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Abstract

This paper provides the first estimates of the effects of climate change on agriculture while

explicitly modeling tile drainage. We show in a simple conceptual model that the value of pre-

cipitation should differ between drained and non-drained land, implying that pooling these lands

could bias estimates of the effects of climate change on land values. We test this hypothesis by

estimating a Structural Ricardian model for U.S. counties east of the 100th meridian. Consis-

tent with our theoretical model, our estimates show that the value of precipitation is higher on

non-drained lands.
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“Look at this flower pot. What is the hole at the bottom for? I ask you, because there is a complete

agricultural revolution in that hole.” - (Klippart, 1861, p. 3)

1 Introduction

Designing efficient policies to address climate change requires accurate damage estimates. Recent

studies that quantify the value of climate to agriculture have provided key insights in this area

(Fisher et al., 2012; Deschenes and Greenstone, 2007; Schlenker et al., 2006; Mendelsohn et al.,

1994). However, much uncertainty still remains regarding the magnitude and distribution of ex-

pected damages. One critical piece to this puzzle is the role of adaptation (Burke et al., 2016;

Auffhammer and Schlenker, 2014). Specifically, farmers may invest in technologies that mitigate

the harmful effects of changes in climate. Understanding this adaptive behavior is fundamental to

improving damage estimates.

This paper studies a key adaptive technology available to farmers - subsurface drainage. This

type of drainage, also known as tile drainage, reduces excess water stress in crops by lowering the

water table, which allows rainfall to move more quickly through poorly drained soils.1 Tile drainage

was introduced to the U.S. in 1835 and quickly experienced wide-spread adoption (Pavelis, 1987, p.

19). From 1855 to 1985, approximately 43 billion dollars was invested in tile drainage infrastructure

(Pavelis, 1987, p.122).2 Today, nearly 48 million acres utilize tile drainage; this land represents

approximately a quarter of the total cropland value in the country.3 Many have argued that U.S.

agriculture as we know it today would not exist without this critical piece of infrastructure (Jaynes

and James, 2007; Pavelis, 1987).

To assess this important adaptation tool, we develop an economic model of drainage adoption

and use newly available data from the 2012 Census of Agriculture to estimate the effects of cli-

mate on land values through a Structural Ricardian analysis (Kurukulasuriya et al., 2008; Seo and

Mendelsohn, 2008). The original Ricardian method, developed by Mendelsohn et al. (1994), utilizes

a cross-sectional regression of farmland values on climate and control variables to recover implicit

values for marginal changes in long-run averages of precipitation and temperature. The key insight

1Subsurface drainage is often referred to as tile drainage because early drains were constructed from clay tiles.
However, most modern drains are constructed from corrugated plastic.

22012 dollars.
3Author’s estimate based on 2012 Census of Agriculture.
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of this method is that long-run climate effects should be capitalized into land values. The estimated

coefficients are used in conjunction with climate change scenarios to simulate the impact of climate

changes on agriculture.

To help inform our empirical analysis, we develop a theoretical model of drainage adoption. This

model illustrates how marginal increases in precipitation on tile drained land are less valuable than

on non-tile drained land. Intuitively, and similar to other production models, this result comes

from the first order conditions comparing the marginal benefits of tile drainage to its marginal

cost. To test our model’s predictions, we employ a Structural Ricardian model. The Structural

Ricardian model builds on the original Ricardian model by explicitly modeling the adaptive choices

of farmers.4 In the first stage of this two-stage model, we estimate the probability of a farm

containing tile drainage as a function of exogenous land characteristics and climate. In the second

stage, we estimate separate Ricardian functions for tile drained and non-tile drained farms. We

apply our estimates from both stages to climate change simulations and combine them to form

expected farmland values following climate change. Thus the resulting damage estimates capture

changes in farmland values as well as changes in the probability of being on tile drained land. Our

preliminary results show that the marginal value of precipitation is higher on non-tile drained land

than on tile drained land, supporting our model’s prediction.

