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ABSTRACT 

Teleoperation, the operation of a vehicle from a distance, is a useful but difficult task. 

The single most complicating factor is lag, the communications delay that arises when 

signals must travel between the operator and the vehicle being controlled. This lag can be on 

the order of ten seconds if the signal must travel to a vehicle orbiting the Earth or even ten 

minutes if the signal's destination is Mars. Lag delays the execution of commands that the 

operator wishes to give to the vehicle. To complicate matters, it also delays the delivery of 

any information about the vehicle's state to the operator. For example, if a vehicle is heading 

towards an obstruction observed by a vehicle-mounted camera, the operator will not receive 

the signal until a number of seconds equal to the lag has passed. Even if the operator 

responds to the obstruction immediately upon receipt, any command intended to execute an 

evasive maneuver will be subject to the same delay. Thus, before any corrective measures 

can be taken, the vehicle continues to move towards a crash for a time approximately twice 

the lag. For an earth bound operator driving a vehicle on Mars, that would mean around 

twenty minutes of movement. The standard way to cope with these delays is to only allow 

the vehicle to move in small increments when it gets a command so that it sits idle for the 

majority of the double lag cycle before another operator input can be received and executed. 

While effective, this method of control is slow, frustrating, tedious and error prone. 
I 

This thesis shows that simulation methods in concert with a virtual environment can 

markedly improve upon an operator's ability to teleoperate a vehicle in certain applications. 

If the environment where the vehicle will be operating can be adequately geometrically 

modeled and is relatively static, an operator can control a simulated vehicle in a virtual 

version of the environment without experiencing any of the delays associated with lag. The 

results of the simulation are used to control the real vehicle from a distance. The simulated 

vehicle is based on a dynamics simulation of the real vehicle that is used to predict the 

position of the real vehicle resulting from the sequence of operator inputs. A test of this 
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approach using low cost, commodity components suggest that the effects of lag can be 

mitigated, providing a more continuous operating experience. Updates from the real vehicle 

are incorporated into the virtual world to provide cues to the operator about how closely the 

real vehicle is following the simulation. If a method is also included to minimize the 

distance between the real vehicle and the virtual one, virtual reality (VR) aided teleoperation 

can significantly improve vehicle control. 

This thesis presents a VR aided teleoperation system that uses the wagon tongue 

dynamics method to control the distance between the real and simulated vehicle positions. 

This distance is also used to provide real-time feedback to the operator about the predicted 

degree of uncertainty in the vehicle position. An uncertainty box is drawn around the virtual 

vehicle that grows and shrinks in proportion to the distance between the path of the real 

vehicle and the path of the virtual vehicle. A test of this VR aided teleoperation system 

designed to compare its effectiveness with that of camera aided teleoperation and non-lagged 

direct control is also described. The results of this test show that VR aided teleoperation 

significantly outperforms camera-aided teleoperation, and is nearly as effective as direct, 

unlagged control. 



MOTIVATION 

A distant planet requires surface exploration, an unstable building needs to be 

assessed, people trapped in a mine need to be found. Remote controlled vehicles can 

accomplish these tasks and more through teleoperation. Teleoperation is the human 

mediated control of a robot from a remote location. The operator must complete any tasks 

without being able to directly observe the robot or its environment. Vehicle teleoperation, a 

specific type ofteleoperation, is the remote control of a mobile robot or vehicle. In this 

thesis, the terms vehicle teleoperation and teleoperation will be used interchangeably. 

Teleoperation is common in applications where direct human involvement is dangerous, 

expensive, or impossible. These types of applications are frequently set in dynamic 

environments or require the robot to perform complex functions. Many of these complex 

tasks and dynamic environments would render autonomous robot design infeasible with 

current technology [l]. It is precisely these cases in which a human must be in the loop of 

control. This human mediation is what separates applications for teleoperated robots from 

those for purely autonomous robots. 

Examples of Vehicle Teleoperation 

Search and Rescue Robots 

1 

A dramatic example of a teleoperation occurred on September 11, 2001. A few hours 

after the terrorist attacks on the World Trade Center, the Navy, private companies, and the 

Center for Robot Assisted Search and Rescue (CRASAR) all sent teleoperated robots to the 

site to search for victims [2]. The CRASAR robots varied in size from a shoebox to a large 

suitcase and provided two-way communication, heat detection, and site visualization via 

color video camera feedback. These robots combed the rubble as commanded by their 



remote human operators, and ultimately discovered the bodies of three victims. The robots 

accomplished this without exposing their operators to risk. 

Chernobyl Explorer 

Another example of teleoperation can be found in the aftermath of the disaster at 

Chernobyl in the Ukraine. In 1986, the nuclear reactor there suffered a catastrophic 

meltdown and to prevent further radiation exposure, the reactor was encased in a concrete 

sarcophagus. Since then, the sarcophagus has begun to develop cracks from weather and 

age, creating a potentially dangerous situation if the integrity of the sarcophagus were ever 

compromised. To complicate matters, the interior of the power plant is still radioactive 

enough to make direct human exploration dangerous. To avoid these risks, a teleoperated 

robot was sent into the plant interior to map out its current condition [3]. The information 

gained from this expedition has given scientists a more complete picture of what has 

happened inside the plant since its failure. The robot also took radiation data and 

photographed the site, providing valuable information to the scientists and engineers 

formulating plans for repairs to the sarcophagus. 

Unmanned Aerial Vehicles 

2 

Another arena that has seen the successful application of teleoperated vehicles is 

aerial reconnaissance. The development of an inexpensive unmanned reconnaissance vehicle 

was accelerated by US Military operations in the 1980s in Grenada, Lebanon, and Libya [4]. 

In December 1985, the first unmanned aerial vehicles (UAVs) were commissioned by the 

military. An example of this model is shown in Figure 1. UAVs rely on a crew of four to 

eight ground-based operators who monitor the vehicle's position and 



condition via video feeds from vehicle-mounted cameras and additional sensor data. The 

crew is responsible for piloting the UA V to its target safely through hostile territory, 

identifying the target, and capturing a good image of it. Of course, the crew performs these 

tasks in a room far away from the actual target, safely out of harm's way. 

3 

UAVs proved their worth in Operation Desert Shield/Storm in Kuwait and Iraq in the 

early '90s. The UAV was praised by Lt. Gen. Boomer of the Marine Corps Central 

Command Element Headquarters as " ... the single most valuable intelligence collector" [ 4]. 

UAVs have continued to prove their value in the recent operations in Afghanistan and Iraq. 

Figure 1: An Unmanned Aerial Vehicle 

Planetary Rovers 

NASA has also been a leader in the development and use of teleoperated vehicles. 

Perhaps the most well known is the Mars rover, Sojourner, shown in Figure 2. Sojourner 

was a six wheeled solar powered robot covered with scientific sensors. It was launched from 

Earth as part of the Pathfinder mission in December 1996 and arrived on Mars in July 1997. 

Its deployment plan called for it to stay within ten meters of its Lander and use its alpha-

proton-X-ray spectrometer to determine the composition ofrock on the Martian landscape 



[5]. Because commands took anywhere from ten to fifteen minutes to reach Sojourner from 

Earth, it used sophisticated autonomy software. However, it still heeded human commands, 

making it an extreme example of teleoperation. Sojourner's mission lasted seven days, 

twelve times longer than planned, before communication was lost [5]. 

Figure 2: The Mars Rover Sojourner 

The Challenge of Teleoperation 

Despite the successes of teleoperation, it remains useful in only a handful of 

situations and it is a cumbersome method of control from an operator's perspective. 

Teleoperation is made difficult primarily by an unavoidable complication - lag. 

Lag and the Ansible 

Orson Scott Card was keenly aware of the problem of lag when he wrote the popular 

science fiction novel, Ender's Game. Teleoperation is at the heart of the story's plot as the 

main character, Ender, is responsible for teleoperating a fleet ofremote starships in deep 

space. For any signal carrying one of his commands, physics dictates that it can travel no 

faster than the speed of light. Indeed, achieving this speed of signal propagation is difficult 

and is beyond current technology. For Ender, even the speed oflight would not have been 

fast enough as he was responsible for giving orders to fleets of starships tens of light years 

4 
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away. Even assuming signal propagation at the speed of light, his signals would have taken 

decades to reach the ships and any information from the fleet would likewise have taken 

decades to return back to Ender. Following these physical restrictions, Ender could have had 

only one back and forth conversation with the commander of the farthest fleet during his 

entire lifetime. 

Card's answer to this dilemma was something he called the ansible, a device that uses 

an as yet undiscovered property of the universe to eliminate lags in communications [ 6]. 

With the ansible, Ender was able to reach out across the cosmos and talk to ship commanders 

as if they were on the other side of the table. Unfortunately, while science fiction writers 

have the luxury of inventing magical devices that bypass the laws of physics, remote 

applications in real life must directly address the challenges of lag. 

Garden Hose Exercise 

Anyone who has filled up a fish tank with a garden hose has dealt with the challenges 

of lag. In this exercise, it is temperature, not electronic signals that are lagged, but the 

principle is the same. A fish tank requires that the water be at a particular temperature before 

the fish may be placed in it. When one person mans the faucet at one end of the hose and the 

other guides the water into the tank while checking the water temperature, lag becomes a 

critical factor. Unless they have incredible luck, the water coming out of the hose initially 

will be either too hot or cold. Therefore, the person at the end of the hose informs the faucet 

operator of this. If the water is too cold, the faucet operator immediately turns the faucet in 

the hot direction, but it takes time for the hot water to reach the end of the hose. In the 

meantime, the temperature measurer continues to call for hotter water so the faucet operator 

continues to tum up the heat. Finally, the hot water reaches the thermometer and it will 

likely be too hot due to excessive operation of the faucet. The person at the end of the hose 

calls for colder water and the overshoot cycle begins anew. 



Effect of Lag on Teleoperation 

In many common applications relying on signal propagation lag is only an 

annoyance. For example, in satellite TV transmission, signal lag each way means that the 

picture shows up on viewers' screens some seconds after it was sent out. The effects of this 

signal lag can be made apparent by watching a program from a satellite feed alongside the 

same program received via an antenna or cable. This setup provides an amusing way to 

accurately predict the outcome of the game winning field goal with 100% accuracy! The 

effects of the lag on the TV feed are not important because the viewer does not rely on the 

timeliness of the signal to make critical decisions. 

Lag is a severe problem in many vehicle teleoperation cases however. A two second 

lag means that if the vehicle should ever get into a position such that it will crash within two 

seconds, then it is lost, since any avoidance maneuver by the operator will take at least two 

seconds to reach the vehicle. 

6 

Consider a car with a steering wheel that delays driver inputs for two seconds before 

acting on them. Imagine that you are driving this car down a busy street when another car in 

the next lane suddenly swerves into your path. In a normal car, you could easily brake and 

steer away to avoid disaster. Unfortunately, with lagged controls, anything you do in 

response to the lane change will still result in a crash because no matter what you do you 

cannot change the car's behavior for the next two seconds. 

This situation describes only half of the problem. In the scenario just described, the 

driver's inputs were lagged, but the information about the world surrounding the vehicle was 

not. Now imagine that you are controlling the car with the delayed steering wheel from your 

house using a remote control and a set of video cameras to see the world around the vehicle. 

When both the controls and video feeds are lagged by two seconds, the merging vehicle 

would hit your car before you even became aware that it had started to swerve into your lane! 



7 

Three characteristics determine how profound the effect of lag can be on a particular 

vehicle teleoperation application. These are the magnitude of the lag, the speed of the 

vehicle, and the predictability of the environment. If the lag is not of sufficient duration, its 

effect will be minimal. However, sufficient duration is different for each application and is 

directly tied to the vehicle speed and the dynamic nature of the environment. If a vehicle is 

traveling at a constant 0.1 meters per second, a one second delay results in a maximum 

positional error of 0.1 meters per command. In most applications, such an error is not a huge 

concern. This same lag though could easily present serious difficulties if the vehicle were 

traveling ten meters per second. However, ifthe environment is calm and predictable, an 

operation envelope often meters may be acceptable. Typically, knowledge ofUAV position 

within ten meters is less critical, because reconnaissance aircraft do not frequently fly close 

to each other and there are not many other objects to hit at high altitude. Operation 

envelopes are far more critical for ground vehicles as they typically get much closer to each 

other and there are plenty of non-vehicle objects to hit. 

