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Abstract—This study develops a consensus-based transactive
energy system design managed by an independent distribution
system operator (DSO) for an unbalanced radial distribution
network. The network is populated by welfare-maximizing cus-
tomers with price-sensitive and fixed (non-price-sensitive) de-
mands who make multiple successive power decisions during
each real-time operating period OP. The DSO and customers
engage in an iterative negotiation process in advance of each OP
to determine retail price-to-go sequences for OP that align cus-
tomer power decisions with network reliability constraints in a
manner that respects customer privacy. The convergence prop-
erties of a dual decomposition algorithm developed to implement
this negotiation process are analytically established. A case study
is presented for an unbalanced 123-bus radial distribution net-
work populated by household customers that demonstrates the
practical effectiveness of the design.

Index Terms—Transactive energy system, unbalanced radial
distribution network, DSO-managed negotiation process, network
reliability, DSO-customer decision alignment, customer privacy.

I. INTRODUCTION

THE rapidly growing penetration of distributed energy re-
sources (DERs) poses new challenges for the efficient and

reliable management of distribution networks. Researchers and
practitioners are exploring a variety of management strategies
to meet these challenges.

Transactive energy system (TES) design is an emerging
innovative energy management strategy that engages DERs
through market interactions. As originally formulated by the
GridWise Architecture Council [1], a TES design is a col-
lection of economic and control mechanisms that allows the
dynamic balance of power supply and demand across an entire
electrical infrastructure using value as the key operational pa-
rameter. Typically, valuations for power demands and supplies
are expressed by means of purchase and sale prices.

The TES design literature is rapidly expanding. Many dif-
ferent conceptual TES designs are actively under investiga-
tion. These designs range from peer-to-peer TES designs based
on bilateral customer transactions to TES designs for which
customer power requirements are centrally managed by some
form of Distribution System Operator (DSO). In addition, re-
searchers have developed software platforms for Integrated
Transmission and Distribution (ITD) systems that permit the
study of interactions between TES design operations at the
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distribution level and wholesale power market operations at
the transmission level.

Nevertheless, to date, most TES design studies do not care-
fully take into account network power flow constraints for
the empirically relevant case of unbalanced distribution net-
works. Consequently, the studied TES designs cannot ensure
the reliable operation of these networks. For example, Nguyen
et al. [2] show how voltage violations can arise for an unbal-
anced distribution network operating under PowerMatcher [3],
a well-known TES design that does not explicitly consider the
need to satisfy distribution network reliability constraints.

A second TES design issue is that attention is typically
focused on the sequential determination of single-period de-
cisions, with no consideration of possible future effects. This
single-period focus does not permit decision makers to take
into account cross-period correlations among their successive
decisions.

A third TES design issue is the desirability of aligning cus-
tomer goals and constraints with distribution network goals
and constraints by means of a decentralized communication
process that ensures customer privacy as well as network re-
liability.1 To date, the precise form of decentralization that
would be needed to achieve this multi-faceted objective for
unbalanced distribution networks has not been extensively in-
vestigated.

The present study proposes a multiperiod consensus-based
TES design that addresses all three of these issues. This TES
design can be used by an independent2 DSO to manage the
daily power requirements of customers populating an unbal-
anced distribution network.

The TES design is consensus-based in that retail prices for
each operating period OP are determined by means of a nego-
tiation process between the DSO and the customers that pre-
serves customer privacy. The TES design is multiperiod in that
each operating period OP, of arbitrary duration, is assumed to
be partitioned into finitely many successive time-steps; and the
negotiation process for OP results in the joint determination
of retail prices and customer real and reactive power usage
levels for each of these time-steps.

The retail prices for price-sensitive demands that result from
the negotiation process between the DSO and the customers
have an informative structural form. Each of these prices is
the summation of an initial price set by the DSO together

1The study of institutions mapping private activities into social outcomes by
means of decentralized communication processes is referred to as mechanism
design in the economics literature; see [4], [5].

2The qualifier independent means that the DSO has no financial or owner-
ship stake in the operations of the distribution network.
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with specific price deviations entailed by the need (if any) to
ensure that network reliability constraints are met.

The remainder of this study is organized as follows. The
relation of this study to previous TES design work is discussed
in Section II. The key features of the consensus-based TES
design are described in Section III.

An illustration of the consensus-based TES design is formu-
lated analytically in Sections IV through VII for the special
case of an unbalanced radial distribution network populated
by households. A dual decomposition algorithm implement-
ing the negotiation process for this TES design is developed
in Section VIII, and sufficient conditions are established an-
alytically for its convergence to a TES equilibrium ensuring
the alignment of DSO and household goals and constraints.

A case study is presented in Section IX to demonstrate
the capabilities of the consensus-based TES design. The case
study models a DSO-managed unbalanced 123-bus radial dis-
tribution network connected to a relatively large transmission
network at a single point of connection. The distribution net-
work is populated by household customers with a mixture of
thermostatically-controlled load (TCL) and non-TCL, where
only TCL is sensitive to price.

Concluding comments are given in Section X. A nomen-
clature table, plus important technical details regarding unbal-
anced distribution network modeling, dual decomposition, and
proposition proofs, are provided in appendices.

II. RELATIONSHIP OF CURRENT WORK TO EXISTING
ENERGY MANAGEMENT WORK

As extensively surveyed in ([6], [7]), current energy man-
agement strategies can roughly be classified into four cate-
gories: top-down switching, centralized optimization; price re-
action; and TES design.

A top-down switching method for a group of electrical de-
vices, implemented by a utility or other entity, is a method for
simultaneously controlling the energy usage of these devices
by means of signals that are commonly and simultaneously
communicated to each device. Top-down switching methods
are easy to implement. However, they cannot fully exploit the
response potential of individual electrical devices based on
differences in physical attributes and owner preferences.

In contrast, centralized optimization ([8], [9]) for an electri-
cal system is the centrally-managed formulation and solution
of system-wide optimizations during successive operating pe-
riods. The main advantage of centralized optimization is that
the manager has more certain control over system outcomes
[10]. However, a major disadvantage is that effective central-
ized optimization can require the violation of customer privacy.
Moreover, centralized optimization can entail large amounts
of computation time, hindering scalability. For example, the
computations required for centralized optimization become ex-
tremely challenging when distribution network power flow is
explicitly considered; see [11].

A price-reaction method is an energy management method
based on one-way communication that uses price signals com-
municated to customers to modify their energy usage pat-
terns ([12], [13]). Price-reaction methods are simple to deploy.

However, price-reaction methods can result in reliability prob-
lems due to the the difficulty of accurately predicting customer
responses to price signals. In addition, price-reaction meth-
ods can result in divergent price and quantity outcomes over
time [14], a well-known issue referred to in the economics
literature as “cobweb dynamics.”

A TES design is an energy management strategy that uses
market mechanisms to ensure the continual balancing of power
demands and supplies across an entire electrical infrastructure
based on customer purchase and sale valuations ([15], [16],
[17]). For example, peer-to-peer TES designs [18] posit direct
bilateral transactions among design participants with no central
management. In contrast, centrally-managed bid-based TES
designs posit the existence of a central manager that repeat-
edly communicates prices to power customers for successive
operating periods based on bid functions received from these
customers that express their updated power demands, power
supplies, and/or ancillary service supplies; see, e.g., [19].

The potential advantages of TES design relative to the pre-
vious three energy management approaches include the ability
to align distribution network goals and constraints with local
customer goals and constraints in a tractable scalable manner
while respecting customer privacy. These potential advantages
have resulted in rapidly expanding TES research efforts and
demonstration projects ([20]-[26]).

The study by Hu et al. [27] is closest to our current study.
The authors develop a DSO-managed multiperiod TES design
based on a negotiation process between the DSO and a collec-
tion of aggregators managing the charging schedule for elec-
tric vehicle (EV) owners. The DSO and aggregators exchange
primal and dual variable information in order to determine a
retail energy price sequence for EV charging from a single-
phase distribution network, where the resulting EV charging
schedule is able to contribute to the support of power balance
for a day-ahead market operating over a transmission network
connected to the distribution network. The DSO undertakes an
optimization to ensure the charging schedule satisfies voltage
and peak demand constraints for the distribution network.

Our study differs from Hu et al. [27] in four important re-
gards. First, our proposed TES design is suitable for managing
the operations of an unbalanced distribution network. Second,
our proposed TES design ensures the satisfaction of distribu-
tion network constraints without requiring the DSO to solve
an optimization problem.

Third, our TES design aligns DSO goals and constraints
with customer goals and constraints, where customer goals
are explicitly expressed in terms of customer net benefits, and
customer constraints are explicitly expressed in terms of cus-
tomer physical and financial considerations. In contrast, Hu et
al. do not consider whether the EV charging schedule deter-
mined by their proposed negotiation process is in fact the best
possible schedule for EV owners, measured in terms of the
goals and constraints of these EV owners.

Fourth, the negotiation process postulated by our TES de-
sign for each operating period is based on a more intuitive,
readily interpreted exchange of information than in Hu et
al. [27]. At the beginning of this negotiation process the DSO
is assumed to receive two types of structural information from
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each customer: namely, power factor rating information for
the customer’s price-sensitive demand; and a thermostat slider-
knob control setting between 0 and 1 indicating the customer’s
preferred emphasis on power-usage benefit relative to power-
usage cost. Given this information, the DSO iteratively com-
municates retail price-to-go sequences to customers who in
turn indicate their power usage responses. This iterative pro-
cess comes to a halt once the customers’ power usage re-
sponses satisfy all distribution network constraints.

III. THE GENERAL CONSENSUS-BASED TES DESIGN

A. Design Overview
Retail customer participation in existing U.S. RTO/ISO-

managed wholesale power markets is typically handled by
some form of intermediary, such as a Qualified Scheduling En-
tity (QSE) or a Load-Serving Entity (LSE). However, FERC
Order 2222 [28] promotes participation by a broader range of
distributed resource aggregators.

This study develops a consensus-based TES design managed
by a DSO within an integrated transmission and distribution
system. This DSO operates as a linkage agent at a transmis-
sion grid bus b∗ that connects an unbalanced radial distribution
network to a relatively large transmission network. The DSO
manages the power usage needs for a collection of customers
located across the distribution network who have a mix of fixed
and price-sensitive demands. The DSO is an independent en-
tity with a fiduciary responsibility for ensuring the welfare of
the customers, conditional on the maintenance of distribution
network reliability.

Each operating day is partitioned into a finite number of
operating periods OP. Prior to each OP, the DSO engages its
customers in a negotiation process that results in retail prices
for OP. The objective of this negotiation process is to permit
customers to select power usage levels for OP that maximize
their net benefit, subject to retail prices and local constraints,
in a manner that ensures both the reliability of distribution
network operations and customer privacy.

The power usage needs of the customers must be met by
power procured from the transmission network.3 The DSO
manages this power procurement on behalf of the customers.
All DSO net procurement costs are allocated back to customers
on the basis of their relative power usage.

B. Design Timing Relative to Real-Time Market Processes
In advance of each operating period OP, the ISO/RTO con-

ducts a real-time market (RTM) consisting of a security-
constrained economic dispatch (SCED) optimization. Here-
after this RTM will be denoted by RTM(OP).

Figure 1 depicts the timing of the consensus-based TES
design outlined in Section III-A in relation to RTM(OP). The
look-ahead horizon for RTM(OP), denoted by LAH(OP), is the
time interval between the close of RTM(OP) and the start of
OP. Each operating period OP is assumed to be partitioned into
NK sub-periods t. The negotiation process N(OP) between
the DSO and its customers to determine retail prices for each
sub-period t of OP takes place during LAH(OP).

3As noted in Sec. I, distributed generation is not considered in this study.

Excute 

SCED

RTM(OP)

Operation 

OP

Negotiation

LAH(OP)N(OP)

1 2 3 .... NKsub-periods:

Fig. 1. Timing of the consensus-based TES design in relation to a standard
real-time market RTM(OP) for an operating period OP

C. Design Negotiation Process: General Outline

The negotiation process N(OP) for each operating period
OP consists of three basic components, as follows:

C1. Initialization: At the start of N(OP), the DSO receives
from each customer ψ a power-factor function fψ for price-
sensitive demand permitting reactive power usage to be deter-
mined from real power usage. In addition, the DSO receives
from each customer ψ a thermostat slider-knob control setting
γψ between 0 (“Benefit”) and 1 (“Cost”) whose closeness to 0
indicates the degree to which ψ prefers to emphasize the ben-
efit of power usage relative to its cost.4 The DSO then sets
retail prices for all fixed loads during each sub-period t of OP,
as well as initial retail prices for all price-sensitive demands
during each sub-period t of OP, and communicates these prices
to its customers.

C2. Adjustment: Upon receipt of prices from the DSO, each
customer ψ communicates back to the DSO its optimal price-
sensitive real power usage level for each sub-period t of OP.
The DSO then determines whether estimated customer real
and reactive power usage levels for OP would result in any
violation of network reliability constraints. If so, and if the
DSO’s stopping rule has not been activated, the DSO deter-
mines adjusted prices for price-sensitive demands during each
sub-period t of OP and communicates these adjusted prices
back to its customers to initiate another negotiation round.
Otherwise, the DSO terminates the negotiation process.

C3. Stopping Rule: If the negotiation process has not termi-
nated by a designated time prior to the end of LAH(OP), the
DSO invokes a standardized procedure to set final prices for
customer price-sensitive demands that ensure the reliability of
distribution network operations.

D. Design Negotiation Process: Implementation Details

In greater detail, the implementation of our TES design ne-
gotiation process N(OP) for any given operating period OP
proceeds as follows:

• At the start of RTM(OP), the ISO/RTO submits a fore-
cast to RTM(OP) for load during OP, including distri-
bution network load at the linkage bus b∗. The ISO/RTO
then conducts a SCED optimization for RTM(OP), which
determines the locational marginal price LMP(b∗,OP)
(cents/kWh) at bus b∗ for OP.

4See Appendix D for a more detailed constructive definition of γψ .
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• At the close of RTM(OP), i.e., the start of LAH(OP), the
ISO/RTO communicates LMP(b∗,OP) to the DSO. The
DSO also receives from each customer ψ a power-factor
function fψ for price-sensitive demand and a slider-knob
control setting γψ .

• At the start of N(OP) during LAH(OP), the DSO com-
municates to each of its customers that LMP(b∗,OP) will
be the price it charges for all fixed load during each sub-
period t of OP.

• The DSO then conducts a multi-round negotiation with
each customer ψ to determine a retail price πψ(t) for the
price-sensitive demand of customer ψ during each sub-
period t of OP, t = 1, . . . , NK.

• At the start of this multi-round negotiation process, the
DSO communicates to each customer ψ an initial re-
tail price-to-go sequence πoψ(K) for price-sensitive de-
mand during OP taking the row-vector form πoψ(K) =
[πoψ(1), ..., πoψ(NK)], where: (i) K = (1, . . . , NK) is
a partition of OP into sub-periods t; and (ii) πoψ(t) =
LMP(b∗,OP) for each sub-period t.

• Each customer ψ then communicates back to the DSO
its optimal price-sensitive real power usage sequence for
OP, conditional on its own local constraints plus the ini-
tial retail price-to-go sequence πoψ(K) received from the
DSO. This permits the DSO to estimate total customer
real and reactive power usage sequences for OP.

• The DSO continues to conduct successive negotiation
rounds until either its estimated power usage sequences
for OP satisfy all network reliability constraints or its
stopping rule is activated.

• At the termination of the multi-round negotiation pro-
cess, each customer ψ implements its optimal real and
reactive power usage sequences for OP, conditional on
its final received retail price-to-go sequence and its own
local constraints.

Important Remark on N(OP) Retail Price Initialization:
In the seven existing U.S. RTO/ISO-managed wholesale

power markets, RTM LMPs are measured in $/MWh. More-
over, the prices charged to QSE/LSE intermediaries for the
wholesale power usage of their managed customers are typi-
cally based on temporal and/or spatial averages of RTM LMP
realizations in order to mitigate customer exposure to price
volatility.

The presumption in this study that the DSO sets initial retail
prices for N(OP) equal to RTM LMPs measured in cents/kWh
is made purely for ease of exposition. These initial retail prices
could instead be set as averages of RTM LMPs measured
in $/MWh, in conformity with current practices. This change
would not have any substantive effect on reported results.

IV. TES DESIGN ILLUSTRATION: OVERVIEW

For concreteness, this section illustrates our proposed DSO-
managed consensus-based TES design for the special case of
an unbalanced radial distribution network populated by house-
holds. More precisely, the distribution network consists of a
collection of buses connected by multi-phase line segments;

and each household is connected to a particular bus by an
external 1-phase line; see Fig. 2.
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Fig. 2. General features of the household TES design illustration

The goal of each household ψ is to maximize its own net
benefit, subject to retail prices and local constraints. Every
household owns a mixture of TCL and non-TCL devices. Each
non-TCL device is a fixed-load device, meaning its load is not
sensitive to charged prices. In contrast, each TCL device is a
smartly controlled device with price-sensitive power usage.

Two important restrictions are imposed on household loads
for the TES design illustration. First, in the absence of all
household TCL, household non-TCL satisfies all network re-
liability constraints. Second, the price-sensitive TCL of each
household reduces to zero at a finite sufficiently-high TCL
price; and these sufficiently-high TCL prices are known to the
DSO based on historical experience.

Household load for each operating period OP must be ser-
viced by power obtained from a transmission network con-
nected to the distribution network at a linkage bus b∗. ISO-
forecasted power deliveries to households during OP are pre-
scheduled in RTM(OP), an ISO-managed RTM operating over
the transmission network. The rules governing the operations
of RTM(OP) are based on the rules governing RTM operations
in the U.S. ERCOT energy region ([29], [30]).

