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I. INTRODUCTION 

Theoretical chemistry seeks as one of its primary goals 

the ability to compute atomic and molecular properties with 

sufficient accuracy to be of value in a coordinated explora­

tion of chemical phenomena with the experimentalist. For 

practical purposes these properties may be divided into two 

broad categories; those that involve energy or, more likely, 

energy differences (such as reaction surfaces, excitation 

energies or ionization potentials) and those that do not (such 

as dipole and quadrupole moments or electric field components). 

This work deals primarily with the former. 

Discrepancies between the true value of a physical observ­

able and the value predicted by an ab initio calculation result 

from the need to invoke four main approximations which are 

necessitated by the intractability of the exact molecular 

Schroedinger equation: (i) the Born-Oppenheimer approximation 

which assumes the separability of the electronic and nuclear 

motions; (ii) finite basis set expansion lengths for the 

atomic or molecular orbitale; (iii) the single configuration, 

independent particle approximation associated with algorithms 

like the Hartree-Fock (HF) self-consistent-field (SCF) 

technique; (iv) neglect of relativistic effects. The first 

and last of these are excellent approximations for compounds 

composed of elements from the first and second rows of the 

periodic table. The third approximation and various methods 
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for relaxing this restriction have been well-documented. The 

essential decision to be made with regard to the third item is 

whether or not the problem demands the use of more sophisti­

cated techniques than HF-SCF with their substantial increase 

in computational requirements. On the other hand, the adverse 

effects of basis set truncations in accordance with the second 

approximation is often not adequately considered. Ideally one 

hopes to be able to choose a basis with the minimum flexi­

bility needed for the problem under consideration so that the 

question one is seeking to resolve can be answered in the most 

economical way. Such a choice must draw on the body of infor­

mation concerning basis sets which has been accumulating since 

the appearance in 1951 of C. C. J. Roothaan's [1] work on the 

formulation of the Hartree-Fock equations using finite expan­

sions of SCF orbitals in terms of analytical basis functions. 

The present work deals with the problems associated with 

determining such finite basis sets for adequate approximations 

in molecules. 

In the first section of this paper we shall deal with the 

problem of effectively determining the exponential parameters 

and expansion lengths needed for obtaining any desired devia­

tion from the infinite basis set limit in atomic or molecular 

calculations. A convenient contracted orbital scheme and 

polarization expansion lengths will be discussed. In the 

second section we shall look at a new integral approximation 

which can facilitate the use of large, flexible basis sets by 
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employing a small substitute basis to generate the numerous 

multicenter, electron-repulsion integrals. The final section 

deals with the three lowest spin states of the HON to HNO 

isomerization process. The effect of basis set improvement 

will be studied as it applies to both correlated and uncorre-

lated wavefunctions. Since the metastable conformation, HON, 

has never been observed experimentally we shall further inves­

tigate a possible bi-molecular, least motion mechanism for 

converting the metastable form to the stable form. 

We hope that this study will further elucidate the rela­

tionship between some physical properties and basis sets, thus 

providing additional guidelines for the individual performing 

quantum chemical calculations. 
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II. AN OPTIMAL EVEN-TEMPERED APPROACH TO THE COMPLETE ORBITAL 
BASIS 

A. Justification for Even-tempered Basis Sets 

If optimal performance is to be achieved with gaussian 

basis sets, which are necessarily restricted in size due to 

computational limitations, then a better understanding of the 

relationship between such sets and a complete set is needed. 

This understanding will make possible a mote accurate assess­

ment of convergence rates for various expectation values 

derived from variational calculations. 

About 15 years ago Schwartz [2] wrote, "The first essen­

tial in talking of convergence rates is to have an orderly 

plan of procedure. That is, one must choose a set of basis 

functions to be used and then gradually add more and more of 

these terms to the variational calculation in some systematic 

manner." The even-tempered basis introduced by Ruedenberg 

et al. [3] is ideally suited for this purpose. Even-tempered 

(ET) gaussian primitives are defined in terms of two optimiz-

able parameters per symmetry by 

XCkum) = N(ç^)exp(-^^r^)r^S™ (6^(|)) k = 1, 2 , . . .  (2.1a) 

= a3^ (2.1b) 

While this restriction of the orbital exponents to a 

geometric sequence results in a small loss of variational 



5 

freedom when compared to an independently optimized set, this 

loss must be seen in perspective. For example, the first row 

elements might require an additional s-type primitive or two 

to obtain groundstate energies within a few millihartrees of 

Huzinaga's [4] completely optimized exponent set for an (8s, 

4p) basis, but the difference between the best energy obtain­

able with this set and the infinite basis set limit is several 

times larger. Table 1 shows the actual total energies for the 

(8s,4p) ET and independently optimized atomic basis sets on 

carbon. All energies in this table and in the remainder of the 

paper are in atomic units (1 a.u. = 1 hartree = 627.5 Kcal/ 

mole). 

Table 1. Total energies for the carbon atom with ET and 
independently optimized gaussian bases 

Basis Energy AE AE H 

Kuzxnaga iBS,4p; 
ET (8s,4p) 
ET (9s,4p) 
ET (23s,lip) 

•37.6798 
•37.6681 
•37.6768 
•37.6886 

0 . 0 0 8 8  
0.0205 
0.0118 
0 . 0 0 0 0  

0 . 0  
0.0117 
0.0030 
•0.0088 

*AE* is the difference between the energy for this basis and 
the FIF limit energy. 

^AEjj is the difference between the energy of this basis and 
the Huzinaga (8s,4p) basis result» 

For this particular basis the ET choice of exponents has 

resulted in a 3/1 reduction in the number of nonlinear param-
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eters, the independent exponents, which would have to be 

varied in the optimization procedure. In larger basis sets 

the savings are even greater. 