Another difficulty presented by lag is that it is typically not constant. This means that 

if a set of commands is given at one-second intervals, they are not guaranteed to arrive at the 

vehicle one second apart. This characteristic is particularly troublesome because instead of 

simply delaying the vehicle's response, it alters it. For example, with a non-constant lag a 

vehicle that is told to travel forward for one second at 2 meters per second and then told to 

stop might instead travel forward for 1.2 seconds before receiving the command to stop. As 

a result, the operator would believe the vehicle had traveled two meters when it had actually 

traveled 2.4 meters. As commands are strung together, these inconsistencies can add up to 

large errors in position. These discrepancies can lead the operator to assume that they have 

succeeded in stopping their vehicle, when in fact they have sent it plunging into a pit. Figure 

3 illustrates this situation. 
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2m •I 

2.4m •I 
Figure 3: The Dangers of Non-Constant Lag 

Challenge of Limited Field of View 

Lag is not the only challenge presented to the operator of a teleoperated vehicle. All 

of the operators' knowledge about the environment must be mediated since they are remote 

from it. Typically, an operator views the vehicle's world through the limited field of view 

(FOV) of a video camera. Today's highest quality vehicle-mounted cameras provide at best 

a 120-degree arc, leaving a 240-degree blind arc around the vehicle [7]. Most cameras 

provide much less FOV than that, with a typical FOV being anywhere from 30 to 90 degrees 

[7]. Even ifthe camera can be rotated such that the whole FOV around the vehicle can be 

seen, only a portion of it can be seen at any one time. This limited FOV causes difficulties 

because it provides a much smaller visible area than humans are accustomed to seeing with 

their nearly 150 degree FOV. The limited FOV provided by the Predator UAV camera has 

prompted its operators to liken flying it to "flying through a straw" [8]. 

One common way to address the limited FOV problem is to mount multiple cameras 

in strategic locations on the vehicle to provide a full FOV at all times. The problem with this 

approach is that it creates the need for the operator to look at several different video feeds at 

once and create a consistent mental image of the world. This puts stress on the operator and 

takes mental capacity away from the task at hand. It also introduces a multifold increase in 

the bandwidth required to operate the vehicle, which would result in the requirement of more 

expensive, heavy or power consumptive communications equipment. 



9 

Operators with a limited FOV need to work harder to maintain an accurate mental 

image of the world around the vehicle. If there is significant lag, the operator must maintain 

this mental image for several seconds while waiting for new information. Furthermore, 

operators must remember what they can about the environment they have passed and is no 

longer visible. If the vehicle passes a rock on its left, the operator must remember that the 

rock is behind and to the left of the vehicle just in case a maneuver must be made in that 

direction. These distractions and mental tasks both inhibit the operator's ability to perform 

the relevant teleoperation task and increase the rate of operator fatigue. As a result, a team of 

operators is often needed to control one vehicle. In the case of a UA V, a crew of anywhere 

from four to eight is required depending on the difficulty level of the mission [9]. 

Related Research 

Several research teams have tackled the challenge of teleoperation and devised 

systems to improve performance in various teleoperation tasks. Other teams have focused on 

making their systems as robust and simple as possible because their applications risk 

expensive equipment and human life. Some of this research is presented here in summary. 

Most of the systems cited employ advanced user interfaces and several use virtual reality 

(VR) to aid teleoperation. The Summary of Virtual Reality Section presents a brief 

discussion ofVR for readers unfamiliar with it. 

ARGOS 

ARGOS, the Augmented Reality through Graphical Overlays on Stereovideo system 

was designed for teleoperation in environments that are unknown or rapidly changing [10]. 

It used augmented reality (AR) for the operator display. AR shares many qualities with VR, 

with one important difference. Instead of providing graphical tools to the user in a totally 

computer simulated world, AR paints graphics on top of a real world picture from a video 



camera feed. The goal of ARGOS was to provide" ... good visual, auditory, and perhaps 

even haptic cues ... so that the operator will have a sense of the remote environment" [10]. 

10 

A camera mounted above and behind the robot on a pole provided a view of the environment. 

ARGOS used the robot for calibration because its dimensions are known and it was always 

present in the scene. Once calibrated, the system could overlay depth cues on top of the 

video feed to help operators perform complex spatial tasks, all while using a simple two-

dimensional display on a computer monitor. 

VEVI 

The Virtual Environment Vehicle Interface, or VEVI, offered a better method to view 

the last known status of the vehicle than a camera feed can provide. It accomplished this by 

creating a virtual view of the vehicle's situation in the real environment. VEVI' s virtual 

view presented the last known vehicle state in a virtual world, but unlike the system 

presented in this thesis, it did not simulate or predict vehicle positions [ 11]. The virtual 

display in VEVI eliminated the limitations caused by the incomplete field of view of remote 

cameras. VEVI was a flexible system that was not tied to a particular vehicle or 

environment. Its modular design allowed for its application in underwater exploration with 

the TROY, crater exploration with the walking robot DANTE II, satellite maintenance with 

Ranger, and planetary exploration with the Marsokhod rover [11]. A screenshot ofVEVI in 

action with the Marsokhod planetary rover is shown in Figure 4. 

Figure 4: VEVI Interface 
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The Autonomy and Robotics Area of NASA used VEVI in both the Mars Pathfinder 

Mission and in a mission to map the interior of Chernobyl. A main lesson learned from these 

exercises was that "the ability to continually see all around the robot provided scientists with 

a more natural sense of position and orientation ... than is usually available through more 

traditional imaging systems" [3]. Additionally, they mentioned that "this capability ... 

substantially accelerated site exploration" [3]. 

Ranger TSX 

The Ranger TSX Real-Time Visualization system was implemented for use with a 

shuttle-based robot arm interface [12]. The arm was used to repair satellites while in orbit. 

The system employed a typical virtual environment complete with a robot avatar, but it also 

had a novel feature in its predictive ghosting display. Whenever a user issued a command, 

the computer used a mathematical simulation of the arm to determine the effect of that 

command and then quickly displayed a translucent "ghost" version of the arm in the position 

likely to result. This was done to alert operators of the likely result of their action so that 

they could respond to mistakes before they happened. Without this capability, the operator 

would know the effect of their action only after it had potentially already resulted in 

consequences. By simulating the arm, TSX was able to provide the operator with real time 

error feedback. The inclusion of this error feedback feature increased operator performance 

in delicate tasks, and it also was a useful diagnostic tool. When the arm and program were 

calibrated and tested before launch, the ghost movements were aligned with the actual arm 

movements. As a result of this calibration, the error between the predicted position and the 

actual result of the command could be used as information in a real time diagnosis of the 

arm's operation. 
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Real time error feedback is an important part of the system implemented in this thesis 

and is described in a later section. 

Teleoperation Interfaces 

The Robotics Institute at Carnegie Mellon University tested two novel interfaces for 

vehicle teleoperation with researchers from the L'Ecole Polytechnique Federale de Lausanne 

in Switzerland [13]. One interface used gestural commands and the other used haptic 

feedback. Each interface was designed to improve the operator's performance through 

efficiency of design. A premium was placed on reducing the number of steps the operator 

must perform due to the potential effects oflag on each step. The first of these effort saving 

interfaces was called the GestureDriver. In this system, the operator was taught special 

gestures to perform with their arms and hands. Each gesture was mapped to a particular 

command for the robot. Image processing techniques were used on a video feed from a 

camera trained on the operator to ascertain the current gesture. They found that 

GestureDriver offered flexibility between users and allowed the user to move around 

between commands. However, having to remember all of the body positions for commands 

caused difficulty for some users and it became tiring after prolonged use. 

The second interface, the HapticDriver, used a six degree of freedom (DOF) robotic 

arm as the input method to navigate a robot through a cluttered and confined space. This arm 

was equipped with force feedback to provide haptic response. This haptic feedback was 

manifested in the form of a push from the arm against the operator's hand to give the 

operator the illusion of resistance to the desired movement. The arm was constrained to a 

plane and an invisible barrier was modeled around the robot. A ring of proximity sensors on 

the robot informed the controlling software of the distances to the nearest objects. When the 

invisible barrier intersected an object, a repulsive force was generated in the arm. As the 

robot got closer, the force increased proportionately. HapticDriver was found to be an 



effective interface in the navigation of cluttered environments and for performing docking 

maneuvers. It also improved obstacle detection and avoidance. 

Robot-Centric Teleoperation Model 

13 

While developing their teleoperation interfaces, the Robotics Institute at Carnegie 

Mellon University also created a teleoperation system rooted in a novel philosophy. In this 

approach to vehicle teleoperation, the robot was made an equal collaborator with regard to its 

operation [14]. In this way, it could treat the human's commands as a source of noisy data 

and take its own view of its surroundings into account when it operated a command. In 

addition, if it found itself in a situation that it considered dangerous, it could alert the human 

operator by asking for help. This scheme implied a level of autonomy on the part of the 

robot; however, it was not completely autonomous. If the robot found itself in a situation in 

which it was unsure of the proper course of action, it needed not guess based on a decision 

metric. Rather, the robot could ask a human or group of humans for assistance first, guessing 

only if it got no response within a preset time limit or if the human input would send it into 

greater peril. 

The main strength of this teleoperation philosophy was that the robot was capable of 

being a partner in its control, thereby providing a local perspective. Viewing the robot in this 

manner also aided multi-user collaboration since no one user was assumed to have absolute 

control [ 15]. In addition, the robot's ability to make some decisions was helpful if the lag in 

the system was significant. If the robot did not receive a signal for a long time, it could make 

its own decisions on how to avoid danger. Furthermore, the ability for the robot to treat the 

hurnan's inputs as a noisy data stream addressed further difficulties posed by lag. Human 

operators issue commands based on decisions formed from old, lagged data, and if the 

situation had changed since then, carrying them out could have disastrous results. With the 



robot's capability to ignore commands that would send it into peril, this system alleviated 

some of the problems caused by lag. 

UA V Interface Research 

14 

Researchers at Wright-Patterson Air Force Base performed a study on how multi-

sensory interfaces and advanced visualization techniques reduced a UAV operator's 

workload while improving their performance and situational awareness [16]. The work 

evaluated haptic feedback, head mounted displays, spatial audio, and virtual environments. 

The first part of the study evaluated how the use of visualization tools affected a UAV crew's 

ability to communicate target location. The second part studied the effectiveness ofhaptic 

cues at alerting the UAV operator of turbulence by applying resistance through a force 

feedback joystick. The first test resulted in crew performance improvement. The second test 

had mixed results as many test subjects complained that the force feedback magnitude on the 

joystick was set too high. 

Teleoperation of Mining Robots 

Mining companies have utilized teleoperated robots in search and rescue operations 

for more than ten years. Their method of control is relatively simple, relying on the well-

established method of using a video feed from a camera and a two dimensional control panel 

displayed on a computer monitor. One such teleoperated robot, the Numbat, a search and 

rescue robot, has proven helpful in saving miner's lives [17]. In an application where 

advanced interfaces and teleoperation systems could be applied, they have not been applied 

because human lives were directly at risk. Liability and the unreliable nature of more 

sophisticated technologies have kept the cutting edge teleoperation technologies out of use in 

the mining industry. This example represents the opportunity available to new teleoperation 

methods if they can meet the robustness, simplicity and reliability requirements of industries 



where human lives are at stake. However, any technology that would replace the current 

proven technology must resolve doubts about its reliability and usability. 