Household power usage for each operating period OP is
managed by means of the DSO-managed consensus-based
TES design outlined in Section III. The DSO tasked with man-
aging this TES design conducts a negotiation process N(OP)
with households during the look-ahead horizon LAH(OP)
for RTM(OP). As depicted in Fig.3, this negotiation process
N(OP) consists of the following three components:
C1. Initialization: The DSO receives from each household ψ
a power-factor function fψ for price-sensitive demand and a
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slider-knob control setting γψ . The DSO sets the non-TCL re-
tail price for all households during OP equal to LMP(b∗,OP),
the LMP determined in RTM(OP) for the linkage bus b∗. The
DSO also initially sets the TCL retail price for all households
during OP equal to LMP(b∗,OP). The DSO then ensures these
non-TCL and TCL retail prices are signaled to the households.
Finally, the DSO sets a maximum permitted number Imax of
iterations for N(OP) that ensures N(OP) will come to a close
prior to the end of LAH(OP).

C2. Adjustment: Each household adjusts its real TCL power
usage for OP to maximize its net benefit, conditional on local
constraints and its latest received TCL price-to-go sequence
for OP. The resulting household real TCL power usage sched-
ules are communicated to the DSO, which permits the DSO
to estimate total real and reactive power schedules for OP.
If these schedules result in violations of network reliability
constraints, the DSO updates the household TCL price-to-go
sequences and communicates these updated sequences back to
the households.

C3. Stopping Rule: The negotiation process continues until
either there are no network reliability constraint violations or
the number of iterations reaches Imax, whichever comes first.
If violations remain after Imax is reached, the DSO sets final
household TCL prices for OP to levels that are sufficiently
high to reduce household TCL to zero.
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Fig. 3. Negotiation Process N(OP) for the household TES design illustration

V. TES DESIGN ILLUSTRATION: NETWORK MODEL

A. Radial network model for a distribution system

Consider a radial network with N+1 buses. Let {0}
⋃
N

denote the index set for these buses, where N = {1, 2, ..., N}.
As shown in Fig. 4, bus 0 is the head bus of the radial network.
In addition, bus 0 is the linkage bus b∗, i.e., the bus at which
the distribution network connects to the transmission network.

By definition of a radial network, each bus located on a
radial network can have at most one bus that is an immediate
predecessor, measured relative to the feeder head. For each bus
j ∈ N , let BP (j) ∈ {0}

⋃
N denote the bus that immediately

precedes bus j along the radial network headed by bus 0. Thus,
as seen in Fig. 4, the distance between bus BP (j) and bus 0
is strictly smaller than the distance between bus j and bus 0.
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Fig. 4. The radial network for the household TES design illustration from
the vantage point of a bus j ∈ N

Also, let Nj denote the set of all buses located strictly after
bus j along the radial network. For example, in Fig. 4, the
depicted buses k1, k2, ..., kn comprise all buses that strictly
follow bus j. Thus, Nj = {k1, k2, ..., kn} for this case.

Finally, the edge set for any radial network with N + 1
buses consists of N distinct line segments connecting pairs of
adjacent buses along the radial network. More precisely, this
edge set is given by L = {`j = (i, j)|i = BP (j), j ∈ N},
i.e., the collection of all line segments connecting bus BP (j)
to bus j for each j ∈ N . For an unbalanced radial network,
each line segment can consist of single-phase, two-phase, or
three-phase circuits. Hereafter, such line segments are simply
referred to as 1-phase, 2-phase, and 3-phase line segments,
respectively.

B. Single-phase radial network

Consider a radial network consisting of 1-phase line seg-
ments with a common phase. For each bus i ∈ {0}

⋃
N , let

Vi(t) denote its voltage magnitude, let vi(t) = |Vi(t)|2 denote
its squared voltage magnitude, and let pi(t) and qi(t) denote
its active and reactive bus load, all measured per unit (p.u.).
Also, for each line segment (i, j) ∈ L, let zij = rij +jxij de-
note its line impedance, and let Pij(t) and Qij(t) denote the
real and reactive power flow from bus i to j, respectively, all
measured per unit (p.u.).

The following Linearized Distribution Flow (LinDistFlow)
equations,5 adapted from [31] and [32], model the single-phase
radial network power flow. For all (i, j) ∈ L,

Pij(t) =
∑
k∈Nj

Pjk(t) + pj(t) (1a)

Qij(t) =
∑
k∈Nj

Qjk(t) + qj(t) (1b)

vi(t) = vj(t) + 2 ·
(
Pij(t)rij +Qij(t)xij

)
(1c)

C. Extension to an unbalanced radial network

Section V-B focuses on the case of a single-phase radial net-
work for a distribution system. However, distribution networks

5The derivation of the LinDisFlow power flow equations assumes that the
power loss on each radial network line segment is negligible relative to the
power flow on this line segment.
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are typically unbalanced as well as radial, with multi-phase
line segments. The common form of a 3-phase line segment
for a radial distribution network is shown in Fig.5.
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Fig. 5. Depiction of a 3-phase line segment in a radial network.

Thus, making use of previous work ([11], [33],[34]), this
section extends the LinDistFlow power flow equations (1a)-
(1c) to handle the case of an unbalanced radial distribution
network. More precisely, as will be seen below, this extended
model assumes: (i) unbalanced phases {a, b, c} for which the
successive phase differences are given by 2

3π; and (ii) voltage
magnitudes across phases are approximately the same. This
results in approximately balanced 3-phase voltages. Without
loss of generality,6 each line segment in the network edge set
L is assumed to be a 3-phase line segment.

The following column vectors and matrices are used to de-
pict squared 3-phase voltage magnitudes, bus active and reac-
tive loads, real and reactive power flows over line segments,
and line segment impedance values for this unbalanced radial
network, all measured per unit (p.u.): For each (i, j) ∈ L,

vi(t) = [vai (t), vbi (t), v
c
i (t)]

T

pi(t) = [pai (t), pbi (t), p
c
i (t)]

T

qi(t) = [qai (t), qbi (t), q
c
i (t)]

T

Pij(t) = [P aij(t), P
b
ij(t), P

c
ij(t)]

T

Qij(t) = [Qaij(t), Q
b
ij(t), Q

c
ij(t)]

T

Zij = Rij + jXij =

 zaaij zabij zacij
zbaij zbbij zbcij
zcaij zcbij zccij


where Zij ∈ C3×3 is a symmetric matrix.

Using this notation, the extended LinDistFlow model equa-
tions can be expressed as follows. For all (i, j) ∈ L,

Pij(t) =
∑
k∈Nj

Pjk(t) + pj(t) (2a)

Qij(t) =
∑
k∈Nj

Qjk(t) + qj(t) (2b)

vi(t) = vj(t) + 2(R̄ijPij(t) + X̄ijQij(t)) (2c)

6As discussed and illustrated in Appendix B, any k-phase line segment in
the network edge set L with k < 3 can be represented as a 3-phase line
segment by introducing an appropriate number of additional “virtual” circuits
for this line segment with “virtual” phases whose self-impedance and mutual
impedance are set to zero. The introduction of these virtual elements does not
affect the resulting power flow solutions.

where

a = [1, e−j2π/3, ej2π/3]T

R̄ij = Re(aaH)�Rij + Im(aaH)�Xij

X̄ij = Re(aaH)�Xij − Im(aaH)�Rij

� denotes element-wise multiplication

aH denotes the conjugate transpose of a

D. Representation of Unbalanced Radial Networks

Consider, first, the standard matrix representation M̄ =
[m0,M

T ]T ∈ R(N+1)×N for the incidence matrix of a single-
phase radial network. The rows of this matrix correspond to
the buses i in the bus set {0}

⋃
N , ordered from lowest to

highest i value. The columns of this matrix correspond to the
line segments `j in the edge-set L, ordered from lowest to
highest j value. The entries of the matrix indicate, for each
bus and line segment, whether or not the bus is a “from” node
or a “to” node for this line segment.

More precisely, the incidence matrix M̄ with an entry 1
for each “from” node and -1 for each “to” node takes the
following form:

M̄ =


J(0, `1) J(0, `2) ... J(0, `N )
J(1, `1) J(1, `2) ... J(1, `N )

...
...

. . .
...

J(N, `1) J(N, `2) ... J(N, `N )

 (4)

where J(·) is an indicator function defined as

J(i, `j) =


1 if i = BP (j)

−1 if i = j

0 otherwise

The first row mT
0 of the matrix M̄ represents the connection

structure between bus 0 and the line segments in L; the re-
maining submatrix, denoted by M , represents the connection
structure between the remaining buses and the line segments
in L. Since M is a square matrix with full rank [35], it is an
invertible matrix. A numerical example illustrating the con-
struction of M̄ for a single-phase radial network is given in
Appendix C.

Next consider, instead, an unbalanced radial network with a
bus set {0}

⋃
N and edge set L for which each line segment

`j ∈ L is a 3-phase line.7 An extended incidence matrix Ā =
[A0,A

T ]T ∈ R3(N+1)×3N for this unbalanced radial network
is constructed as follows:

Ā = M̄ ⊗ I3 =


J(0, `1)I3 J(0, `2)I3 ... J(0, `N )I3

J(1, `1)I3 J(1, `2)I3 ... J(1, `N )I3

...
...

. . .
...

J(N, `1)I3 J(N, `2)I3 ... J(N, `N )I3


(5)

7As previously noted in footnote 6, for the purposes of the current study any
unbalanced radial network whose edges consist of a mix of 1-phase, 2-phase,
and 3-phase line segments can equivalently be represented as an unbalanced
radial network consisting entirely of 3-phase line segments.
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where

I3 = 3× 3 identity matrix;

⊗ = Kronecker product operation.

In (5), the term J(i, `j)I3 ∈ R3×3 represents the 3-phase con-
nection structure between bus i and line segment `j . The sub-
matrix AT

0 ∈ R3×3N represents the 3-phase connection struc-
ture between the feeder head bus 0 and each of the line seg-
ments in L. Finally, the submatrix A ∈ R3N×3N represents
the 3-phase connection structure between each remaining bus
i and the line segments in L. A numerical example illustrat-
ing the construction of Ā for an unbalanced radial network is
given in Appendix C.

The squared voltage magnitudes, real and reactive loads,
and real and reactive power flows over line segments for the
unbalanced radial distribution network are compactly denoted
by the following column vectors:8

v(t) = [v1(t)
T
,v2(t)

T
, ...,vN (t)

T
]T

p(t) = [p1(t)
T
,p2(t)

T
, ...,pN (t)

T
]T

q(t) = [q1(t)
T
, q2(t)

T
, ..., qN (t)

T
]T

P (t) = [PBP (1)1(t)
T
, ...,PBP (N)N (t)

T
]T

Q(t) = [QBP (1)1(t)
T
, ...,QBP (N)N (t)

T
]T

Resistances and reactances for the line segments in the edge-
set L are compactly denoted by 3N ×3N block diagonal ma-
trices Dr and Dx such that the main-diagonal blocks are 3×3
square matrices and all off-diagonal blocks are zero matrices:

Dr = diag(R̄BP (1)1, ..., R̄BP (N)N )

Dx = diag(X̄BP (1)1, ..., X̄BP (N)N )

The j-th main-diagonal blocks ofDr andDr are R̄BP (j)j and
X̄BP (j)j corresponding to a particular line segment `j ∈ L.
The squared voltage magnitudes for bus 0 in the unbalanced ra-
dial distribution network are represented by v0 = [va0 , v

b
0, v

c
0]T .

Given these notational conventions, the LinDistFlow equa-
tons (2a)-(2c) for an unbalanced radial distribution network
can be compactly expressed as follows:

AP (t) = −p(t) (6a)
AQ(t) = −q(t) (6b)[

A0 A
T
] [v0(t)
v(t)

]
= 2
(
DrP (t) +DxQ(t)

)
(6c)

Since the matrix MT is invertible, the matrix AT is also in-
vertible. Substituting (6a) and (6b) into (6c), it is seen that the
LinDistFLow formulation (6) can equivalently be expressed as

v(t) = − [AT ]−1A0v0(t)− 2RDp(t)− 2XDq(t) (7a)

RD = [AT ]−1DrA
−1 (7b)

XD = [AT ]−1DxA
−1 (7c)

8The squared voltage magnitudes and the real and reactive loads at buses
i are sorted in accordance with the ordering of these buses from small to
large values of i. The real and reactive power flows over line segments `j are
sorted in accordance with the ordering of these line segments from small to
large values of j.

VI. TES DESIGN ILLUSTRATION: HOUSEHOLD MODEL

For ease of notation, let ψ = (u, φ, i) denote a household
with structural and preference attributes u located on an ex-
ternal 1-phase line with phase φ ∈ Φ = {a, b, c}, where this
1-phase line is connected to the distribution network at bus
i ∈ N ; see Fig. 2. Recall from Section III-B that the operat-
ing period OP is assumed to be partitioned into a sequence K
= (1, . . . , NK) of NK successive sub-periods t.

To determine the optimal TCL power usage sequence for OP
at the start of the look-ahead horizon LAH(OP), each house-
hold ψ needs to update its forecast for inside air temperature
Tψ(0) (oF ) at the start of OP as well as its forecast for am-
bient outside air temperature To(t) (oF ) at the start of each
sub-period t ∈ K. In addition, each household ψ also needs
to forecast its real and reactive non-TCL power usage levels
pnonψ (t) and qnonψ (t) (p.u.) for each sub-period t ∈ K. The se-
quences of real and reactive non-TCL power usage levels for a
household ψ during OP are denoted by the following NK×1
column vectors:

Pnon
ψ (K) = [pnonψ (1), ..., pnonψ (NK)]T

Qnon
ψ (K) = [qnonψ (1), ..., qnonψ (NK)]T

The goal of each household ψ at the beginning of operating
period OP is to maximize its net benefit attained during OP.
This net benefit is assumed to take the general form:

NetBenψ = Comfortψ − µψ[Electricity Cost]ψ (8)

In (8), Comfortψ (utils) denotes the benefit (thermal comfort)
attained by household ψ from TCL power usage during OP,
and Electricity Cost (cents) denotes the cost incurred by house-
hold ψ for TCL power usage during OP.9 Finally, the bene-
fit/cost trade-off parameter µψ (utils/cent) denotes household
ψ’s marginal utility of money for OP, roughly defined to be
the loss of benefit (utils) experienced by ψ for each cent in-
crease in its electricity cost.10 Here it is assumed that µψ takes
the explicit form

µψ =
γψ

1− γψ
× 1 util

1 cent
(9)

where γψ ∈ (0, 1) denotes the benefit/cost slider-knob control
setting communicated to the DSO by household ψ at the start
of the negotiation process N(OP).11

Let pψ(t) (p.u.) and qψ(t) (p.u.) denote household ψ’s real
and reactive TCL power usage levels during any sub-period
t ∈ K. Also, let the sequences of real and reactive TCL power
usage levels for a household ψ during OP be denoted by the
following NK × 1 column vectors:

Pψ(K) = [pψ(1), ..., pψ(NK)]T

9Recall that the non-TCL power usage of each household ψ during each
operating period OP is assumed to be fixed, i.e., not price sensitive. Conse-
quently, the inclusion in (8) of the benefit and cost of non-TCL power usage
would not affect the solution to household ψ’s net benefit maximization prob-
lem. The benefit and cost of non-TCL power usage is therefore omitted for
ease of exposition.

10In economics, marginal utility of money valuations for customers are
formally expressed as the dual variable solutions for budget constraints in
customer utility maximization problems.

11See Appendix D for a constructive definition of γψ and additional dis-
cussion regarding the determination of µψ from γψ .
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Qψ(K) = [qψ(1), ..., qψ(NK)]T

The discomfort (utils) experienced by ψ during any sub-
period t ∈ K is measured by the discrepancy between ψ’s in-
side air temperature Tψ(pψ(t)) (oF ) at the end of sub-period t
and the bliss temperature TBψ (oF ) at which ψ attains max-
imum thermal comfort, multiplied by a conversion factor cψ(
utils/(oF )2

)
. The comfort uψ(pψ(t)) (utils) attained by ψ

during t is then measured as the deviation between ψ’s max-
imum attainable comfort umax

ψ (utils) and ψ’s discomfort:

uψ(pψ(t), t) = umax
ψ − cψ

[
Tψ(pψ(t), t)− TBψ

]2
(10)

The total comfort (utils) attained by ψ during K is then given
by

Uψ(Pψ(K)) =
∑
t∈K

uψ(pψ(t), t) (11)

As explained in Section III, the prices (cents/kWh) charged
to ψ for its real TCL power usage Pψ(K) during K are given
by the price sequence πψ(K) determined by the negotiation
process N(OP) between ψ and the DSO conducted during
LAH(OP). Finally, let ∆t denote the length of each sub-period
t measured in hourly units; and let Sbase denote the base power
(kW) used to convert real power levels (kW) into per unit (p.u.)
power levels by simple division.

