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INTRODUCTION 

The geometric calibration of radiographic systems cannot be avoided in image 
reconstruction problems in stereoradiography, X-ray or SPECT tomography. This operation 
performed usually before the object examination, provides the relative positions of the 
different parts of the system (object, source, detector). The source-detector geometry is then 
described by intrinsic parameters, and the scanning motion by extrinsic ones. 

We propose in this paper a geometric calibration approach for cone beam geometry 
systems based on calibration methods used in computer vision [1] (usually applied to 
robotics). We first recall the principles of classical geometric calibration methods. Second, 
we describe the "vision" approach and explain how this calibration can be performed using 
only linear algebra. Third, we show how our approach can be extended to tomographic 
systems. Finally, we compare the advantages and the drawbacks of this method with the 
classical one. 

CLASSICAL GEOMETRIC CALIBRATION METIIODS 

First of all, let us recall the principles of classical geometric calibration methods for 
radiographic and tomographic systems. The geometric parameters are estimated in two steps. 
First the intrinsic parameters are estimated. These parameters are linked to the acquisition 
geometry: detector to focal distance, pixel size, projection of the focal point onto the detector. 
Then, the extrinsic parameters are estimated. In the case of computed tomography the 
intrinsic parameters are considered as stable during the acquisition and the extrinsic 
parameters are then given by the rotation axis position. 

Estimation of the Intrinsic Parameters 

The intrinsic parameters are estimated by analyzing the displacement of the projection of a 
network of points moved parallel to the detector plane. This method is more or less 
equivalent to the computation of the projection matrix in the ''vision'' approach. 
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Estimation of the Extrinsic Parameters 

To estimate the extrinsic parameters of a tomographic system, we place a set of points in 
an approximately known position in the object set of axes. We then perform an acquisition 
on this set of points. As the intrinsic parameters are considered as stable during the whole 
acquisition, we can estimate the extrinsic parameters by minimizing the least square error 
between the measured positions of the projected points and the computed projection positions 
using the estimated parameters. We must stress that in the process we obtain directly the 
parameters we need for reconstruction, but we must minimize a highly non linear expression. 
So very often a large change on one of the parameters may produce a very small increase of 
the least square error. Gullberg and al. [2] presented a slightly different process where the 
extrinsic and the intrinsic parameters are obtained in o~y one minimization, but they gave 
almost the same conclusions. 

These classical methods are currently used in x-ray CT and in SPECT. 

THE "VISION' APPROACH 

To overcome the limiting assumptions of classical geometric calibration, we developed the 
"vision" approach. This method enables us to calibrate geometrically each projection in a 
reference set of axes. So with this approach we supply algebraic reconstruction or 
stereoradiography algorithms with the projection matrix for each projection direction. In the 
case of the tomography the reconstruction set of parameters can be computed from the set of 
projection matrices. 

Like classical geometric calibration methods, the "vision" approach is based on a set of 
assumptions. First ,we must construct a "calibration object", i.e. a set of 3D points with 
precisely known relative positions. Then, we must extract accurately 2D image 
measurements and match 3D points with their respective 2D projections. The acquisitions of 
this object are performed for all the positions we want to calibrate. Finally, before starting the 
calibration procedure, sampling steps on the detector plane must have been computed. 

Geometric Description of the System: the Set of Vision Parameters 

The cone-beam x-ray acquisition geometry can be described by the pinhole camera model. 
Figure 1 shows the different parameters involved in this description. 

The source-detector geometry defines a coordinate system RF relative to the focal point F 
and including vectors u and v directed by the pixel grid on the detector plane. 
The intrinsic parameters are then the following: 

- (Po,qo), the coordinates in pixel unit of the projection of the focal point onto the 
detector plane, 

- (ap,a.q), the scale factors given by: 

ap = FF' , <Xq = FF' ,~p and .6q being the pixel sizes on the detector plane 
~p ~ 

The calibration object defmes another coordinate system Robj at point O. 
The extrinsic parameters are then: 
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- the translation T (tx,~,tz) from the focal point to the origin 0 of Robj, 
the rotation r defmed by its row vectors (rt,f2,fJ) which transforms the vectorial 
set (u,v,w) into (i,j,k). (This rotation can also be expressed according to the three 
Euler's angles). 
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Fig. 1 Description of the acquisition geometry 

For each position of this object, the calibration procedure is divided into the four 
following steps. 

Computation of the Projection Matrix and the Intrinsic Parameters 

Although the projection is a non linear transformation, we can note the projection of a 
point a(x,y,z) with a linear matrix formula expressed in homogeneous coordinates by 
equation (1) (where s is the scale factor of the transformation): 

This transformation matrix, denoted (M), relates each point of the calibration object to 
their projected image. Thus, for each of them we can write 

= (M)( ~). = (~ :::)( ~). 
I J m3 m34 I J 

(1) 

(2) 
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If we have at least 6 object points, we can compute the matrix (M) by a least mean square 
estimation. We then derive intrinsic parameters taking into account that row vectors of the 
rotation matrix are perpendicular to each other. Therefore: 

Po = iIii . iii; <Xp = II iIii J\ iii; II 

<Xq = II iii2 J\ iii; II 
(3) 

Once this fIrst step has been carried out, computation of extrinsic parameters must be 
done. In order to perform only linear estimation in our calibration process and thus to fInd 
more stable solutions, the estimation of the rotation must be separated from the estimation of 
the translation [3]. 

