs has some space overhead. Approximately 80
bytes per loop is needed in our current implementation, however,
this could easily be reduced. Figure 7 shows the required space
overhead for each benchmark.

Figure 7. Space overhead of behavior metrics.

The average space overhead is approximately 2%. This could be
reduced by using more compact data types (e.g., we use, but do not
need, four bytes to store the basic block count for loops). Note that
this overhead does not necessarily impact the final binary size (met-
rics storage is only required until core assignment is completed).

Install time core assignment also has a cost, even though it is
only done once for each program. We observe, for the benchmarks
studied, that staged tuning takes less than 0.03 seconds at program
install time to determine the core assignment. Additionally, the
current implementation of this phase is not yet optimized for fast
execution. Thus, we expect this time to reduce further with a fine-
tuned implementation.

Average Process Speedup To measure how staged tuning im-
proves program speed, we consider average process speedup for
processes in our workloads. Using staged tuning, we observe ap-
proximately 23% average speedup over the stock Linux scheduler.

Figure 8 shows the average speedup per benchmark (for bench-
marks that complete under stock scheduling). Many benchmarks

-20%

0%

20%

40%

60%

80%

100%

ar
t

sw
im

vo
rt
ex

am
m
p

m
cf

tw
o
lf

eq
u
ak
e

ap
si

lu
ca
s

m
gr
id

gz
ip

vp
r

p
ar
se
r

w
u
p
w
is
e

b
zi
p
2P

e
rc

e
n

t
sp

e
e

d
u

p
 (

0
%

 =
 n

o
 s

p
e

e
d

u
p

)

Figure 8. Per-benchmark staged tuning speedup over the stock
Linux scheduler.

see large average speedups whereas only a few observed small
slowdowns. Those with slowdown either tend to prefer slower cores
for large chunks of execution, switch cores frequently (aside from
switching overhead this can hurt cache behavior), or spend a large
part of their runtime executing on cores with high contention.

Fairness Of course, speedup doesn’t take into account starvation
and other scheduling issues. That is, average speedup could come at
the cost of some processes starving. Previous work [47] considered
fairness using two metrics: max-flow and max-stretch (as defined

by Bender et al. [4]). Max-flow can be thought of as the process
with the longest execution time (from arrival to completion time).
The use of staged tuning reduces max-flow (lower is better) by
17% over the stock Linux scheduler. Max-stretch can be thought
of as the largest slowdown for an individual process. That is, if
any individual process slows down, this metric will increase. With
staged tuning, max-stretch is reduced by 28% (lower is better) over
the stock Linux scheduler.

Figure 9 shows the average max-stretch decrease per benchmark
(for all benchmarks that complete under stock scheduling).

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

sw
im

vo
rt
ex

am
m
p

tw
o
lf

ar
t

m
cf

ap
si

eq
u
ak
e

lu
ca
s

m
gr
id

gz
ip

vp
r

p
ar
se
r

w
u
p
w
is
e

b
zi
p
2

M
ax

-s
tr

et
ch

 d
e

cr
e

as
e

 (
h

ig
h

e
r

is
 b

et
te

r)

Figure 9. Per benchmark max-stretch decrease given by staged
tuning compared to stock Linux scheduler (higher is better).

Like speedup, many benchmarks see big gains in fairness, how-
ever, several see decreased fairness. These benchmarks for which
fairness got worse match up with those where speedup was small
(or there was a slowdown). This is expected since, for example,
even though those benchmarks that often prefer the “slower cores”
see less slowdown compared to program segments preferring the
“faster cores”, they still see slower execution on the “slower cores”
than the “faster cores”.

4.1.3 Comparison to Phase-based Tuning
Research Question 2: Does staged tuning outperform phase-based
tuning (closely related prior work described in Section 3)?
Experimental Setup We compare both techniques on our AMP
described above (5x0.8GHz, 1x2.4GHz). We chose this AMP over
one similar to previous work [47] since the core types vary more
and the core type ratio is more realistic. Because there are fewer
“fast” cores than in previous work (1 of 6 rather than 2 of 4), we
expect speedups to be smaller than those previously reported [47].