Our paper builds on a strand of literature which investigates the role of adaptation in Ricardian

models. To date, this work has focused almost exclusively on irrigation. As observed by Schlenker

et al. (2005), a key assumption of the Ricardian method is that the coefficient on precipitation

measures the supply of water for crops. In the Western half of the United States, however, much

of the supply of water for crops is obtained through irrigation. Schlenker et al. (2005) show that

Ricardian functions are fundamentally different on irrigated and non-irrigated land. We build on

this idea by observing that the supply of water for crops on tile drained land is also not equal to

precipitation, since excess water is drained away. This implies there may be fundamental differences

in tile drained and non-tile drained land as well. While some studies have focused on non-irrigated

land, we know of no other Ricardian analysis which accounts for tile drainage, including those based

in countries with heavily drained areas such as the U.S. (Burke and Emerick, 2012; Deschenes and

4Seo and Mendelsohn (2008) develop a Structural Ricardian model to account for the potential endogeneity of
irrigation.
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Greenstone, 2007; Schlenker et al., 2006; Mendelsohn et al., 1994), Canada (Reinsborough, 2003),

Germany (Chatzopoulos and Lippert, 2015), and the United Kingdom (Fezzi and Bateman, 2007).5

This paper also contributes new climate change damage estimates. Our paper uses the most

recent data U.S. Census data at the individual farmer level.6 Combined with zip code level climate

data, this should significantly decrease the aggregation bias that has been found in county level

estimates (Fezzi and Bateman, 2007). To our knowledge, only Fezzi and Bateman (2007), Schlenker

et al. (2007), and Kurukulasuriya et al. (2011) use farm level data in a Ricardian analysis; these

studies were based in California, Germany, and Africa, respectively. Our data includes all farmers

in the Eastern United States in 2012 - almost 1,000,000 observations. Using micro data across this

large geographic region allows us to fully exploit the wide variations in climate, farmland values,

and tile drainage across space.

The paper proceeds as follows. Section 2 builds a simple conceptual model of a representative

farmer’s optimal choice of tile drainage, which generates intuition for the empirical analysis. Section

3 provides a summary of the data, which includes a discussion on the availability and accuracy of

the existing universe of tile drainage data. Section 4 describes the econometric model used in this

paper, followed by the coefficient estimates in section 5. Section 6 uses these coefficient estimates

to simulate the effects of climate change on agriculture, and compare our results with previous

estimates. Section 7 provides a brief conclusion.

2 Conceptual Model

This section builds a simple economic model of tile drainage. Although our model uses profits

as the outcome variable rather than land rents, profits can be converted into land rents using a

capitalization ratio (Schlenker et al., 2006), thus the results can be used to gain intuition on the

effect of including tile drainage in a Ricardian analysis. Assume that there is a crop production

function, f(w), whose sole input is the amount of water supplied to crops, w. Let this function

have an inverted-U shape, reflecting the fact that water is beneficial for crop growth up to a certain

amount, w, but is harmful beyond that point as the soil becomes saturated. This implies fw ≥ 0

5See Feick et al. (2005) for a digital global map of artificial drainage.
6Farm level U.S. Census of Agriculture data is confidential, and our results are still under review by the USDA.

Here we include preliminary county level estimates.

4



when w ≤ w, fw ≤ 0 when w ≥ w, and fww < 0 throughout.

The supply of water for crops, w(D;P ), is a function of tile drainage, D, and the exogenous level

of precipitation, P . Assume wD < 0, since tile drainage is typically used to decrease the amount

of water on cropland, and wDD > 0, indicating that the amount of water that tile drainage is able

to remove decreases as tile drainage increases.7 Assume that wP > 0, meaning that an increase in

precipitation will increase the supply of water to crops. Let pc and pd represent the strictly positive,

exogenous prices of crops and drainage, respectively. The farmer chooses D in order to maximize

their profit:

max
D≥0

π = pcf(w(D;P ))− pDD (1)

This gives the following first order condition:

pcfwwD ≤ pD (2)

Equation (2) holds with equality when the optimal amount of tile drainage is positive. Given

the strictly positive prices, as well as the negative sign on wD, this implies that tile drainage will

only be used on the portion of f where the marginal product of water is negative (fw < 0). In other

words, tile drainage will only be installed when the supply of water is so high that it is detrimental

to crop growth.