Using the above notational conventions, the optimization
problem of a household ψ for operating period OP can be
expressed as follows:

max
Pψ(K)

[
Uψ(Pψ(K))− µψπψ(K)Pψ(K)Sbase∆t

]
(12)

subject to:

Tψ(pψ(1), 1) = αHψ Tψ(0)± αPψpψ(1)Sbase∆t

+ (1− αHψ )To(1) ; (13a)

Tψ(pψ(t), t) = αHψ Tψ(pψ(t− 1), t− 1)

± αPψpψ(t)Sbase∆t

+ (1− αHψ )To(t), ∀t ∈ K\{1} ; (13b)

0 ≤ pψ(t) ≤ pmax
ψ , ∀t ∈ K (13c)

Constraints (13a)-(13b) make use of a discrete linearized ther-
mal model, adapted from [36]-[38], to model the fluctuation
in household ψ’s inside air temperature Tψ(t) during the suc-
cessive sub-periods t ∈ K.12 For simplicity of exposition, the
exogenously given ambient outside air temperature To(t) for
each sub-period t is assumed to be the same for each house-
hold ψ. The parameters αHψ (unit-free) and αPψ (oF/kWh)
are assumed to be positively valued. Constraint (13c) imposes
an upper limit pmax

ψ (p.u.) on household ψ’s real TCL power
usage, assumed to represent the rated real power (p.u.) for
household ψ’s TCL devices.

Clearly, an optimal solution Pψ(K) for household ψ’s opti-
mization problem (12) depends on the negotiated price-to-go
sequence πψ(K). Let

Xψ(K) = {Pψ(K) ∈ RNK |Pψ(K) satisfies (13)} (14)

12Temperature fluctuation, given by the terms preceded by the symbol ±
in (13a) and (13b), takes a ‘+’ sign for heating and a ‘-’ sign for cooling.

An optimal solution for (12), given πψ(K), can then be ex-
pressed as follows:

Pψ(πψ(K)) ∈ argmax
Pψ(K)∈Xψ(K)

[
Uψ(Pψ(K))

− µψπψ(K)Pψ(K)Sbase∆t
] (15)

The TCL devices owned by each household ψ are assumed
to operate at a constant positive power factor PFψ(t) (unit
free) for each t ∈ K.13 Given this assumption, the TCL power-
factor function fψ for each household ψ can be expressed as
a collection {fψ,t|t ∈ K} of TCL power-ratio functions fψ,t
taking the linear form

q = fψ,t(p) = ηψ(t)p , ∀t ∈ K (16)

where

ηψ(t) =

√
1

[PFψ(t)]2
− 1 (17)

Note, by construction, that the unit-free coefficient ηψ(t) de-
fined by (17) is non-negatively valued. Finally, let Hψ(K)
denote the TCL power-ratio matrix for household ψ for oper-
ating period OP; this NK×NK matrix is defined as follows:

Hψ(K) = diag
(
ηψ(1), ηψ(2), ..., ηψ(NK)

)
(18)

VII. TES DESIGN ILLUSTRATION: DSO MODELING

A. DSO Modeling: Overview

Consider an unbalanced radial distribution network popu-
lated by households, as modeled in Sections V and VI. The
independent DSO that is tasked with managing a consensus-
based TES design for this distribution network operates at the
linkage bus b∗, which is assumed to be the head bus 0 of the
radial network.

As depicted in Fig. 1, each operating period OP during an
operating day D is proceeded in time by a real-time market
RTM(OP) followed by a look-ahead horizon LAH(OP). The
negotiation process N(OP) between the DSO and the distribu-
tion system households takes place during LAH(OP).

The general goal of the DSO is to maximize household net
benefit during OP, subject to network reliability constraints and
the maintenance of household privacy. Since the distribution
network has no distributed generation, the real and reactive
power usage of the households must be serviced by wholesale
power that is delivered at b∗ in stepped-down voltage form.
The price charged to the DSO for wholesale power is assumed
to be LMP(b∗,OP) (cents/kWh), the locational marginal price
determined in RTM(OP) for OP at b∗.

13 Given a TCL real power level p(τ) > 0 and a TCL reactive power level
q(τ) at a time-point τ , the TCL power factor pf(τ ) at τ is defined to be the
ratio p(τ)/

√
p(τ)2 + q(τ)2 in (0,1]. See Appendix E for further discussion

of the assumption of a constant TCL power factor PF(t) for each sub-period
t; i.e, pf(τ ) = PF(t) at all time points τ ∈ t.
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B. DSO Optimization Problem in Centralized Form

Recall that each household ψ ∈ Ψ is characterized by a vec-
tor ψ = (u, φ, i), where u denotes the households structural
and physical attributes, and (φ, i) indicates the household is
located on an external phase-φ line connected to the distribu-
tion network at bus i. Let Ui,φ denote the set of all household
attributes u such that (u, φ, i) denotes a household ψ ∈ Ψ. For
each i ∈ N and φ ∈ Φ, let pφi (t) and qφi (t) denote the real
and reactive load for phase φ at bus i during sub-period t:

pφi (t) =
∑
u∈Ui,φ

[pψ(t) + pnonψ (t)], ∀i ∈ N , ∀φ ∈ Φ (19a)

qφi (t) =
∑
u∈Ui,φ

[qψ(t) + qnonψ (t)], ∀i ∈ N , ∀φ ∈ Φ (19b)

Using the column vector expressions pi(t), qi(t), p(t), and
q(t) given in Sections V-C and V-D, together with (16) and
(19), it is seen that the power flow equation (7a) can equiv-
alently be expressed as follows for any sub-period t ∈ K:

v(t,pΨ(t)) = vnon(t)− 2s(t,pΨ(t)) (20)

where

pΨ(t) = {pψ(t) | ψ ∈ Ψ}

s(t,pΨ(t)) =
∑
ψ∈Ψ

[
hψ(t, pψ(t))

]
hψ(t, pψ(t)) = rD(i,Nph

ψ )pψ(t) + xD(i,Nph
ψ )ηψ(t)pψ(t)

Nph
ψ =


1 if household ψ connects to phase a
2 if household ψ connects to phase b
3 if household ψ connects to phase c

vnon(t) = −[AT ]−1A0v0(t)− 2snon(t)

snon(t) =
∑
ψ∈Ψ

[
rD(i,Nph

ψ )pnonψ (t) + xD(i,Nph
ψ )qnonψ (t)

]
In (20), the 3N × 1 column vector vnon(t) consists of the 3-
phase squared voltage magnitudes for t at all non-head buses,
assuming zero TCL; and the 3N × 1 column vector v0(t)
consists of the 3-phase squared voltage magnitudes for t at
the head bus 0. Also, ψ = (u, φ, i) is the generic term for
a household in the household set Ψ, and rD(i,Nph

ψ ) and
xD(i,Nph

ψ ) are 3N × 1 column vectors; specifically, they are
the {3(i − 1) + Nph

ψ }-th columns of the 3N × 3N matrices
RD and XD defined as in (7b) and (7c).

Let the sequence of LMPs (cents/kWh) determined in
RTM(OP) at the linkage bus b∗ for the sub-periods t ∈ K com-
prising operating period OP be denoted by the 1 ×NK row
vector LMP(K) = [LMP(b∗, 1), ...,LMP(b∗, NK)]. Also, let
P̄ (p.u.) denote an upper limit imposed on total demand dur-
ing each sub-period t ∈ K for distribution network reliability,
and let P̄ (K) denote the NK×1 column vector [P̄ , . . . , P̄ ]T .
In addition, let the 3N×1 column vectors vmin(t) and vmax(t)
denote lower and upper bounds (p.u.) imposed on the 3-phase
squared voltage magnitudes during each sub-period t ∈ K for
network reliability.

The centralized DSO optimization problem at the start of
N(OP) is then expressed as follows:

max
P(K)∈X (K)

∑
ψ∈Ψ

[
Uψ(Pψ(K))

− µψLMP(K)Pψ(K)Sbase∆t
] (21)

subject to the following demand and voltage network reliabil-
ity constraints for each t ∈ K:∑

ψ∈Ψ

[pψ(t) + pnonψ (t)] ≤ P̄ (22a)

vmin(t) ≤ v(t,pΨ(t)) ≤ vmax(t) (22b)

where

P(K) = {Pψ(K) | ψ ∈ Ψ} = {pΨ(t)) | t ∈ K}

X (K) =
∏
ψ∈Ψ

Xψ(K)

Finally, let the (3N · NK) × 1 column vectors v(P(K)),
vmax(K), and vmin(K) be defined as follows:

v(P(K)) = [v(1,pΨ(1))T , . . . ,v(NK,pΨ(NK))T ]T

vmax(K) = [vmax(1)T , . . . ,vmax(NK)T ]T

vmin(K) = [vmin(1)T , . . . ,vmin(NK)T ]T

Definition: Primal Problem. The centralized DSO optimiza-
tion problem (21) can be expressed in a standard nonlinear
programming (NP) form as follows:

max
x∈X

F (x) subject to g(x) ≤ c (23)

where

X = X (K) =
∏
ψ∈Ψ

Xψ(K) ⊆ Rd

xψ(t) = pψ(t) ∈ R
xψ = {xψ(t) | t ∈ K} = Pψ(K) ∈ RNK

x = {xψ | ψ ∈ Ψ} = P(K) ∈ Rd

F (x) =
∑
ψ∈Ψ

Fψ(xψ)

Fψ(xψ) =
[
Uψ(xψ)− µψLMP(K)xψ · Sbase∆t

]
g(x) =

∑ψ∈Ψ[xψ + Pnon
ψ (K)]

v(x)
−v(x)


m×1

c =

 P̄ (K)
vmax(K)
−vmin(K)


m×1

and: NH = number of households ψ; NK = number of sub-
periods t ∈ K; d = NK ·NH; N = number of non-head buses;
and m = ([1 + 6N ] · NK). Hereafter, problem (23) will be
referred to as the Primal Problem. Depending on the context,
a solution for this Primal Problem will variously be denoted
by x∗ = {x∗ψ | ψ ∈ Ψ} = {P∗ψ(K) | ψ ∈ Ψ} = P∗(K).

A critical point to note for later purposes is that the Primal
Problem (23) does not directly depend on the retail price sig-
nals that the DSO communicates to the households under the
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consensus-based TES design. What is sought below is a way
to connect the optimal solution for the Primal Problem to the
decentralized household optimal solutions determined as func-
tions of the DSO’s retail price signals.

C. DSO Optimization Problem in Distributed Control Form

The centralized DSO optimization problem (23) for oper-
ating period OP incorporates the local constraints Xψ(K) for
each household ψ as well as the network reliability constraints
(22). Thus, to solve problem (21), the DSO would need a
great deal of information about each household, a violation of
household privacy.

Consequently, the DSO cannot directly solve the central-
ized optimization problem (21). Rather, as indicated in Fig.2,
the DSO resorts to indirect control. Specifically, the DSO it-
eratively sets the price-to-go sequence πψ(K) for each house-
hold ψ’s real TCL power usage to ensure that the resulting
household real and reactive power usage levels for OP are
consistent with the DSO’s network reliability constraints for
OP. As discussed in Section IV, each household ψ is required
to continually submit its optimal real TCL power usage sched-
ule Pψ(πψ(K)) for each possible price-to-go sequence πψ(K)
sent by the DSO during period N(OP) until the negotiation
process halts.14

The next section develops a specific analytical formulation
for this distributed control method for the household TES de-
sign illustration.

VIII. TES DESIGN ILLUSTRATION: SOLUTION METHOD

A. Solution Overview

This section replaces the centralized DSO optimization
problem (21) with a specific formulation of the consensus-
based TES design proposed in Section III. Thus, a centralized
design requiring the DSO to exert direct control over house-
hold TCL power usage is replaced with a distributed design
in which the DSO uses price signals to modify household
TCL power usage decisions. A dual decomposition algorithm
is developed to implement the negotiation process for this TES
design, and the convergence properties of this design are es-
tablished analytically.

B. TES Equilibrium

From the formulation (15) for each household ψ’s optimiza-
tion problem for an operating period OP, it is seen that ψ’s
choice of a TCL power-usage sequence for K depends on the
price-to-go sequence πψ(K) for K. The DSO can take ad-
vantage of this price dependence during N(OP) to ensure that
household power usage does not violate any network reliabil-
ity constraints.

Let π(K) = {πψ(K) | ψ ∈ Ψ} denote a collection of
price-to-go sequences communicated by the DSO to house-
holds during some iteration of the negotiation process N(OP).

14Note that this negotiation process replaces the use of bid functions in
bid-based TES designs; it provides an alternative way for households to com-
municate their price-sensitive power-usage preferences to the DSO.

The real TCL power-usage sequences that households com-
municate back to the DSO in response to these communicated
price-to-go sequences will then be denoted by P(π(K)) =
{Pψ(πψ(K)) | ψ ∈ Ψ}.

Definition: TES Equilibrium. Suppose an optimal solution
x∗ = P∗(K) for the Primal Problem (23) equals P(π∗(K))
for some collection π∗(K) of retail household price-to-go
sequences for an operationg period OP. Then the pairing
(P∗(K),π∗(K)) will be called a TES equilibrium for OP.

For each sub-period t ∈ K, let λP̄ (t) denote the non-
negative dual variable (utils/p.u.) associated with the peak
demand constraint (22a). Also, let the 1 × 3N row vectors
λvmax(t) and λvmin(t) denote the non-negative dual variables
(utils/p.u.) associated with the upper and lower 3-phase volt-
age inequality constraints (22b). The 1×m row vector λ whose
components consist of all of these non-negative dual variables
is then denoted by

λ = [λP̄ (K),λvmax(K),λvmax(K)] (24)

where the component row vectors for λ are given by

λP̄ (K) = [λP̄ (1), . . . , λP̄ (NK)]1×NK

λvmax(K) = [λvmax(1), . . . ,λvmax(NK)]1×(3N ·NK)

λvmin(K) = [λvmin(1), . . . ,λvmin(NK)]1×(3N ·NK)

Finally, for later purposes, the dual variables corresponding
to the upper and lower 3-phase voltage inequality constraints
(22b) are also expressed in the following matrix form:

Λvmax(K) =

 λvmax(1)
...

λvmax(NK)


NK×3N

Λvmin(K) =

 λvmin(1)
...

λvmin(NK)


NK×3N

The Lagrangian Function L: X ×Rm+ → R for the central-
ized DSO optimization problem (21), equivalently represented
in the Primal Problem form (23), is then given by

L(x,λ) = F (x) + λ[c− g(x)] (25)

where
x = {xψ | ψ ∈ Ψ} = P(K) (26)

Finally, for each t ∈ K, let xΨ(t) = {xψ(t) | ψ ∈ Ψ} where,
as previously defined in Section VII-C,

{xψ(t) | ψ ∈ Ψ} = {pψ(t) | ψ ∈ Ψ} = pΨ(t) (27)

Then the Lagrangian Function (25) can equivalently be ex-
pressed in more specific terms as follows:

L(x,λ) = F (x) (28)

+ λP̄ (K)
[
P̄ (K)−

∑
ψ∈Ψ

[xψ + Pnon
ψ (K)]

]
+
∑
t∈K

[
λvmax(t)[vmax(t)− v(t,xΨ(t))]

]
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+
∑
t∈K

[
λvmin(t)[−vmin(t) + v(t,xΨ(t))]

]
Definition: Saddle Point. A point (x∗,λ∗) in X × Rm+ is
said to be a saddle point for the Lagrangian Function L(x,λ)
defined in (25) if the following condition holds:

L(x,λ∗) ≤ L(x∗,λ∗) ≤ L(x∗,λ) (29)

for all λ ∈ Rm+ and x ∈ X .

Definition: Dual Problem. Let the dual function D:M → R
for the Primal Problem (23) be defined as follows:

D(λ) = max
x∈X

L(x,λ) (30)

where

M = {λ ∈ Rm+ | D(λ) is a well-defined finite value} (31)

Then the Dual Problem associated with the Primal Problem
(23) is defined to be

min
λ∈M

D(λ) (32)

Proposition 1 (Classical): A point (x∗,λ∗) in X ×Rm+ is a
saddle point (29) for the Lagrangian Function L(x,λ) defined
in (25) if and only if:
• [P1.A] x∗ is a solution for the Primal Problem (23) ;
• [P1.B] λ∗ is a solution for the Dual Problem (32) ;
• [P1.C] D(λ∗) = F (x∗) (strong duality).

Proof of Proposition 1: See Appendix G.

Proposition 2: Suppose (x∗,λ∗) in X ×Rm+ is a saddle point
for the Lagrangian Function L(x,λ) defined in (25), where x∗

= P∗(K). Suppose, also, that x∗ uniquely maximizes L(x,λ∗)
with respect to x ∈ X . Define π∗(K) = {π∗ψ(K) | ψ ∈ Ψ},
where the price-to-go sequence π∗ψ(K) for each household
ψ ∈ Ψ takes the following form:

π∗ψ(K) = LMP(K) +
1

µψSbase∆t

[
λ∗P̄ (K)

− 2 · rD(i,Nph
ψ )T

[
Λ∗vmax

(K)−Λ∗vmin
(K)
]T

− 2 · xD(i,Nph
ψ )T

[
Λ∗vmax

(K)−Λ∗vmin
(K)
]T
Hψ(K)

] (33)

The pairing (P∗(K),π∗(K)) then constitutes a TES equilib-
rium for OP.

Proof of Proposition 2: See Appendix G.
For later purposes, note that the price-to-go sequence (33)

depends on the attributes of household ψ = (u, φ, i). Specif-
ically, the right-hand side of (33) depends on ψ′s prefer-
ence and physical attributes u: namely, ψ’s marginal utility
of money µψ; and ψ’s TCL power-ratio function (16) as char-
acterized by the NK ×NK TCL power-ratio matrix Hψ(K)
defined in (18). In addition, the right-hand side of (33) depends
on ψ’s phase and bus location attributes φ and i through the
1× 3N row vectors rD(i,Nph

ψ )T and xD(i,Nph
ψ )T .