For phase-based tuning, we manually tune the metric set and
its weights (through a combination of manual, statistical, and auto-
mated search) such that we create two groups with approximately
85% accuracy (the same number of groups and accuracy as in pre-
vious work [47]). Workloads constructed as described above.
Overhead Comparison For space overhead (i.e., space required
for dynamic analysis and optimization code), staged tuning gives
an average decrease of 25.3% over phase-based tuning (3.98% vs.
2.95%) for the best phase-based tuning technique [47, pp.7]. This
reduction is because the inserted code no longer contains code for
monitoring behavior and making core mapping decisions.

For time overhead (i.e., dynamic analysis and optimization),
staged tuning gives an average decrease of 55.9% over phase-
based tuning (0.17% vs. 0.075%). This is measured (as in previ-
ous work [47]) on the runtimes of entire workloads instrumented to
switch to “all cores”. This differs from our earlier results that mea-
sured overheads for programs running in isolation. This reduction
is because the dynamic code no longer checks for dynamic core
mapping decisions.

6 2015/6/29

Speedup Comparison Using phase-based tuning, under the same
parameters as previous work [47] (excluding target AMP and met-
ric set which is tuned for our new AMP), we see approximately
6% average process speedup over the stock Linux scheduler. Using
staged tuning, we observe approximately 23% average speedup.

This improvement is due to three factors. First, staged tuning
has a core assignment distribution more similar to the core type dis-
tribution (this is also why we see a lower average process speedup
than previous work observed on a different, more balanced AMP).
Second, we have zero runtime monitoring and analysis overhead
(and no “warm-up phase” when core assignment is not yet known)
whereas phase-based tuning performs runtime monitoring. Third,
staged tuning’s core assignment is more accurate (a detailed com-
parison is shown in our companion technical report).

Fairness Staged tuning reduces max-flow by an additional 5%
(17% decrease vs. 12% with phase-based tuning). Max-stretch is
8% lower with staged tuning (28% decrease instead of 20%).

4.2 Core Assignment Accuracy
Research Question 3: Is they key piece of staged tuning, its core
assignment, accurate for a wide range of AMPs?

To answer this question, we first describe our experimental
setup for approximating a wide range of potential AMPs. Then, we
demonstrate the accuracy of our core assignment for these AMPs.

4.2.1 Experimental setup
We now describe our experimental setup including how we deter-
mine behavior for target configurations, hardware and software se-
tups, and techniques used to measure accuracy.

System Setup All systems used for experiments are physical
systems running GNU/Linux. Figure 10 shows all core types used
in our experimentation. We include modern processors (e.g., Core

Series and Frequencies L1 (i/d) L2 L3 Cores
Model (GHz) (KB) (KB) (MB)

Core i7, 870 1.2,1.6,2.0,2.44,2.93 32/32 4x256 8 4/8
Atom, N270 0.8,1.6 32/24 512 1/25

Core 2 Quad, Q6600 1.6,2.4 32/32 2x4096 4
Core 2 Duo, E6300 1.6,1.83 32/32 2048 2

Pentium 4, 2.0 2.0 12K6/8 512 1
Pentium M, 725 0.8,1.6 32/32 2048 1
Opteron, 2431 0.8,1.2,1.5,1.9,2.4 64/64 6x512 6 6
Opteron, 6168 0.8,1.3,1.9 64/64 6x512 12 12

Figure 10. Core types used. All L1 caches are private and split
(instruction + data). For cores with hyperthreading, the number
physical cores and total threads are shown.

i7, Opteron 6168), power efficient processors (e.g., Atom, Pentium
M), older processors (e.g., Pentium 4), and some in between. For
each core type, frequency was varied (if possible) as well creating
a wide range of core types (in total we tested 22 core types).