On the other hand, when the optimal amount of tile drainage is zero, equation (2) becomes a

strict inequality. This inequality is always satisfied when the available water supply is not harmful

to crop growth (fw ≥ 0), indicating that farmers will not remove water from their land if it is

beneficial to crops. However, depending on the relative prices of crops and tile drainage, it is also

possible for the inequality to be satisfied when the amount of water is harmful to crop growth,

fw < 0. Specifically, if the marginal cost of tile drainage, pD, is higher than the value of the

marginal product, pcfwwD, then farmers would rather accept the damage to their crops (or not

7Since our empirical analysis focuses on non-irrigated counties, we do not consider the use of tile drainage to flush
excess salts from the soil.
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grow crops at all) rather than install tile drainage.

The demand function for tile drainage is a function of the exogenous prices and precipitation,

D∗(p, P ), where p = (pc, pD). Substituting this demand function into equation (1) gives the profit

function:

π = pcf(w(D∗(p, P ), P ))− pDD∗(p, P ) (3)

When the optimal amount of tile drainage is zero, this simplifies to:

π = pcf(w(0;P )) (4)

Taking the derivative of equation (4) with respect to precipitation yields:

∂π

∂P D∗=0
= pcfwwP

(+)(+/−)(+)
(5)

The single term on the right hand side of equation (5) is simply the increase in profits that

occur through an increase in crop productivity due to an increase in precipitation. In general, the

sign of equation (5) is ambiguous, since optimal tile drainage may be zero even when fw < 0, as

noted above. If water is beneficial to crops on the average farm that does not install tile drainage,

so that fw > 0 when D = 0, then equation (5) predicts that precipitation increases profits on land

without tile drainage.

When the optimal amount of tile drainage is positive, the derivative of equation (3) with respect

to precipitation is:

∂π

∂P D∗>0
= pcfwwDDp + pcfwwp − pdDp

Grouping terms by Dp and using the fact that pcfwwD equals pD when the optimal amount of
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tile drainage is positive:

∂π

∂P D∗>0
= Dp(pcfwwD − pD) + pcfwwP

= pcfwwP
(+)(−)(+)

(6)

Equation (6) shows that an increase in precipitation on tile drained lands will decrease profits.

This makes sense, since farmers will either have to accept the crop damages due to an increase in

precipitation, or pay the price of installing more tile drainage to mitigate damages.

If we assume that, on non-tile drained land, an increase in precipitation does not negatively

effect crop productivity, so that fw ≥ 0, then:

∂π

∂P D∗=0
≥ ∂π

∂P D∗>0

To investigate this relationship further, the following section performs a Ricardian analysis which

separates observations into tile drained and non-tile drained land. Land values are regressed on a

set of explanatory variables, including precipitation. By comparing the coefficients on precipitation

we are able to gain further insight into how its value differs between the two subsets.

3 Data

3.1 Land Rents

A Ricardian analysis assumes that current farmland value represents the sum of discounted land

rents in equilibrium. As is conventional in the literature, we use reported farmland value as a proxy

for land rents. These data are from the 2012 U.S. Census of Agriculture and are reported in dollars

per acre at the county level. To focus on the effect of tile drainage, separate from irrigation, we

follow Schlenker et al. (2006) and remove all counties West of the 100th meridian. This reduces

our sample from 3,072 to 2,466 counties. The spatial distribution of these counties is shown in

Appendix B.
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Figure 1: U.S. tile drainage as a percentage of cropland (2012 Census of Agriculture).