Using Virtual Reality to Meet the Teleoperation Challenge 

Summary of Virtual Reality 

15 

Many of the teleoperation systems described in the previous section employ virtual 

reality to improve operator performance, situational awareness and vehicle operation. Over 

the past decade, VR has blossomed from an immature technology to an accepted research 

and industrial tool. However, it has not yet reached the state where a standard definition has 

been forged. VR can be roughly defined as any computer simulated environment that 

immerses the user in a virtual world. Jerry Isdale, a leader in the VR field, defines it as " ... a 

way for humans to visualize, manipulate and interact with computers and extremely complex 

data" [18]. He further defines it as "a computer mediated, 3D environment with viewer 

control over viewpoint" [ 18]. In engineering applications, virtual worlds are designed to 

mimic reality enough to provide a valid analysis tool with respect to what needs evaluation. 

VR employs a wide range of devices to immerse application users. Common VR 

devices include head mounted displays and gloves, but they are not the only ones in 

widespread use. Other frequently used input devices are wands, tablet PCs and voice 

commands. Projection systems are popular display devices. In projection systems, a 

projector throws light onto a canvas screen in a fashion similar to the way it works in a movie 

theater. Projection systems can use from one to six screens and can be run by a single 

powerful computer or a cluster of commodity computers. A common projection system 

configuration is the Power Wall. This setup uses two or more screens placed side by side on 

a wall to create a wide display area. Another common configuration is the CA VE, which 

involves using three or more screens to create a room. Dr. Carolina Cruz Neira developed 

the CAVE for her PhD dissertation [19]. Most CAVEs have four screens, the left and right 
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walls, the front wall and the floor. However, a handful of six sided CA VEs have been built 

to provide full immersion. Typically, CA VEs employ stereo projection and polarized glasses 

to make the scene appear three-dimensional. Furthermore, while VR applications often 

deploy unique and expensive equipment, many definitions ofVR would include applications 

that use a very common display and input device combination - the computer monitor, 

keyboard, and mouse. 

Using VR to Aid Teleoperation 

As a tool for teleoperation, virtual reality can improve the situational awareness of the 

operators, reduce the number of required operators, alleviate operator workload, and provide 

the needed information on one display surface. To use VR as an aid to teleoperation, the 

teleoperation task must be simulated. Two separate simulation subsystems must be designed 

to accomplish the overall task: the vehicle simulation, and the operational environment 

simulation. For ground vehicles, the simulation of the environment mostly involves creating 

a graphical and mathematical model representing the terrain surface that the vehicle will be 

traveling over. 

VR improves the situational awareness of an operator by displaying a virtual version 

of the operational environment and allowing for an operator to select views around the virtual 

vehicle. In fact, the entire 360-degree arc around the vehicle can be displayed 

simultaneously if shown on the proper display device. In addition, unlike real cameras, the 

viewpoints in the virtual world can be easily changed programmatically during vehicle 

operation. This flexibility provides an operator with many different angles of the situation 

and is only possible because the virtual world is not limited by the placement of physical 

cameras. One popular view, easy in VR but difficult in the real world, is the view from 

behind and slightly above the vehicle, often referred to in the gaming world as a "chase 



cam." With this view, both the vehicle and its immediate surroundings are visible to the 

operator. 
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The selectable views around the vehicle and the continuous display of the operational 

environment ease operator workload and lead to the reduction of the number of required 

operators. With the display of the virtual world, operators need not work as hard to maintain 

a mental image of the vehicle's surroundings. This reduction of workload allows operators 

to devote more of their mental energy toward performing the teleoperation task, making it 

easier to accomplish. 

The operator workload can be further reduced if the vehicle is simulated along with 

the environment. Without a vehicle simulation, the common means of safe vehicular control 

is discontinuous and tedious. For example, when controlling a vehicle using a vehicle-

mounted camera, the operator's ability to control the vehicle is affected by lag. Whenever 

the operator sends a command to the vehicle, it is delayed by a number of seconds equal to 

the lag. Any video resulting from that action is likewise delayed. Therefore, to safely pilot 

the vehicle, the operator must wait twice the lag in seconds between each command to see 

the result of each action. This is a slow, tedious and fatiguing method of control. 

The inclusion of a vehicle simulation can be used to eliminate these difficulties. The 

operator can control the virtual version of the vehicle, which responds immediately to 

commands. The virtual world around the vehicle can similarly be updated instantaneously. If 

the remote vehicle can be made to follow the path of the simulated vehicle with a corrective 

algorithm, the effects oflag can be eliminated while still maintaining effective control. With 

VR, the operation of the vehicle is perceived as continuous despite the fact that the lag still 

causes the same delays in the execution of commands by the remote vehicle and the receipt 

of remote vehicle updates. The effects of lag are only experienced by the operator through 

the real time variance between the expected and actual vehicle states. This inevitable 

variation between the actual position of the real vehicle and the simulated world's 
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expectation of that vehicle's position is a result of approximations in the simulation models. 

This variation tends to grow with higher speeds and more severe maneuvers. Real time 

variance feedback alerts operators to increasing uncertainty in the actual position of the 

vehicle. With this information, operators can change their driving behavior, by reducing 

their speed and the severity of their steering, to allow the real vehicle position uncertainty to 

decrease. This real time feedback helps close the loop between the simulation and the real 

vehicle and helps reduce the error, or uncertainty zone, between the two. 

VR also allows for the smooth integration of information from other sources such as 

radar, radiation level, temperature, or speed. This data can be fused into the simulated world 

to provide a single display that shows all the needed information. This fusion eliminates the 

need to divide attention between different displays. Indeed, these sources of information can 

be swapped in and out at the request of operators, allowing them to focus only on what is 

important. 

To gamer all of these advantages, the aforementioned simulation system with its 

vehicle and terrain subsystems must be developed. The terrain simulation is a graphical 

representation of the operational environment and is only as good as the quality and accuracy 

of the graphical model when compared to the real site. Indeed, generating realistic VR 

worlds requires a priori knowledge of the environment. This is only possible if the real 

world is relatively static and well known. In cases where a priori knowledge of the 

environment is not sufficiently complete, there is work being done in the field of near real-

time terrain model rendering from 2D imagery. Researchers at the Computer Science 

Department at the University of Massachusetts have created a system that can convert 

satellite data into a three-dimensional graphics model in a matter of hours [20]. While this is 

not real time terrain generation, it does allow for virtual terrains to be created just before a 

teleoperated vehicle is deployed at a given site. With this ability, the virtual terrain is more 

recent, and therefore more useful, than a terrain modeled days, weeks or even months before. 
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As this work and other systems like it evolve into real time terrain generators, almost any 

type of terrain and operating environment will be able to be simulated and used for the 

purpose ofVR aided teleoperation. In many cases, the terrain is sufficiently static to make 

teleoperation using VR practical. In the cases where it is not, work is being done to remedy 

the problem. 

The vehicle simulation is somewhat easier to create. A vehicle simulation is a 

mathematical model that predicts, with reasonable fidelity, the response of the real vehicle to 

a specific set of inputs. Creating this simulation involves studying the dynamic response of 

the vehicle to its inputs and matching the mathematical model as closely as possible to the 

behavior of the real vehicle. 

With the simulation system in place, virtual reality can be used in teleoperation 

applications to improve situational awareness, reduce the number of required operators, 

alleviate operator workload, and display various sources of information. 
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GENERAL SYSTEM MODEL 

System Components 

A new vehicle teleoperation system was created using the methods described in the 

previous sections for using VR to aid teleoperation. Figure 5 shows the overall layout of the 

system and its components in general terms, with each box representing a different hardware 

component. 
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Figure 5: General System Model 

The three vehicle states shown in Figure 5 are the simulated state (SS), the real 

vehicle state (RS) and the informed state (IS). A vehicle's state encompasses its position, 

orientation, speed and rotational speed. The SS is the best prediction of the state of the 

vehicle after the execution of a set of inputs. The RS is the actual vehicle state resulting from 

the execution of these inputs. The IS is the virtual world's best guess at the current state of 

the real vehicle using lagged state updates from the real vehicle. This state will differ from 

the current RS and SS because the simulation cannot match the behavior of the real vehicle 



perfectly. The SS and IS are generated from the dynamics engine and the RS results from 

movements of the real vehicle and is calculated by the observer. 
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The computer at the center of Figure 5 is the platform for the dynamics engine. This 

engine is responsible for taking operator inputs and using them to predict the response of the 

vehicle to those inputs. The dynamics engine employs a mathematical model of the real 

vehicle to create a SS of the vehicle. The SS is used to position the simulated vehicle within 

the virtual environment rendered by the image generator. The simulated vehicle is displayed 

to the operator as a proxy for the real vehicle. The operator controls the simulated vehicle 

directly, without lag. The goal is to use the simulated vehicle to direct the position of the 

teleoperated real vehicle. Without a system in place to modify the inputs used by the real 

vehicle to keep it following the intended path, both the simulated vehicle and real vehicle 

execute the same user inputs. However, even if the simulation is a perfect match for the real 

vehicle, their respective behaviors could still differ due to lag. In practice, no simulation 

matches the behavior of a vehicle perfectly, so an input modifying method is needed to 

address the inevitable separations that will arise between the RS and the SS. 

In order to implement an input modifying corrective strategy, the position of the real 

vehicle must be known. This position is obtained by the observer, which can be a camera 

performing optical tracking, a GPS device, a wireless internet card performing triangulation, 

or some similar locating method. Clearly, the observer must be located in the environment 

where the real vehicle is being operated. The observer determines the real state of the 

vehicle and sends it directly to both the real vehicle and the dynamics engine. 

Because of the lag in the signal propagation of the RS when sent to the dynamics 

engine, the dynamics engine effectively receives a RS "from the past." Ideally, the dynamics 

engine would like to compare the RS to the latest SS to give the operator real time feedback 

regarding the separation between the real vehicle and the simulated vehicle. However, since 

the dynamics engine cannot know the instantaneous position of the real vehicle, it must 
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instead be predicted, based on the age of the latest received RS and the history of user inputs 

from that time to the current time. To accomplish this task, the dynamics engine stores the 

history of each SS and then uses this history and the latest known RS to develop an estimate 

of the current real vehicle position. The dynamics engine determines inputs for each 

dynamics time step using the same mathematical model used to create the SS. This 

prediction of the present real vehicle state is the informed state (IS). The IS is used to 

provide the operator with feedback on how far the real vehicle is deviating from the desired 

path. 

Once the dynamics engine has calculated the latest SS and IS, it sends these states to 

the image generator for display. The image generator renders the virtual world, complete 

with a virtual version of the remote environment and the real vehicle. It also uses the 

distance between the IS and SS to generate real time uncertainty feedback. 

System Model in Action 

Table 1 shows how information and time flows through the complete system when 

each component communicates with the others. The requisite information for each 

component's calculation is shown in functional format in Equations 1-3 on the next page. 

Time SS 
0 SSo 
L SSL 
L+l SSL+t 
2L+l SS2L+t 
3L+l SS3L+t 
T SSt 

Table 1: Time Flow of System Model 

SS History <<>> 
SS History IS Needed by IS <<>> 
SSo No RS Available - <<>> 
SSro Ll No RS Available - <<>> 
SSro.L+ll No RS Available - <<>> 
SSro.2L+ll IS2L+t SSr1 2L+11 <<>> 
SSro3L+tl IS3L+t SSrL+t.3L+ll <<>> 
SSro.t1 I St SSr1-2L tl <<>> 

L = lag delay for one direction of communication 
[t1,t2] =time interval between t1 and t2 

RS SS 
RSo No SS 
RSL SSo 
RSL+t SS1 
RS2L+t SSL+t 
RS3L+l SS2L+t 
RS1 SSt-L 
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Equations 1 through 3 show the variables upon which each calculated vehicle state 

depends. The SS is a function of the previous SS and the user inputs. The RS is a function 

of the previous RS and the latest SS. As a result, no RS is generated until a SS has arrived at 

the real vehicle. The IS is a function of the latest RS and the SS history. In Equation 1, fs is 

the mathematical model of the vehicle simulation. This function is also used in Equation 3 to 

generate the IS. The function fr in Equation 2 represents the actual dynamic response of the 

vehicle. Note that fr is a natural phenomenon and not a mathematical function defined in the 

system. Rather, the system tries to approximate the results of fr with f8 • In the equations 

below, Lis the lag delay for one direction of communication. 