In this section we shall see to what extent the ET 

gaussian basis can be viewed as a finite grid for an approxi­

mate numerical integration of an exact integral representation 

of the radial portion of an atomic orbital. Next, the optimal 

atomic ET parameters for hydrogen, carbon, oxygen, sulfur and 

selenium as a function of basis set size will be investigated 

and shown to suggest a simple rule for generating (a,3) for 

arbitrary expansion lengths. Finally, the optimal molecular 

ET parameters of several molecules are given as a function of 

basis set size and a suitable general procedure for arriving at 

useful molecular basis sets is discussed. 

B. Even-tempered Gaussian and Exponential Expansions 
and Gaussian Integral Transforms for Atomic Orbitals 

In order to exhibit the relationship between exact HF-AO's 

and their approximations in terms of even-tempered gaussian 

AO's, we note that any atomic orbital of symmetry (&,m) can be 

expressed through an integral transform over gaussian radial 

functions in the-following manner where (6,(p) is a norma 1-

2 
e,cp) = s2^6,*)r& /"dCe"^^ f%(C) (2.2) 

ized spherical harmonic. In the present context is is con­

venient to write this representation in the form 
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8,*)&%(;) (2.3) 

where 2 

9&m(G;r,8'4) = N^ 6"%? r*S%^6,*) (2.4a) 

with 24^+7/w[(2&+l)!I]2}l/4 (2.4b) 

is a normalized gaussian-type primitive AO. If we consider for 

#(&,m) exponential-type AO's of the form 

x(S;r,8,*) = e"Sr r&S™(8,*) (2.5a) 

with = {(2E)2&+3/(2A+2)l}l/2 (2.5b) 

then the transform function a^ in Equation (2.3) becomes 

a®X(5,s) = [2&+l/(&+l)! /Tr/2 ] V2 ̂̂ 2^^^j (2^,+5)/4 ^-(S /4ç) 

This is a generalization of a formula given by Kikuchi [5] for 

simple exponentials. Bishop and Somorjai [6] as well as Taylor 

[7] have also examined transforms of radial functions. 

It has been shown by Raffenetti [8] that any HP-SCF AO can 

be efficiently expanded in terms of even-tempered exponential-

type AO's of the form (2,5a), 

Zm 
= Ih 

V 

V t c \ 
V 

^ V 
=  O t  s  ( 2  7) 
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Combining such an expansion with the integral transforms for 

we find for 4) the transform function ^ &m &m 

af (Ç^,ç) (2.8) 

where a®^ is given by Equation (2.6). Examples of such HF-AO 

transforms are shown in Figures la, lb and Ic. Figure la 

corresponds to the (Is) orbital. Figure lb to the (2s) orbital 

and Figure Ic to the (2p) orbital of the HF wavefunction of the 

carbon groundstate. The values for the b.^ and are taken 

from Raffenetti's (6s,4p) even-tempered exponential expansion. 

Since this is an extremely accurate wavefunction (triple zeta 

in s and double zeta in p) the curves in these three figures 

can be considered as very close to the gaussian transforms of 

the exact carbon HF-SCF orbitals. 

Approximation of the integral transform (2.3) by means of 

a numerical integration implies replacement of the integral by 

a sum over a number of grid points (k=l, 2, 3... ) . Since it 

is apparent that the intervals should increase as 

becomes larger and larger, one reasonable choice of gridpoints 

is given by the even-tempered exponents introduced in Equation 

If 
(2.1b), namely = a3 . This choice leads to a set of equi­

distant gridpoints when ln(ç) is chosen as the integration 

variable, as has been implied in Equation (2.3). Since the 

distance between neighboring gridpoints (InÇj.) is ln(6), the 
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even-tempered grid approximation to the integral transform 

(2.3) thus becomes 

e&m = 2 <2.9) 

This type of approximation for HF-AO's in terms of g^^^ can be 

compared to those expansions that result from direct HF-SCF 

calculations based on expansions of the SCF-AO's in terms of 

even-tempered gaussian primitives AO's, viz. 

*Am " k 9&m(Gk) °k' ~ (2.10) 

where c^ as well as the and are variationally determined. 

In view of Equations (2.8), (2.9) and (2wl0) one would expect 

relations like 

4 ' ' -"^4 4 -r<5v' (2.11) 

0 
in which b^, come from HP calculations in terms of exponen-

0 
tials, whereas c^, a^, 3^^ come from HF calculations in terms 

of gaussians. The a®^ are given by Equation (2.6), 

As a first example we consider the hydrogen (Is) function 

(Ç^/tt)^^^ e""^^. In this case Equation (2.11) simplifies to 

Cy. (8/n)l/4 &nB(4a6k)-5/4 g-l/4aB (2.12) 
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If the Cj^,a,3 are determined from a six term even-tempered 

gaussian expansion (corresponding to an error in the total 

energy of 0.2 millihartrees), then the agreement of the left 

and right hand side of (2.12) is better than two significant 

figures. For an eight term expansion (corresponding to an 

energy error of 0.01 millihartrees) the agreement is better 

than four significant figures. 

Next we consider the carbon ground state HF-AO's whose 

integral transforms were shown in Figures la-lc. Specifically 

we choose two sets of parameters with one set resulting from 

an SCF calculation using a "small" basis of even-tempered 

gaussian primitives and the second set resulting from an SCF 

calculation with a "large" basis of even-tempered primitives, 

the former being a (7s,3p) basis, the latter a (23s,lip) basis. 

In order to test the degree of validity of the identity (2.11) 

we simply plot for the three atomic orbitals the values of the 

quantities (c^/lng) for the appropriate abscissa values of 

on the curve for a^(s^). The (7s,3p) values are entered 

as diamonds, the (23s,lip) values as circles. It is apparent 

that not only is the agreement perfect for the large basis, but 

it is also very good for the small basis. This agreement 

between the direct variational coefficients and the exact 

transform functions shows that the variational representation 

in terms of even-tempered gaussian primitives approaches the 

exact SCF solution in a systematic manner. The integral trans­

form acts as it were a "slidewire" with the coefficients for 
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finite expansions behaving like beads on the wire. The grid-

points of a particular expansion merely determine the positions 

of the beads on the wire and these positions can be altered 

without departing from the wire. We have noticed similar 

behavior for expansions of molecular orbitals. 