Computing Actual Behavior Behavior is gathered using PAPI [22].
Our own program analysis and instrumentation framework, which
works on binaries, detects loops (using standard algorithms [30])
and inserts PAPI calls. All machines run the same binaries. When
sufficient information is unavailable to safely instrument or detect a
loop (e.g., unknown branch target), it is ignored. For loops executed
multiple times, the average behavior of all executions is taken.

We consider both the behavior of loops running on an individual
core (i.e., the IPC of the loop when run on a specific core) and

4 Actually 2.39GHz, but rounded to avoid confusion with 2.93GHz.
5 Uses in-order execution.
6 Uses a 12K µop trace cache – similar to an 8-16KB i-cache [40].

difference in behavior between two core types (i.e., difference in
observed IPC when run on two different core types) in asymmetric
configuration (as used by phase-based tuning [47]). For asymmetric
configurations, we approximate difference in behavior using two
core types, sometimes in different systems. While some of these
AMPs do not exist and other characteristics of each machine may
differ, we believe that the difference in behavior is representative
of some potential AMP. We focus on asymmetries with two core
types because previous work suggests that two types are sufficient
to realize the benefits of AMPs [19, 24].

Accuracy Metrics To determine the accuracy of core assignment,
we use several techniques.

Raw Accuracy Raw accuracy is the percent of loops that “fit”
in their group (i.e., fit on the corresponding core). If we have
two groups both containing five loops (10 loops total) and all are
“correctly” grouped except one (ideal grouping is determined the
same way training sets are created), then this grouping has 90%
raw accuracy.

Group Accuracy Suppose we have two groups, one with eight
loops, the other with two. The group with eight loops is completely
accurate (100%) whereas the other is entirely incorrect (0%). In this
case, the group accuracy is 50% (i.e., each group gets equal weight
regardless of its size). This case would be reported as 80% accurate
with the raw accuracy metric. This case could occur if we were
to choose an extreme threshold and cause the size of one group to
become very small. Simply placing all loops in the larger group
will give a high raw accuracy. Group accuracy solves this problem
by giving a 50% group accuracy.

p-value We consider the p-value for the statistical test where
the null hypothesis is that the two groups have the same mean. A
sufficiently low p-value will reject this hypothesis. That is, the two
groups have a statistically significant difference in their means.

Boxplots Finally, we consider a visual analysis using boxplots,
which help illustrate the distribution of loop behavior in each group.
Consider the left of Figure 12. Here, we used staged tuning to
divide loops into two groups, a plot is shown for each. The boxes
represent the inner quartile range of the loop behavior for the group.
The lines on either end extend to the minimum and maximum of the
behavior in the group (excluding outliers, shown as circles). The
line in the middle of the box shows the median behavior. For our
purposes, ideally there would be no overlap between groups (i.e.,
everything assigned to a core type would be either above or below
some threshold). We believe a good grouping should at least not
overlap the inner quartiles (i.e., boxes).

4.2.2 Core Assignment Accuracy
We now evaluate the accuracy of staged tuning for a variety of
asymmetric configurations. To do so, we run benchmarks on a wide
variety of machines and observe their behavior. This behavior is
used to assign loops to cores giving us an ideal assignment. We
then compare the ideal assignment with staged tuning’s assignment
for each configuration along four dimensions: raw accuracy, group
accuracy, statistical test p-value, and visual analysis.

Some configurations were chosen because they combine high
power and power saving cores (e.g., i7 with Atom or Pentium M).
Others were chosen that have similar clock frequency but differ in
other (known or unknown) ways (e.g., Core 2 Quad and Opteron).
Finally, in configurations cores differ only in frequency.

Figure 11 gives the average raw and group accuracy (defined
in Section 4.2.1) of staged tuning for each configuration. For all,
we see a p-value of < 0.01. Thus, we leave this p-value out of the
table. We focus on two groups since this is a likely use case (e.g.,
assign to a fast or slow core).