Note, also, that the price-to-go sequence (33) depends on
the extent to which network reliability constraints would be
violated by household power usage choices if retail prices for
OP were simply set equal to the elements of the 1×NK price

vector LMP(K), i.e., to the LMP values determined for OP by
RTM(OP). As seen in (33), the extent to which deviations from
LMP(K) are needed to avoid network reliability constraint
violations depends on the non-negative magnitudes of the dual
variables (24) associated with the peak demand and voltage
magnitude constraints for the Primal Problem (23).

C. TES Equilibrium Solution Strategy

A dual decomposition algorithm DDA is presented below
for practical implementation of the negotiation process N(OP)
between the DSO and the households. As discussed more care-
fully in Appendix F, dual decomposition is a classical decen-
tralized method that alternates the updating of primal and dual
variables until convergence to optimal primal and dual variable
solutions takes place within a specified tolerance level.

A key issue is whether any limit point (x∗,λ∗) resulting
from the specific dual decomposition algorithm DDA is guar-
anteed to determine a TES equilibrium for OP. The following
propositions 3-5 establish sufficient conditions for this to be
the case.

Proposition 3: Suppose the Primal Problem (23) and the dual
decomposition algorithm DDA satisfy the following three con-
ditions:
• [P3.A] X is compact, and the objective function F (x)

and constraint function g(x) are continuous over X .
• [P3.B] For every λ ∈ Rm+ , the Lagrangian Function
L(x,λ) defined in (25) achieves a finite maximum at a
unique point x(λ) ∈ X , implying the dual function do-
main in (31) satisfies M = Rm+ .

• [P3.C] The sequence (xy,λy) determined by the dual
decomposition algorithm DDA converges to a limit point
(x∗,λ∗) as the iteration time y approaches +∞.

Then the limit point (x∗,λ∗) is a saddle point (29) for the
Lagrangian Function (25), and this saddle point determines a
TES equilibrium for OP.

Proof of Proposition 3: See Appendix H.

Proposition 4: Suppose the the Primal Problem (23) and the
Dual Function (30) satisfy the following four conditions:
• [P4.A] Conditions [P3.A] and [P3.B] both hold;
• [P4.B] The Lagrangian Function (25) has a saddle point

(x∗,λ∗) in X × Rm+ ;
• [P4.C] Extended Lipschitz Continuity Condition: There

exists a real symmetric positive-definite m×m matrix J
such that, for all λ1,λ2 ∈ Rm+ ,〈
∇D+(λ1)−∇D+(λ2),λ1 − λ2

〉
≤ ||λ1 − λ2||2J

where:∇D+(λ) denotes the gradient of the dual function
D(λ) in (30) for λ ∈ Rm++ and the right-hand gradient
of D(λ) at boundary points of Rm+ ;

〈
,
〉

denotes vector
inner product; and || · ||2J = (·)J(·)T

• [P4.D] The matrix [I − JB] is positive semi-definite,
where I denotes an m×m identity matrix, and where B
is the m×m diagonal positive-definite matrix defined in
step S4 of the dual decomposition algorithm DDA.
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Algorithm DDA: Dual Decomposition Method for Approximate Determination of a TES Equilibrium

S1: Initialization. At the initial iteration time y = 0, the DSO specifies positive scalar step-sizes β1, β2, and β3. In addition, the DSO
sets initial dual variable values as follows: λy

P̄
(K) = 0, λyvmax

(K) = 0, and λyvmin
(K) = 0.

S2: Set price-to-go sequences. The DSO sets the price-to-go sequence πyψ(K) for each household ψ ∈ Ψ as follows:

πyψ(K) = LMP(K) +
1

µψSbase∆t

[
λy
P̄

(K)

− 2 · rD(i,Nph
ψ )T

(
Λy
vmax

(K)−Λy
vmin

(K)
)T

− 2 · xD(i,Nph
ψ )T

(
Λy
vmax

(K)−Λy
vmin

(K)
)T
Hψ(K)

]
Note that πyψ(K) reduces to LMP(K) if y = 0.

S3: Update primal variables.

xy = argmax
x∈X

L(x,λy)

This updating of primal variable values is implemented as follows. The DSO communicates to each household ψ ∈ Ψ the price-to-go
sequence πyψ(K). Each household ψ ∈ Ψ then adjusts its TCL power usage schedule to

xyψ = Pψ(πyψ(K))

and communicates xyψ back to the DSO. If this primal variable updating step triggers the Stopping Rule outlined in Section IV, the
negotiation process stops. Otherwise, the process proceeds to step S4.

S4: Update dual variables. The DSO determines updated dual variable values as follows: For each t ∈ K,

λy+1

P̄
(t) =

[
λy
P̄

(t) + β1

[ ∑
ψ∈Ψ

[xyψ(t) + pnonψ (t)]− P̄
]]+

λy+1
vmax

(t) =
[
λyvmax

(t) + β2

[
vnon(t)− 2s(t,xy(t))− vmax(t)

]T ]+
λy+1
vmin

(t) =
[
λyvmin

(t) + β3

[
− vnon(t) + 2s(t,xy(t)) + vmin(t)

]T ]+
where [ · ]+ denotes projection on Rk+ for appropriate dimension k, and β1, β2, and β3 are the positive scalar step-sizes specified by
the DSO in step S1. Expressed in more compact form,

λy+1 =
[
λy + [g(xy)− c]TB

]+
where B is an m×m diagonal positive-definite matrix constructed as follows: the diagonal entries of B associated with λP̄ (K), λvmax(K),
and λvmin(K) are repeated entries of β1, β2, and β3, respectively.

S5: Update iteration time. The iteration time y is assigned the updated value y + 1 and the process loops back to step S2

Then the primal-dual point (xy,λy) determined by the dual
decomposition algorithm DDA at iteration time y converges
to a saddle point as y → +∞.

Proof of Proposition 4: See Appendix I.

The Extended Lipschitz Continuity Condition [P4.C] in
Prop. 4 is expressed in a relatively complicated form. The fol-
lowing proposition provides sufficient conditions for [P4.C]
that are easier to understand.

Proposition 5: Suppose the Primal Problem (23) satisfies con-
dition [P3.A] in Prop. 3 plus the following three additional
conditions:
• [P5.A] X is a non-empty compact convex subset of Rd.
• [P5.B] The objective function F :Rd → R restricted to
X ⊆ Rd has the quadratic form

F (x) =
1

2
xTWx+ ρTx+ σ (34)

where W is any real symmetric negative-definite d × d
matrix, ρ is any real d× 1 column vector, and σ is any
real positive scalar.

• [P5.C] The constraint function g:Rd → Rm restricted to
X ⊆ Rd has the linear affine form

g(x) = Cx+ b (35)

where C is any real m × d matrix, and b is any real
m× 1 column vector.

Then the Extended Lipschitz Continuity Condition [P4.C] in
Prop. 4 holds for J = CH−1CT , where H = −W .

Proof of Proposition 5: See Appendix J.

An important aspect of the negotiation process N(OP) im-
plemented by means of the dual decomposition algorithm
DDA is that the DSO does not directly communicate iterated
dual variable solutions to the households. Rather, the DSO
communicates iterated retail price sequences to the house-
holds, requesting only that these households communicate
back to the DSO what power amounts they would be will-
ing to procure at these retail prices.

Consequently, N(OP) is based on an empirically meaningful
exchange of information that households should find readily
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understandable. Moreover, N(OP) does not require the DSO
to solve an optimization problem in order to determine an ap-
proximate TES equilibrium for OP. This greatly reduces com-
putational requirements for the DSO.

IX. CASE STUDY

A. Overview

This section explores the practical effectiveness of our pro-
posed consensus-based TES design by means of a case study.

As detailed below, the distribution network for this case
study is an unbalanced 123-bus radial network populated by
households. A DSO is tasked with managing the power us-
age requirements of these households. The DSO’s central-
ized optimization problem is formulated as a concave pro-
gramming problem with a strictly concave quadratic objective
function F (x) and a linear affine constraint function g(x) de-
fined over a non-empty compact convex subset X ⊆ Rd. The
DSO decentralizes this optimization problem by implementing
a consensus-based TES design.

The case study examines the performance of this consensus-
based TES design for a single simulated 24-hour day D. The
simulation is conducted using MATLAB R2019b, which inte-
grates the YALMIP Toolbox [39] with the IBM ILOG CPLEX
12.9 solver [40]. Technical mathematical underpinnings for the
case study are provided in Appendix K.

B. Unbalanced Radial Distribution Network

The standard IEEE 123-bus radial distribution network [41],
shown in Fig.6, is modified for our case study in three ways.
First, 345 households, each with non-TCL and TCL, are dis-
tributed across the 123 buses. Second, the distribution network
is connected to a transmission network at its head bus 0. Third,
power is supplied to the distribution network through this
transmission-distribution interface. The base parameters for
the distribution network are set as follows: Sbase = 100 (kVA);
vmin(t) = [0.95, 0.95, 0.95]T ; vmax(t) = [1.05, 1.05, 1.05]T ;
v0(t) = [1.04, 1.04, 1.04]T ; Vbase = 4.16 (kV); and P̄ = 32.
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Fig. 6. IEEE 123-bus radial distribution network

C. Household Modeling

For simplicity, all households are assumed to have the same
base parameters. The non-TCL profile of each household ψ

during day D is shown in Fig. 7. The initial inside air temper-
ature for each household ψ at the start of day D is Tψ(0) = 74
(oF ). The ambient outside air temperature for each household
ψ during day D is shown in Fig.8.
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Fig. 7. Non-TCL real and reactive power profiles during day D
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Fig. 8. Ambient outside air temperature and RTM LMPs during day D

The specific thermal dynamic parameter values set for each
householdψ are: αHψ = 0.96 (unit-free); αPψ = 0.7 (oF /kWh);
pmax
ψ = 0.05; and PFψ(t) = 0.9 for each sub-period t, which

implies ηψ(t) = 0.48 for each sub-period t.
As detailed in Appendix K, each household ψ has a strictly

concave net-benefit objective function defined over a feasible
choice set that is non-empty, compact, and convex. The spe-
cific preference parameter values set for each household ψ are:
cψ = 6.12

(
utils/(oF )2

)
; umax

ψ = 1.20 × 104 (utils); TBψ =
72 (oF ); and µψ = 1 (utils/cent).

D. DSO, RTM, and N(OP) Modeling

A DSO operates at the radial network head bus 0 as a link-
age entity that participates in both transmission and distribu-
tion system operations. An RTM operates over the transmis-
sion grid, and the DSO purchases power from this RTM in
order to meet the power usage needs of distribution system
households.

The simulated day D is partitioned into 24 operating hours
OP. The duration of RTM(OP) and LAH(OP) for each operat-
ing hour OP are set to 1min and 59min; cf. Fig. 1. The number
of sub-periods t partitioning each operating hour OP is set to
NK = 1, and the length of this single sub-period t is set to
∆t = 1h. The profile of RTM LMPs at the radial network head
bus 0 determined in RTM(OP) for each operating hour OP of
day D is depicted in Fig.8.

The objective of the DSO is to align local household goals
and constraints with distribution network reliability constraints
in a manner that respects household privacy. As detailed in
Appendix K, in the absence of household privacy constraints
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the DSO’s centralized optimization problem for each operat-
ing period OP can be expressed as a concave programming
problem with a strictly concave objective function and linear
affine constraint function defined over a domain that is non-
empty, compact, and convex. To avoid violation of household
privacy, the DSO instead implements a consensus-based TES
design that permits approximate implementation of the cen-
tralized optimal solution for each OP.

For each operating period OP during day D, the parameters
of the dual decomposition algorithm DDA used to implement
the negotiation process N(OP) are set as follows: β1 = 15; β2

= β3 = 50,000; and Imax = 200.

E. Simulation Results
As detailed in Section VII-B, the DSO imposes two distinct

types of network reliability constraints for each operating hour
OP during day D: (i) an upper limit on the peak demand (kW)
realized during OP; and (ii) lower and upper bounds imposed
on the 3-phase squared voltage magnitudes (p.u.) realized dur-
ing OP.

Consider, first, the case in which the DSO does not manage
the power usage of its household customers. Rather, the DSO
simply sets retail prices for all non-TCL and TCL household
loads during day D equal to the RTM LMPs depicted in Fig. 8.

In this case, as shown in Fig.9, the peak demand is 2962kW.
Consequently, as long as the upper limit on peak demand is
set higher than this level, say at P̄ = 3200kW, no peak de-
mand limit violation occurs. On the other hand, lower and
upper bounds on 3-phase squared voltage magnitudes (p.u.)
are commonly set at 0.95 (p.u.) and 1.05 (p.u.). Given these
bounds, it is seen in Fig. 9 that a voltage violation occurs at
hour 17; specifically, the phase-a voltage magnitude drops to
0.9485 (p.u.).
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Fig. 9. Unmanaged System Case (Peak Demand Limit 3200kW): (a) Total
household power demand (kW) and (b) 3-phase minimum squared voltage
magnitudes (p.u.) across the distribution network during each hour of day D.
The peak demand limit 3200kW is satisfied; but a phase-a violation of the
lower voltage bound 0.95 (p.u.) occurs at hour 17.

Next, suppose one change is made to the Unmanaged
System Case specifications: namely, the DSO now uses the

consensus-based TES to manage household power usage. In
particular, the DSO conducts a negotiation process N(OP) with
households in advance of each operating hour OP during day
D, implemented by means of the dual decomposition algorithm
DDA. As explained in Section III-D, the negotiation process
N(OP) continues until either there are no network reliabil-
ity constraint violations or the number of negotiation rounds
reaches the maximum permitted limit Imax = 200.
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Fig. 10. TES Management Case 1 (Peak Demand Limit 3200kW): (a) Total
household power demand (kW) and (b) 3-phase minimum squared voltage
magnitudes (p.u.) across the distribution network during each hour of day D.
The DSO-managed negotiation process ensures that no violations of the peak
demand limit 3200kW or voltage magnitude bounds [0.95, 1.05] (p.u.) occur.

Fig.10 reports the total household power demand and 3-
phase minimum squared voltage magnitudes that result for
each hour for day D, given this change from no system man-
agement to TES management. As seen in Fig.10, all net-
work reliability constraints are now satisfied. In particular, the
switch to the use of the consensus-based TES design enables
the DSO to eliminate the previously realized phase-a voltage
constraint violation at hour 17 while still satisfying all other
network reliability constraints.

Finally, suppose the peak demand limit is reduced from
3200kW to 2900kW, i.e., P̄ = 2900kW. For the Unmanaged
System Case, this change in peak demand limit has no effect
on system operations. Consequently, as shown in Fig. 9, the
peak demand 2962kW resulting for this case is now in vi-
olation of the reduced peak demand limit 2900kW; and the
voltage magnitude violation for hour 17 continues to occur.

In contrast, given TES management, this reduction in peak
demand limit from 3200kW to 2900kW results in a change in
the DSO-conducted negotiation process with households. As
seen in Fig. 10, the peak demand resulting for TES Manage-
ment Case 1 (Peak Demand Limit 3200kW) does not satisfy
the reduced peak demand limit 2900kW during some hours.
Consequently, the DSO must now iteratively set retail prices
for households in a different manner to ensure their power us-
age satisfies this reduced peak demand limit as well as the
lower and upper voltage magnitude bounds.
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The resulting demand outcomes for this TES Management
Case 2 (Peak Demand 2900kW) are reported in Fig. 11. As
seen, peak demand is maintained at or below the reduced peak
demand limit 2900kW during all hours of day D. At the same
time (not shown), the 3-phase minimum squared voltage mag-
nitudes across the distribution network are maintained within
their allowable limits [0.95, 1.05] (p.u.) during all hours of
day D. For example, the smallest squared voltage magnitude
across the distribution network during day D is 0.951 (p.u.).

As illustrated by these test cases, the core feature of the
consensus-based TES design – namely, the DSO-managed ne-
gotiation process with distribution system customers – permits
the DSO to protect against network reliability constraint vio-
lations, whatever form these constraints might take.
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Fig. 11. TES Management Case 2 (Peak Demand Limit 2900kW): Total
household power demand (kW) during each hour of day D. The DSO-managed
negotiation process ensures that no peak demand limit violations occur.

F. Relationship Between Prices and Constraints

The retail price-to-go sequence for a household ψ in a TES
equilibrium for an operating period OP, partitioned into sub-
periods t ∈ K, is shown in Section VIII-B to take form π∗ψ(K)
in (33). This form is the summation of an initial price se-
quence, set by the DSO, that the DSO then modifies as nec-
essary during the negotiation process N(OP) to ensure all net-
work reliability constraints for OP are met.

As noted in Section VIII-B, the price-to-go sequence (33)
for household ψ depends on ψ′s preference and physical at-
tributes as well as ψ’s network location. Specifically, the right-
hand side of (33) depends on: (i) ψ’s marginal utility of money
µψ; (ii) ψ’s TCL power-ratio function (16) as characterized by
the TCL power-ratio matrix Hψ(K) defined in (18); and (iii)
ψ’s phase and bus location attributes φ and i through the terms
rD(i,Nph

ψ )T and xD(i,Nph
ψ )T .

For simplicity, this study assumes that the initial price-to-go
sequence set by the DSO at the beginning of the negotiation
process N(OP) is the sequence LMP(K) of LMPs determined
in the real-time market RTM(OP) at the linkage bus b∗. This
linkage bus, which connects the distribution network to a rel-
atively large transmission network, is also the head bus 0 for
the radial distribution network.

Any subsequent deviations from this initial price-to-go se-
quence that result from the negotiation process N(OP) are ex-
pressed in terms of dual variables for the network reliabil-
ity constraints for OP. Specifically, these deviations are func-
tions of the non-negative dual variables λ∗

P̄
(K), Λ∗vmin

(K), and

Λ∗vmax
(K) corresponding to the peak demand constraint and the

lower and upper voltage magnitude constraints for each t ∈ K,
where each of these constraints is expressed as an inequality
constraint.