Another interesting aspect of the discussed results is 

that they establish a clear relation between the expansion of 

an atomic orbital in terms of gaussian primitives and its 

expansion in terms of exponential-type primitives. Equation 

(2.11) shows how to obtain the coefficients of the even-

tempered gaussian expansion when the gaussian and exponential 

exponents and the exponential coefficients are known. However, 

it is also possible to invert the process. Since gaussian 

expansions are always substantially longer than exponential-

type expansions of equal quality, it is apparent that the 
0 

number of coefficients c^ for which (2.11) applies is larger 

than the number of terms in the summation over v. If it is 

more than twice as large, then there are sufficient equations 

available to determine the values of the parameters for the 
0 

exponential expansion when the gaussian parameters c^, a, 3, 

are known. This can be accomplished by a (partly linear, 

partly nonlinear) least-squares calculation based on mini­

mizing the quantity 

g [c^ - f*(k{,b&,.Eg )]^ 
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with respect to the parameters and Here the are the 

functions defined by the righthand side of equation (2.11) and 
0 

the values of c^,a,G are supplied by the gaussian expansion. 

It is thus possible to deduce the complete even-tempered 

exponential-type expansion from sufficiently large even-

tempered gaussian expansions! This procedure works quite well, 

as the results shown in Table 2 for the carbon Is and 2s 

orbitals attest. As for going from the exponential-type to 

Table 2. Comparison between the fitting coefficients derived 
from an ET gaussian basis and the SCF orbital coeffi­
cients with an ET exponential basis for carbon 

Fitting Coefficients From a (19s,9p) ETG Basis 
With a = 0.702 and b = 1.666 

C(l) C(2) C(3) C{4) C(5) C(6) 
Is -0,003 0.010 -0,002 0.922 0.080 0,002 
2s -1.250 -0.060 0.524 0.118 -0.004 0.007 

SCF Orbital Coefficients From a (6s,4p) ETE Basis 
With a' = 0.705 and b' = 1.667 

C(l) C(2) C(3) C(4) C(5) C(6) 
Is -0.000 0.002 0.016 0.913 0.077 0.001 
2s -1.252 -0.062 0.545 0.092 -0.011 0.001 

Both basis sets gave an energy of -37.68859 Ej^. The param­
eters a and b were determined by nonlinear optimization, 
while a' and b' are the SCF optimized even-tempered exponen­
tial values of Raffenetti. 
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the gaussian expansion, it was possible to predict the coeffi­

cients of a 9 term gaussian expansion of the Is and 2s 

orbitals of carbon with sufficient accuracy that an energy 

only 0.009 above the SCF coefficients was produced without 

actually performing the SCF calculation with gaussians. 

Although the shape of the gaussian transform is highly 

independent of the basis set size, as already shown in Figures 

la-lc, it is also nearly independent of the atomic number. 

Of course the size of the atomic orbitals decreases as the 

nuclear charge is increased, resulting in a shift of the 

transform function to higher log ç values for larger Z. How­

ever, by shifting the transforms of two different elements so 

that they are superimposed the similarity of the two sets is 

apparent. In Figures Id-lf the gaussian transforms for the 

atomic orbitals of fluorine, shown as solid black dots, are 

shifted into alignment with the carbon transforms. The magni­

tude of the shift is approximately 0.4 for both s and p 

symmetries. The fluorine basis was (22s,lip). Only the data 

points near the maximum and minimum were plotted for the Is 

and 2s. Most surprising is the excellent agreement for the 

2p AO in spite of the additional three electrons occupying 

that orbital in fluorine. 
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C. Regularities in the Optimal 
Atomic ETG Exponential Parameters 

How do the optimal atomic ( a , 3 )  depend on the expansion 

length used in an atomic SCP calculation? In order to answer 

this question, several basis sets ranging in size up to 16 

s-type and 7 p-type gaussian primitives for the first row 

elements and up to 9 p-type primitives for sulfur were opti­

mized by varying (a,3) until the lowest energy for the appro­

priate groundstate was obtained. For the s symmetry optimi­

zations, four p-primitives were used for the 2p AO in C and 0, 

while six p-primitives were used in S and Se. For the p 

symmetry seven's-primitives were used for the Is and 2s AO's 

in C and O, while eight s-primitives were used in S and Se. It 

was established that the optimization of one symmetry is highly 

independent of the number of primitives in the other symmetries 

so long as the other symmetry is not overly truncated. Table 3 

gives the optimal values found. 

In Figures 2a-2c the ln(ln(3)) for some of the optimal 

parameters listed in Table 3 is seen to be linearly related to 

the In(N-l) where N is the number of primitives of that 

symmetry in the basis set. This linear dependence is suggested 

b y  t h e  b e h a v i o r  o f  l a r g e s t  e x p o n e n t ,  i .  e .  l i m  I n ( =  ° °  

whereas individually lim In(a) = -«> and lim In (3) = 0. Thus 
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Table 3. Optimal ET parameters for ground state carbon, 
oxygen, sulfur and selenium 

Carbon Oxygen Sulfur Selenium 

NS Alpha Beta Alpha Beta Alpha Beta Alpha Beta 

5 0.05813 5.0784 — — — — — — — — • • — — " — — — 

6 0.06304 4.3406 0.11979 4.2931 — -  —  — — — —  — —  

7 0.05701 3.7973 0. 10763 3.7710 — — — - — • —  —  —  —  —  

8 0.05090 3.5089 0.09469 3.4995 0.07515 3.8708 0.10891 4.1055 
9 0.05019 3.2937 0.09357 3.2790 0.07917 3.5992 —  — —  

10 0.04989 3.1 112 0.09311 3.0895 0.07982 3.3199 — — —  —  — —  

11 0.04798 3.9032 0.08874 2.8978 0.06601 3.0920 — — —  — — — 

12 0.04495 3.7647 0.07982 2.7649 0.06442 2.9667 0.08420 3.1013 
13 —  —  —  —  —  —  —  —  —  0.06330 2.8338 
14 0,04339 3.5790 0.08032 2.5709 0.06056 2.7079 —  •  —  