7 2015/6/29

Core Type 1 Core Type 2 Group
Model Freq. Model Freq. Accur. Accur.

i7 2.93 i7 1.20 95.0% 91.0%
*i7 2.93 Atom 0.80 94.0% 93.6%

i7 2.40 Core 2 Quad 2.40 94.5% 92.3%
i7 1.60 Core 2 Quad 1.60 94.5% 88.8%
i7 2.93 Core 2 Duo 1.60 98.7% 90.0%
i7 1.60 Core 2 Duo 1.60 95.3% 92.5%
i7 2.93 Pentium 4 2.00 92.7% 92.4%

*i7 2.93 Pentium M 0.80 91.6% 91.4%
i7 2.40 Opteron 2431 2.40 92.6% 89.0%
i7 2.93 Opteron 2431 0.80 91.0% 88.9%

Atom 1.60 Atom 0.80 92.3% 89.2%
Atom 1.60 Core 2 Quad 1.60 93.1% 93.4%
Atom 1.60 Core 2 Duo 1.60 92.8% 90.2%
Atom 0.80 Core 2 Duo 1.60 93.2% 92.0%
Atom 0.80 Opteron 2431 2.40 92.5% 88.0%
Atom 0.80 Opteron 2431 0.80 96.3% 90.1%

Core 2 Quad 1.60 Core 2 Duo 1.60 94.3% 94.3%
Core 2 Quad 2.40 Pentium 4 2.00 94.4% 92.6%
Core 2 Quad 2.40 Pentium M 0.80 94.3% 93.3%
Core 2 Quad 2.40 Opteron 2431 2.40 96.0% 94.8%
Core 2 Quad 2.40 Opteron 2431 0.80 95.8% 93.8%
Core 2 Duo 1.83 Pentium 4 2.00 95.2% 93.4%
Core 2 Duo 1.83 Pentium M 0.80 94.5% 92.5%

Pentium 4 2.00 Pentium M 0.80 95.2% 95.5%
Pentium 4 2.00 Opteron 2431 2.40 94.0% 91.7%
Pentium 4 2.00 Opteron 2431 0.80 92.8% 90.9%

Pentium M 0.80 Opteron 2431 2.40 90.2% 91.3%
Pentium M 0.80 Opteron 2431 0.80 94.2% 91.1%

Opteron 2431 1.90 Opteron 6168 1.90 97.8% 95.8%
Opteron 2431 0.80 Opteron 6168 0.80 97.6% 94.9%

Figure 11. Accuracy per configuration. Configurations marked
with * have boxplots shown later.

●●
●

●●
●

●●

●

●

●

●

●

●

●●
●
●

●●
●

●
●

●

●

●

●
●
●

●

●●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

Clusters

IP
C

 D
iff

er
en

ce
 (

i7
 @

 2
.9

3G
H

z
−

 A
to

m
 @

 0
.8

0G
H

z)

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
IP

C
 D

iff
er

en
ce

 (
i7

 @
 2

.9
3G

H
z

−
 P

en
tiu

m
 M

 @
 0

.8
0G

H
z)

Figure 12. Core assignment behavior distribution across all bench-
marks. For all configurations, we see a clear difference in behavior
between loops assigned to different cores.

The table shows that for nearly all configurations, we see greater
than 90% raw and group accuracy. For selected configurations, Fig-
ure 12 contains boxplots that show the distribution of the behavior
of groups across all benchmarks. One configuration uses our two
most varied core types, the i7 and Atom at their most extreme fre-
quencies. We also show a combination of the i7 and Pentium M
running at their extreme frequencies. This differs from the previous
configuration in that both cores do out-of-order execution.

For all configurations, we see a significant difference in the
behaviors for each group. Finally, for our most varied configuration

(i7 @ 2.93GHz with Atom @ 0.80GHz) we present the boxplots for
the grouping for each benchmark for each input set in Figure 13.