In a TES equilibrium for OP, the values of these dual vari-
ables must coincide, by definition, with the dual variable so-
lutions for the Primal Problem (23). If strict inequality holds
for a network reliability constraint in this Primal Problem so-
lution, i.e., the constraint is inactive, then the corresponding
dual variable solution must be zero. Thus, if strict inequality
holds for all network reliability constraints in this Primal Prob-
lem solution, the retail price-to-go sequences communicated to
households will simply coincide with the DSO’s initially set
RTM LMPs. The remainder of this section analyzes how TES
equilibrium retail price outcomes deviate from RTM LMPs
during the simulated day D for cases in which at least one
network reliability constraint is active in the Primal Problem
solution.

Consider, first, the TES equilibrium retail price outcomes
for hour 17 that are reported in Fig. 12 for TES Management
Case 1 with peak demand limit P̄ = 3200kW. These retail price
outcomes are seen to vary with respect to both bus location
and phase. What explains this variation?
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Fig. 12. TES Management Case 1 (Peak Demand Limit 3200kW): TES
equilibrium retail prices for hour 17 of day D across the distribution network
(buses 1-123), compared with the RTM LMP at bus 0 for hour 17 of day D.

As seen in Fig.10, during hour 17 the peak demand remains
strictly below the peak demand limit 3200kW. Thus, the peak
demand constraint is inactive, implying that the dual variable
solution associated with this inactive peak demand constraint
must be zero, i.e., λ∗

P̄
(K) = 0.

On the other hand, during hour 17 the minimum squared
voltage magnitude across phases and buses reaches the lower
bound 0.95 (p.u.), i.e., the lower-bound voltage constraint is
active. Typically,15 the dual variable solution Λ∗vmin

(K) associ-
ated with this active voltage constraint will then be strictly pos-
itive. In this case, the TES equilibrium price-to-go sequence
(33) determined for each household ψ for hour 17 will devi-
ate from the RTM LMP at bus 0 for hour 17, i.e., the initial
retail price commonly set by the DSO for each household ψ
in the negotiation process for hour 17.

15By Lemma 1 in Appendix G, a non-negative dual variable solution for
an inactive constraint must be 0, but the converse does not necessarily hold.
That is, the dual variable solution corresponding to an active constraint is not
necessarily strictly positive.
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These findings have the following important implication.
Even if all households populating a distribution network have
identical benefit (comfort) functions and identical structural
house attributes, this does not imply they should be charged
the same retail power price. Rather, in the presence of active
voltage reliability constraints, optimal pricing will typically
require households associated with different marginal utility
of money parameters, different power factors, different phases,
and/or different bus locations to be charged different retail
prices. This differential retail pricing reflects the roles played
by household preference attributes, power factors and network
locations in ensuring the satisfaction of these voltage reliability
constraints.

Consider, next, the relationship between TES equilibrium
retail price outcomes and network reliability constraints for
the TES Management Case 2 with peak demand limit P̄ =
2900kW. As discussed in Section IX-E, for this case the volt-
age reliability constraints are inactive; hence, all dual variable
solutions associated with these voltage constraints are zero. It
follows that the TES equilibrium price-to-go sequence (33) for
each household ψ has the following reduced form:

π∗ψ(K) = LMP(K) +
1

µψSbase∆t
λ∗P̄ (K) (36)

On the other hand, as shown in Fig.11, the peak demand
constraint is active for hours 16-18 and 20 during day D.
The TES equilibrium retail price outcomes for these hours
are reported in Fig.13. The retail price is strictly higher than
the RTM LMP for each of these hours, indicating that the
dual variable solution vector λ∗

P̄
(K) for the peak demand con-

straints during day D, appearing in (36) includes strictly pos-
itive values for these four hours.
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Fig. 13. TES Management Case 2 (Peak Demand Limit 2900kW): TES equi-
librium retail prices for hours 16-18 and 20 of day D across the distribution
network (buses 1-123), compared with the RTM LMP outcomes at bus 0 for
these same hours.

The form of household ψ’s TES equilibrium price-to-go se-
quence π∗ψ(K) in (36) has the following important implication.
Note that household ψ’s marginal utility of money parameter
µψ appears in the denominator of the far-right term in (36).
Consequently, even if voltage network constraints are inactive
during day D, households with different marginal utility of
money assessments will typically be charged different prices
during each hour of day D for which the peak demand limit
constraint is active.

As noted in IX-C, for the case study at hand the marginal
utility of money parameter µψ is commonly set to µψ = 1
(utils/cent) for each household ψ ∈ Ψ. Consequently, as seen
in Fig. 13, for this special case the TES equilibrium retail
prices for TES Management Case 2 are the same for each
household ψ during the operating hours 16-18 and 20 even
though the peak demand limit is active for these hours.

G. Optimality Verification and Comparison

This subsection explores the following important question:
Does the TES equilibrium determined by the consensus-based
TES design closely approximate the optimal solution for the
centralized DSO optimization problem (21)? An affirmative
answer is provided for the case study developed in previous
subsections. For concreteness, results are presented below for
TES Management Case 1 (Peak Demand Limit 3200kW).

Fig. 14 compares the solutions obtained for total household
TCL during each hour of day D using these two different
methods. Fig. 15 provides a finer-grained comparison for total
phase-a household TCL during hour 17 across the 123 buses
comprising the entire distribution network. In each case, the
resulting solutions are seen to be virtually indistinguishable.

This finding has two important implications. First, the
consensus-based TES design achieves optimality while pro-
tecting the privacy of participating customers. In contrast,
the centralized DSO optimization method requires exten-
sive knowledge of customer attributes, including benefit
(utility) functions and local feasibility constraints. Second,
the consensus-based TES design is a decentralized solution
method, which results in reduced computational requirements
and improved scalability properties.16 In contrast, the central-
ized DSO optimization method requires the DSO to solve
a multiperiod optimization problem whose computational re-
quirements dramatically increase with the number of partici-
pating customers.

Centralized Control
TES Design

Fig. 14. Comparison of TES equilibrium and centralized DSO optimal solu-
tions for total household TCL during day D.

16As will be discussed in Section X, the consensus-based TES design can
be extended to incorporate aggregators as intermediaries between the DSO
and various subsets of customers, thus further enhancing its scalability.
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Centralized Control
TES Design

Fig. 15. Comparison of TES equilibrium and centralized DSO optimal so-
lutions for total phase-a household TCL across the distribution network (123
buses) during operating hour 17.

X. CONCLUSION

This study develops a new consensus-based TES design for
unbalanced distribution networks populated by customers with
both fixed and price-sensitive power usage demands. The de-
sign is managed by a DSO. However, it is implemented as
a distributed optimization problem, thus permitting alignment
of system goals and network reliability constraints with lo-
cal customer goals and constraints in a manner that respects
customer privacy.

The core feature of this consensus-based TES design is a
multi-round negotiation process N(OP) between the DSO and
participant customers, to be held in advance of each operat-
ing period OP. At the start of N(OP), the DSO sets initial
prices based on RTM LMPs. During each successive negoti-
ation round, the DSO communicates updated price-to-go se-
quences to customers for OP; and the customers respond by
communicating back to the DSO their optimal price-sensitive
power usage levels for OP conditional on these prices and on
private local constraints. The negotiation process terminates
either when all network reliability constraints are satisfied by
these customer power usage responses or when a stopping rule
is activated.

A complete analytical formulation of the consensus-based
TES design is developed for an unbalanced radial distribution
network populated by welfare-maximizing households. Each
operating day D is partitioned into operating periods OP of
arbitrary duration, with look-ahead horizons LAH(OP). The
negotiation process N(OP) for each operating period OP is
then implemented during LAH(OP) by means of a newly de-
veloped dual decomposition algorithm DDA.

Making use of both classical and newly established re-
sults, sufficient conditions are established for the DDA to con-
verge to a TES equilibrium whose power usage levels coin-
cide with the optimal power usage solutions for a central-
ized full-information optimization problem that incorporates
all network reliability constraints. Moreover, the TES equilib-
rium price-to-go sequences determined by the DDA are shown
to have an informative additive structure that expresses devia-
tions from initial prices in terms of the dual variable solutions
associated with network reliability constraints.

A case study for an unbalanced 123-bus radial distribu-
tion network is presented to illustrate the capabilities of the

consensus-based TES design and its DDA implementation.
Numerical results are presented that demonstrate the conver-
gence of the DDA to a TES equilibrium that closely approxi-
mates a centralized full-information optimal solution.

Future studies will seek to extend the capabilities of the
consensus-based TES design in three main directions. First,
the TES design will be generalized to permit consideration
of customer-owned distributed generation as well as customer
power usage levels. Particular attention will be focused on the
inclusion of inverter-based distributed generation such as wind
and solar power facilities. This extension will permit a more
careful consideration of reactive power as an ancillary service
product, supplied in return for appropriate compensation.

Second, the consensus-based TES design will be extended to
permit the inclusion of aggregators operating as intermediaries
between the DSO and its managed customers. The communi-
cation network would still take a radial form; however, the
ability of aggregators to perform intermediate aggregation of
customer responses could reduce communication times. For
example, it could permit an efficient bundling of customers
into distinct aggregator-managed subsets on the basis of their
observable attributes or their historically observed behaviors.
This bundling could enhance the ability of the DSO to ensure
all network reliability constraints are met through the negoti-
ation process in a practically reasonable amount of time.

Third, the negotiation process for the consensus-based TES
design will be modified to permit more sophisticated specifi-
cations for the initial price-to-go sequences set by the DSO for
customer price-sensitive demands. In the current study, these
initial prices are simply set equal to RTM LMPs. However,
as noted in Section III-D, this specification could expose cus-
tomers to undesirable price volatility. Hence, a better alterna-
tive might be to set these initial prices equal to time and/or
spatially averaged RTM LMPs.

However, an additional issue must also be considered. In
order for the DSO to ensure its independent status, any net
revenues or net costs that the DSO incurs through its op-
erations must be allocated back to its managed customers.
Consequently, the DSO’s initial price-to-go sequences for cus-
tomer price-sensitive demands should be set to ensure the DSO
breaks even on average over time; that is, its operational rev-
enues should match its operational costs on average over time.
This break-even requirement could force a DSO to set initial
prices at levels that deviate from RTM LMPs, even if setting
initial prices equal to RTM LMPs would not result in any
network reliability constraint violations.

APPENDIX A

Nomenclature

A. Acronyms, Parameters, and Other Exogenous Terms

Ā Graph-based incidence matrix (p.u.)
for the unbalanced radial network;

b∗ Linkage bus, i.e., the transmission
grid bus at which the radial network
links to the transmission network;
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B Diagonal matrix with DDA step-
sizes along its diagonal;

BP (j) Bus immediately preceding bus j
along radial network, for all j ∈ N ;

Bus 0 Radial network head bus, which is
also the linkage bus b∗;

cψ Conversion factor (utils/(oF )2) be-
tween comfort and inside air tem-
perature for customer ψ;

d Number NK of sub-periods times
number NH of households;

Dr Block diagonal matrix (p.u.) of line
segment resistances;

Dx Block diagonal matrix (p.u.) of line
segment reactances;

DDA Dual decomposition algorithm for
implementation of N(OP);

DER Distributed energy resource;
DSO Distribution system operator;
Hψ(K) TCL power-ratio matrix for cus-

tomer ψ during K;
Imax Maximum permitted number of ne-

gotiation process iterations;
ISO Independent system operator;
`j = (i, j) Line segment connecting buses i

and j with i = BP(j) and j ∈ N ;
LAH(OP) Look-ahead horizon for RTM(OP);
LMP Locational marginal price;
LMP(b∗, t) RTM LMP (cents/kWh) at linkage

bus b∗ for sub-period t;
LMP(K) Vector of LMPs (cents/kWh) deter-

mined in RTM(OP) for K;
m Number ([1+6N ] ·NK) of explicit

Primal Problem constraints;
M̄ Graph-based incidence matrix (p.u.)

for the balanced radial network;
N Number of non-head buses for the

radial network;
NH Number of households ψ ∈ Ψ;
NK Number of sub-periods t forming a

partition of operating period OP;
N(OP) Negotiation process for OP;
Nph
ψ Flag for phase φ ∈ {a, b, c} of the

1-phase line connecting customer ψ
to a distribution network bus;

OP Operating period;
P̄ Upper limit for peak demand (p.u.)
PFψ(t) Power factor (unit free) for the TCL

device of customer ψ during sub-
period t;

pmax
ψ Maximum real power level (p.u.) for

customer ψ’s TCL devices;
pnonψ (t) Non-TCL real power usage (p.u.) of

customer ψ at start of sub-period t;
Pnon
ψ (K) Non-TCL real power sequence

(p.u.) of customer ψ for K;
qnonψ (t) Non-TCL reactive power usage

(p.u.) of customer ψ at the start of

sub-period t;
Qnon
ψ (K) Non-TCL reactive power sequence

(p.u.) of customer ψ for K;
Rij ,Xij 3-phase resistance & reactance ma-

trices (p.u.) for line segment (i, j);
R̄ij , X̄ij 3-phase resistance & reactance ma-

trices (p.u.) for line segment (i, j)
after transformation;

RTM(OP) Real-time market for OP;
RTO Regional transmission operator;
Sbase Base apparent power (kVA);
SCED(OP) Security-constrained economic dis-

patch for OP;
TBψ Inside air temperature (oF ) at

which customer ψ achieves maxi-
mum comfort (bliss);

TES Transactive energy system;
TCL Thermostatically-controlled load;
Tψ(0) Inside air temperature (oF ) for cus-

tomer ψ at the start of OP;
To(t) Ambient outside air temperature

(oF ) at the start of sub-period t;
umax
ψ Customer ψ’s maximum attainable

thermal comfort (utils);
Vbase Base voltage (kV);
v0(t) 3-phase squared voltage magnitudes

(p.u.) at the head bus 0 during sub-
period t;

vnon(t) 3-phase squared voltage magnitudes
(p.u.) at all non-head buses for sub-
period t, assuming no TCL;

vmin(t),vmax(t) Lower and upper bounds (p.u.) for
3-phase squared voltage magnitudes
during sub-period t;

αHψ System inertia temperature parame-
ter (unit-free) for customer ψ;

αPψ Temperature parameter (oF/kWh)
for customer ψ;

β1, β2, β3 Step sizes (unit-free) for the dual
decomposition algorithm DDA;

4t Length (h) of each sub-period t;
ηψ(t) Ratio (unit free) of TCL reactive

power to TCL real power for cus-
tomer ψ during sub-period t;

γψ Benefit/cost slider-knob control set-
ting (unit free) communicated by
customer ψ to the DSO for OP;

µψ Customer ψ’s marginal utility of
money (utils/cent) for OP;

φ Circuit phase of a line segment `j ,
or of a 1-phase line connecting a
household to a bus;

ψ = (u, φ, i) Designator for a customer with
structural and preference attributes
u located on a phase-φ line con-
nected to bus i.
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B. Sets and Sequences

K = (1, . . . , NK) Sequence of sub-periods t that parti-
tion operating period OP;

L Set of all N distinct line segments
(i, j) connecting adjacent buses i and
j in {0}

⋃
N ;

N = {1, . . . , N} Index set for all non-head buses of
the radial network;

Nj Index set for all buses located strictly
after bus j along the radial network,
0 ≤ j < N ;

P(K) Set of customer TCL power usage se-
quences during K;

P(π(K)) Set of customer TCL power usage se-
quences during K, given π(K);

Ui,φ Set of attributes u such that (u, φ, i)
denotes a customer ψ ∈ Ψ;

Xψ(K) Set of customer ψ constraints for K;
Φ = {a, b, c} Set of line phases φ;
π(K) Set of customer price-to-go se-

quences for K;
Ψ Set of all customers ψ.

C. Functions, & Variables

fψ Power-factor function for price-
sensitive demands communicated by
customer ψ to the DSO for OP;

L(x,λ) Lagrangian Function for the DSO’s
centralized optimization problem;

NetBenψ Customer ψ’s net benefit function
(utils) for OP;

Pij(t),Qij(t) 3-phase real & reactive power flows
(p.u.) over line segment (i, j) during
sub-period t;

P (t),Q(t) 3-phase real & reactive power flows
(p.u.) over all line segments during
sub-period t;

pi(t), qi(t) 3-phase real & reactive power (p.u.)
at bus i during sub-period t;

p(t), q(t) 3-phase real & reactive power (p.u.)
at all non-head buses during sub-
period t;

pψ(t), qψ(t) TCL real & reactive power usage
(p.u.) of customer ψ during sub-
period t;

Pψ(K) TCL real power usage sequence
(p.u.) of customer ψ for K;

Qψ(K) TCL reactive power usage sequence
(p.u.) of customer ψ for K;

Tψ(pψ(t), t) Inside air temperature (oF ) of cus-
tomer ψ’s home at the end of sub-
period t, given pψ(t);

uψ(pψ(t), t) Comfort (utils) attained by customer
ψ during sub-period t, given pψ(t);

Uψ(Pψ(K)) Total comfort (utils) attained by cus-
tomer ψ during OP, given Pψ(K);

v(t,pΨ(t)) 3-phase squared voltage magnitudes

(p.u.) at all non-head buses for sub-
period t;

vi(t,pΨ(t)) 3-phase squared voltage magnitudes
(p.u.) at bus i for sub-period t;

λ Dual variables (utils/p.u.) for all net-
work reliability constraints for K;

λP̄ (t) Dual variable (utils/p.u.) associated
with demand limit for sub-period t;

λP̄ (K) Dual variables (utils/p.u.) associated
with demand limits for K;

λvmax(t) Dual variables (utils/p.u.) associated
with upper voltage limits for sub-
period t;

Λvmax(K) Dual variable matrix associated with
upper voltage limits for K;

λvmin(t) Dual variables (utils/p.u.) associated
with lower voltage limits for sub-
period t;

Λvmin(K) Dual variable matrix associated with
lower voltage limits for K;

πψ(t) Retail price (cents/kWh) of customer
ψ’s price-sensitive demand for sub-
period t;

πψ(K) Price-to-go sequence (cents/kWh) for
customer ψ during K.