SSt = SS0 fort= 0 
SSt = fs(SSt-1,user inputs) fort ~1 Equation 1 

RSt = RSo for t g, 
RSt = fr(SS1-L, RSt-1) fort> L Equation 2 

ISt = not defined for t ~L 
ISt = fs(RSt-L, SSrt-2L,tl) fort> 2L Equation 3 

Time progresses from zero at the start of the vehicle teleoperation, to an arbitrary 

time t and each time step is represented by a change of 1 unit. Each column in Table 1 

represents data that is either generated or dispatched at every time step. All of the columns to 

the right of the"<<>>" in Table 1 are data items calculated at the remote environment and 

those to the left are not. At time zero, the operator provides the first inputs to the dynamics 

engine and the first SS is created. This SS is then sent to the real vehicle. The real vehicle 

will use this SS to generate its command inputs. However, until L time units have passed, 

the real vehicle will not move because it has not yet received any commands. As a result, 

RS0 through RSL-l are all the same state. At time L, the first SS (SS0) arrives at the real 

vehicle from the dynamics engine and the real vehicle moves and generates a RS. This RS is 
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determined by the observer one step later and sent to the dynamics engine and the real 

vehicle at time L+ 1. The dynamics engine does not receive this first RS (RSL) from the 

observer until time 2L+ 1. Until this first datum is received, no IS can be created. However, 

at time 2L+ 1, the dynamics engine calculates the IS as a function of the SS history from time 

1 to 2L+ 1 and the RS it just received. The SS history for 2L time units applies because the 

latest RS was actually calculated at time L+ 1. The RS calculated at time L+ 1 used a SS sent 

at time 1 for inputs. As a result, the RSL+t would need to be compared with the SS 1• Thus, 

the dynamics engine will always require 2L time units worth of SS to bring the RS to the 

current simulation time for comparison with the current SS. For all time steps greater than 

2L + 1, the system will generate all three states. 
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METHODOLOGY 

The general system described in the previous section is a model, an idealization. 

Certain methodologies must be adopted in order to turn the model into a real system that can 

be tested and validated. The following four parts of this section consider the most important 

of these methods; a method to address the challenges oflag, a method to alleviate the errors 

caused by lag, a method to minimize the differences between the simulated vehicle and real 

vehicle, and a method to maximize field of view and operator presence. The development of 

each these methods and how they fit into the overall VR aided teleoperation system is 

discussed in this section. 

Method to Address Lag 

The vehicle simulation is the main tool used to address the effects of lag by providing 

an interface to control the lagged vehicle. The simulation helps to limit the lag because the 

driver operates the vehicle in the unlagged virtual world, providing continuous control. The 

real vehicle then determines which inputs it must use to follow the path laid out by the 

operator. Using the simulation to indirectly pilot the vehicle removes the fatiguing pauses 

caused by lagged control. The dynamics model must be capable of using operator inputs to 

predict the vehicle's behavior to the terrain that it is currently traveling over. 

A yaw plane dynamics model is used to simplify the dynamics because the test area is 

a flat surface. This means that all vertical forces are ignored. As such, dynamics models 

such as these cannot accurately support uphill or downhill slopes. This is not a limitation of 

the methodology; a complete 3D dynamics model can be implemented, but a yaw plane 

model is sufficient to test the validity of the model. 

The dynamics engine predicts the response of the vehicle to user inputs. The 

dynamics equations in this system are not as sophisticated as those found in commercial 

dynamics software. Because the test system uses a toy tank (which does not have the 



dynamics complexities of a real tank), the dynamics engine uses kinematic equations of 

motion along with reasonable simplifying assumptions. With a dynamics model in place, 

positions can be simulated in the time between the receipts of RS updates to provide an 

approximate location for the vehicle at all times. 

Method to Minimize State Differences 
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No mathematical simulation model, no matter how sophisticated, will be able to 

predict the response of a real vehicle perfectly. The basic foundation for vehicle dynamic 

simulation was laid in the 1950s, and while vehicle simulation has progressed greatly since 

then, the mathematical models still rely on simplifying approximations. These 

approximations result in differences between the real vehicle behavior and the predicted 

behavior. Over time, these accumulated differences can lead to a large discrepancy between 

the expected and actual vehicle position. As a result, a method must be adopted that can 

accommodate these differences and correct them. A number of alternatives exist. The naive 

way to accomplish this task is to tell the real vehicle to go where the simulated vehicle is 

currently, resulting of course, in a massive overshooting of position. A more sophisticated 

approach would use a proportional integral differential (PID) to follow the desired path of the 

simulated vehicle. An even more advanced scheme would employ a genetic algorithm to 

determine the optimal inputs required to follow the desired path. 

The method used in this thesis was originally developed by Kroll and Roland of 

CALSPAN in 1970 and is called the wagon tongue method [21]. One vehicle is designated 

as the leader and one as the follower. The method presumes that states are known for each 

vehicle, and that the lead vehicle is following the desired path. The method determines what 

inputs must be given to the follower vehicle to get it to align with the desired state. This 

situation is illustrated in Figure 6. 
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Figure 6: The Wagon Tongue Method 

The wagon tongue method takes the desired state and uses its velocity, heading and 

acceleration to determine where it will be in the future if there are no changes to those state 
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variables. The amount of time into the future, called the wagon tongue constant (w), is a 

parameter of the method assigned during software development. Figure 6 is drawn with aw 

of one second. W has to be at least three times as long as the time between vehicle 

movement commands (tc) and frequently requires adjustment for best results. The reason 

that w must be at least three times longer than tc is to account for overshooting the desired 

position. lfw is less than or equal to tc, then the vehicle will try to reach that spot 

immediately. The likely result is that it will not be heading in the right direction when it 

arrives and so it will not be positioned well for the next command. As w becomes larger than 

tc, the sharpness of the required heading change will decrease and the follower will approach 

the leader's path asymptotically. This results in a smoother, more accurate path for the 

follower. However, if tc is set too large, the follower will not get to the desired location 

quickly enough and will respond too sluggishly to positional discrepancies. 
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Once the desired future state is calculated, the distance between that state and the 

following state can be calculated. The goal is to get the following vehicle to the future 

desired state in a number of seconds equal to the wagon tongue constant. The distance 

between the follower and desired future state, divided by the wagon tongue constant, yields 

the constant speed the following vehicle must attain. The vector between the following state 

and the desired future state can be used in conjunction with the heading of the follower to 

determine the necessary heading change to reach the desired location. With these two pieces 

of information, the required inputs to the dynamics simulation can be calculated. Of course, 

in general, the following vehicle never arrives at the desired position because a new desired 

state arrives before w seconds passes and the method is applied anew. The repeated 

application of the method generates a series of desired positions that result in the two 

vehicles approaching one another asymptotically. 

In the system developed for this thesis, the leader in the wagon tongue method is the 

SS generated by the simulated vehicle. The follower is the RS generated by the real vehicle 

and determined by the observer. The wagon tongue method is used by the real vehicle to 

determine the inputs it should execute each time step. The wagon tongue method is also used 

by the dynamics engine to determine the IS. The details of the IS generation process are 

covered in the next section. 

A major limitation of the wagon tongue method is that all real vehicles have a 

maximum speed, but the wagon tongue method may require that a vehicle go faster than its 

maximum speed in order to reach the desired position. If this happens repeatedly, the real 

vehicle and simulated vehicle will diverge. The uncertainty box, which provides real time 

feedback to the operator about the distance between the real vehicle and simulated vehicle 

positions, is designed to help alleviate this problem. The image generator renders a blue wire 

frame cube around the simulated vehicle and the cube grows uniformly as the uncertainty 

distance increases. If the operator is trained to slow down when the cube gets too large, that 
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will eventually reduce the speeds demanded by the wagon tongue method below the 

threshold of the real vehicle's maximum speed, allowing it to catch up. 

Method to Generate the IS 

Using a vehicle simulation with the wagon tongue method provides a continuum of 

states that do not diverge indefinitely, resolving one of the issues associated with lag. Using 

a vehicle simulation does not, however, address the issue that every RS is itself lagged and 

therefore, old when received by the dynamics engine. Each RS must be brought forward to 

the current simulation time to be useful in calculating the IS, which is needed to provide the 

operator with real time updates of the real vehicle's success in following the path generated 

by the simulated vehicle. 

There are two methods to determine the IS. One method, called dead reckoning, uses 

the last known heading, velocity and acceleration of the vehicle to continually predict where 

the vehicle is until a new vehicle state arrives. The problem with this method is that the 

vehicle cannot change direction or acceleration during the time that it is being dead reckoned. 

The second method involves storing all of the simulated vehicle states. Using this method, 

the lagged vehicle positions can be brought to the present time through a process similar to 

dead reckoning called informed reckoning. The main difference between the two methods is 

that instead of keeping the heading and acceleration constant, informed reckoning permits 

these values to be changed based on the results of the wagon tongue method between the RS 

and SS at each time step. In this way, the inputs to the simulated intermediate states \ 

generated while integrating the IS can be determined using the same method that the real 

vehicle applies when it receives a new SS. Ensuring that the same vehicle input generation 

method is used makes it more likely that the predicted IS will match the actual current RS. 

The following example compares the use of dead reckoning with informed reckoning 

in a system with a one second lag. The times used in the example represent the number of 



seconds that have passed since the beginning of the teleoperation task. Figure 7 illustrates 

this example. 
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Figure 7: Dead Reckoning vs. Informed Reckoning 
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When the dynamics engine receives a RS at time 35, it is actually a RS from time 34. 

Furthermore, the user command to generate the SS that the RS used was from time 33. 

Therefore, while the user desires the command to occur at time 33, its results do not return 

until time 35. Suppose further that at time 34, the user entered a steer of 45 degrees and 

decelerated the vehicle so that its velocity was reduced by 0.5 ft/s. If dead reckoning is 

employed to generate the IS at time 35, the IS will be 0.5 feet farther forward than it should 
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be and it will be heading in the wrong direction by 45 degrees. Instead, if informed 

reckoning is used to generate the IS at time 35, the heading and speed changes at time 34 will 

be taken into account. Using informed reckoning, only the differences between the dynamics 

simulation and the real vehicle dynamics will cause a discrepancy between the IS and the RS. 

Method to Improve Operator Presence 

To address field of view and operator presence, a fully textured model of the setting is 

rendered to provide an immersive experience. In addition, a graphical model of the real 

vehicle is also included in the virtual environment (VE). These models are designed to give 

the operator the illusion of being at the remote site and to give the operator a fuller sense of 

the activity around the vehicle as well as the nearby terrain features. This characteristic of 

the VE increases the operator's sense of presence. 

The VE is designed to be displayed on diverse types of devices. For example, it can 

be run on a computer monitor or a CA VE display system. The VE looks like a low grade 

automotive racing video game when displayed on a computer monitor. Despite its graphical 

shortcomings, the VE gives the operator a clear idea of what the terrain around the vehicle 

looks like, what the potential obstacles are, and where the vehicle is. The VE is particularly 

effective in the CA VE, as that display device allows for a 360-degree arc of visibility around 

the vehicle, enhancing the operator's situational awareness. 