3.2 Tile Drainage: Current Estimates

Our main source for tile drainage data is the 2012 U.S. Census of Agriculture, which includes county

level data on number of farms with tile drainage as well as the number of acres drained. Theses

data represent the first attempt at assessing the extent of tile drainage in the U.S. in over 20 years.

Figure 1 shows the spatial distribution of tile drainage as a percentage of cropland acres across

the entire U.S., based on the 2012 Census. Tile drainage is concentrated in the Midwest, with

especially high concentrations in Iowa, Illinois, Indiana, Ohio, and southern Minnesota. Many of

the counties in these states have tile drainage on over 70% of their cropland, with the highest being

Henry, Ohio, with 84%. The map also shows that tile drainage is not exclusively used in the “wet”

region of the U.S., as patches of tile drained counties appear throughout the West. However, tile

drainage in these areas is primarily used to remove excess salinity from the soil that occurs due to

irrigation.8

8Imperial County, California, for example, shown as the southernmost dark blue county in that state, has tile
drainage in over 57% of its cropland, despite being one of the driest counties in the U.S.
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3.3 Tile Drainage: Historical Estimates

From 1920 to 1978, estimates of tile drainage were produced through the decennial Census of

Drainage and sporadically through the Census of Agriculture. Unfortunately, these estimates are

plagued by inconsistent techniques. In addition, tile drainage is inherently difficult to estimate

since it is buried underground, sometimes for decades and with no records of installation. These

problems combined to create a wide variation in historical drainage estimates. The 1969, 1974,

and 1978 estimates from the Census of Agriculture, for example, indicated that the total amount

of acres with tile drainage were about 60, 43, and 108 million, respectively.

A separate set of county level estimates were produced in 1982, 1987, and 1992 by the National

Resources Inventory (NRI). These were based on statistical sampling techniques and produced

more consistent estimates. However, they had some notable drawbacks. For example, it could be

difficult for a staff member to identify whether the sampling location contained tile drainage. Even

if they did, the survey was limited to only listing three land practices, which means it is possible

that tile drainage was omitted in some cases (Sugg, 2007, p.2). A new data set, produced by the

World Resources Institute (WRI) in 2007, estimated tile drainage in ten mid-western states based

on data on row crops and soil quality. That study assumes that if crops are being grown on poorly

drained soil, than they are likely to contain tile drainage (Sugg, 2007, p.3). The resulting estimates

were combined with 1992 NRI estimates from the remaining U.S. states.

Through conversations with experts familiar with tile drainage data as well as our own analysis,

we believe that the 2012 Census data on tile drainage is a reasonably accurate representation of the

existing extent of U.S. tile drainage. However, due to the data limitations of past drainage data,

as well as the large gap since the last set of estimates was released, we do not believe it is sensible

to combine the data during estimation. In the appendix, however, we repeat the cross-sectional

analysis for the 1982 and 1987 NRI data, as well as the WRI estimates based on data from 1992.

3.4 Climate

All of our climate variables are derived from Oregon State’s PRISM datasets (Oregon State Uni-

versity, 2016). For each day since 1981, PRISM provides data on maximum and minimum temper-

atures, plus precipitation, for 481,631 grid cells which cover the contiguous United States, where
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the size of each grid cell is 2.5 square miles.9 We use daily data from 1982-2011 to calculate yearly

variables, where each year is subset to April through September to approximate the growing season.

These yearly weather variables are then averaged over all 30 years to approximate the climate.

Our temperature variables are derived from degree days to capture possible non-linear responses

of crop growth to heat (Schlenker and Roberts, 2006).10 These variables include growing degree

days, defined as the number of degree days between 8 and 32◦C, and degree days above 34◦C,

which is a threshold that has been used to indicate temperatures that are harmful to plant growth

(Schlenker et al., 2006). These variables, along with daily precipitation, are summed over the

growing season.