15 —  —  —  — —  0.05901 2. 6143 — — 

16 —— —  —  —  — — — 0.05829 2.5385 0.06852 2.6510 

Carbon Oxygen Sulfur Selenium 

Np Alpha Beta Alpha Beta Alpha Beta Alpha Beta 

3 0.04550 4.4504 0.08159 4.5997 — — — — — • — — 

4 0.04168 3.7920 0.07205 3.8890 — — — —  —  —  —  — —  —  — —  

5 0. 03806 3.3503 0.06523 3.4182 0.07202 3.9473 — — — — — — 

6 0.03523 3.0382 0.05859 3. 1034 0.06446 3.4728 0.12810 3.7250 
7 0.03229 2.8151 0.05477 2.8553 0.05263 3.1757 —  — —  

8 - —  — — —  — — — 0.04859 2.9505 — — —  — — — 

9 — — —  —  —  —  0.04488 2.7523 0.06941 2.9142 
12 0.04422 2.5211 

Selenium 

Nd Alpha Beta 

2 0.68011 4,5820 
3 0.57640 3.7667 
4 0.44612 3.3172 
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Ing must tend to zero less strongly than N tends to infinity. 

This would suggest a function of the form 

ln(ln(B)) = k*ln(N-l) + 1 (2.13) 

Figure 3 shows the approximately linear dependence of In(a) on 

ln(6). For the larger bases this is seen to give a very close 

fit to an equation of the form 

ln(a) = m*ln(3) + n (2.14) 

The values for the constants appearing in Equations (2.13) and 

(2.14) which are obtained by least squares fitting the data 

for H, C, 0, S and Se are listed in Table 4. It would seem a 

Table 4. Constants in the straight line approximations for the 
ET parameters 

Atomic s-symmetry p-symmetry 
Number klm n klm n 

1 -0.369 0.763 0.467 -3.983 
6 -0.465 1.084 0.704 -3.810 -0.362 0.689 0.708 -4.163 
8 -0.443 1.084 0.769 -3.269 -0.362 0.685 0.820 -3.760 

16 -0.487 1.278 0.711 -3.509 -0.440 0.929 1.505 -4.640 
34 —0.485 1.290 —— —— —0.443 0.988 —— —— 

difficult task to a priori predict the parameters of equations 

(2.13) and (2.14) from simple analytical reasoning. The 

slopes of ln(ln(3)) as a function of In(N-l) can be found by a 

r-weighted least-squares fitting of accurate exponential basis 

set atomic calculations [9], but the intercept of this line and 
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function of ^ 
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both the slope and intercept of the In(a) vs. In(3) line cannot 

accurately be determined in this manner. 

Energy losses encountered when optimal (a,g) values are 

replaced with those values predicted from Equations (2.13) and 

(2.14) vary with basis sets and are listed in Table 5. By 

comparing the values in this table with the optimal ET exponen­

tial results of Raffenetti for the same atoms it can be seen 

that the ratio of the number of gaussians to exponentials 

required to achieve the same total energy is approximately 3:1 

for the first row, 2.4:1 for the second row and 2:1 for the 

third row of the periodic table, reflecting the fact that the 

build-in advantage of the latter in describing the cusp is 

becoming less important to the total energy. 

Rapid convergence of the two columns results from the 

decreasing deviation of the optimal (a,6) points from the 

linearly interpolated values and from the simultaneous increase 

in the flatness of the energy surface as a function of the Ex 

parameters. Additional optimization of the (23s,lip) basis for 

carbon confirmed the validity of the linear points at large N 

values. 

Not only is the set of optimal ET parameters a smooth 

function of the number of gaussians used for the expansion, 

but also it behaves smoothly in going across the periodic 

table. In Figure 4 the double logarithm of the optimal beta 

values for a (7s,4p) ETC basis, as determined by Raffenetti 

[10], are plotted against the logarithm of the atomic numbers. 
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Figure 4. Dependence of the ET for a (7s,4p) basis on 
the atomic number 
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Table 5. Optimal and "straight line" atomic energies 

Basis Carbon 
optimal str. line 

Oxygen 
optimal str. line 

(7s,3p) 
(9s,4p) 

(11s,5p) 
(13s,6p) 
(15s,7p) 
(17s,8p) 
(19s,9p) 
(21s,lOp) 
(23s,11p) 

•37.630142 
•37.676799 
•37.685532 
•37.687815 
37.6883 80 

-37.688614 

-37.628856 
-37.676754 
-37.685492 
-37.687811 
-37.638380 
-37.688541 
-37.688592 
-37.688610 
-37.688614 

•74.343343 
74.716530 
•74.791194 
74.804559 
74.808117 

-74.330671 
-74.715517 
-74.791182 
-74.804558 
-74.808117 
-74.808117 
-74.809266 
-74,809350 
-74.809381 

Basis 

(10s,6p) 
(12s, 7p) 
(14s,8p) 
(16s,9p) 
(18s, lOp) 
(20s,11p) 
(22s, 12p) 
(24s,13p) 

Sulfur 
optimal 

-397.26057 
-397.43035 
-397.47966 

str. line 

397. 
397. 
-397. 
-397. 
397. 
-397. 
-397. 
-397. 

25823 
43023 
47966 
49538 
50121 
50352 
50431 
50462 

Basis Selenium 
optimal str. line 

(8s,6p,1d) -2385.3307 
(12s,9p,2d) -2398.1209 

(16s,12p,4d) -2399.5044 
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Discontinuities in the slope are visible for both curves. For 

the s curve it occurs in going from Be to B. For the p curve 

it occurs between N and O. 