To make the VE as useful as possible, several virtual camera viewpoints are 

incorporated to present the virtual environment. These viewpoints are designed to increase 

the FOY of the operator and to provide the flexibility to allow operators to choose the 

particular FOV that is most useful for their current task. With the virtual camera, the 

operator can switch between viewpoints to see different perspectives around the vehicle. In 

addition, a viewpoint inside the vehicle is available to provide the illusion of driving from the 

vehicle's cockpit. However, a cockpit view limits the field of view unless it is being shown 
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on a multiple wall display device like a CA VE. Even with this type of display, operators 

must turn their heads to see other viewing arcs of the vehicle than the forward arc. Multiple 

preset virtual camera viewing positions around the vehicle are provided to address this 

limitation. By cycling through these views, the operator can get a forward view, rear view, 

side view, or chase view. The chase view is common in video games and often proves to be 

the most useful view. Because operators look from above and behind the vehicle, they get a 

complete view of the vehicle's immediate surroundings on one display surface. With a 

CA VE, the visible surrounding area increases substantially. 
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SYSTEM PERFORMANCE TESTING 

A prototype version of the general model was implemented using the methods 

described in the previous section to validate the system model and methodologies. Figure 8 

illustrates the components used in the performance testing prototype system. 
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Figure 8: Simplified Prototype System 

To minimize the number of hardware components involved in the performance 

testing, parts of the complete system were simulated. This decision allowed for the 

development of the more complex hardware components to be decoupled from the software 

testing. Specifically, both the remote control tank and the observer were simulated for 

testing purposes. As a result, the prototype system did not have any components at the 

remote environment, simplifying software development. Furthermore, this system involved 

no human operator because the simulated vehicle and the simulated real vehicle were given 

inputs based on a predetermined path. Minimizing human involvement and reducing system 

complexity allowed for the simulation software to be isolated and for the development of a 

useful test harness. This test harness allowed for the efficient improvement and performance 
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testing of the vehicle simulation code. For these code improvements or results of any tests of 

this prototype to be meaningful, the simulated components of the system had to reflect the 

behavior of the actual hardware they replaced. The sections following this one describe in 

detail how this behavior matching was accomplished. 

The vehicle simulation code was designed with flexibility as a prime requirement. 

The code base, like VEVI, supported the addition of different vehicles and dynamics models. 

This design flexibility proved useful when the original remote vehicle, a remote controlled 

(RC) Jeep, was replaced with the RC tank. Because the tank dynamics used the same object 

interface as the Jeep dynamics, they were easily interchangeable. All of the vehicle 

simulation code was written in this modular fashion using object oriented C++ in a Windows 

XP environment. The image generator code was written using C++ for an IRIX 

environment. Most of the code developed for the prototype system was also used in the 

complete system. 

In the prototype setup, the dynamics engine and image generator from the complete 

system were coupled to simulations of the observer, the real vehicle, and the input generator, 

to drive the dynamics in expected ways. The accuracy of their performance was then 

recorded. The "real vehicle" here was a simulation of the remote controlled toy tank to be 

used in the real system. 

Test Course 

To test the dynamics code in the dynamics engine, a course was designed based on 

the Consumer Union test course illustrated in Figure 9 [22]. Each "X" in Figure 9 represents 

a cone. This path is a combination of two Consumer Union lane change maneuvers, one in 

each direction, with one directly following the other. To successfully traverse the course, a 

vehicle must steer through the cones on the right and then through the cones in the middle. 

Finally, the vehicle must turn to the left and then straighten out to make it through the final 
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two cone gates. This is a modification of the course that Consumer Union uses to determine 

the safety of automobiles for sale in the USA. The course is designed to provide a test of a 

common maneuver, a lane change. 
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Figure 9: Consumer Union Test Course Layout 
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The prototype system must accomplish this double lane change to be able to 

accomplish more severe maneuvers. If the prototype piloted the vehicle through the course, 

it should be able to control the vehicle in most teleoperation tasks. To prove that it could 

send the tank through the course, a driver was simulated by using the tank dynamics model in 

the dynamics engine with calculated inputs in the form of those received from a Microsoft 

Sidewinder. These inputs, coupled with the simulation, were used to send the simulated 

vehicle through the virtual course, which in turn sent the real vehicle through the real course. 

A graphics model of a test track complete with the Consumer Union course was 

created using Multigen Creator. The test track was a flat concrete lot with virtual cones 

placed at the proper locations and scale for the test course. A graphics model of the tank was 

created using 3DStudioMax. This model acted as the simulated vehicle in the virtual world. 

Figure 10 shows the virtual world rendered by the image generator on a computer monitor. 



The virtual tank is making its run through one of the cone gates of the virtual Consumer 

Union test course. 

Figure 10: Screenshot of the Virtual Environment 

The Image Generator 
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The image generator was based on two software platforms, VRJuggler and IRIS 

Performer. Performer provided a scene graph to organize the objects in the graphical scene. 

VRJuggler, an open source VR application development toolkit developed at Iowa State 

University, simplified the development of our VR application by providing object-oriented 

abstractions of a complete set of VR display and input devices. Applications written with 

VRJuggler can then be easily ported, without rewrite, to any platform or VR display device 

that VRJuggler supports. According to the VRJuggler website, HVRJuggler provides virtual 

reality (VR) software developers with a suite of application programming interfaces (AP Is) 

that abstract, and hence simplify, all interface aspects of their program including the display 

surfaces, object tracking, selection and navigation, graphics rendering engines, and 
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graphical user interfaces" [23]. The prototype system used VRJuggler to display the virtual 

world on a computer monitor. For the complete system, the same image generation code was 

used to display the virtual world on VRAC's C6, a six-sided CA VE. 

Simulated Components 

Simulated Real Vehicle 

The real remote controlled tank was not used in the prototype system, eliminating 

sources of error and increasing test repeatability. In its place was a software simulated real 

vehicle, based on the dynamics model in the dynamics engine being tested. A glance at 

Equations 1 and 2 shows that this implied that fr was equal to fs, meaning that the dynamics 

model was a perfect simulation of the behavior of the real vehicle. Since such a perfect 

match is not realistic, the track speed inputs to the dynamics model for the simulated tank 

were modified to introduce discrepancies. A multiplier ranging between 50% and 200% 

modified the magnitude of the track speed inputs. This input behavior represented a situation 

in which the operator asked the tank to go one speed and it actually went another. 

To introduce more positional discrepancies, the track speed inputs were additionally 

modified randomly using a Gaussian error distribution, resulting in a ±2% change at one 

standard deviation. This randomization was only applied to the real vehicle inputs when the 

track speed inputs to the SS changed. This additional randomness represented the slightly 

unpredictable behavior that results from track acceleration. Applying the additional 

randomization in this fashion allowed the simulated real vehicle to keep a constant heading 

and speed when the simulated vehicle also kept a constant heading and speed. Note that due 

to the modification of the track speed inputs, the headings and speeds between the simulated 

vehicle and real vehicle still differed. 
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Simulated Observer 

A simulated observer sent the simulated RS to the dynamics engine. Instead of a 

camera or GPS tracking the RC tank and providing a real time stream of vehicle states, the 

simulated observer was simply a buffer that held each calculated RS. When the specified lag 

time had passed, it alerted the RealVehicleListener object in the dynamics engine to the 

presence of a new RS. In this way, the RS generation and delivery were all accounted for in 

the simulation. As a result, the dynamics engine could not discern that the observer was 

simulated. 

Simulated Lag 

Artificial lag was generated because naturally occurring lag was not of sufficient 

duration. Further, simulated lag allowed for precision control of the lag duration. The lag 

was kept at a constant delay for the entire run. The rationale behind using constant lag was 

that synchronization code on the real vehicle held SS commands long enough to execute 

them in such a way that the time between commands was unchanged from when they were 

issued. A fellow graduate student, Jared Knutzon, developed the synchronization code on the 

real vehicle [24]. Employing the synchronization code eliminated the effect of variations in 

lag, making the constant lag effects the only pertinent ones. The creation of a constant 

artificial lag was accomplished by buffering communication packets until they reached a 

desired age. 
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The Dynamics Engine 

The dynamics engine was the same for both the prototype system and the complete 

system. It was responsible for: 
• accepting user inputs, 
• converting those inputs into dynamics inputs, 
• giving these dynamics inputs to a mathematical model of the vehicle to create 

the SS, 
• receiving updates of the last known RS, 
• calculating the IS, and 
• sending the latest IS and SS to the image generator for display. 

A Hewlett Packard PC with a 950 MHz Athlon processor and 256 M RAM was used 

to perform these tasks. The dynamics engine and the image generator were on the same 

Local Area Network, a lOOMb Ethernet link. 

Dynamics Math Model 

As shown by Equations 4-8, the dynamics model employed for the tank was a simple 

yaw plane model that used the sum of moments of the track speeds to determine the vehicle 

state. The kinematics diagram used to generate the equations is shown in Figure 11. 
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Figure 11: Tank Kinematics Diagram 
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Equation 4 

Equation 5 

Equation 6 

Equation 7 

Equation 8 

Equation 4 shows that the vehicle speed is simply the average of the track speeds, 

with UL rs and uRrs representing the left and right track speeds respectively. The velocity is in 

the direction of the heading, 'l'· The yaw rate, r, calculated by Equation 5, is related to the 

width, or track, of the vehicle, T. Equations 6 and 7 were integrated to yield a position, while 

Equation 8 was integrated to get the heading of the vehicle. The numerical integration 

method was Runge Kutta with a time step of 0.05 seconds. For flexibility, the integrator and 

dynamics equations were written such that the integrator could use different sets of dynamics 

equations. Therefore, the dynamics for an automobile could be used by the system without 

requiring sweeping changes to the code. This would allow the system to incorporate a 

Chevrolet Corvette or a Bradley fighting vehicle in place of an RC tank. 

Dynamics Input Generation 

The left and right track speeds were the inputs to the dynamics model described 

above and used in Equations 4 and 5. However, the interaction device used to generate 

operator inputs in the complete system was a Microsoft Sidewinder steering wheel and 

pedals set. Because the prototype system was simulating user inputs with a simulated driver, 

it generated them in a similar fashion to how they were issued in the complete system with 

the Sidewinder. Taking in inputs in this manner allowed for the same tested code base to be 
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used in the complete system. Unfortunately, the Sidewinder gave inputs as changes in 

desired speed and heading and not as track speeds. 

To convert steer and speed values into track speeds, the inputs were represented as 

percentages off the maximum allowed by the input device. For example, if the operator 

steered all the way to the left, a steer input of -100 was generated, while if the steer were all 

the way to the right, it generated a steer input of 100. Likewise, pressing the throttle pedal 

halfway resulted in a speed input of 50. These inputs needed to be converted into track 

speeds to be made into dynamics inputs. For this to be possible, the maximum steer inputs 

and speed inputs had to be mapped into track speed values. These mapping factors were 

chosen so that an input of 100 steer and 100 speed did not require one track to go faster than 

the real vehicle allowed. Note that this meant that the maximum mapped speed was less than 

the maximum speed attainable by the real vehicle. 

A programming object called the TankJoystick performed this function. It 

encapsulated the code necessary to get data from the steering wheel and pedals set. The 

TankJoystick then used Equations 9-10 to convert these inputs into track speeds. It was also 

capable of performing the reverse conversion, which was useful in generating the simulated 

RS and IS. Equations 11-12 show how the reverse conversion was accomplished. 

Urmax(speed--st_~e_r) 
u =--...;....__ ____ ...;_ 

LTS 100 Equation 9 

Equation 10 

Equation 11 

Equation 12 
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The UTmax in Equations 9 and 10 is the maximum track speed that either track could 

achieve. The Omax in Equations 11 and 12 represents the difference between the maximum 

and minimum track speeds allowed and is the mapping factor described above. Because the 

TankJoystick encapsulated all of these conversions, the dynamics engine only needed to ask 

for the operator's desired track speeds and all of the conversions were transparent to it. 