Nearly all benchmark and input combinations show a significant
difference in the distribution of behavior for the two groups. Two
benchmarks, ammp and gzip, differ in that they only give a single
group (in both cases, the second group). Fortunately, as we can
see, the behavior of all loops in these benchmarks fit nicely into
this group. The only benchmark and input combination where the
inner quartile ranges slightly overlap is bzip2 with its third input
(denoted bzip2.2 in the figure). Fortunately, the overlap is small,
and the accuracy for this grouping is still 86%.

4.2.3 Single Core Type Grouping
We also adapt the core assignment technique to group loops based
on their predicted behavior on a single core. That is, instead of
predicting ideal core assignment based on IPC difference between
two core types, we predict which loops will have similar behavior
(for our tests, IPC) on some individual core type. For example, if
a loop has an IPC above some threshold it should be placed in one
group, while all other loops are placed in another group.

Core Type Num. Raw Group
Model Freq. Groups Accur. Accur.

*i7 2.93 2 92.2% 94.0%
i7 2.93 3 85.0% 89.3%

Atom 1.60 2 88.4% 87.3%
*Atom 1.60 3 89.8% 88.1%

Core 2 Quad 2.40 2 94.0% 93.9%
Pentium 4 2.00 2 98.3% 96.6%

Pentium M 1.60 2 92.2% 92.2%
Opteron 2431 2.40 2 92.8% 92.5%

Figure 14. Accuracy of behavior groups for various core types.
Cores marked with * have boxplots shown later.

●

●

●●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Clusters

IP
C

 (
i7

 @
 2

.9
3G

H
z)

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IP
C

 (
A

to
m

 @
 1

.6
0G

H
z)

Figure 15. Single core behavior group distribution across all
benchmarks. We see a clear difference in group behavior.

Figure 14 gives the average raw and group accuracy (defined in
Section 4.2.1) when staged tuning’s core assignment technique is
adapted to group programs segments with similar behavior. For all,
we see a p-value of < 0.01. Thus, we again leave this p-value out
of the table. We also include a few experiments with three groups
to demonstrate the flexibility of the behavior prediction.

Again, we see above 90% accuracy for most cores. For selected
configurations we present boxplots in Figure 15 that show the
distribution of the behavior across all benchmarks. We show plots
for our most complex (i7) and simple (Atom) cores using both two
and three groups. Again, we see clear differences in group behavior.

8 2015/6/29

●

0.
0

0.
5

1.
0

1.
5

2.
0

ammp.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

applu.0

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

apsi.0

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

art.0

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

art.1

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

bzip2.0

●

●

●●●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

bzip2.1

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

bzip2.2

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

crafty.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

equake.0

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

facerec.0

●

●

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

gap.0

0.
0

0.
5

1.
0

1.
5

2.
0

gzip.0

●0.
0

0.
5

1.
0

1.
5

2.
0

gzip.1

●0.
0

0.
5

1.
0

1.
5

2.
0

gzip.2

0.
0

0.
5

1.
0

1.
5

2.
0

gzip.3

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

gzip.4

●

●

●

●●

●
●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

lucas.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

mcf.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

mesa.0

●●

●●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

mgrid.0

●

●

●
●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

parser.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

swim.0

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

twolf.0

●

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vortex.0

●

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vortex.1

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vortex.2

●
●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vpr.0

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vpr.1

●●
●
●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

wupwise.0

Figure 13. Boxplots for each benchmark for the configuration containing the two cores: Intel i7 @ 2.93GHz and Intel Atom @ 0.80GHz.
Behavior is the difference between the two core types. Numbering after the benchmark name denotes input set.

9 2015/6/29

5. Other Related Work
Sherwood et al. [42] developed a technique for clustering segments
of execution. Staged tuning differs in that we group structural
elements of the program rather than execution time. Further, their
clustering is based on profiles of executed basic blocks rather than
our statically computed behavior metrics.