APPENDIX B

Introduction of Virtual Circuits and Phases to Facilitate the
Representation of Unbalanced Radial Distribution Networks

The number of phases associated with multi-phase line seg-
ments for unbalanced radial distribution networks can differ
widely from one network to the next. This profusion of forms
hinders the representation of these networks.

To resolve this problem, for multi-phase line segments with
fewer than three phases we introduce “virtual” circuits with
“virtual” phases whose self-impedance, mutual impedance,
and bus loads are set to zero. By appropriate introduction of
these virtual circuits and phases, each line segment in the orig-
inal unbalanced radial distribution network can be represented
as a 3-phase line segment. Since the power flow and voltage
drop for any virtual circuits are 0, power flow solutions for the
original network are not affected by these virtual extensions.

Bus 0 1 2
1 2a

b
c

a
b

Bus 0 1 2
1 2a

b
c

a
b
c

adding virtual 

phases

Fig. 16. Illustrative virtual extension of an unbalanced distribution network

A simple example will next be given to illustrate this virtual
extension method for unbalanced radial distribution networks.
Consider the simple network with three buses and two line
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segments that is depicted in Fig.16. The line segment `2 =
(1, 2) connecting bus 1 to bus 2 has only two circuits, with
phases a and b. A virtual circuit with phase c is added to line
segment `2, and the self-impedance, mutual impedance, and
bus load associated with this virtual circuit are each set to 0,
as follows:

pc2(t) = qc2(t) = 0 (37a)

zcc12 = zac12 = zca12 = zbc12 = zcb12 = 0 (37b)

The impedances of the line segments `1 = (0, 1) and `2 =
(1, 2) are then represented in 3-phase form as follows:

Z01 = R01 + jX01 =

 zaa01 zab01 zac01

zba01 zbb01 zbc01

zca01 zcb01 zcc01

 (38a)

Z12 = R12 + jX12 =

 zaa12 zab12 0
zba12 zbb12 0
0 0 0

 (38b)

From (2a)-(2c), we can write the power flow for the result-
ing unbalanced 3-phase radial distribution network as follows:

P01(t) = P12(t) + p1(t) (39a)
Q01(t) = Q12(t) + q1(t) (39b)
P12(t) = p2(t) (39c)
Q12(t) = q2(t) (39d)
v0(t) = v1(t) + 2(R̄01P01(t) + X̄01Q01(t)) (39e)
v1(t) = v2(t) + 2(R̄12P12(t) + X̄12Q12(t)) (39f)

where

R̄01 = Re(aaH)�R01 + Im(aaH)�X01

=

 R̄aa01 R̄ab01 R̄ac01

R̄ba01 R̄bb01 R̄bc01

R̄ca01 R̄cb01 R̄cc01


X̄01 = Re(aaH)�X01 − Im(aaH)�R01

=

 X̄aa
01 X̄ab

01 X̄ac
01

X̄ba
01 X̄bb

01 X̄bc
01

X̄ca
01 X̄cb

01 X̄cc
01


R̄12 = Re(aaH)�R12 + Im(aaH)�X12

=

 R̄aa12 R̄ab12 0
R̄ba12 R̄bb12 0
0 0 0


X̄12 = Re(aaH)�X01 − Im(aaH)�R01

=

 X̄aa
12 X̄ab

12 0
X̄ba

12 X̄bb
12 0

0 0 0


On the other hand, using the circuits and phases for the original
network:

P a12(t) = pa2(t), P b12(t) = pb2(t) (41a)

Qa12(t) = qa2 (t), Qb12(t) = qb2(t) (41b)

va1 (t) = va2 (t) + 2(R̄aa12P
a
12(t) + R̄ab12P

b
12(t)

+ X̄aa
12Q

a
12(t) + X̄ab

12Q
b
12(t)) (41c)

vb1(t) = vb2(t) + 2(R̄ba12P
a
12(t) + R̄bb12P

b
12(t)

+ X̄ba
12Q

a
12(t) + X̄bb

12Q
b
12(t)) (41d)

Comparing (39a), (39b), and (39e) with (41a)-(41d), it is
seen that the power flow solution for the original unbalanced
radial distribution network has not been affected by the intro-
duction of a virtual circuit with a virtual phase. Moreover, for
the virtual phase c:

P c12(t) = pc2(t) = 0 (42a)
Qc12 = qc2(t) = 0 (42b)
vc2(t) = vc1(t) (42c)

APPENDIX C

Incidence Matrix Construction for Single-Phase and Multi-
Phase Radial Networks:

To illustrate the construction of the incidence matrices M̄
and Ā introduced in Section V-D for single-phase and multi-
phase radial networks, consider Fig. 17. This figure depicts a
radial network with 4 buses (including the head bus 0) and 3
line segments. Specifically,N = {1, 2, 3}, and L = {`1, `2, `3}
where `1 = (0, 1), `2 = (0, 2), and `3 = (0, 3).

Bus 0 1

3

2

1

2

3

Fig. 17. A four-bus radial network

If the network depicted in Fig. 17 is a single-phase radial
network, its incidence matrix M̄ takes the following form:

M̄ =


1 1 1
−1 0 0
0 −1 0
0 0 −1

 (43)

The first row mT
0 = [1 1 1] of the incidence matrix (43)

indicates that bus 0 is the source bus for lines `1, `2, and `3.
Alternatively, suppose the network depicted in Fig. 17 is

a multi-phase radial network. This network can be converted
into a 3-phase radial network by an appropriate inclusion of
virtual circuits and phases for each line segment with fewer
than three circuits and phases. The incidence matrix Ā for
the resulting 3-phase radial network then takes the following



21

form:

Ā =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1


(44)

The submatrix consisting of the first three rows of the inci-
dence matrix (44) is denoted by:

AT
0 =

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 (45)

The form of (45) indicates that: (i) bus 0 is the source bus for
the phase-a circuits of `1, `2 and `3; (ii) bus 0 is the source
bus for the phase-b circuits of `1, `2 and `3; and (iii) bus 0 is
the source bus for the phase-c circuits of `1, `2 and `3.

APPENDIX D
Determination of the benefit/cost trade-off coefficient µψ from
the slider-knob control setting γψ

In economics, the marginal utility of money µψ for a cus-
tomer ψ is conceptually defined to be the change in the cus-
tomer’s utility (benefit) that would result from an incremental
change in the customer’s money income. Mathematically, µψ
is derived for ψ by: (i) formulating a constrained optimization
problem for ψ expressed as the choice of a bundle of goods
to maximize utility of good consumption (or usage) subject to
a budget constraint; and (ii) defining µψ to be the dual vari-
able corresponding to ψ’s budget constraint, evaluated at an
optimal solution point.17

This study posits a practical way for a DSO to obtain
marginal utility of money estimates for households equipped
with smart thermostats for their TCL devices. As depicted in
Fig. 18, each smart thermostat is assumed to have a knob con-
trol that varies along a linear slide ranging from “Comfort” to
“Cost”. The position of this knob control indicates the relative
weight the household places on comfort versus cost.

Comfort Cost
knob

d
D

Fig. 18. Illustration of the slider-knob control setting along a linear slide

More precisely, if a household ψ selects a knob setting all
the way to the left, this indicates that only comfort matters to

17Given various regularity conditions, a dual variable solution for a con-
straint C with a constraint constant c can be expressed as the rate of change
of the optimized objective function with respect to a change in c. For the ex-
ample at hand, C is a budget constraint restricting total goods expenditures
to be less than or equal to a given money income c.

ψ; cost is not relevant. Conversely, if ψ selects a knob setting
all the way to the right, this indicates that only cost matters to
ψ; comfort is not relevant. Intermediate knob settings indicate
the household’s relative preference for comfort versus cost.

Once household ψ has selected a knob setting on its smart
thermostat, the thermostat internally translates this setting into
a numerical estimate for µψ as follows. Let the positive to-
tal length of the linear slide be denoted by Dψ (inches) and
the distance of the household ψ’s slider knob from Comfort
be denoted by dψ (inches). The unit-free slider-knob control
setting γψ for household ψ is then set equal to the relative
distance of the slider knob from Comfort:

γψ =
dψ
Dψ

(46)

Finally, to avoid extreme cases in which a household ψ only
cares about comfort or only cares about cost, it is assumed in
this study that dψ lies in the open interval (0, Dψ), implying
that γψ lies in the open interval (0, 1). The marginal utility
of money µψ (utils/cent) for household ψ is then constructed
from γψ in accordance with formula (9).

APPENDIX E

Assumed Constancy of Household Power Factors: Discussion

Section VI assumes the existence of a TCL power-factor
function fψ for each household ψ ∈ Ψ. Specifically, function
fψ postulates a linear relationship (16) between household ψ’s
TCL real power usage and TCL reactive power usage during
each sub-period t of an operating period OP. Thus, household
ψ’s TCL power factor is assumed to be constant during t.

In principle, a household can measure its TCL power factor
for each different sub-period t from historical data. However,
this TCL power factor will depend on the internal circuits
of the household’s TCL devices as well as on the external
environment. Consequently, accurate measurement could be
difficult.

Utilities penalize industrial loads for low power factors;
hence, most industrial loads are equipped with power factor
correction devices. In general, residential loads are not pe-
nalized for low power factors since they are relatively small
relative to industrial loads.

On the other hand, household TCL devices tend either to
have intrinsically good power factors (close to 1.0) or to come
equipped with built-in power factor correction capabilities.
Thus, assuming a constant TCL power factor over relatively
short time intervals for household TCL devices would appear
to be an acceptable modeling strategy for the purposes of the
present study.

APPENDIX F

Notes on the Dual Decomposition Method for Constrained
Optimization Problems in Lagrangian form

Dual decomposition is a general approach to solving a prob-
lem by breaking it up into smaller problems that are then
solved separately, either in parallel or sequentially. A brief
description is given below for the dual decomposition method
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applied in the current study to obtain the proof of Prop. 1 in
Section VIII-B.

Consider an optimization problem with separable structure
of the form

max
x∈X ,y∈Y

[f(x) + g(y)] (47a)

s.t. Ax+By ≤ c (47b)

where: X and Y are subsets of Rd and Rm; the component
objective functions are differentiable real-valued functions tak-
ing the forms f :X → R and g:Y → R; the constraint constant
c is an s×1 element of Rs; and A and B are s×n and s×m
constraint matrices with real-valued elements. The Lagrangian
Function for problem (47) can be represented as follows:

L(x,y, z) = f(x) + g(y) + z[c−Ax+By] (48)

where z ∈ Rs+ is a non-negative 1×s vector of dual variables18

for constraint (47b).
Let ρ denote a positively-valued scalar step size, and let

a convergence criterion CC(d) be given for any sequence of
vectors in a Euclidean space Rd with a finite dimension d.
The dual decomposition method for the approximate solution
of problem (47) can then be expressed in four steps as follows:

1) Initialization: Set k = 0, and set z0 to any value in Rs+.
2) Update primal vectors:

Set
xk,yk = argmax

x∈X ,y∈Y
L(x,y, zk) (49)

Since L(x,y, zk) is decomposable in x and y, the pri-
mal vectors xk and yk in (49) can equivalently be ex-
pressed as:

xk = argmax
x∈X

[
f(x)− zkAx

]
(50a)

yk = argmax
y∈Y

[
g(y)− zkBy

]
(50b)

3) Update dual vector: Set

zk+1 = [zk + ρ(Axk +Byk − c)T ]+ (51)

where [ · ]
+ denotes projection on Rs+.19

4) Stop if convergence of the primal and dual vectors has
occurred. Otherwise, assign to k the value k + 1 and
return to Step 2.

APPENDIX G
This appendix provides proofs for Prop. 1 and Prop. 2

given in Section VIII-B, making use of the following clas-
sical lemma.20

Lemma 1 (Classical): Suppose (x∗,λ∗) in X×Rm+ is a saddle
point (29) for the Lagrangian Function L(x,λ) defined in
(25). Then:

18For constrained optimization problems expressible in Lagrangian form,
dual variables are equivalent to Lagrange multipliers.

19For the particular projection set Rs+ at hand, this projection operation
reduces to the following: Given any vector w = [w1, . . . ws] ∈ Rs, [w]+ =
[w+

1 , . . . , w
+
s ], where w+

j = max{wj , 0} for j = 1, . . . s.
20Lemma 1 is a corollary of more generally established theorems in classi-

cal NP theory; see, e.g., Bertsekas [42]. For completeness, Lemma 1 is stated
and proved here in full.

• [L1.A] [c− g(x∗)] ≥ 0
• [L1.B] λ∗[c− g(x∗)] = 0
• [L1.C] x∗ is a solution for the Primal Problem (23)

Proof of Lemma 1: By assumption, L(x∗,λ∗) ≤ L(x∗,λ)
for all λ ∈ Rm+ , which implies

[λ∗ − λ][c− g(x∗)] ≤ 0, ∀λ ∈ Rm+ (52)

Since the components of λ can take on arbitrarily large posi-
tive values, (52) implies that

[c− g(x∗)] ≥ 0 , (53)

which establishes [L1.A]. Letting λ = 0 in (52),

λ∗[c− g(x∗)] ≤ 0 (54)

Since λ∗ ≥ 0, conditions (53) and (54) together imply that

λ∗[c− g(x∗)] = 0 (55)

This establishes [L1.B]. Substituting (55) into the definition
of the saddle point property (29) for (x∗,λ∗),

F (x) ≤ F (x) + λ∗[c− g(x)] ≤ F (x∗) (56)

for all x ∈ X that satisfy [c−g(x] ≥ 0. It follows that x∗ is a
solution for the Primal Problem (23). This establishes [L1.C].
Q.E.D.

Proposition 1 (Classical): A point (x∗,λ∗) in X ×Rm+ is a
saddle point (29) for the Lagrangian Function L(x,λ) defined
in (25) if and only if:
• [P1.A] x∗ is a solution for the Primal Problem (23) ;
• [P1.B] λ∗ is a solution for the Dual Problem (32) ;
• [P1.C] D(λ∗) = F (x∗) (strong duality).

Proof of Proposition 1: Necessity. Suppose that (x∗,λ∗) in
X × Rm+ is a saddle point (29) for the Lagrangian Function
L(x,λ) defined in (25). Then it immediately follows from
the Lemma 1 implication [L1.C] that [P1.A] in Prop. 1 holds.
Define

X o = {x ∈ X | g(x) ≤ c} (57)

Making use of the Lemma 1 implications [L1.A] and [L1.B],
it then holds for any λ ∈ Rm+ that:

F (x∗) = max
x∈Xo

F (x)

≤ max
x∈Xo

[
F (x) + λ∗[c− g(x)]

≤ max
x∈X

[
F (x) + λ∗[c− g(x)]

= D(λ∗)

= L(x∗,λ∗)

= F (x∗) + λ∗[c− g(x∗)]

= F (x∗)

≤ F (x∗) + λ[c− g(x∗)]

≤ max
x∈X

[
F (x) + λ[c− g(x)

]
= D(λ)
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It follows that λ∗ is a solution for the Dual Problem (32), and
D(λ∗) = F (x∗). Thus, [P1.B] and [P1.C] in Prop. 1 hold.
Q.E.D.
Proof of Proposition 1: Sufficiency. Conversely, suppose con-
ditions [P1.A]-[P1.C] in Prop. 1 hold. It then follows im-
mediately from [c − g(x∗] ≥ 0 and D(λ∗) = F (x∗) that
λ∗[c− g(x∗)] = 0. Consequently, for all λ ∈ Rm+ ,

L(x∗,λ∗) = F (x∗) ≤ F (x∗) + λ[c− g(x∗)] = L(x∗,λ)

Also, for all x ∈ X ,

L(x,λ∗) ≤ max
x∈X

L(x,λ∗)

= D(λ∗)

= F (x∗)

= F (x∗) + λ∗[c− g(x∗)]

= L(x∗,λ∗)

Thus, (x∗,λ∗) in X × Rm+ is a saddle point (29) for the La-
grangian Function L(x,λ) defined in (25). Q.E.D.

Proposition 2: Suppose (x∗,λ∗) in X ×Rm+ is a saddle point
for the Lagrangian Function L(x,λ) defined in (25), where x∗

= P∗(K). Suppose, also, that x∗ uniquely maximizes L(x,λ∗)
with respect to x ∈ X . Define π∗(K) = {π∗ψ(K) | ψ ∈ Ψ},
where the price-to-go sequence π∗ψ(K) for each household
ψ ∈ Ψ takes the following form:

π∗ψ(K) = LMP(K) +
1

µψSbase∆t

[
λ∗P̄ (K)

− 2 · rD(i,Nph
ψ )T

[
Λ∗vmax

(K)−Λ∗vmin
(K)
]T

− 2 · xD(i,Nph
ψ )T

[
Λ∗vmax

(K)−Λ∗vmin
(K)
]T
Hψ(K)

] (58)

The pairing (P∗(K),π∗(K)) then constitutes a TES equilib-
rium for OP.