Receipt of Real Vehicle Updates 

Another task of the dynamics engine, receiving each RS, was accomplished by an 

object called the DynamicsCorrector. The DynamicsCorrector was responsible for getting 

real tank positions, and then using them to predict the position of the real tank at the current 

time using informed reckoning. Once an estimate of the real tank's current position was 

available, the DynamicsCorrector computed the IS and the uncertainty error between the RS 

and the SS. To perform the informed reckoning, the DynamicsCorrector spawned a thread 

called the integrating thread. The integrating thread's only responsibility was to perform 

informed reckoning so if there was no new RS available, it sat idle. In order for the 

DynamicsCorrector to feed the integrating thread new RSs, it also created the 

RealVehicleListener, which ran in its own thread, the listening thread. The 

RealVehicleListener listened for a new RS from the observer. Whenever it received a new 

vehicle state, it stored it and notified the integrating thread that a new RS was available for 

reckoning. 

Whenever the integration thread was notified about a new RS, it immediately 

compared the current simulation time with the time stamped in the RS. It then integrated 

from the time stamped in the RS to the current simulation time by generating commands at 

each time step. The commands were generated using the SS history and the wagon tongue 

method. Specifically, at each time step of the informed reckoning, the integration thread got 

the SS for that time from the history and compared that SS with the current position of the 
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vehicle it was integrating from the RS. The integrating thread then performed the wagon 

tongue method on these two states to determine what track speed inputs to feed to the 

dynamics model for the next time step. In this application of the wagon tongue method, the 

intermediate state was the follower and the SS was the leader. During this integration, the 

integrating thread timed itself on how long it had taken. Then, as the end of the integration 

neared, it added on the time elapsed during the integration to bring the IS as close to the 

actual current simulation time as possible. During the integrating thread's integration of a 

particular RS, any new RSs were ignored until it was done integrating the one it was working 

on. 

Once the integrating thread was done creating the IS from the RS, it notified the 

primordial thread of the DynamicsCorrector that a new IS was available for comparison with 

the latest SS. The DynamicsCorrector then calculated the distance between the IS and the 

SS, yielding the error or uncertainty between the two states. Additionally, if the file 

generation option was selected, the IS, SS, and the uncertainty distance were recorded in a 

file for later playback or analysis. To get the newly calculated IS and the uncertainty 

distance to the image generator, the dynamics engine employed another object, the 

GraphicsClient. Each time step, it sent the SS, the latest IS, and the uncertainty distance to 

the image generator via a TCP /IP connection. The Image Generator used the uncertainty 

distance to draw the blue cube around the simulated vehicle to provide a visual cue to the 

operator about the uncertainty between the real and simulated vehicles. 

System Performance Testing Results 

The prototype system described previously was used to test the dynamics engine and 

the overall system design. The test cases involved three system variables: the lag delay, the 

mean track speed modification in the simulated real vehicle, and the presence or absence of 

the wagon tongue method. The one-way lag varied between three values: one, five, and ten 



seconds. Five different track speed multipliers were chosen: 50%, 80%, 100%, 120%, and 

200%. A track speed multiplier of 80% meant that when the real vehicle was given a track 

speed input of 1 ft/s, it actually moved the track at 0.8 ft/s. Factoring in the inclusion or 

exclusion of the wagon tongue method, thirty test runs were completed. The mean and 

standard deviation of the uncertainty distance during the entire run through the Consumer 

Union course was calculated for each run. 

Figure 12 shows the mean uncertainty distance for all the runs that did not use the 

wagon tongue method, while Figure 13 shows it for all those that did. Likewise, Figure 14 

shows the standard deviation of the mean uncertainty for all the runs that did not use the 

wagon tongue method, and Figure 15 shows it for all those that did. 
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Figure 12: Mean Uncertainty Distance With No Correction Method 
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Figure 13: Mean Uncertainty Distance With the Wagon Tongue Correction Method 
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Figure 14: Standard Deviation of Uncertainty Distance With No Correction Method 
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Figure 15: Standard Deviation of Uncertainty Distance With the Wagon Tongue Correction 
Method 

System Performance Testing Conclusions 

The results shown in Figures 12-15 illustrate that, when a command correction 

method was employed, the system model was sound, suggesting that the dynamics engine 

described above would be suitable for use in the complete system. In all of the tests, the real 

vehicle was able to follow the path laid down by the simulated vehicle within an envelope. 

This envelope changed size based on the parameters of the test, the most significant of these 

being the inclusion or exclusion of the wagon tongue method. 

The wagon tongue correction method improved the system performance dramatically. 

The inclusion of the wagon tongue corrector reduced the maximum uncertainty distance from 

over 42 feet to just 2.7 feet. In fact, ifthe inputs were modified to be above 75% and below 

190%, the uncertainty distance was less than a foot, even with a lag often seconds. This 

result is important because this range falls into the domain of solid dynamics models. In 



many applications, creating a model that can approximate the behavior within this range is 

possible. 
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The standard deviations of this mean took on large values that exceeded 20 feet in the 

runs that did not employ the wagon tongue method. An uncertainty distance was calculated 

between the SS and the RS each time step during the entire run and these uncertainties were 

then averaged to create the mean uncertainty. In the runs that did not use the wagon tongue 

method, the uncertainty at the beginning of the run was small and it grew continuously. As a 

result, a large number of the uncertainty distances were well above or below the mean, 

indicating that the mean was not a very good indication of the uncertainty at any one time. 

This happened because there was nothing to keep the SS and RS from diverging farther and 

farther apart over time. 

The deviation in the runs with the wagon tongue correction method was less than 0.8 

feet for all runs, indicating that the mean uncertainty was close to the actual uncertainty at 

any given time. This was because the corrective measures of the wagon tongue method 

worked to minimize the divergence between the SS and RS. 

An interesting observation can be made by looking at Figures 12 and 13. Without the 

wagon tongue correction method, the maximum uncertainty occurred with 200% inputs and 

the uncertainty for the high input multipliers was larger than those for the smaller ones. With 

the wagon tongue, the opposite occurs. This behavior can be explained for both cases. In the 

case of the runs without the wagon tongue, the uncertainty increased to a larger value as the 

input multiplier increased because the tank moved farther each time step. Since there were 

no corrective measures, the tank sped away from where it should be faster than it did when 

the track speeds were slowed by the input multiplier. In the case of the runs with the wagon 

tongue method, the highest uncertainty occurred at the low input multipliers because as the 

real vehicle lagged behind the simulated vehicle, the wagon tongue method demanded that it 

speed up. Before long, the speed demands of the wagon tongue method became more than 
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the real vehicle could provide. Therefore, as it fell behind and the uncertainty grew, it had to 

catch up slowly because there was no human to watch the uncertainty box grow and slow the 

vehicle down in response. Since the simulated vehicle slowed down on the return from a 

cone gate back toward the centerline, the real vehicle used that time to catch up with the 

simulated vehicle. 

Figure 16 shows the vehicle path for both the corrected and non-corrected vehicles, 

along with the desired path of the simulated vehicle using 50% inputs and a five second 

delay. Notice that the corrected vehicle's path is clearly lagging behind the desired path due 

to the wagon tongue method's demands for speeds that cannot be supplied by the real 

vehicle. 
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Figure 16: Vehicle Path With 50% Input and a 5 Second Delay 

In every case where the inputs were perturbed, the wagon tongue method improved 

the match between the simulated vehicle and the real vehicle. This result can be clearly seen 
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in Figure 17 which depicts the vehicle path at 200% inputs with a ten second lag delay. The 

non-corrected vehicle angled upward instead of going straight at the end because of the ±2% 

random variation of the inputs whenever the simulated vehicle changed direction. While the 

corrected vehicle could accommodate this randomness, the non-corrected one had no way of 

getting headed in the right direction. Promising results like those shown in Figure 17 

promote confidence in the general system model and the methods employed in implementing 

it. 
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Figure 17: Vehicle Path With 200% Input and a 10 Second Delay 
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COMPLETE SYSTEM TEST 

With the system model and methods tested, the dynamics engine and image generator 

were then connected to hardware versions of the observer and real vehicle to perform a 

complete system test. Figure 18 shows the components of the system in terms of the system 

model. Each piece is described individually. A test of the system and its results are also 

described. 
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QuickCam 
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'---------------------' 
Figure 18: Complete System 

The Real Vehicle 

The vehicle chosen for this application was a remote controlled Mega Tech 1 :20 scale 

MlAl tank [25]. Figure 19 shows the MegaTech MlAl tank with the red and blue tracking 

squares attached. 
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Figure 19: The Real Vehicle 

The tank's stock controller has two joystick controls, one for speed and one for 

steering. The tank has proportional inputs meaning that the farther the speed control stick is 

pressed forward, the faster its tracks go. Likewise, the vehicle has proportional steering. 

This characteristic of the tank is highly desirable because digital remote controlled vehicles 

that can provide only "all or nothing" responses to inputs are more difficult to simulate using 

vehicle dynamics equations. Digital control vehicles have very different dynamic responses 

to inputs when compared to their real world analogs. A proportional input vehicle matches 

its real world analog more closely and thus can be simulated using equations assuming a 

continuum of input values. 

The tank's remote control was modified to allow for direct communication between it 

and a computer parallel port. WinIO [26] was used to manipulate individual pins of the 

parallel port. These pins were accessed by C++ code written by Jared Knutzon to send the 

desired tank inputs over the parallel port to the modified controller. The tank inputs were 

represented by the percentage off maximum supported for both the speed and steering. For 

example, an input of 50 called for the tank to be driven forward at half speed. This input 



52 

representation was similar to how inputs were modified as they came from the steering 

wheel. Each "percentage off' the maximum input value was then converted into an 8-bit 

number. These 8-bit numbers were sent to digital potentiometers to change the voltage 

applied to the controller. This change in voltage caused the speed or steering to respond as 

though the computer had "pulled" or "pushed" a thumb stick on the remote control. The 

specifics of the electronic circuit and other modifications made to the remote control are 

beyond the scope of this thesis and can be found in [24]. A Dell Inspiron 8200 laptop 

interfaced with the controller. It had a 2.4 GHz Intel Pentium 4 processor with 256 M RAM 

and ran Windows XP. 

The User Input Device 

A Microsoft Sidewinder steering wheel and pedals set designed for use with computer 

games was the user input device. While a steering wheel did not match up well with the 

input devices found on real tanks, it did match up well with the real vehicle controller 

interface. Figure 20 shows the Sidewinder set used for this test. 

Figure 20: The User Input Device 
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The Dynamics Engine 

The dynamics engine was the same one used for the simplified prototype system 

described in the System Performance Test section. For the full system test, the dynamics 

engine was run on a Dell Dimension 4550 PC with a 3.1 GHz Intel Pentium 4 processor and 

256 MB of RAM running Windows XP. 

The Environment 

The teleoperation environment was the atrium of Howe Hall at Iowa State University. 

This area is a large three story high room with a concrete floor. A 30-foot by 22-foot area of 

the floor was utilized as the operational area for the test. It is an ideal location for the test 

because it is devoid of potential collision hazards, has a convenient place to mount the 

camera to offer a view of the entire test area, and has a wireless local area network. Figure 

21 shows the Howe Hall Atrium. Figure 22 shows the virtual version of the Howe Hall 

Atrium. 

Figure 21: The Test Environment 
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Figure 22: The Virtual Environment 

The Image Generator and Display Device 

The display device used for the test was the Virtual Reality Applications Center's C6. 

The C6 is a six-walled CA VE display device with each wall consisting of a 1 O'x 1 O' 

stereoscopic screen [27]. A wireless Ascension Technologies tracking system allows the 

environment to be tailored to the user's location without tethering the user to the computer. 

To save space, the images from the six projectors are bounced off mirrors, which accounts 

for the shape of the housing for the C6, the large silver and black structure dominating Figure 

21. Figure 23 shows a schematic of how the C6 works. The computer that generates the 

images displayed by the C6 is an SGI Onyx2 InfiniteReality2 Monster known as "Lego." 