D. Regularity of the Total Energy for Atoms 

As the approximate SCF orbitals approach the integral 

transform representation of the exact atomic orbitals by means 

of the systematic sequence of (a,G) points given by Equations 

(2.13) and 2.14), the total energy approaches the HF limit in 

a very regular fashion. This can be seen in Figures 5a and 5b 

where the beryllium energies of Schmidt [11] are used. Here 

the logarithm of the difference between each energy value and 

the near HF value of the (28s) basis is plotted as a function 

of 1/N and l/ln(N!) where N is half the number of s-primitives 

in the basis. 

Because two different linear dependencies seem to dominate 

at opposite ends of the basis size spectrum a simple analytic 

expression combining the two such as 

Log (Ejj-Ejj^) = A*N/(1 + exp l-a(N-2) ] ) + 

(2.15) 

B*ln(N!)/(l + exp[a(N-2)]) 

is capable of fitting the entire curve quite well. The 

constants A and B are determined linearly while E^ and a are 

determined nonlinearly by minimizing the standard deviation of 

the fit. The constant 2 appearing in (2.15) may also be varied. 
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however, is quite insensitive to its value. The nine Be 

points were fit with a maximum deviation of 0.0002 and a 

typical deviation of 10**(-6) for the larger basis set points 

with = -14.573023, A = -0.551292, B = -0.664424 and alpha = 

0.25. Although this technique provides an extrapolation to the 

HF limit from a limited segment of the converging curve, its 

usefulness is limited to an improvement no better than one 

order of magnitude beyond the last computed value employed in 

the fit. For atoms this degree of improvement is not too diffi­

cult to obtain by merely performing the indicated calculations 

with a larger basis set. The novelty of Equation (2.15) lies 

in being able to accurately fit energies from such a wide range 

of basis sets with a two term expansion, and with the help of 

such a fit, to predict, with confidence lower bounds as well as 

upper bounds for the exact limiting values. This will be elabo­

rated on in a forthcoming paper by Schmidt and Ruedenberg [12]. 

Our basis sets are sufficiently large and the energy 

values sufficiently regular that with the use of Equation (2.15) 

we can accurately estimate the HF limit for three of the atoms 

investigated. In applying Equation (2.15) we identify N with 

N(p), noting that N(s) = 2N(p) + 1 in carbon and oxygen, and 

N(s) = 2N(p) - 2 in sulfur. The limits are: carbon -37.688617 

, oxygen —74.809397 E^ and sulfur —397.50488 E^. The uncer­

tainty in these values is ±2 in the last digit. These values 

for the HF limit are in disagreement with the 1968 numerical 

Hartree-Fock energies of Fischer [13] by 0.00019, 0.00024 and 
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0.00122 for C, O and S respectively, all lying above the 

Fischer values. Subsequent numerical calculations [14] are 

much closer to our estimates of the lower bound. 

E. Optimal ETG Molecular Parameters 
for Uncontracted Calculations 

Since the reason for choosing a gaussian primitive basis 

as opposed to a set of exponential functions is the speed 

advantage the former gives in molecular multi-center integral 

evaluation a more pertinent aspect of the ET choice is that 

optimal ET molecular exponents are derivable from the atomic 

(a/B) with relative ease. Uncontracted optimizations of the 

ET (a,3) pairs in the molecules carbon monoxide, methane and 

acetylene with gaussian basis sets of (6s,Bp) up to (14s,7p) 

demonstrated that the energy differences between the optimal 

atomic and molecular (a,3) values for large sets were gener­

ally less than a millihartree in size. Moreover the optimal 

(a, p) values for the s-type primitives were very nearly iden­

tical for the atom and the molecule after lis. To a large 

extent this is to because the majority of primitives for this 

symmetry are needed to refine the cusp. As these large 

exponent functions become an increasing percentage of the 

basis set the (a,3) values which are optimal for the atomic 

cusp tend to dominate. This domination is aided by the near 

saturation of the valence region with sufficient functions 

such that exponent values can deviate considerably from the 

optimal ones without substantial effect on the total energy. 
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Optimal (a,3) pairs for p-symmetry in molecules are not 

observed to converge to the optimal atomic values as rapidly 

as the s-symmetryf but they do lie within a small region of 

the atomic values. 

Accurate basis sets at the atomic limit are only a minimal 

requirement for accuracy in molecules. Uncontracted calcula­

tions on CO with optimal atomic even-tempered exponents show 

that there exists an "additional molecular error" beyond that 

which would be expected from the sum of the atomic errors seen 

in Table 5. This is illustrated in Table 6. Here the "addi­

tional molecular error" is defined as the difference between 

the error due to basis set truncation within each orbital sym­

metry for the molecule and the error due to basis set trunca­

tion within each orbital symmetry for the two atoms. It is 

seen that the error generally decreases with increasing basis 

set size. The magnitude of the molecular error also depends on 

the particular elements involved and the intêrnuelear separa­

tions. The HF limit for CO comes from a hartree extrapolation 

of the total energies resulting from the largest three bases. 

Even with the simplifications inherent in the even-

tempered approach, molecular optimization is still very time 

consuming. Moreover the set of optimal atomic parameters are 

easily predicted for any size basis while the molecular set is 

quite unpredictable for small to medium size bases. Because of 

the similarity between atomic and molecular (a,g) pairs it was 
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Table 6. Molecular errors for carbon monoxide 

(a) Optimal atomic even-tempered parameters 

Basis Energy(a.u.) Total Molecular Addit. Molecular 
Error Error 

4s,2p -110.49971 2217.0 17.8 
6s, 3p -112.36763 349.1 5.1 
8s, 4p -112.64166 75.0 3.5 

10s,5p -112.69584 20.9 3.8 
12s,6p -112.71028 6.4 1.8 
14s, 7p -112.71478 1.9 0.8 
16s,8p -112.71579 1.0 0.5 
HF-limit -112.7167 0.00 0.00 

(b) Optimal molecular even-tempered parameters 

Basis Energy(a.u.) Total Molecular Addit. Molecular 
Error Error 

4s,2p -111.02170 1695.0 527.7 
6s, 3p -112.39190 324.8 -24.7 
8s, 4p -112.64635 70.4 -4.9 

10s,5p -112.69801 18.7 -2.5 
12s,6p -112.71176 4.9 -1.5 
14s,7p -112.71556 1.1 -0.8 
16s,8p -112.71600 0.7 -0.3 
HF-limit -112.7167 0.00 0.00 

therefore decided to use the atomic sets in the present investi­

gation. 