Vapor pressure deficit is the difference between the amount of moisture in the air and the

amount of moisture the air can hold when it is saturated. It is strongly correlated with crop

yields (Roberts et al., 2012) and therefore may be important to include in a Ricardian analysis.11

Following Roberts et al. (2012), we approximate VPD from minimum (TL) and maximum (TH)

daily temperatures using the following equation:

V PD = 0.6107

(
e

(
17.269TH
237.3+TH

)
− e

(
17.269TL
237.3+TL

))
(7)

We then average these daily values of VPD over the growing season. To isolate the effects of

the climate variables over cropland within a county, rather than over all land (which can include

developed land, water bodies, etc.), we weight each PRISM grid cell by its proportion of land in

cropland. We follow the approach of Schlenker et al. (2006) and intersect a shapefile of PRISM

grid cells with a 2011 National Land Cover Database (NLCD) satellite image using ArcGIS.12 We

then divide the sum of the areas of the land types classified a either “cropland” or “pasture” by

the area of a PRISM grid cell.

9Monthly values are available as far back as 1895.
10Daily Degree days are derived from daily minimum and maximum temperature using the procedure from Schlenker

et al. (2006).
11Relative humidity, which is closely related to VPD, was used in a Ricardian analysis of Chinese farmland and

had a statistically significant coefficient in all specifications (Zhang et al., 2015).
12www.mrlc.gov
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3.5 Soil and Demographics

To control for land quality across the U.S., we include a group of variables from the STATSGO

soil data set. STATSGO divides the U.S. into over 10,000 “map units” whose soil characteristics

are determined through statistically expanding the results of several samples in each unit. The

variables taken from STATSGO include measures of water capacity, slope, k-factor, amount of clay,

soil class, and saturation. Each variable is calculated as an area weighted average of map units

within a county.

Several papers have shown that proximity to urban areas can influence farmland values (Zhang

and Nickerson, 2015; Shi et al., 1997). To control for these influences we linearly extrapolate

demographic data from the 2010 U.S. Census to 2012. These variables are at the county level, and

include population density and income per capita.

3.6 Summary Statistics

Table 1 presents the summary statistics of all the variables used in our estimation.13 Farmland

values have an average value of $4,047 in 2012 dollars and are skewed towards zero, with a maximum

of $126,087. The percentage of cropland with tile drainage is skewed towards zero, with an average

of 9.7%. Growing degree days and precipitation have roughly symmetric distributions, with means

of 2,309 and 54.22, respectively. The distribution for degree days above 34◦C is skewed towards

zero, with a mean of 5.93.

4 Methodology

4.1 Empirical Model

A traditional Ricardian analysis regresses farmland values on climate variables and controls without

distinguishing between different adaptive technologies available to farms. To model this adaptation,

we use a Structural Ricardian model similar to Kurukulasuriya et al. (2011). This two-stage model,

closely related to the Heckman model (Heckman, 1977), explicitly models the choice of tile drainage,

as well as changes in farmland values, on both tile drained and non-tile drained land.

13Appendix A shows the full distributions of our key variables.
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Table 1: Descriptive Statistics for Primary Data Set

10th 90th
Mean SD Percentile Percentile

Farmland and tile drainage:
Farmland value ($/acre) 4, 047.23 4, 240.73 1, 767.00 6, 694.80
Percent of cropland tiled 9.68 17.65 0.00 38.42

Climate data:
Growing degree days (thousands) 2.31 0.53 1.61 3.01
Precipitation (cm) 54.22 8.16 43.33 63.39
Degree days above 34◦C 5.93 9.66 0.14 17.56
Vapor pressure deficit 1.98 0.33 1.57 2.40