Lego has "six InfiniteReality graphic displays, 24 R12000 processors, 12 gigabytes of 

memory, and access to large disk 1/0 and gigabit Ethernet networking" [27]. 
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Figure 23: The C6 Display Device 

The Observer 

The observer for the complete system was a Logitech QuickCam Pro [28] placed 

approximately 35 feet above the atrium floor. For the tracking system to provide the location 

of the tank, it had to pick the tank out of individual video frames captured by the camera. To 

accomplish this, two squares made of cardboard covered with electrical tape were mounted 

on the tank. One square, mounted on the front of the tank, was covered with blue tape. The 

other square was mounted on the back of the tank and was covered with red tape. The 

tracking system searched each camera image for the locations of the blue and red squares and 

then used the pixel location of the locus of each color to determine the ranges of the tank's 

position in the atrium. The conversion from pixel location to world location was simplified 

because the tank was constrained to move in a plane. The heading of the vehicle was 

determined by calculating the angle between the x-axis and the vector formed from the red to 

blue square locations. Once the heading was determined, the position was calculated by 

starting from the red square location and adding half the distance between the blue and red 

squares along the direction of the heading. The linear and angular velocities were calculated 

by taking the difference between the last position or heading and the current one and dividing 
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that difference by the time since the last state was observed. This state information was then 

sent to the vehicle and the dynamics engine. The details of how the image was processed for 

the tracking system are beyond the scope of this thesis and can be found in [24]. 

The same Dell Inspiron 8200 laptop that ran the WinIO interface code for the tank 

remote control ran the image processing code for the observer. The application running the 

optical tracking communicated via a wireless TCP/IP connection with the remote controller 

application to get the time stamp of the RS just obtained by the observer. This behavior was 

important for the generation of the IS. When a SS came from the dynamics engine, it came 

with a time associated with it. This time was one dynamics time step beyond when the 

operator entered inputs. Once a new SS was received, the wagon tongue method was used to 

determine the inputs sent to the tank's controller. Shortly thereafter, the camera calculated 

the RS resulting from that set of inputs. It then took the time stamp for the position it just 

calculated and added it to the RS it was about to send to the dynamics engine. This time was 

the same as the time stamped in the SS. When the dynamics engine got the time stamped RS, 

it compared that state with the SS from that time in its calculation of the IS. 

System Test Design 

A test was devised to determine the effectiveness of the VR system in aiding the 

operator to teleoperate the vehicle. This test had the same objectives as the test described in 

the System Performance Testing section. Furthermore, in the complete system test, the user 

was required to pilot the RC tank through a modified version of the Consumer Union course 

used in the prototype system. This course is shown in Figure 9 in its original setup. The 

commonality between the prototype and complete system tests showed that the complete 

system test was an extension of the prototype system test. It simply replaced all of the 

simulated components with the real ones. 
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Test Course 

The test course was modified from its original configuration shown in Figure 9 by 

removing the last cone gate, starting the tank inside the first gate instead of 6.25 feet before 

it, and increasing the width of the gates by one foot. The first two modifications were needed 

to fit the course inside the trackable area of the atrium. The last modification provided 

slightly more lenient targets to accommodate the imprecise control of the toy tank. The 

course was setup on the Howe Hall atrium floor with cones made of soda cans covered with 

white paper. The success of the operator was determined by how long it took to pilot the 

tank through the gates as well as how many gates were successfully navigated. Runs 

employing artificial lag delays of one, five and ten seconds were tested. Lags were 

simulated, since the user and dynamics engine were connected to the same high bandwidth 

network and naturally occurring lags approached only a tenth of a second at the high end. 

The relative effectiveness of the VR aided teleoperation system was also determined by 

performing test runs using direct unlagged control and teleoperation via a vehicle-mounted 

camera with the same test course. 

Direct Control 

Direct control was tested to gain a baseline of the best performance possible. Direct 

control was accomplished by placing the operator and the steering wheel in the atrium so that 

the operator could see the tank directly. Because direct control is unlagged control, this test 

could not be done at varying levels of lag. This type of control represents the easiest method 

for the operator and it is what all teleoperation systems attempt to approximate and mimic. 

Camera Aided Teleoperation 

The vehicle-mounted camera method represents the most common method for 

teleoperation. While the camera aided method employed in this thesis was simplistic 
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compared to other, more advanced camera aided teleoperation systems, it suffered from the 

same difficulties and had the same basic characteristics of more sophisticated methods. This 

means that the simple method employed here can still provide useful results for comparisons. 

These results were generated from runs at the three lag levels and represent the minimum 

values the VR system must outperform to be an improvement. A ZTV Electron wireless 

camera was mounted on the tank for the video feed test runs. Figure 24 shows this very 

small camera. Its dimensions are 0.79" x 0.79" x 0.55" and it provides a color image with a 

900 MHz signal [29]. Figure 25 shows this camera mounted on the tank. A simple 

application was written to buffer the images coming from the camera using an open source 

library called Open CV [30]. This program was needed to provide the effect of the artificial 

lag. It took as its input the amount of time to hold the image before displaying it. This image 

delay, along with the buffering of operator inputs, accurately simulated the effect of lag on 

the system. 

Figure 24: Vehicle-Mounted Camera 
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Figure 25: Camera Mounted on the Tank 

Matrix of Test Runs 

With all of the system components in place, seven test cases were performed to 

determine the effectiveness of the VR system. These cases were: direct control; camera 

control with one, five, and ten second delays; and VR control with one, five, and ten second 

delays. Three runs of each type were planned to buffer against outlier results. In each of the 

test cases, the user inputs were collected and sent to the tank every 0. 75 seconds. 

Results 
Direct Control 

The best-case scenario for vehicle operation is direct control. After approximately 

fifteen minutes of practicing piloting the tank through the cone gates with direct control, 

three test runs were performed. The results of these runs are shown in Table 2. With direct 

control, the tank made it through all of the gates for each run. The average time for a run 

through the course was 26.0 seconds. As the driver for these test runs, the author 

experienced the smoothness of direct control as it provided immediate feedback and 
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response. The direct control results acted as a baseline for the other two methods, VR aided 

teleoperation and video camera aided teleoperation. 

Table 2: Results for Direct Control 

Elapsed Time (sec) Gates Navigated 
25.6 5 
26.l 5 
26.3 5 

Avera2es: 26.0 5.00 

Camera Aided Teleoperation 

The next test runs evaluated the most common method for vehicle teleoperation, 

camera aided teleoperation. In these tests, a ZTV Electron wireless camera was mounted to 

the cannon on the front of the tank, providing a 90-degree arc of visibility. After fifteen 

minutes of practice, the author executed the test runs shown in Table 3. Three sets of runs 

were performed with increasing lag times. In the first set, three test runs through the cones 

were completed with a one second delay. In the second set, two runs through the cones were 

completed with a five second delay. In the third set, two runs were completed with a ten 

second communication delay. The run time was measured as the elapsed time between the 

first movement of the tank and the moment when the tank passed completely through the last 

gate. 

Qualitatively, piloting the tank through the gates using the delayed camera feed 

proved far more difficult than using direct control. Unlike direct control, the tank could only 

be controlled in a "stop and start" fashion, and control became markedly more difficult as the 

lag increased. Even in the best case of a one second delay, it took an average of 101.1 

seconds to pilot the tank through the test course, almost 4 times longer than with direct 

control. In addition, the second cone gate was missed in the second run. 
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Table 3: Results for Video Camera Aided Teleoperation 

Lag Delay Elapsed Time (sec) Gates Navigated 
145.3 5 

1 Second 68.2 4 
89.7 5 

Averages: 101.1 4.67 

5 Seconds 307.7 4 
407.7 5 

Averages: 357.7 4.50 

10 Seconds 633.1 4 
533.8 5 

Avera2es: 583.5 4.50 

A quick glance at the data in Table 3 shows that the deviation of the times from the 

average can be large. The reason for this variation was that control via this method is 

difficult, rendering the repetition of the same path through the cones nearly impossible. In 

the case of the one-second runs, any action made by the operator took one second to reach 

the vehicle and then it took another second for the result of that action to show up on the 

camera feed. As a result, the only effective method of control was to take one action at a 

time and then wait for the results to return. For example, the operator would accelerate the 

tank and then wait double the lag time (two, ten or twenty seconds depending on the case) 

before observing the results of their action and then taking another one. This made for a 

frustrating and slow process, especially in the runs with a ten second lag. This is illustrated 

by the increase in the average elapsed times from 101.1 to 357.7 to 583.5 seconds as the lag 

delay increased from one to five to ten seconds. 

In each test case, at least one cone gate was missed. This resulted from the loss of 

situational awareness that comes with a restricted field of view. As the author sent the tank 

through a cone gate, it was necessary to estimate whether the tank had gone far enough 

through the gate to avoid hitting a cone if it subsequently turned left or right. In three test 

runs, the tank was believed to be sent far enough forward but after a few seconds, the driver 
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learned that a cone had been knocked down. The limited information provided to the driver 

by the camera feed made such predictions difficult. The missed gates illustrate the dangers 

of losing situational awareness around the vehicle. 

VR Aided Teleoperation 

The final test runs evaluated the VR aided teleoperation method developed in this 

thesis. Once again, the author served as the driver and the time elapsed was measured as the 

time from when the tank first moved to when it passed through the last gate. The author 

practiced with the system for approximately fifteen minutes before making any of the test 

runs. In the test runs, the author was immersed in a virtual atrium in the C6 and drove a 

simulated tank through the test course. Qualitatively, the experience felt similar to the direct 

control runs. The results of these runs are shown in Table 4. 

Table 4: Results for VR Aided Teleoperation 

Lag Delay Elapsed Time (sec) Gates Navigated 
30.2 5 

1 Second 31.4 5 
36.0 4 

Averages: 32.5 4.67 
41.9 5 

5 Seconds 31.1 5 
31.0 5 

Averages: 34.7 5.00 
31.2 5 

10 Seconds 30.2 5 
31.7 4 

Averages: 31.0 4.67 

The results show that the average elapsed time was between 31 and 35 seconds for all 

of the cases. This range of average times was 5 to 9 seconds longer than that for direct 
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control, which was only an increase of 19% to 35%. VR aided teleoperation took noticeably 

less time when compared with the camera aided teleoperation. In the case of one second lag, 

VR aided teleoperation was 68.6 seconds faster. To put that in perspective, the VR aided 

teleoperation runs at 1 second lag took 25% longer than direct control while camera aided 

teleoperation runs took 289% longer than direct control. VR aided teleoperation was faster 

than camera aided teleoperation in the five and ten second lag cases by 323.0 and 552.5 

seconds respectively. 

The fact that the average elapsed time of all the VR aided teleoperation runs fell in 

the same 4 second range implied that the VR aided method was independent of the 

magnitude of the lag delay. This result was expected due to the synchronization code, the 

simulation, and wagon tongue corrective algorithm. These system components made the 

behavior of the tank independent of the lag. The synchronization code insured that the 

commands were executed within the correct time interval. The simulation, in concert with 

the wagon tongue method, generated the correct commands to keep the tank on the desired 

path. None of the system components was affected by the magnitude of the lag. What was 

affected by lag magnitude was the uncertainty box feedback in the virtual world. In the case 

of the ten second lag runs, the first positional data from the tank reached the image generator 

twenty seconds after the time that the user entered the commands via the steering wheel. 

Since these tests only lasted about 31 seconds, the error box was only available for the last 11 

seconds of the run. In all of the runs, the box never expanded more than a few percent of the 

tank size because the wagon tongue method kept the tank within one foot or less during the 

entire run. 

Conclusions 

This thesis evaluated the effectiveness of a VR aided teleoperation system at 

providing an improved operator interface to control a teleoperated vehicle. The results of the 
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tests of the VR aided system, camera aided system, and direct control system showed that the 

VR aided teleoperation system shared many of the desirable qualities of direct control. This 

conclusion is meaningful because direct control is the goal of all teleoperation systems. Both 

direct control and VR aided teleoperation were independent of lag and the average time 

elapsed for the runs were close. The VR aided teleoperation system did miss a few gates, but 

this shortcoming could be addressed in future versions. 