Choi and Yueng [8] use machine learning to determine efficient
thread distributions on SMT systems. Periodically throughout exe-
cution threads are reassigned. We analyze behavior based on pro-
gram structure rather than time. Also, they train their network dy-
namically whereas we train and use our network statically.

AbouGhazaleh et al. [31] use machine learning to dynamically
scale clock frequency in embedded systems. Representative inputs
are used to determine efficient power management policies, which
are used for training. Their compiler uses this information to opti-
mize the program. At runtime, by monitoring performance period-
ically, decisions are made regarding the power management policy.
Our “phases” are determined without ever running the program.

Wang and O’Boyle [52] use machine learning to help partition
stream-based programs onto cores. The goal is to choose a good
combination of parameters (e.g., level of loop unrolling, number of
threads per loop, when to split and join, etc). Unlike their approach,
we do not consider modifications to program structure. Further, we
focus on behavior of individual segments rather than workloads.

Dubach et al. [12] use machine learning to dynamically predict
desired hardware configurations for program phases. Our technique
does not determine the best configuration for phases, instead, it
chooses the best from a set of choices.

Hoste and Eeckhout [20] use execution profiles to cluster bench-
marks with similar behavior. Unlike their work, all of our analysis
and grouping is static. Also, we assign program segments rather
than whole programs.

Agakov et al. [13], Püschel et al. [28], and Ganapathi et
al. [16] use machine learning to focus the search of the space of
candidate optimizations. The idea is that searching, applying, and
evaluating the optimization space is time consuming. Further, the
best optimization set is system dependent. They show that machine
learning can improve this process by intelligently searching the
optimization space. Our approach is similar in that we use machine
learning to handle target architecture details. However, we focus
on predicting approximate program behavior rather than searching
candidate program transformations.

Related work also dynamically uses machine learning and pro-
filing to determine the best algorithm, optimization, or implemen-
tation for a given target machine [1, 10, 11, 21, 26]. Similarly, de
Mesmay et al. [11] propose adapting applications (e.g., picking the
best algorithm for the given input on the target machine) at instal-
lation time rather than at runtime. The idea is to determine the best
adaptation for different problem (input) sizes. Then, at runtime, no
adaptation is needed since the application knows the best version of
the application to use. We also use an install time approach to re-
duce dynamic overhead. Our work differs in that we do not require
execution or runtime profiles of the candidate program to perform
our core assignment.

6. Conclusion
Asymmetric multicore processors are an important class of multi-
core processors. However, techniques for their efficient use, espe-
cially in the presence of a wide range of potential AMPs, are still
needed. In this work, we have developed staged tuning, a novel
technique for effectively utilizing AMPs. The key idea is to per-
form extensive compile time program analysis but delay core map-
ping decisions until the target AMP is known. On a real AMP, we
observe a 23% speedup when using staged tuning compared to un-

tuned versions of the same programs. Compared to a similar previ-
ous work which creates a single binary for all machines we see an
additional 17% average program speedup. Our results have shown
that we can, at greater than 90% accuracy on average, statically
assign program segments to cores for a wide range of target AMPs.

Future work includes exploring tighter integration with the OS
scheduler and investigating the applicability of the key ideas behind
our core assignment technique for other problems. We have shown
that our technique can accurately group program segments that are
likely to have similar runtime behavior on a target core. Thus, one
direction to explore is finding other (static or dynamic) optimiza-
tions that can make use of this behavior information to either make
better decisions statically or reduce dynamic analysis overhead. We
would also like to explore whether Staged Tuning is a better fit with
some of our recent work on implicitly concurrent programming lan-
guages [2, 27, 35–37, 50]. Goal of these languages is to hide the
details of concurrency and platforms from the programmer. Staged
tuning serves to hide the details of the AMP from the programmer,
so it could contribute.

References
[1] A. Tiwari et al. Auto-tuning full applications: A case study. Int. J.

High Perform. Comput. Appl., 25(3), 2011.