Soil and land data:
Slope 8.40 7.15 2.06 17.32
K-factor 0.11 0.12 0.00 0.31
Soil class 55.80 11.77 41.99 72.41
Water capacity 7.75 1.69 5.48 10.00
Soil Permeability 12.39 13.08 0.69 27.16
Percent clay 10.78 11.03 0.00 27.31
Latitude 37.73 4.64 31.43 43.93

Demographic Variables:
Population density (hundreds per square mile) 1.72 4.13 0.12 3.70
Income per capita (thousand $) 22.97 5.07 17.47 28.80

Notes: Sample consists of 2,438 counties east of the 100th meridian. All dollar values are in 2012 dollars.
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The first stage models tile drainage as a dichotomous choice, estimated using a probit regres-

sion. Assume that farmers decide whether or not to install tile drainage, Y , conditional on a

vector of exogenous local variables X, which includes climate, soil, and land characteristics, and an

unobservable error term ε1:

Y = βX1 + ε1, (8)

ε1 ∼ N (0, 1)

where Yd = 1 if the farm contains a positive amount of tile drainage, and 0 otherwise.

The second stage estimates two separate Ricardian functions for tile drained and non-tile drained

land (Πd and Πn, respectively).

Πd = βX2 + ε2 (9)

Πn = βX3 + ε3 (10)

ε2 ∼ N (0, σ1) (11)

ε3 ∼ N (0, σ2) (12)

The unobservable variables that determine the farmer’s choice of tile drainage in equation (8) are

likely to be correlated with the unobservable variables that determine farmland values in equations

(9) and (10):

corr(ε1, ε2) = ρ2

corr(ε1, ε3) = ρ3

To control for the resulting selection bias, we calculate the inverse mills ratio from equation (8)

and include it as an additional explanatory variable in the Ricardian equations.
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4.2 Functional form

Following convention, we estimate equations (9) and (10) using a semi-log functional form. In all

regressions we use robust standard errors, clustered at the zip code level.

Past research has emphasized the non-linear response of crop growth to climate (Schlenker and

Roberts, 2009), which necessitates a flexible functional form for these variables. We will do this

with two different specifications. The first specification bins growing degree days and precipitation

into deciles, assigning a dummy variable for each decile. The second specification (not shown here)

approximates the non-linear function for each variable using a cubic spline.

5 Results

This section presents preliminary estimates performed at the county level, as farm level estimates

have not yet been approved for public release by the USDA. We suggest caution in viewing these

results, as Fezzi and Bateman (2007) show that estimates at the county level may be subject to

significant aggregation bias. An important component of the final paper will be analyzing the

differences in these estimates and the estimates obtained through farm level data.

Figure 2 displays the probit results for precipitation and growing degree days.14 These figures

display marginal effects, rather than coefficient estimates, to ease interpretation. To avoid collinear-

ity we have excluded the lowest bins for each variable. This means that the marginal effects for

precipitation are relative to having less than 46 centimeters, and the marginal effects for growing

degree days are relative to having less than 2,670 growing degree days.

As expected, the probability of land containing tile drainage increases with the level of precip-

itation. As precipitation increases from 46 to 81 centimeters, the probability smoothly increases

from about 18 to 35%, except for a sharp increase and subsequent decrease at 59 centimeters. The

marginal effects are all significantly different from zero at the 1% significance level.

The probability of a county containing tile drainage decreases with the level of growing degree

days. At around 2,670 growing degree days, the probability is 22% higher than the reference level.

As growing degree days increase, the marginal effect becomes insignificant at 2,600 through 3,150

14We have excluded the results for control variables and state fixed effects for simplicity. We will include these
results in an appendix in the final version.
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degree days. At 3,270 growing degree days and above, counties are a little over 50% less likely to

have tile drainage relative to the reference category.

Figure 2: Marginal effects of precipitation (a) and growing degree days (b).

(a)

(b)

Notes: Dependent variable is a binary indicator for tile drainage. Estimates are from a probit regression
which includes soil and demographic control variables, plus state fixed effects. Values are relative to each
variable’s 10% decile. Vertical lines represent 95% confidence intervals. Calculated with robust standard
errors.