Separation of Rotation and Translation Computations 

The projection formulas (2) give for all object points ~ = (x,y,z~T; j=l, ... ,npoints the 
following system: 

(pj iii3 -iIii).aj + (pj m34 - m14) = 0 

(qj iii; - iii2).aj + (qj m34 - m24) = 0 

By replacing the elements of matrix M by their expressions, this can also be written: 

ap (ri.aj + tx) + (Po - pj)(r;.aj + tz) = 0 

<Xq (fi.aj + ty) + (qo - CJj)(r;.aj + tz) = 0 

(4) 

(5) 

We notice in system (5) that for each point of the focal line (see fIgure 1) the second terms 
of all the equations equal zero. These points are projected on the detector plane at (PO,qo). 
Therefore, a particular solution ao of system (4) is obvious, and using it we can eliminate the 
translation parameters in system (5): 

apfl(~ - iiQ) + (po - pj)r;.(~ - iiQ) = 0 

<Xqr2(~ - iiQ) + (qo - qj)r;.(~ - iiQ) = 0 

Computation of Rotation Parameters 

Let nlj, n2j, and n3j be the vectors such that 

nlj ( '? 1 ' n2j ( ~ 1, nlj J\ n2j = n3j ( ~ ~~~~B 1 
Po - Pj qo - qj <XpOfq 

(6) 

(7) 

In system (6), the rotation parameters have been isolated. These equations mean that for 
each point indexed j, the vector (r)(~-ao) is perpendicular to the vectors nlj and n2j; therefore 
its direction is given by the vectorial product n3j of these two vectors. The problem becomes 

316 



then to find an optimal rotation (r) transforming the vectorial set (aj-ao) into n3j (for j equals 1 
to npoints, the number of object points). 

To solve this problem, we use the unit quatemions [4] which provide by a linear 
estimation the optimal solution as a set of four parameters (angle and unit vectorial axis of 
rotation). These four parameters can be easily converted into Euler's angles or into the 
rotation matrix (r). 

Computation of Translation Parameters 

The last step of the calibration procedure is to estimate the translation from the system (8) 
where all of the other parameters are known. These three remaining translation parameters 
are estimated by least mean square. 

Uptx + (Po-Pj)tz + «Upfl+(po-Pj)fj).iij = 0 

aqty + (qo-qj)tz + «aqi;+(qo-qj)fj).iij = 0 

GENERALIZATION TO TOMOGRAPHIC SYSTEMS 

(8) 

If we intend to generalize this approach to calibrate tomographic systems using classical 
analytical reconstruction codes, we must find the tomographic set of geometric parameters 
which is often relative to the rotation axis of the system. Then different positions of the 
calibration object are needed, these positions are taken by rotating the object by arbitrary 
angles about the axis we would like to determine the position. We assume in this case that the 
source-detector geometry is stable (we consider an analytical reconstruction code for which 
intrinsic parameters do not change during the acquisition), so that the previous procedure 
must be modified like that: 

- intrinsic parameters are computed for each position of the calibration object, 
- we take then their mean values, 
- extrinsic parameters are fmally computed for each position. 

Once the different positions of the calibration object have been calibrated, we must 
convert the "vision" set into the tomographic set. We proceed then as follows: 

- a reference position of the object is chosen, 
- the set of rotation axes between each position and the reference one is computed 

from the set of extrinsic parameters, 
- the mean position of the rotation axis is computed, 
- finally the tomographic parameters are derived from this axis position and the 

values of the averaged intrinsic parameters. 

We must stress here that only two positions of the calibration object are sufficient to carry 
out this procedure if the system is stable on a complete rotation. 

DISCUSSION 

The difference between the classical geometric calibration and the ''vision'' calibration 
implementations is that for classical methods we do not need to construct a particular 3D 
calibration object. Neither do we need to match these points with 2D image measurements for 
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different positions of the object in order to calibrate the system. We directly compute the 
required set of parameters from the trajectory of a test point. 

We must also stress that the "vision" method uses linear estimation algorithms. Thus, no 
initialisation problem comes up at any step of the calibration procedure, and the stability of 
the results is ensured. Moreover, this method can be adapted to any kind of source 
trajectories -- it does not require a regular angular sampling or a stable acquisition geometry. 

CONCLUSION 

We have described a "vision" method for calibrating radiographic systems. We have 
stressed that if we can defIne a perfectly known set of 3D points and extract accurately 2D 
image measurements, this method is easy to carry out and can be adapted to a large variety of 
geometry for applications in radiography, x-ray CT and SPECT. Moreover with such a 
method, the calibration does not need to be done by a specialist because the only 
experimental work to be performed is to place the calibration object in the fIeld of view. The 
experimental application of this method is under development 
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