[2] M. Bagherzadeh and H. Rajan. Panini: a concurrent programming
model for solving pervasive and oblivious interference. In Proceedings
of the 14th international conference on Modularity (Modularity’15),
pages 93–108. ACM, New York, NY, USA., 2015.

[3] M. Becchi and P. Crowley. Dynamic thread assignment on heteroge-
neous multiprocessor architectures. In International Conference on
Computing Frontiers, 2006.

[4] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch
metrics for scheduling continuous job streams. In Annual Symposium
on Discrete algorithms, 1998.

[5] K. Beyls and E. H. D’Hollander. Reuse distance as a metric for cache
behavior. In Proceedings of the IASTED Conference on Parallel and
Distributed Computing and Systems, 2001.

[6] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin
and yang of power and performance for asymmetric hardware and
managed software. In ISCA, 2012.

[7] C. Chambers. Staged compilation. In PEPM ’02, 2002.

[8] S. Choi and D. Yeung. Learning-based SMT processor resource
distribution via hill-climbing. In ISCA, 2006.

[9] D. Shelepov et al. Hass: a scheduler for heterogeneous multicore
systems. SIGOPS Oper. Syst. Rev., 43(2):66–75, 2009.

[10] A. Danylenko, C. Kessler, and W. Löwe. Comparing machine learning
approaches for context-aware composition. In Proceedings of the 10th
international conference on Software composition, 2011.

[11] F. de Mesmay, Y. Voronenko, and M. Püschel. Offline library adapta-
tion using automatically generated heuristics. In International Parallel
and Distributed Processing Symposium (IPDPS), pages 1–10, 2010.

[12] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. O’Boyle. A predictive
model for dynamic microarchitectural adaptivity control, 2010.

[13] F. Agakov et al. Using machine learning to focus iterative optimiza-
tion. In CGO, 2006.

[14] H. Fahmy and R. C. Holt. Software architecture transformations. In
ICSM, 2000.

[15] C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior
prediction for real-time systems. Real-Time Syst., 17:131–181, De-
cember 1999.

[16] A. Ganapathi, K. Datta, O. Fox, and D. Patterson. A case for machine
learning to optimize multicore performance. In Proceedings of the
First USENIX conference on Hot topics in parallelism, 2009.

[17] M. Gillespie. Preparing for the second stage of multi-core hardware:
Asymmetric cores. Tech. Report - Intel, 2008.

10 2015/6/29

[18] T. Granlund. Instruction latencies and throughput for AMD and Intel
x86 processors, March 2011. http://gmplib.org/˜tege/ x86-timing.pdf.

[19] E. Grochowski, R. Ronen, J. Shen, and H. Wang. Best of both latency
and throughput. In ICCD, 2004.

[20] K. Hoste and L. Eeckhout. Microarchitecture-independent workload
characterization. Micro, IEEE, 27(3), 2007.

[21] J. Ansel et al. Petabricks: A language and compiler for algorithmic
choice. In PLDI, 2009.

[22] J. Dongarra et al. Experiences and lessons learned with a portable
interface to hardware performance counters. In PADTAD Workshop,
2003.

[23] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in heterogeneous
multi-core architectures. In EuroSys, 2010.

[24] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan. Hetero-
geneous chip multiprocessors. Computer, 2005.

[25] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient operating
system scheduling for performance-asymmetric multi-core architec-
tures. In SC, pages 1–11, 2007.

[26] X. Li, M. J. Garzarán, and D. Padua. A dynamically tuned sorting
library. In CGO, 2004.

[27] Y. Long, S. L. Mooney, T. Sondag, and H. Rajan. Implicit invocation
meets safe, implicit concurrency. In GPCE ’10: Ninth International
Conference on Generative Programming and Component Engineer-
ing, pages 63–72. ACM, 2010.

[28] M. Püschel et al. SPIRAL: Code generation for DSP transforms.
In Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, 2005.

