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In high performance ceramic materials the critical flaw size is == 10 pm. Not all 
inclusions are equally detrimental to the structural properties. Therefore it is necessary to 
determine their size and composition. 

The high frequency stress waves, (> 10 MHz), produced by ultrasonic transducers are 
sensitive to changes of density and elastic modulus. In this work a mathematical model has been 
developed which calculates the waveforms and frequency spectra for sound waves scattered from 
various sized inhomogeneities as a function of the host and inclusion material parameters and 
the spectrum of the incoming sound waves. 

The model is based on the work of Ying and Truell [1] (planar longitudinal waves 
incident on a spherical particle) but, to use the technique of ultrasound for defect detection, it is 
necessary to modify the analysis to incorporate the use of a focussed sound beam to increase the 
power and a pulsed system for locating of the defect. 

To test the model spherical and near spherical voids in a glass matrix were first 
examined. Next spherical particles of oxides were embedded in the glass and the model 
compared with experiment. The glass was subsequently crystallized to approximate a real 
ceramic. Recently, spherical particles of platinum (50 and 200 pm diameter) have been 
embedded in dense zirconia. This work is reported. These inclusions were located ultrasonically 
by immersion scanning with a pulsed, focussed 25 MHz transducer. The backscattered signals 
were compared with the model predictions. 

THEORY 

Whereas the calculations of Ying and Truell [1] were performed to determine the total 
scattered energy from a spherical inhomgeneity [2], the equations can be used to calculate the 
amplitudes of the scattered waveforms from the inhomogeneity. The pressure experienced by 
the transducer which produced the initial sound wave is: 

1 
p(k) = P ka-=- (1 + i)exp[-ikz] L (2m + I)A 

max V 2 m=O m 

0) 

where p(k) is the pressure for the wavenumber k=2n1A (A is the wavelength related to the 
frequency, f, and the longitudinal sound velocity, Ve, as =velO. Pmax is the maximum pressure of 
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the wave at the site of the inhomogeneity. The distance from the transducer to the inclusion is z. 
The radius of the defect is a and Am are the scattering amplitudes calculated using Ying and 
Truell with corrections of Gubernatis et al. [3]. These scattering amplitudes are functions of the 
density and shear and longitudinal sound velocities of the host and inclusion. 

To include the effect offocussing the sound beam, the inhomogeneity is assumed to lie in 
the focal plane of the transducer and the equations developed by O'Neil [4] for the sound field of a 
focussed radiator expanded in a series expansion about the focal point to produce a modification 
to the wavenumber of; 

( 1 + [1 + (D/A)2]1I2 ) 
k'=k 

2 
(2) 

where D is the diameter of the transducer and A is its radius. The quantity z in equation 1 is now 
the distance from the focal point of the transducer. This approximation limits the validity of the 
model to spheres < 200 pm diameter 

The use of a pulsed sound beam instead of a continuous wave is accounted for by using a 
Fourier expansion of the incoming beam [5]. The reflected sound pulse from a flat surface in the 
focal zone of the transducer is transformed to yield the frequency composition of the incoming 
pulse. This is applied to Equation 1 to yield the pressure at the transducer as a function of 
frequency for a given inclusion radius. Figure 1 is the waveform (1(a» ofa signal reflected from 
a flat surface and its magnitude spectrum (l(b». To simplify the calculations, the spectrum is 
approximated by a Gaussian distribution which can be described by its frequency at maximum 
amplitude (FMA) and its full width at half maximum amplitude (FWHM) (Figure 2). Using this 
approximation, the equation for the pressure at the transducer is given by: 

PT(f) = Vea exp [ -Vtz lexP [_41n2 
20 . 2nf 

( f-f )21 .. 
~ L (2m+l)Am 

FWHM m=O 

(3) 

where fa is the FMA and fFWHM is the FWHM. 