F. Effective Contracted Orbitals for S and P Symmetries 

Having determined the sise of the primitive basis set. we 

must choose a suitable set of contracted orbitals. For this 

purpose the KF-ACs and the set of unoccupied (virtual) 

orbitals which result from the LCAO formalism serve quite well. 
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Using a technique developed by Ruedenberg, Bardo and Cheung 

[15] for deriving from uncontracted molecular calculations 

that set of contracted orbitals which optimally reproduces the 

uncontracted results we investigated the overlap of the space 

spanned by the atomic SCF AO's (occupied and virtual) with the 

optimal contracted space. Our investigation involved ET basis 

sets ranging in size from (6s,3p) to (14s,7p) on the molecules 

CO, CH^, CgHg and HgCO. In all cases studied the space of the 

Is, 2s, 2p plus the first several virtual SCFAO's overlapped 

the space of the most important optimal contracted orbitals to 

better than 0.995 as shown in Table 7. 

Table 7. Transformation matrix between the HF atomic SCFAO's 
(occupied plus first virtual) and the optimal con­
tracted orbitals of CO. 

6s Basis 14s Basis 

Opt. Contr./AO 
Is 2s 3s 

1 0.974 0.228 0.008 
2 -0.229 0.974 0.011 
3 0.005 0.012 -0.991 

Opt. Contr./AO 
Is 2-s 3s 

1 0.476 0.878 0.006 
2 0.879 -0.476 0.010 
3 0.009 0.043 -0.992 

6p Basis 

Opt. Contr./AO 
2p 3p 4p 

1 0.979 0.178 0.105 
2 -0.196 0.631 0.750 
3 0.015 -0.722 0.612 
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Since the virtual orbitals tend to span the continuum of 

the atomic HF eigenvalue problem, the energy of these orbitals 

increases monotonically with their kinetic energy. The lowest-

energy virtual orbitals have the lowest kinetic energies. On 

the other hand, since the most diffuse primitives have the 

smallest kinetic and potential energies of all primitives, it 

turns out that the lowest-energy virtual AO's essentially 

consist of the most diffuse primitives orthogonalized to the 

occupied SCFAO's. This orthogonalization is unnecessary, 

however, if the object is merely to span the same space. In 

fact, Raffenetti [16] was the first to compare a set of HF-AO's 

plus a diffuse primitive to Dunning's [17] contracted orbitals 

on the nitrogen molecule and water. He found them to be 

slightly better than Dunning's. Because of the ease of gener­

ating this set and because of their similarity to the HF-AO-

virtual space we shall employ this type of basis in the rest of 

this paper. Table S lists the energy losses incurred with this 

Table 8. Energy losses with respect to an uncontracted (16s, 
8p) basis for a HF-AO-diffuse primitive contraction 
on CO 

Contracted Basis Energy Loss (millihartrees) 

(6s,5p) 
(5s,4p) 
(4s,3p) 
(3s,2p) 

0.4 
2.4 
5.8 
32.0 

(2s,Ip) 149.0 
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contracted basis for a C16s,8p) primitive basis on CO. The 

quality of this contraction scheme depends slightly on the 

internuclear distances involved since the exact separated 

atoms' coefficients are built in. 

G. A Minimal Basis Set Function for Hydrogen 

The hydrogen atom basis deserves special attention not 

only because of its ubiquitous appearance throughout chemistry 

but, more importantly, because of the substantial energetic 

effect which results from scaling its minimal basis function. 

Even though several contraction schemes now in use provide 

results within a fraction of a millihartree when two or more 

basis functions are used, it is nevertheless of interest to 

know which contracted function is most effective when used as 

a single minimal basis AO, 

A common practice is to take its coefficients from the 

atomic Is orbital and then determine the optimal scaling factor 

from the hydrogen molecule, A somewhat better single function 

is obtained by preserving the primitive exponents from the 

isolated atom and taking as contraction coefficients those 

which yield the Hg molecular orbital resulting from an uncon-

tracted SCF calculation. Also when used in other molecules, 

this minimal basis function yields a lower energy error per H 

atom than the scaled Is AO. This is illustrated in Table 9 

which lists the errors for calculations on methane, and 
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Table 9. Errors per H Atom in various molecules for hydrogen 
minimal basis set calculations with respect to an 
uncontracted H 6s primitive basis^ 

Scale Factor «2 ^2^2 CH4 

1. Coefficients of H minimal basis AO from atomic Is AO 

1.00 
1.19 
1.29 
1.35 

18.7 
0.1 
4.9 
13.0 

24.9 
4.5 
2.6 
1.7 

20.9 
3.6 
1.8 
2.4 

2. Coefficients 
MO 

of H minimal basis AO from uncontracted Hg SCF 

1.00 
1.08 
1.10 
1.13 
1.15 

0.0 
5.0 
7.0 

11.9 
17.2 

4.1 
1.3 
1.0 
0.9 
1.2 

3.1 
1.1 
1.1 
1.2 
1.5 

3. Coefficients 
calculations 

of 
on 

H minimal 

^2^2 

basis AO from uncontracted SCF 

1.00 0.5 1.9 

4. Coefficients 
calculations 

of 
on 

H minimal 
CHa 

basis AO from uncontracted SCF 

1.00 2.2 0.4 

^All errors are given in millihartrees. 

acetylene made with various hydrogen minimal basis set orbitals 

contracted from six s=primitives, with respect to calculations 

made with the uncontracted hydrogen 6s basis. In addition to 

the two contracted orbitals just mentioned the Table also lists 

some results using minimal basis sets that yield optimal 
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results in CgHg and CH^. The carbon basis in these calcula­

tions is a (6s,3p) basis. The degree of contraction of the 

carbon basis influences the errors in Table 9 to less than 0.1 

millihartrees. 