[29] J. C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Tal-
war. Using asymmetric single-ISA CMPs to save energy on operating
systems. IEEE Micro, 28(3):26–41, 2008.

[30] S. S. Muchnick. Advanced Compiler Design & Implementation. Aca-
demic Press, 1997.

[31] N. AbouGhazaleh et al. Integrated CPU and L2 cache voltage scaling
using machine learning. In Languages, Compilers, Tools and Theory
for Embedded Systems (LCTES), 2007.

[32] S. Nissen. Implementation of a fast artificial neural network library
(FANN). Technical report, Dep. of Comp. Sci. University of Copen-
hagen, 2003. http://fann.sf.net.

[33] R. Kumar et al. Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance. In ISCA, page 64, 2004.

[34] R. Kumar et al. Core architecture optimization for heterogeneous chip
multiprocessors. In PACT, 2006.

[35] H. Rajan. Building scalable software systems in the multicore era.
In Proceedings of the 2010 FSE/SDP workshop on Future of software
engineering research (FoSER’10), pages 293–298. ACM, 2010.

[36] H. Rajan. Capsule-oriented programming. In Proceedings of the 37th
International Conference on Software Engineering, 2015.

[37] H. Rajan, S. M. Kautz, and W. Rowcliffe. Concurrency by modularity:
Design patterns, a case in point. In Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages
and applications (ONWARD’10), pages 790–805. ACM, New York,
NY, USA„ 2010.

[38] S. Russell and P. Norvig. Artificial intelligence: a modern approach,
2nd ed. Prentice Hall, 2010.

[39] S. Benkner et al. Peppher: Efficient and productive usage of hybrid
computing systems. Micro, IEEE, 31(5):28 –41, 2011.

[40] D. Sager. The microarchitecture of the Pentium 4 processor. Intel
Technology Journal, 1:2001, 2001.

[41] M. Sandrieser, S. Benkner, and S. Pllana. Improving programmabil-
ity of heterogeneous many-core systems via explicit platform descrip-
tions. In IWMSE, 2011.

[42] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In ASPLOS-X, pages 45–
57, 2002.

[43] Z. Smith. The intel 8086 / 8088/ 80186 / 80286 / 80386 / 80486
instruction set, September 2011. http://80386.tk/.

[44] T. Sondag, V. Krishnamurthy, and H. Rajan. Predictive thread-to-core
assignment on a heterogeneous multi-core processor. In Proceedings
of the 4th workshop on Programming languages and operating sys-
tems, page 7. ACM, 2007.

[45] T. Sondag and H. Rajan. Phase-guided thread-to-core assignment for
improved utilization of performance-asymmetric multi-core proces-
sors. In Proceedings of the 2009 ICSE Workshop on Multicore Soft-
ware Engineering, pages 73–80. IEEE Computer Society, 2009.

[46] T. Sondag and H. Rajan. A more precise abstract domain for multi-
level caches for tighter WCET analysis. In RTSS ’10: The 31st IEEE
Real Time Systems Symposium, November 2010.

[47] T. Sondag and H. Rajan. Phase-based tuning for better utilization of
performance-asymmetric multicore processors. In CGO, 2011.

[48] T. Sondag and H. Rajan. Static cache coherency analysis. Technical
Report 373, Iowa State University, Department of Computer Science,
June 2015.

[49] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors. Operating Systems
Review, 2007.

[50] G. Upadhyaya and H. Rajan. An automatic actors to threads mapping
technique for jvm-based actor frameworks. In Proceedings of the 4th
International Workshop on Programming based on Actors Agents &
Decentralized Control, pages 29–41. ACM, 2014.

[51] V.J. Jiménez et al. Predictive runtime code scheduling for heteroge-
neous architectures. In HiPEAC ’09, 2009.

[52] Z. Wang and M. F. O’Boyle. Partitioning streaming parallelism for
multi-cores: a machine learning based approach. In PACT, pages 307–
318, 2010.

11 2015/6/29