Proof of Proposition 2:
By assumption, (x∗,λ∗) ∈ X×Rm+ is a saddle point for the

Lagrangian Function L(x,λ) in (25) and x∗ uniquely maxi-
mizes this Lagrangian Function over X , given λ∗. Thus,

x∗ = argmax
x∈X

L(x,λ∗) (59)

The Lagrangian Function (25), given explicitly in (28), can
equivalently be expressed in the following manner:

L(x,λ) =
∑
ψ∈Ψ

[
Fψ(xψ)− λP̄ (K)xψ

+
∑
t∈K

2[λvmax(t)− λvmin(t)]hψ(t, xψ(t)
]

+ C(K)

=
∑
ψ∈Ψ

[
Fψ(xψ)− λP̄ (K)xψ

+ 2 · rD(i,Nph
ψ )T

(
Λvmax(K)−Λvmin(K)

)T
xψ

+ 2 · xD(i,Nph
ψ )T

(
Λvmax(K)−Λvmin(K)

)T
Hψ(K)xψ

]
+ C(K)

(60)

where

C(K) = λP̄ (K)[P̄ (K)− P non
ψ (K)]

+
∑
t∈K

λvmax(t)[vmax(t)− vnon(t)]

+
∑
t∈K

λvmin(t)[−vmin(t) + vnon(t)]

Note that C(K) does not depend on x. Using form (60) for
L(x,λ), it follows that:

x∗ = argmax
x∈X

L(x,λ∗) (61)

= argmax
x∈X

∑
ψ∈Ψ

[
Fψ(xψ)− λ∗P̄ (K)xψ

+ 2 · rD(i,Nph
ψ )T

[
Λ∗vmax

(K)−Λ∗vmin
(K)
]T
xψ

+ 2 · xD(i,Nph
ψ )T

[
Λ∗vmax

(K)−Λ∗vmin
(K)]THψ(K)xψ

]
Substituting into expression (61) the definition for Fψ(xψ)

from (23) and the form of the price-to-go sequence π∗ψ(K)
given by (33), problem (61) can equivalently be expressed as

x∗ = argmax
x∈X

∑
ψ∈Ψ

[
Uψ(xψ)− µψπ∗ψ(K)xψSbase∆t

]
(62)

Note that problem (62) can be solved in a distributed manner
by having each household ψ ∈ Ψ separately solve

x∗ψ = argmax
xψ∈Xψ(K)

[
Uψ(xψ)− µψπ∗ψ(K)xψSbase∆t

]
(63)

However, problem (63) is precisely the optimization problem
(12) formulated for each household ψ ∈ Ψ in Section VI, with
xψ = Pψ(K). Thus, using the notation introduced in (15) for
the solution of (12), x∗ψ = Pψ(π∗ψ(K)) for each ψ ∈ Ψ,
which in turn implies that x∗ = P(π∗(K)) .

By the Lemma 1 implication [L1.C], x∗ is also a solu-
tion for the Primal Problem (23) formulated in Section VII-B.
Thus, using the notation introduced in Section VII-B for any
solution to this Primal Problem, x∗ = P∗(K).

It follows from the above analysis that (P∗(K),π∗(K)) is
a TES equilibrium for operating period OP; that is, P∗(K) =
P(π∗(K)). This establishes Prop. 2. Q.E.D.

APPENDIX H
This appendix provides a proof of Prop. 3 in Section VIII-C,

making use of three additional lemmas.

Lemma 2 (Classical): The dual function D:M → R defined
by (30) and (31) is convex over any convex subset of M.

Proof of Lemma 2: Let λ′ and λ′′ be elements of M such that
the line segment connecting λ′ and λ′′ lies entirely in M, and
let a be any point in the interval [0, 1]. Using the definition of
D(λ), and the linearity of L with respect to λ, it follows that

D(aλ′ + [1− a]λ′′) = max
x∈X

L(x, aλ′ + [1− a]λ′′)

= max
x∈X

[
aL(x,λ′) + [1− a]L(x,λ′′)

]
≤ a ·D(λ′) + [1− a] ·D(λ′′)

Q.E.D.

Lemma 3 (Classical): Suppose X is a convex subset of Rk
for some k ≥ 1, and suppose f :Rk → R is convex over X
and continuously differentiable in a neighborhood of a point
x∗ ∈ X . Then, x∗ is a solution for

min
x∈X

f(x) (64)
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if and only if

∇f(x∗)T [x− x∗] ≥ 0, ∀x ∈ X (65)

Proof of Lemma 3:21

Suppose x∗ ∈ X satisfies (65). Since f(x) is convex over
X and differentiable at x∗ ∈ X , it follows that

f(x)− f(x∗) ≥ ∇f(x∗)T [x− x∗] ≥ 0, ∀x ∈ X , (66)

which implies x∗ is a solution for (64.
The converse will be established using proof by contradic-

tion. Suppose x∗ ∈ X solves (64) but condition (65) fails to
hold. Then there must exist some x′ ∈ X such that

∇f(x∗)T (x′ − x∗) < 0 (67)

By convexity of X , the point z(α) = αx′+ (1−α)x∗ lies in
X for any α ∈ [0, 1]. Note, also, that

d

dα
f(z(α))

∣∣∣
α=0

= ∇f(x∗)T (x′ − x∗) < 0 (68)

Thus, by continuous differentiability of f(x) in a neighbor-
hood of x∗, the derivative of f(z(α)) with respect to α must
be strictly negative for all sufficiently small positive values
for α. It follows that f(z(α)) < f(z(0)) = f(x∗) for all
sufficiently small values of α > 0, which contradicts the pre-
sumption that x∗ solves (64). Q.E.D.

Lemma 4: Suppose conditions [P3.A] and [P3.B] in Prop. 3
hold. Then:
• [L4.A] The dual function D(λ) is continuously differen-

tiable over the interior Rm++ of its domain Rm+ and right
continuously differentiable at any boundary point of its
domain Rm+ ;

• [L4.B] For each λ ∈M,

∇D+(λ) = [c− g(x(λ))]T (69)

where ∇+D(λ) in (69) denotes the gradient of D(λ) at
each interior point λ in Rm++ and the right-hand gradient
of D(λ) at each boundary point λ in Rm+ .

• [L4.C] Strong duality holds for the primal and dual prob-
lems (23) and (32).

Proof of Lemma 4: Given conditions [P3.A] and [P.3B],
implications [L4.A] and [L4.B] follow from Bertsekas [42,
Prop. 6.1.1]. Finally, implication [L4.C] follows from Lemma
2, [L4.A], Lemma 3, Bertsekas [43, Sol. 8.1], and Bert-
sekas [42, Prop. 5.1.5]. Q.E.D.

Proposition 3: Suppose the Primal Problem (23) and the dual
decomposition algorithm DDA satisfy the following three con-
ditions:
• [P3.A] X is compact, and the objective function F (x)

and constraint function g(x) are continuous over X .
• [P3.B] For every λ ∈ Rm+ , the Lagrangian Function
L(x,λ) defined in (25) achieves a finite maximum at a
unique point x(λ) ∈ X , implying the dual function do-
main in (31) satisfies M = Rm+ .

21Lemma 3 is an implication of [42, Prop. 2.1.2].

• [P3.C] The sequence (xy,λy) determined by the dual
decomposition algorithm DDA converges to a limit point
(x∗,λ∗) as the iteration time y approaches +∞.

Then the limit point (x∗,λ∗) is a saddle point (29) for the
Lagrangian Function (25), and this saddle point determines a
TES equilibrium for OP.

Proof of Proposition 3:
By the Cauchy Convergence Criterion, if (xy,λy) con-

verges to a limit point (x∗,λ∗), then:

lim
y→∞

[
λy − λy+1

]
= 0 ; (70a)

lim
y→∞

[
xy − xy+1

]
= 0 (70b)

Thus, combining the updating of dual variables in S4 of the
dual decomposition algorithm DDA with (70), the following
condition must hold in the limit:

λ∗ =
[
λ∗ + [g(x∗)− c]TB

]+
(71)

Since λ∗ ∈ Rm+ and B is a positive definite diagonal matrix,
equation (71) is equivalent to:

[c− g(x∗)]i ≥ 0, if [λ∗]i = 0 (72a)
[c− g(x∗)]i = 0, if [λ∗]i > 0 (72b)

where [ · ]i denotes the i-th element in [ · ].
Lemma 2 and condition [P3.C] imply that the dual function

D(λ) is convex over Rm+ . Given this convexity, Lemma 3 and
implications [L4.A] and [L4.B] in Lemma 4 imply that λ∗ is
the optimal solution for the Dual Problem (32) if and only if:

(λ− λ∗)[c− g(x∗)] ≥ 0,∀λ ∈ Rm+ (73)

From (72), for all λ ∈ Rm+ we have:

[λ− λ∗]i[c− g(x∗)]i ≥ 0, if [λ∗]i = 0 (74a)
[λ− λ∗]i[c− g(x∗)]i = 0, if [λ∗]i > 0 (74b)

It follows that (73) holds. Hence, we can conclude that λ∗ is
the optimal solution for the Dual Problem.

According to steps S2 and S3 of the dual decomposition
algorithm DDA, and form (58) for the DSO’s offered price-to-
go sequence in the limit, we have x∗ = {x∗ψ = Pψ

(
π∗ψ(K)

)
|

ψ ∈ Ψ}. Making use of (60) and assumption [P3.B], x∗ can
equivalently be expressed as:

x∗ = x(λ∗) = argmax
x∈X

L(x,λ∗) (75)

By the strong duality implication [L4.C] in Lemma 4, it then
follows that x∗ = x(λ∗) is the optimal solution for the Primal
Problem.

From Prop. 1, it follows that (x∗,λ∗) is a saddle point (29)
for the Lagrangian Function (25). Finally, by Prop. 2, this
saddle point determines a TES equilibrium for OP. Q.E.D.
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APPENDIX I

This appendix provides a proof of Prop. 4 in Section VIII-C,
making use of two additional lemmas.

Lemma 5: Suppose the assumptions of Prop. 4 hold. Then for
all λ1,λ2 ∈ Rm+ :

D(λ1)−D(λ2)

≤ (λ1 − λ2)[∇D+(λ2)]T +
1

2
||λ1 − λ2||2J

(76)

Proof of Lemma 5: Define a function w:Rm+ → R by w(λ) =
1
2λJλ

T −D(λ), where D(λ) is the dual function defined by
(30). By assumption, condition [P4.A] holds. It thus follows
from Lemma 4 that the right-hand gradient ∇w+(λ) is well-
defined at each λ ∈ Rm+ . It will next be shown that w(λ) is
convex over Rm+ if and only if ∇w+(λ) is monotonic; that is,
if and only if:〈
∇w+(λ1)−∇w+(λ2),λ1 − λ2

〉
≥ 0,∀λ1,λ2 ∈ Rm+ (77)

where
〈

,
〉

denotes vector inner product.
Suppose, first, that w is convex over Rm+ . Then for all

λ1,λ2 ∈ Rm+ it follows that:

w(λ1) ≥ w(λ2) + (λ1 − λ2)∇w+(λ2)T (78a)

w(λ2) ≥ w(λ1) + (λ2 − λ1)∇w+(λ1)T (78b)

Adding together these two inequalities, and rearranging terms,
then gives (77).

Conversely, suppose (77) holds for all λ1,λ2 ∈ Rm+ . Define
λ3(τ) = λ2 + τ [λ1 − λ2] for 0 ≤ τ ≤ 1. Then:

w(λ1) = w(λ2) +

∫ 1

0

(λ1 − λ2)∇w+(λ3(τ))T dτ

= w(λ2) + (λ1 − λ2)∇w+(λ2)T

+

∫ 1

0

〈
∇w+(λ3(τ))−∇w+(λ2),λ1 − λ2

〉
dτ

= w(λ2) + (λ1 − λ2)∇w+(λ2)T

+

∫ 1

0

1

τ

〈
∇w+(λ3(τ))−∇w+(λ2),λ3(τ)− λ2

〉
dτ

≥ w(λ2) + (λ1 − λ2)∇w+(λ2)T

It follows that w is convex over Rm+ .
By assumption, condition [P4.C] holds. Rearranging terms

in [P4.C] gives〈
(λ1−λ2)J − [∇D+(λ1)−∇D+(λ2)],λ1−λ2

〉
≥ 0 (79)

Inequality (79) implies that (77) holds, i.e., ∇w+(λ) is mono-
tonic. It follows that w is convex over Rm+ . Thus, using the
symmetry of J :

w(λ1) =
1

2
λ1Jλ

T
1 −D(λ1)

≥ w(λ2) + (λ1 − λ2)∇w+(λ2)T

=
1

2
λ2Jλ

T
2 −D(λ2) + < λ2J −∇D+(λ2),λ1 − λ2 >

= −D(λ2) − < ∇D+(λ2),λ1 − λ2 >

− 1

2
||λ1 − λ2||2J +

1

2
λ1Jλ

T
1

(80)

Multiplying each side of (80) by -1 with reversed inequality
sign, and rearranging terms, it is seen that (76) holds. Q.E.D.

Lemma 6 (Classical): Given any real symmetric positive-
definite n × n matrix A, there exists a real invertible sym-
metric n × n matrix Q such that Q2 = A. The matrix Q is
called the symmetric square root of A, denoted by A

1
2 , and

the inverse of Q is denoted by A−
1
2 .

Proof of Lemma 6:22 Let µ1, . . . , µn denote the n real pos-
itive eigenvalues of A, and let z1, . . . ,zn denote the cor-
responding non-zero real orthogonal eigenvectors of A ex-
pressed as n×1 column vectors with normalized unit lengths.
For each k = 1, . . . , n, let µ

1
2

k denote the positive square root
of µk. Define:

Q =

n∑
k=1

[
µ

1
2

k zkz
T
k

]
(81)

Then

Q2 =
[ n∑
i=1

n∑
k=1

µ
1
2
i µ

1
2

k ziz
T
i zkz

T
k

]
=

n∑
k=1

[
µkzkz

T
k

]
= A (82)

Proposition 4: Suppose the Primal Problem (23) and the Dual
Function (30) satisfy the following four conditions:
• [P4.A] Conditions [P3.A] and [P3.B] both hold;
• [P4.B] The Lagrangian Function (25) has a saddle point

(x∗,λ∗) in X × Rm+ ;
• [P4.C] Extended Lipschitz Continuity Condition: There

exists a real symmetric positive-definite m×m matrix J
such that, for all λ1,λ2 ∈ Rm+ ,〈
∇D+(λ1)−∇D+(λ2),λ1 − λ2

〉
≤ ||λ1 − λ2||2J

where:∇D+(λ) denotes the gradient of the dual function
D(λ) in (30) for λ ∈ Rm++ and the right-hand gradient
of D(λ) at boundary points of Rm+ :

〈
,
〉

denotes vector
inner product; and || · ||2J = (·)J(·)T

• [P4.D] The matrix [I − JB] is positive semi-definite,
where I denotes an m×m identity matrix, and where B
is the m×m diagonal positive-definite matrix defined in
step S4 of the dual decomposition algorithm DDA.

Then the primal-dual point (xy,λy) determined by the dual
decomposition algorithm DDA at iteration time y converges
to a saddle point as y → +∞.

Proof of Proposition 4: By assumption [P4.A] and Lemma
4, the domain of the dual function (30) is given by M = Rm+ .
For any u ∈ Rm+ , define λ(u) ∈ Rm+ as follows:

λ(u) = uB
1
2 (83)

where: B denotes the diagonal positive-definite m×m matrix
defined in step S4 of the dual decomposition algorithm DDA;
and B

1
2 denotes the invertible symmetric square root of B.

22This proof is adapted from Bertsekas [42, Props. A.17(c) & Prop. A.21].
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Then, the Dual Problem (32) can equivalently be expressed as
follows:

min
u∈Rm+

h(u) (84)

where h(u) = D(λ(u)) = D(uB
1
2 ).

By assumption [P4.A], Lemma 4, and step S4 of the dual
decomposition algorithm DDA,

λy+1 =
[
λy −∇D+(λy)B

]+
(85)

For each iteration time y, define uy = λyB−
1
2 and uy+1 =

λy+1B−
1
2 , whereB−

1
2 denotes the inverse ofB

1
2 . Then from

Lemma 4 and (83),

∇h+(uy) = ∇D+(λy)B
1
2 ,∀uy ∈ Rm+ (86)

where ∇h+(u) denotes the gradient of h(u) for u ∈ Rm++ and
the right hand gradient of h(u) at boundary points of Rm+ .

Substituting λy+1 = uy+1B
1
2 , λy = uyB

1
2 , and ∇h+(uy)

= ∇D+(λy)B
1
2 into (85), the latter relation can equivalently

be expressed as:

uy+1 =
[(
uy −∇h+(uy)

)
B

1
2

]+
B−

1
2

=
[
uy −∇h+(uy)

]+ (87)

The second equality in (87) holds since B is a positive definite
diagonal matrix.

Lemma 5, together with the diagonal positive-definite form
of B, then implies that:

h(uy+1) ≤ h(uy) + (uy+1 − uy)∇h+(uy)T

+
1

2
||uy+1 − uy||2JB

(88)

where ||·||2JB = (·)JB(·)T . From condition [P4.D], it follows
that

||uy+1 − uy||2JB ≤ ||uy+1 − uy||2 (89)

Combining (88) and (89), it follows that:

h(uy+1) ≤ h(uy) + (uy+1 − uy)∇h+(uy)T

+
1

2
||uy+1 − uy||2

(90)

By Lemma 1 and [P4.A], the dual function D(λ) is con-
vex over λ ∈ Rm+ ; and λ = uB

1
2 is a linear function of u.