The results also clearly showed that VR aided teleoperation was superior to camera 

aided teleoperation. Despite the fact that the number of gates missed was about the same 

between the two methods, the time elapsed during the runs was far less for the VR aided 

teleoperation system. In the case of a ten second delay, the difference between the average 

time elapsed between the two methods was almost nine minutes - the camera aided method 

took more than 18 times longer to navigate the course than the VR Aided method. This large 

time difference was due to the difficulty of piloting the vehicle using camera aided 

teleoperation. With VR aided teleoperation, driving the vehicle through the course was 

similar to driving with unlagged direct control; the only difference being that one used a 

-virtual world while the other used the real world. With camera aided teleoperation, the 

operator relied on a lagged camera feed to move the vehicle. This characteristic of the 

system made it slow, frustrating and fatiguing. Conversely, the VR aided system used an 

unlagged virtual version of the vehicle as the interface to the user, so the lag and its effects 

were invisible to the user. 

With small changes to the system, the accuracy of the VR method could be improved. 

The cone gates were missed in the VR aided teleoperation primarily due to differences 

between fs and fr, the imprecise control of the vehicle, and inaccuracies in the tracking 

system. The differences between the simulation and the real vehicle can never be eliminated 

as mentioned in previous sections, but they can be reduced. A more sophisticated dynamics 

model of the RC tank that took into account the bending of the tracks and the slip along the 
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floor would enhance the match between fs and fr and therefore have reduced the likelihood of 

missing a gate. 

The problems stemming from the imprecise vehicle control could have been 

alleviated by purchasing a more sophisticated vehicle. As mentioned earlier, the real vehicle 

used in this thesis was a modified children's toy. The speeds of its tracks, and therefore, its 

behavior could only be approximated because there was no direct access to these speeds 

through the remote control. The remote only supported steering or changing speed, and it did 

not support both actions simultaneously. While this behavior was mimicked in the 

simulation, the inaccuracies of the control contributed to the error between the simulated and 

real positions. 

The inaccuracies stemming from the tracking system resulted from the size of the 

tracking squares and the difference between the calibrated locations in the camera's scene of 

the atrium and the actual positions of these locations. This meant that the distance between 

two points of interest on the atrium floor, as calculated by the camera tracker, was slightly 

different than their actual distance. Furthermore, each colored tracking square on the tank 

was three inches on a side, bounding the minimum resolution of the tank position. These 

discrepancies introduced errors in the positions reported by the tracker that could easily be 

improved in a future version of the system. 

However, despite all these flaws - the simplistic dynamics model, the imprecise, non-

repeatable vehicle control and the inaccurate tracker - the VR aided teleoperation system 

clearly outperformed typical teleoperation and very nearly matched the feeling and usability 

of direct control. From the perspective of the operator, the VR aided teleoperation system 

was as responsive as direct control, and there was no apparent effect oflag. Furthermore, the 

operator in the VR aided teleoperation system suffered less fatigue as the vehicle control was 

continuous instead of stop and go, and the field of view around the vehicle was larger than 

offered by vehicle mounted cameras. 
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The clear improvement netted by employing the VR aided teleoperation system over 

the typical teleoperation systems provides the impetus for this further development. Based 

on our experience, we feel that VR aided teleoperation is a promising direction for vehicle 

teleoperation that, with continued development, could be made part of a robust system 

suitable for broad application. 



FUTURE WORK 

The test results show that VR aided teleoperation is an improvement over camera 

aided teleoperation for basic maneuvers in a relatively static environment. We believe that 

this method would perform even better if applied to a real vehicle, with more precise 

controls. Ideally, if another tracked vehicle were used, it should be capable of receiving 

control for each track separately. Beyond tanks, other types of vehicles, such as cars, 

airplanes, or boats, would be teleoperated with the VR aided system. While each of these 

vehicles has different dynamics behaviors, we believe that our method could be applied 

equally well to all of these vehicle types. An analysis comparing the results of these four 

types of vehicles would illustrate the wide applicability of VR aided teleoperation. 
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If two vehicles were controlled in the same space, the issues of using the VR aided 

teleoperation system for remote collaboration could be explored. This collaboration task 

could be cast in the mold of a teleoperated race of the two vehicles around the test area. Each 

driver would see a virtual representation of their vehicle and the other vehicle driving around 

a virtual racetrack environment. The introduction of dynamic elements into the scene is an 

important step in the development of this method. 

The system would be improved further by using a more sophisticated vehicle 

dynamics model. The inclusion of a fully 3D dynamics model would allow for the 

simulation of vehicles traveling over realistic terrain such as hills and valleys. Higher 

fidelity vehicle dynamics models would improve the match between the simulation and the 

real vehicle and would therefore improve the overall system performance. Creating this type 

of dynamics model would require more rigorous testing of the vehicle in order to determine 

the appropriate parameters for the simulation. 

Another way to improve the system performance would be to use a more 

sophisticated correction algorithm. Although the wagon tongue did produce good results, it 

may prove to be insufficient with more extreme maneuvers. In addition, it was developed in 



1970 and several useful path following technologies have been developed since then. The 

most intriguing one to the author is the use of a genetic algorithm to follow the path. With 

this model, the vehicle could be trained on how best to follow the path laid down by the 

simulated vehicle. 
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A final, but important, task would be to include methods to accommodate changes in 

the environment around the vehicle. This would be accomplished by mounting various 

sensors on the vehicle and using the information from these sensors to modify the virtual 

world as quickly as possible. Additionally, nearly real time virtual terrain generation would 

be included to reduce the static nature of the current virtual world used in the thesis. Before 

this system can be widely and commercially deployed, the capability to account for 

variations in environment would need to be developed and included. The promising results 

of this thesis provide impetus to tackle this work. 



REFERENCES 

I. Thorpe, Charles et. al., "Vehicle Teleoperation Interfaces," The Robotics Institute, 
Carnegie Mellon University, Pittsburgh, PA, 2001. 

69 

2. "Remote-controlled Robots Search World Trade Center Rubble," JOM, copyright by 
the Minerals, Metals & Materials Society, vol. 53(12), p. 4-7, 2001. 

3. Nguyen, Laurent et. al., "Virtual Reality Interfaces for Visualization and Control of 
Remote Vehicles," Autonomy and Robotics Area at NASA Ames Research Center, 
Moffet Field, CA, 2000. 

4. "Pioneer UAV History Page," Pioneer UAV Website, 
www.aaicorp.com/pui/history.htm, visited June 17, 2003. 

5. "Mars Pathfinder Rover," NASA NSSDC Master Catalog: Spacecraft, 
http://nssdc.gsfc.nasa.gov/database/MasterCatalog?sc=MESURPR, visited June 2, 
2003. 

6. Card, Orson Scott, Ender's Game, TOR, New York, NY, 1991. 
7. "Gates Underwater Products Website," www.gateshousings.com, visited June 6, 

2003. 
8. Grant, Rebecca, "Reach-Forward," Air Force, Journal of the Air Force Association, 

vol. 85 no. 10, October 2002. 
9. Walters, Brett et. al., "Modeling the Effects of Crew Size and Crew Fatigue on the 

Control of Tactical Unmanned Aerial Vehicles (TUA VS)," Micro Analysis and 
Design, Inc., Boulder, CO, 2000. 

10. Rastogi, Anu et. al., "Virtual Telerobotic Control," University of Toronto Ergonomics 
in Teleoperation and Control Lab, Toronto, ON, 1993. 

11. Piguet, Laurent et. al., "The Virtual Vehicle Interface: a dynamic, distributed and 
flexible virtual environment," Intelligent Mechanisms Group at NASA Ames 
Research Center, Moffet Field, CA, 1996. 

12. Lane, J.C. et. al., "Advanced Operator Interface Design for Complex Space 
Telerobots," University of Maryland Space Systems Laboratory, College Park, MD, 
2001. 

13. Fong, Terrance et. al., "Novel Interfaces for Remote Driving: Gesture, Haptic and 
PDA," The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2001. 

14. Fong, Terrance et. al., "Multi-Robot Remote Driving with Collaborative Control," 
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2002. 

15. Fong, Terrance et. al., "Collaborative Control: A Robot-Centric Model for Vehicle 
Teleoperation," The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 
1998. 

16. Draper, Mark H., "Multi-Sensory and Visualization Techniques Supporting the 
Control of Unmanned Air Vehicles," Air Force Research Laboratory, Wright-
Patterson AFB, OH, 2000. 

17. Hainsworth D.W., "Teleoperation User Interfaces for Mining Robotics," CSIRO 
Exploration and Mining, Brisbane, Australia, 1999. 



18. "Jerry Isdale's What is VR Page," 
http://vr.isdale.com/WhatlsVR/noframes/Whatls VR4.1-A.html, visited June 21, 
2003. 

70 

19. Cruz-Neira, Carolina, "Virtual Reality Based on Multiple Projection Screens: the 
CA VE and its Applications to Computational Science and Engineering," University 
of Illinois at Chicago, 1995. 

20. Collins, Robert T. et. al., "Site Model Acquisition and Extension from Aerial 
Images," University of Massachusetts Department of Computer Science, Amherst, 
MA. 

21. Kroll, C. V.; Roland, R. D., Jr., "A preview-predictor model of driver behavior in 
emergency situations," Interim technical report, Cornell Aeronautical Laboratory, 
Inc., Buffalo, N.Y., 102 p, Sponsor: Bureau of Public Roads, Traffic Systems 
Research Division, Washington, D.C., Report No. CAL VJ-2251-V-6. UMTRI-
15397, 1970. 

22. Bernard, James et. al., "Evaluation of Vehicle/Driver Performance Using Genetic 
Algorithms," Iowa Center for Emerging Technology, Iowa State University, SAE 
Paper 980227, 1998. 

23. "VRJuggler Website," www.vrjuggler.org, visited June 9, 2003. 
24. Knutzon, Jared, "Tracking and Control Design for a Virtual Reality Teleoperation 

System," Computer and Electrical Engineering Department, Iowa State University at 
Ames, August 21, 2003. 

25. "MegaTech Website: MlAl Desert Storm," 
www.megatech.com/product.php?ID=7904, visited January 27, 2003. 

26. "Digital Mars Website: WinIO," http://www.digitalmars.com/rtl/winio.html, visited 
May 2, 2003. 

27. "Iowa State University Virtual Reality Applications Center Website," 
www.vrac.iastate.edu, visited June 9, 2003. 

28. "Logitech Website: Logitech QuickCam Pro 4000," 
http://www.logitech.com/index.cfm?page=products/productlist&crid=20&countryid= 
19&languageid=l, visited April 2, 2003. 

29. "The Spy Store Website: WVCS-lC Micro-Miniature Wireless Pinhole Camera," 
http://www.thespystore.com/wirelessvideo.htm, visited June 17, 2003. 

30. "Intel Research Website: OpenCV," 
http://www.intel.com/research/mrl/research/opencv, visited May 4, 2003. 



71 

ACKNOWLEDGEMENTS 

I would like to thank my wife, Jessica Walter, for helping me with revising this thesis 

and providing ongoing encouragement in the face of relentless editorial corrections. Special 

thanks go to my friend and research partner, Jared Knutzon, for his effort in designing his 

parts of the system and helping me perform the overall test runs. I appreciate the guidance of 

my committee members, specifically Dr. Adrian Sannier and Dr. Jim Oliver for their advice 

on the general system design, and Dr. James Bernard for his knowledge of vehicle dynamics. 

I would like to thank Kevin Teske and Glen Galvin for technical support and guidance in the 

making the video of the test runs. Thanks also to Rachael Norgaard for creating the models 

of the atrium and the tank. I would like to acknowledge Dr. Carolina Cruz-Neira and the 

VRJuggler team for the libraries used in this thesis and Chad Spencer for his assistance in 

creating the OpenCV image delaying code. Thanks too to Mark Knight for his contributions 

to the image generation code and Chad Austin for his help in tracking down a particularly 

nasty bug in my code. Finally, I would like to express my gratitude to my family for their 

lifelong support. 