Computer programs calculate the complex Am values and these are then used to 
determine the spectra and waveforms. These spectra are then processed to calculate the FMA 
and FWHM. Inputted are the densities of the host matrix and the particles and their shear and 
longitudinal sound velocities. These were determined by direct measurement (especially for the 
zirconia matrix). The platinum parameters were taken from published values [6]. Table I shows 
the values used in the calculations. The FMA and FWHM of the incoming signal were also deter
mined experimentally. Figures 3 and 4 are derived from the calculated values with straight 
lines joining the points. Some experimental values are also included in these figures. These 
programs do not use the amplitude of the calculated signals due to the varying attenuation 
factors between the measured values as the transducer height is changed for focussing The 
relative amplitudes of the frequency components do not change significantly. 

EXPERIMENTAL 

Particles of platinum were produced by melting pieces of Pt mesh in a crucible. The 
particles (diameter 50 to 120 pm) (approximately spherical) were laid in partially-stabilized 
zirconia (PSZ) powder within a locating ring of platinum, one particle per sample. Pellets were 
iso-pressed and fired to produce a dense body. The fired samples were ground and polished 
parallel. The inclusions were > 4 mm deep in the PSZ. The density and longitudinal and shear 
sound velocities of the sample were measured. 

The samples were immersion-scanned in H20 with a 25 MHz focussed, pulsed transducer 
using a shock excitation system. This is a commercial test except the resolution of the scanning 
axis is 0.02 mm and the stepping axis is 0.01 mm. A computer controlled the scanner and 
recorded the amplitUde of the signal during scanning. The computer also recorded the digitized 
waveforms, performed the Fourier transformations and analyzed the resultant spectra. 
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Fig. 1 
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Waveform and Spectrum ofa sound pulse reflected from a flat surface at the focal zone 
of the 25 MHz focus, pulsed transducer. 

The samples were scanned to locate the platinum locating ring (Figure 5) (darker regions 
indicate the higher amplitude signals). The ring can clearly be seen with a dark area in its 
center. This is the particle. The sample was cut and polished to the ring after the experiment 
and examined optically (Figure 6). 

After location, the transducer height was adjusted to give the maximum signal 
amplitude from the inclusion. This was taken to correspond with the focal zone of the transduc
er. The signals were recorded, Fourier transformed and the FMA and FWHM measured by 
interpolation between points near the peak and at the half maximum amplitude locations. The 
measured values for 50, 65, and 100 pm diameter inclusions are shown in Figures 3 and 4 (large 
asterisks indicate the approximate error in measurements). 
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Fig. 2 

Fig. 3 
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Fig. 4 

Fig. 5 
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FWHM versus Defect Radius for platinum particles in zirconia . Solid lines are derived 
from theory and asterisks are data points and error estimates. 
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Density plot of an ultrasonic scan of a zirconia sample with platinum ring and 
inclusion within. Darker regions represent higher amplitudes. 

DISCUSSION 

The measured values of FMA and FWHM for the 65 and 100 11m platinum spheres fit 
reasonably well with the theory (Figures 3 and 4). Minor variations will be due to the use of book 
values for Pt density and velocities. The accuracy of the measure of the 50 11m particle is in 
doubt due to its sticking to the crucible during manufacture. In fact it is possible that this 
particle became smaller during sample-sintering and surface tension may have drawn its rough 
sides into a sphere. Nevertheless its initial-measured value is plotted. The sample has not yet 
been cut and polished to the inclusion. 
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Fig. 6 Zirconia sample after cutting and polishing to expose the platillum ring and a 100)lm 
inclusion. 