Consequently, h(u) is convex over u ∈ Rm+ . Making use of a
well-known theorem for differentiable convex functions (see
[44, Sec. 3.1.3]), it follows that:

h(uy) ≤ h(u) + (uy − u)∇h+(uy)T , ∀u ∈ Rm+ (91)

Combining (90) and (91), it follows:

h(uy+1) ≤ h(u) + (uy+1 − u)∇h+(uy)T

+
1

2
||uy+1 − uy||2, ∀u ∈ Rm+

(92)

From (87), we have:

uy+1 = arg min
u∈Rm+

q(u) (93)

where
q(u) =

1

2

∣∣∣∣u− [uy −∇h+(uy)
]∣∣∣∣2 (94)

Making use of Lemma 3 applied to the convex function q(u)
in (94), for ∀u ∈ Rm+ we have:

0 ≤ (u− uy+1)[uy+1 − uy +∇h+(uy)]T (95)

It follows that:

(uy+1 − u)∇h+(uy)T ≤ (uy+1 − uy)(u− uy+1)T (96)

Combining (92) and (96):

h(uy+1) ≤ h(u) + (uy+1 − uy)(u− uy+1)T

+
1

2
||uy+1 − uy||2,∀u ∈ Rm+

(97)

Setting u = uy in (97),

h(uy+1) ≤ h(uy)− 1

2
||uy+1 − uy||2 ≤ h(uy) (98)

Thus, h(uy) is non-increasing in the iteration time y.
Also, setting u equal to u∗ = B

1
2λ∗ in (97), and manipu-

lating and rearranging terms, one obtains:

h(uy+1) ≤ h(u∗) + (uy+1 − uy)(u∗ − uy+1)T

+
1

2
||uy+1 − uy||2

= h(u∗) +
1

2

[
||uy − u∗||2 − ||uy+1 − u∗||2

]
(99)

Thus,

h(uy+1)−h(u∗) ≤ 1

2

[
||uy−u∗||2−||uy+1−u∗||2

]
(100)

Summing each side of (100) over y = 0, 1, 2, ..., k − 1,

k−1∑
y=0

[
h(uy+1)− h(u∗)

]
≤ 1

2

[
||u0 − u∗||2 − ||uk − u∗||2

]
≤ 1

2
||u0 − u∗||2 (101)

From (98), we have:

k[h(uk)− h(u∗)] ≤
k−1∑
y=0

[
h(uy+1)− h(u∗)

]
(102)

Hence:
h(uk)− h(u∗) ≤ 1

2k
||u0 − u∗||2 (103)

It then follows from the definition of h(u), uk, and u∗ that:

D(λk)−D(λ∗) ≤ 1

2k
||λ0 − λ∗||2B−1 (104)

However, by Prop. 1 and assumptions [P4.A] and [P4.B], λ∗

is an optimal solution for the dual minimization problem (32)
with domain M = Rm+ . Hence:

0 ≤ [D(λk)−D(λ∗)] = [h(uk)− h(u∗)] (105)

From (103), (104), and (105),

D(λk)→ D(λ∗) as k →∞ (106)

h(uk)→ h(u∗) as k →∞ (107)

This implies the dual variable λk determined by the dual de-
composition algorithm DDA at the kth iteration time must
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converge to the solution set Λ∗ for the dual problem (32) as
k →∞, where Λ∗ includes λ∗ by [P4.B] and Prop. 1.

Moreover, from the Cauchy Convergence Criterion, the con-
vergent scalar sequence (h(uk)) must satisfy the Cauchy con-
dition

|h(uk+1)− h(uk)| → 0 as k →∞ (108)

Thus, it follows from (98) and (108) that
1

2
||uk+1 − uk||2 ≤ |h(uk+1)− h(uk)| → 0 (109)

as the iteration time k →∞. Consequently, the dual variable
λk = ukB

1
2 must converge to a single point λ′ = u′B

1
2 within

the solution set Λ∗; it cannot cycle among the points in Λ∗.
By [P3.B], an implication of assumption [P4.A], step S3

of the dual decomposition algorithm DDA determines the fol-
lowing unique solution xk for every iteration time k:

xk = argmax
x∈X

L(x,λk) (110)

The sequence (xk,λk) determined by DDA thus converges
to a limit point (x′,λ′) as the iteration time k → ∞. From
Prop/ 3, it follows that (x′,λ′) is a saddle point for the La-
grangian Function. Q.E.D.

APPENDIX J
This appendix provides a proof of Prop. 5 in Sec-

tion VIII-C.23

Definition: Subgradient and Subdifferential. For any convex
function f :Rd → R, a vector ν ∈ Rd is defined to be a
subgradient of f at a point x ∈ Rd if:

f(z) ≥ f(x) + (z − x)Tν (111)

The set of all subgradients of a convex function f at a point
x ∈ Rd is called the subdifferential of f at x, and is denoted
by ∂f(x).

Proposition 5: Suppose the Primal Problem (23) satisfies con-
dition [P3.A] in Prop. 3 plus the following three additional
conditions:
• [P5.A] X is a non-empty compact convex subset of Rd.
• [P5.B] The objective function F :Rd → R restricted to
X ⊆ Rd has the quadratic form

F (x) =
1

2
xTWx+ ρTx+ σ (112)

where W is any real symmetric negative-definite d × d
matrix, ρ is any real d× 1 column vector, and σ is any
real positive scalar.

• [P5.C] The constraint function g:Rd → Rm restricted to
X ⊆ Rd has the linear affine form

g(x) = Cx+ b (113)

where C is any real m × d matrix, and b is any real
m× 1 column vector.

Then the Extended Lipschitz Continuity Condition [P4.C] in
Prop. 4 holds for J = CH−1CT , where H = −W .

23The proof of Prop. 5 is based on Giselsson [45, Lemma 12] and [45,
Thm. 13].

Proof of Proposition 5: Given assumption [P5.C], the ex-
plicit constraints g(x) ≤ c for the Primal Problem (23) can
equivalently be expressed as

Cx ≤ [c− b] ≡ e (114)

where e is a real m×1 column vector. The Lagrangian Func-
tion (25) can then equivalently be expressed as L(x,λ) =
F (x) + λ[e−Cx].

Let the extended indicator function IX :Rd → {0,∞} be
defined as follows:

IX (x) =

{
0 if x ∈ X
+∞ otherwise

(115)

By assumption [P5.A], X is a non-empty convex subset of
Rd. It is then straightforward to verify that IX (x) is a convex
function over Rd; and it follows from [42, Prop. B.24] that
the subdifferential ∂IX (x) of IX (x) is a nonempty, compact,
and convex subset of Rd.

For each λ ∈ Rm+ , assumptions [P5.A]-[P5.C] ensure that
the function Qλ(x) = L(x,λ) is a real-valued twice continu-
ously differentiable function of x ∈ X whose Hessian matrix
is given by the real symmetric negative-definite matrix W .
Thus, Qλ(x) is a continuous strictly-concave function over
the non-empty compact convex set X , which implies that con-
dition [P3.B] in Prop. 3 holds. It then follows from [P3.A] and
[P3.B] that Lemma 4 holds.

Using (115), the function x(λ) defined in [P3.B] can be
represented as follows: for each λ ∈ Rm+ ,

x(λ) = arg min
x∈Rd

[
− F (x) + IX (x) + λ[Cx− e]

]
(116)

Given assumption [P5.B], the gradient ∇F+(x) of F (x) takes
the form Wx + ρ for each x ∈ X .24 Thus, the first-order
necessary conditions for x(λ) to satisfy (116) at any specific
points λ1 and λ2 in Rm+ are:

0 ∈ −∇F+(x(λ1)) + ∂IX (x(λ1)) +CTλT1 (117a)

0 ∈ −∇F+(x(λ2)) + ∂IX (x(λ2)) +CTλT2 (117b)

Let ξ(x(λ1)) ∈ ∂IX (x(λ1)) and ξ(x(λ2)) ∈ ∂IX (x(λ2))
denote the particular subgradients that result in equalities in
(117a) and (117b), respectively. The existence of these sub-
gradients is assured by [P3.B]. This gives:

0 = −∇F+(x(λ1)) + ξ(x(λ1)) +CTλT1 (118a)

0 = −∇F+(x(λ2)) + ξ(x(λ2)) +CTλT2 (118b)

Taking the scalar product of (118a) with x(λ2)−x(λ1), and
the scalar product of (118b) with x(λ1)− x(λ2):〈
∇F+(x(λ1)),x(λ2)− x(λ1)

〉
−
〈
CTλT1 ,x(λ2)− x(λ1)

〉
=
〈
ξ(x(λ1)),x(λ2)− x(λ1)

〉
(119a)〈

∇F+(x(λ2)),x(λ1)− x(λ2)
〉
−
〈
CTλT2 ,x(λ1)− x(λ2)

〉
=
〈
ξ(x(λ2)),x(λ1)− x(λ2)

〉
(119b)

24In this study the derivative of a scalar with respect to a column (row)
vector is represented as a column (row) vector.
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where
〈

,
〉

denotes vector inner product. Summing the two
equalities (119a) and (119b):〈

∇F+(x(λ2)−∇F+(x(λ1),x(λ1)− x(λ2)
〉

+
〈
CT (λ1 − λ2)T ,x(λ1)− x(λ2)

〉
=
〈
ξ(x(λ2))− ξ(x(λ1)),x(λ1)− x(λ2)

〉 (120)

Since IX (x) is a convex function, it follows from (111 that

IX (x(λ1)) ≥ IX (x(λ2)) + ξ(x(λ2))T
[
x(λ1)− x(λ2)

]
(121a)

IX (x(λ2)) ≥ IX (x(λ1)) + ξ(x(λ1))T
[
x(λ2)− x(λ1)

]
(121b)

Summing the two inequalities (121a) and (121b), we have:〈
ξ(x(λ2))− ξ(x(λ1)),x(λ1)− x(λ2)

〉
≤ 0 (122)

Combining (120) and (122):〈
∇F+(x(λ2)−∇F+(x(λ1),x(λ1)− x(λ2)

〉
≤
〈
CT (λ1 − λ2)T ,x(λ2)− x(λ1)

〉 (123)

Let H denote the real symmetric positive-definite d × d
matrix given by H = −W . It follows from [P5.B] that

∇F+(x(λ2)−∇F+(x(λ1) = H
[
x(λ1)− x(λ2)

]
(124)

Substituting (124) into (123), one obtains

|| [x(λ1)− x(λ2)]T ||2H ≤
〈
CT (λ1 − λ2)T ,x(λ2)− x(λ1)

〉
=
〈
H−

1
2CT [λ1 − λ2]T ,H

1
2 [x(λ2)− x(λ1]

〉
≤ ||H− 1

2CT [λ1 − λ2]T || · ||H 1
2 [x(λ2)− x(λ1)]T ||

= ||(λ1 − λ2)CH−
1
2 || · || [x(λ1)− x(λ2)]T ||H (125)

where ||u|| =
√
< u, u >, || · ||H =

√
(·)H(·)T , || · ||2H =

(·)H(·)T , and the inequality holds by the Cauchy-Schwartz
Inequality. Thus, we can conclude from (125) that:

||[x(λ1)− x(λ2)]T ||H ≤ ||(λ1 − λ2)CH−
1
2 ||

= ||λ1 − λ2||CH−1CT (126)

Finally, using Lemma 4 together with (126,〈
∇D+(λ1)−∇D+(λ2),λ1 − λ2

〉
=
〈
[x(λ2)− x(λ1)]TCT ,λ1 − λ2

〉
=
〈
[x(λ2)− x(λ1)]T , (λ1 − λ2)C

〉
=
〈
[x(λ2)− x(λ1)]T , (λ1 − λ2)CH−1〉

H

≤ ||[x(λ2)− x(λ1)]T ||H ||(λ1 − λ2)CH−1||H
= ||[x(λ2)− x(λ1)]T ||H ||λ1 − λ2||CH−1CT

≤ ||λ1 − λ2||2CH−1CT

(127)

where: 〈
[x(λ2)− x(λ1)]T , (λ1 − λ2)CH−1

〉
H

= [x(λ2)− x(λ1)]TH
[
(λ1 − λ2)CH−1

]T
In (127) the first inequality follows from the Cauchy-Schwartz
Inequality and the second inequality follows from (126). Re-
lation (127) implies that condition [P4.C] holds with J =
CH−1CT . Q.E.D.

Comment Regarding Proposition 5: Since the matrix
H depends on private household information, so does J =
CH−1CT . Thus, the DSO cannot directly guarantee condi-
tion [P4.D] in Prop. 4 is satisfied by setting the elements of

the step-size matrix B for the dual decomposition algorithm
DDA in a manner that ensures [I − JB] is positive semi-
definite. However, a DSO can learn from experience how to
adjust the elements of B to ensure [P4.D] holds, hence to
ensure convergence of DDA.

APPENDIX K

This appendix analyzes the relationship between the con-
ditions assumed in Prop. 3, Prop. 4, and Prop. 5 in Sec-
tion VIII-C and the structural form of the Primal Problem (23)
assumed for the case study presented in Section IX. Specifi-
cally, it is shown that the case study satisfies all of the con-
ditions assumed for these three propositions as long as the
positive step-sizes {β1, β2, β3} appearing in step S4 of the
dual decomposition algorithm DDA are set to ensure the pos-
itive semi-definiteness of the matrix I − JB appearing in the
Prop. 4 condition [P4.D].

From (13), each household constraint set Xψ(K) is compact
and convex; and the number NH of households is assumed to
be finite. Thus, the set product X = X (K) =

∏
ψ∈Ψ Xψ(K) is

also compact and convex. In addition, it follows from (23) that
F (x) and g(x) are continuous functions of x ∈ X . Conditions
[P3.A] and [P5.A] thus hold for the case study.

For concreteness, the ‘±’ sign in the household constraints
(13a) and (13b) for the case study is assumed to be a mi-
nus sign ‘-’. These constraints can then be expressed in the
following compact NK × 1 column vector form:

Tψ(Pψ(K)) = aψ −GψPψ(K) (128)

with NK × 1 column vectors

Tψ(Pψ(K)) = [Tψ(pψ(1), 1), ..., Tψ(pψ(NK), NK)]T

aψ = YψTψ(0) +EψTo

Tψ(0) = [Tψ(0), Tψ(0), ..., Tψ(0)]T

To = [To(1), To(2), ..., To(NK)]T

and with square NK ×NK matrices:

Yψ =


αHψ

(αHψ )2

. . .
(αHψ )NK



Eψ =


1− αHψ

αHψ (1− αHψ ) 1− αHψ
...

. . .
. . .

(αHψ )NK−1(1− αHψ ) · · ·
. . . 1− αHψ



Gψ = Sbase∆t


αPψ

αHψ α
P
ψ αPψ

...
. . . . . .

(αHψ )NK−1αPψ · · · αHψ α
P
ψ αPψ


Also, the expression Uψ(Pψ(K)) defined in (11) can be

written in the compact form:

Uψ(Pψ(K)) = umaxψ ·NK
− cψ[Tψ(P(K))− TBψ]T [Tψ(P(K))− TBψ]

(129)
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with NK× 1 column vector TBψ = [TBψ, ..., TBψ]T . Sub-
stituting xψ = Pψ(K) and (128) into (129):

Uψ(xψ) = umaxψ ·NK (130)

− cψ[−Gψxψ + aψ − TBψ]T · [−Gψxψ + aψ − TBψ]

Using the definition of the objective function Fψ(xψ) in the
Primal Problem (23), the Hessian matrix of Fψ(xψ) for the
case study is given by:

∇2Fψ(xψ) = ∇2Uψ(xψ) = −2cψG
T
ψGψ (131)

Since αPψ > 0, the matrix Gψ has a positive determinant,
implying Gψ has full rank. Since cψ > 0, it follows that
∇2Fψ(xψ) in (131) is a symmetric negative-definite ma-
trix, hence Fψ(x) is strictly concave over x ∈ X . Defining
F (x) =

∑
ψ∈Ψ Fψ(xψ), it follows that∇2F (x) is also a sym-

metric negative-definite matrix, hence F (x) is strictly concave
over x ∈ X . Thus, condition [P5.B] holds for the case study.
Also, using the definition of the constraint function g(x) in
the Primal Problem (23), it is also seen that condition [P5.C]
holds for the case study. Condition [P3.B] then follows from
conditions [P5.A]-[P5.C].

Moreover, it then follows directly from Prop. 5 that condi-
tion [P4.C] is satisfied for the case study. Condition [P4.D] in
Prop. 4 will then be satisfied for the case study as long as the
positive step-sizes {β1, β2, β3} in step S4 of the dual decom-
position algorithm DDA are selected in a manner to ensure
the positive semi-definiteness of the matrix I −JB appearing
in condition [P4.D].

By construction, the case study satisfies the following fea-
sibility condition:

Z ≡ {x ∈ X | g(x) ≤ c} 6= ∅ (132)

Given [P5.A]-[P5.C] and condition (132), the Primal Problem
(23) for the case study reduces to the maximization of the
continuous strictly-concave objective function F (x) over the
non-empty, compact, and convex subset Z ⊆ Rd. Thus, this
Primal Problem has a unique finite solution x∗ ∈ Z .

Moreover, by [P5.C], g(x) is linear affine. It follows from
[46, Prop.5.3.1] that the optimal solution set for the Dual Prob-
lem (32) for the case study contains at least one point λ∗ in
Rm+ ; and strong duality holds for (x∗,λ∗). Thus, Prop. 1 im-
plies that (x∗,λ∗) is a saddle point solution for the case study;
i.e., condition [P4.B] holds.

Finally, Prop. 3 and Prop. 4 imply that [P3.C] must hold
for the case study, given that [P4.B] holds for the case study.
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