Since acetylene and methane are usually found at opposite 

ends of the scaling range, the error in other hydrocarbons are 

presumably no larger. For use as a single basis function the 

minimal basis No. 2 with a scaling factor of 1.08 would seem to 

represent an optimal compromise. 

In cases where a hydrogen atom will dissociate from the 

molecule or where additional accuracy is required, some diffuse 

primitives must be added to increase the flexibility of the 

basis. The quality of various basis sets of this type is 

illustrated in Table 10. The coefficients of the minimal basis 

Table 10. Atomic and molecular hydrogen errors with the 
optimal contracted orbital and diffuse primitives 
for a 6s Basis" 

Scale Factor Contracted Basis Atomic Molecular 

1.00 one s orbital 18.6 0.4 
1.00 two s orbitale 1.9 0.4 
1.00 three s orbitals 0.2 0.4 
1.00 uncontracted basis 0.2 0.4 

1.10 one s orbital 48.5 14.4 
1.10 two s orbitals 2.7 1 ,7  
1.10 three s orbitals 0.3 0.5 
1.10 uncontracted basis 0.3 0.5 

^All errors are in millihartrees. 
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orbital are those from case 2. of Table 9 (i.e., from an 

uncontracted Hg calculation with the scale factor unity). The 

second and third orbital, where present, are the one or two 

most diffuse single gaussian primitives. The error listed is 

with respect to the exact value in the atom and with respect to 

the s-limit of the SCF approximation in the molecule. 

It is apparent that, when at least two s orbitals are 

used, the choice of a scale factor of unity will give equally 

satisfactory results, within a millihartree, for the free H 

atom as well as for the H orbital in a molecule. From the data 

given in Table 9 for case 2., it can be inferred that this 

choice will also give millihartree accuracy for hydrogen in 

other molecules. 

H. Polarization Functions 

In order to construct symmetry orbitals for use in 

molecular calculations, admixtures of all primitive functions 

(or combinations of primitives transforming according to the 

irreducible representations of the molecule's point group) 

should be included in the algorithm. While for atoms in the 

first and second rows this restricts the primitives to be of s 

or p symmetry, functions of higher angular momentum may mix in 

for molecules. Such functions allow the MO's to polarize in 

the direction of the bond and were initially suggested by 

Nesbet [18]» Polarization functions are known to provide a 

substantial energy lowering and improvement of expectation 
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values when compared with similar calculations without such 

functions. In the CO molecule, approximately three or four 

sets of even-tempered d primitives are required in order to 

attain millihartree deviations from the s, p, d basis set limit. 

Table 11 shows the energy lowering with the inclusion of d 

Table 11. Optimal ET d-symmetry parameters and energies for CO 

Basis& Carbon 
Alpha Beta 

Oxygen 
Alpha Beta Energy 

(10s,5p/5s,3p) 
(10s,5p,ld/5s,3p,ld) 
(10s,5p,2d/5s,3p,2d) 
(10s,5p,3d/5s,3p,3d) 
(10s,5p,4d/5s,3p,4d) 

—— —— —— —— —112.6958 
1.00000 1.09660 1.00000 1.03890 -112.7619 
0.06588 3.89619 0.03088 5.87085 -112.7680 
0.06856 3.81904 0.04689 4.22070 -112.7704 
0.06050 3.62110 0.02814 4.11723 -112.7712 

^Contracted orbitals are the optimal contracted orbitals for 
10s,5p. 

functions optimized for the CO molecule. The Id and 2d expo­

nents were optimized with a (6s,3p) and (8s,4p) respectively, 

instead of with the (10s,5p) basis. Although a satisfactory 

description of some properties may be obtained without such 

functions, others, like the internal rotation in hydrogen 

peroxide, require that they be present in the basis set. They 

likewise have a strong influença on the potential energy 

surfaces of the -HNO system as will be seen in section II of 

this work. A recent study by Poirier and Kari [19] indicates 

that for the computed one-electron properties of first and 
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second row hydrides there is no economic justification for 

including f-symmetry polarization functions. For CO they lower 

the total energy by at most 6 millihartrees, since the actual 

restricted HF limit for CO lies within a couple millihartrees 

of -112.7892 obtained with a very large s, p, d, f Slater-

type orbital (STO) basis [20]. 

I. Regularity of the Total Energy and Dipole Moment for CO 

In the case of the free atom a systematic approach to the 

complete basis provided sufficient regularity in the total 

eriBîgîèig^jtiiait extrapolation to the integral transform limit 

became feasible. Similar behavior is found in the carbon mon­

oxide molecule. However, the increase in basis set size in 

going from an atom to a molecule precludes the use of as large 

a set as was used in the atoms. Table 12 lists the results 

of Hartree extrapolations on the total energies obtained with 

s, p, and s, p, d basis sets. 

Another commonly computed molecular property is the dipole 

moment. Since this property is rather sensitive to the basis 

set's ability to properly span a region of space other than 

near the nucleus it was of interest to see if the use of an 

energy optimized ET basis would allow an extrapolation of the 

values obtained with some smaller bases. In Table 13 the 

values of the dipole moment from polarized and nonpolarized ET 

bases are reported. In some cases additional diffuse primi-
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Table 12. Hartree extrapolations of CO total energies 

Basis Energy E(limit) 

(6s,3p) -112.3919 
(8s,4p) -112.6464 — — 

(10s,5p) -112.6980 -112.711 
(12s,6p) -112.7118 -112.717 
(14s,7p) -112.7156 -112.717 
(16s,8p) -112.7160 -112.716 

Basis Energy E(limit) 

(6s,3p,ld) -112.4919 
(8s,4p,2d) -112.7231 — — 

(10s,5p,3d) -112.7704 -112.783 
(12s,6p,4d) -112.7815 -112.785 

tives with an s exponent of 0.06 and a p exponent of 0.03 were 

added to the basis to help in describing the region of space 

far from the nucleus. 