The discontinuous nature of FMA and FWHM curves is explained by resonances of 
certain component wavelengths of the incoming wave with the diameter of the inclusion [8]. 
Franz waves circumnavigate the inclusion (produced by the interaction of the incoming waves 
with the sphere) and are functions of the inclusion and host matrix material parameters. These 
Franz waves are not generally observable (due to their highly attenuated nature) in situations 
where the product of the wavenumber and inhomogeneity radius exceeds unity. The existence of 
these resonances is demonstrated by examining the waveforms and spectra for the 65)lm and 
100 pm inclusions (Figures 7 and 8 - the model-predicted waveforms and spectra are shown in 
Figures 9 and 10). A tailing section (like a ringing of the signal) follows the main signal in the 
100)lm inclusion waveform. The 65 pm waveform signal ends abruptly after the main pulse. 

The 100 pm "tail" is the result of a Franz wave and it produces two nearly-equal height peaks on 
the spectrum. The higher frequency peak is slightly higher. Had the inclusion been slightly 
smaller the first peak might have been larger so the FMA would shift sharply from the higher to 
the lower frequency. These resonances also produce shifts in the FWHM curves. The 65)lm 
inclusion spectrum exhibits a slight asymmetry on the higher frequency side (easily seen in the 
model spectrum). This too is attributable to a Franz wave albeit a much smaller effect. 

Comparing the platinum-in-zirconia curves with the zirconia-in-glass and magnesia-in
glass curves (Figure 11) shows that the platinum particles exhibit a greater tendency to have 
resonances than do the zirconia particles. This could be due to the similarity of the zirconia 
shear velocity and the platinum longitudinal velocity and the strength of the resonance may be 
due to the density differences (see Table I). Zirconia and glass are more closely matched in 
longitudinal sound velocities and show only one strong resonance. Magnesia has a longitudinal 
velocity similar to the glass shear velocity and shows several weak resonances [9). This point 
remains to be studied. 
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Fig.7a Waveform and Spectrum from a 100}.lm inclusion of platinum in zirconia. 
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Fig.7b Waveform and Spectrum from a 100}.lm inclusion of platinum in zirconia. 

CONCLUSIONS 

Microspherical particles of platinum embedded > 4 mm deep in a matrix of fine-grained 
zirconia were clearly visible using pulsed and focussed 25 MHz ultrasound. No grain-boundary 
effects interfered with the experiment. The model developed to understand the scattering of 
ultrasound from inclusions within a pulsed and focussed sound field was found to fit well with 
the experimental data with respect to predicting defect size. 

1279 



0& 
0& ,,+ 

>w 
" . e." 

-1.~ ~~ __ ~ __ ~ __ L-~ __ -L __ ~ __ ~~ __ -J 

12.75 12.95 13.15 
TiMe (5) X ~.E-06 

Fig.8a Waveform and Spectrum from a 65 pm inclusion of platinum in zirconia. 

0& 
0& ...... + 

>W 
" . 4." 

e." ~=a~~~~~ __ ~~ __ ~ __ L-~~ 
e." 25.'" 58.'" Frequency (Hz) X ~.E+06 

Fig. 8b Waveform and Spectrum from a 65 pm inclusion of platinum in zirconia. 
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Fig. 9. Calculated waveform and spectrum for a 66 11m inclusion of platinum in zirconia 

1281 



0.10 

Q) 
"0 
:l 
~ a. 
E « 

0.00 

0.20 

10.00 

0.30 
TIme (us) 

20.00 30.00 
Frequency (MHz) 

0.40 

40.00 50.00 

Fig. 10 Calculated waveform and spectrum for a 105 11m inclusion of platinum in zirconia. 
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TABLE I 

Sonic and Material Parameters 

Material 

Zirconia 
Platinum 

Density 
kg/m**3 

5900. 
21400. 

Centre freq. (MHz) = 26.60 

Longitudinal 
Velocity 

rnls 

6927. 
3260. 

FWHM freq. (MHz) ~ 14.70 

Shear 
Velocity 

rnls 

3654. 
1734. 
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Fig. 11 FMA VB Defect Diameter and FWHM vs Defect Diameter for: 1) zirconia particles in F
glass, 2) magnesia particles in P-glass, and, 3) voids in crown glass. 
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