Figure 3 displays the coefficient estimates for three Ricardian models - one estimated on tile

drained land, one on non-tile drained land, and one that is estimated when both land types are

pooled together. Panel (3a) shows that the marginal value of precipitation is higher on non-tile

15



Figure 3: Marginal values of precipitation (a) and growing degree days (b).

(a)

(b)

Notes: Dependent variable is the log of farmland value. Model includes soil and demographic controls, plus
state fixed effects. Coefficient values are relative to each variable’s 10% decile. Vertical lines represent 95%
confidence intervals. Calculated with robust standard errors.
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drained land than on tile-drained land, as our theoretical model predicts. It is statistically sig-

nificant for non-tile drained land throughout the domain, while for tile drainage it is statistically

significant between 55 and 64 centimeters. The marginal value for both land types peaks at around

59 centimeters of precipitation. The pooled estimates lie between the two other estimates through-

out the entire domain.

Panel (3b) shows the corresponding results for growing degree days. These results show that

the value of growing degree days is roughly similar on tile drained and non-tile drained land, as the

confidence intervals for the two land types overlap at every bin. The marginal value begins positive

but crosses zero at around 3,270 growing degree days. Afterwards it continues to decline- at 3,670

growing degree days the value of farmland is 24% to 48% percent less than the reference category,

depending on the model.

The following section applies these estimates to climate change simulations to estimate the

damages to agriculture through climate change.

6 Climate Change Simulations

Data on climate change was derived from four global climate models (GCM’s) used in the most

recent IPCC report, which produced daily weather simulations through 2100.15 These data have

been down scaled through NASA’s NEX project to 25 by 25 km grid cells.16 Climate normals

for each grid cell were calculated for two thirty year periods: 2020-2049 and 2070-2099. These

normals were averaged across the four GCM’s to reduce the influence of any one model. We then

calculate the climate normals for each PRISM grid cell that covers the U.S. by taking a weighted

average of the five closest NEX grid cells, using the inverse of the distances between centroids as

weights. To find the projected climate normals for each county, we average the PRISM grid cells

over the portions of the county that contained cropland, using the same method described in the

data section. We repeat this process for both the moderate and severe climate change scenarios

(also known as RCP 4.5 and RCP 8.5, respectively).

Climate change will affect both the estimated probability of a land containing tile drainage, as

well as the value of that land. We combine these two changes to get an estimate of the expected

15The models used were: CCSM4, MIROC-ESM, MIROC5, and GFDL-CM3
16https://cds.nccs.nasa.gov/nex-gddp/
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value, denoted EV , of climate change for county i :

EVi = ̂P (Yi = 1)(Π̂d) + ̂P (Yi = 0)(Π̂n),

The predicted farmland values for both tile drained and non-tile drained land are found by

summing the percentage change in farmland values across all climate variables and applying this

change to the 2012 farmland value. The expected damages from climate change is the difference

between the expected value and the 2012 value. Total expected damages from climate change are

found by summing these expected damages across counties.

7 Conclusion

This paper studies how climate variables are capitalized into farmland values while explicitly ac-

counting for an important adaptation technology, tile drainage. We build intuition for the empirical

analysis by formulating a simple profit maximization model that includes the farmer’s choice of tile

drainage. The model predicts that the marginal value of precipitation is higher in non-tile drained

land versus tile drained land. We test this result by estimating a Structural Ricardian model, which

accounts for the farmer’s choice of tile drainage through a probit regression. Our initial, county

level results show that the marginal value of precipitation is higher on non-tile drained land, pro-

viding evidence for our theoretical model’s predictions. In a future draft we will present farm level

estimates, compare them to our county level estimates, and provide complete damage estimates for

several climate change scenarios and time periods.
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Figure 4: Distributions of key variables.
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Figure 5: The 2,438 sample counties (in blue).
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