The HF limit value is close to 0.276D and the experi­

mental value obtained by microwave spectroscopy is -Ô.112D. 

The fact that the HF value has incorrect sign is not of concern 

to us for this work. What seems evident from these results is 

that the value of this property is too highly dependent on 

diffuse primitives in the basis to allow extrapolation. Even 

though basis sets A and E or C and D must converge to the same 

limit they are still far enough apart in their values that a 

simple extrapolation would seem of questionable merit. 
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Table 13. Dipole moments from various ET basis sets on CO^ 

Basis A Basis B Basis C Basis D 

(6s,3p) -112.362 
0.641 

-112.426 
0.581 

(6s,3p,ld) -112.491 
0.088 

— —  

(8s,4p) -112.640 
0.552 

-112.649 
0.567 

(8s,4p,2d) -112.723 
0.336 — —  

(10s,5p) -112.696 
0.506 

'•112.701 
0.543 

(10s,5p,ld) -112.770 
0.212 0.258 

(12s,6p) -112.7092 
0.479 

— —  —  

^Every entry contains the total energy (in hartrees) in the 
first row and the dipole moment (in Debyes) in the second row. 
Basis set B contains the functions in Basis A plus some addi­
tional diffuse primitives. Basis D consists of the functions 
in Basis C plus some additional diffuse primitives. 
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III. A HYBRID GAUSSIAN INTEGRAL SCHEME 

A. Objective 

Numerous studies done at the Hartree-Fock SCF level show 

the effects of basis set truncation and give an indication of 

the need for large flexible sets to obtain chemical accuracy 

(~1 millihartree/atom). Only large sets are capable of 

reliably yielding results which truly reflect the level of 

inherent physical and mathematical approximations in the theory 

employed in the calculation. When inadequate bases are used it 

is difficult to ascertain whether disagreements with experi­

mental results arise from the basis set or other theoretical 

approximations. 

Since a large number of primitives are needed to describe 

the cusp behavior near the nuclei, it might be hoped that the 

omission of such primitives would produce an error that is 

quantitatively transferable to other geometries or states. If 

this were true the error would cancel for many cases of 

chemical interest. That such is not the case, however, is 

evidenced by the lack of parallelness between energy surfaces 

of small diffuse primitive sets and those of large sets. 

Various model potential and pseudo-potential methods are 

currently being explored for circumventing the lengthy cusp 

expansion^ 
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In the procedure developed here the AO basis for the 

molecular calculations is large enough to guarantee at least 

millihartree/atom accuracy in the total energy. However, only 

the intra-atomic integrals are actually calculated with this 

large basis. Moreover, they are merely retrieved from an 

atomic archive. All inter-atomic integrals are calculated 

from a shorter substitute basis which approximates the large 

basis sufficiently well to insure an accuracy on the order of 

a millihartree. The essence of our investigation is to demon­

strate that such an approach is indeed feasible by developing 

a particular implementation for several specific systems. The 

scheme is applicable at small as well as large internuclear 

distances. Although our principal objective is to facilitate 

ab initio calculations with large basis sets, it is also 

possible to use the technique with smaller basis sets, albeit 

with a smaller savings in time. 

Another obstacle to obtaining chemical accuracy in 

molecular calculations based on analytic expansions in terms 

of gaussian primitives is the computation of very large 

numbers of two-electron repulsion integrals. For molecules 

possessing no exploitable symmetry the number of such inte­

grals is proportional to (N**4)/8,- where N is the number of 

primitives. This dependency on N currently precludes high 

accuracy basis sets for asymmetric molecules with more than 

four first row atoms. Even with much smaller basis sets large 
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scale ab initio calculations on medium sized molecules con­

taining eight to twelve atoms, are only tractable with the 

use of various algorithms for pretesting blocks of integrals 

to partially avoid computing those which are negligibly small 

in magnitude [21-23]. This procedure can reduce the integral 

problem to approximately a cubic in N, and it can, likewise, 

be used in addition to the approximation outlined in the 

preceding paragraph. 

B. A Fitting Procedure for the Small Basis 

The conceptual formulation of the integral merging scheme 

is simple. A set of radial functions expanded in terms of a 

small number of primitives is fitted to a set of accurately 

determined HF-AO's, generally given by an expansion in terms 

of a much larger set of primitives. In a molecular calculation 

the numerous multi-center integrals would be generated with the 

AO's from the small set, while all one-center integrals would 

come from the proper set of AO's with the large primitive set. 

The approximated integrals should deviate from the "exact" 

multi-center integrals by some acceptable tolerance. All 

"exact" one-center integrals from the large basis (computed in 

terms of primitives all on one center) could be generated once 

and then stored. The integrals from these atomic calculations 

would be merged with the approximate multi-center integrals 
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for use in molecular calculations. Figure 6 shows a diagram­

matic breakdown of which integrals would be approximated for a 

hypothetical diatomic AB using this scheme. 

A B 

Diffuse 
Primitives 

Diffuse 
Primitives 

Diffuse 
Primitives 

X 
Diffuse 

Primitives 

SCF 
AO's X SCF 

AO's 

approximated 

exact 

Integrals between AO's in each rectangle are exact. 

Figure 6. Diagramatic breakdown of integrals for a diatomic 
AB molecule computed with the merging technique 

In order to test this idea we choose as "large" bases a 

(6s) primitive basis on hydrogen, a (16s,8p) primitive basis 

on carbon, nitrogen and oxygen and a (22s,12p) primitive 

basis on sulfur, all of which yield approximations to the 

exact atomic SCF wavefunctions with energy errors of less than 
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a millihartree. These atomic SCF calculations employed the 

even-tempered parameters given in Table 14, from which the 

Table 14. Even-tempered parameters used in the "large" basis 
sets 

Carbon Nitrogen Oxygen 
Ns/Np Alpha Beta Alpha Beta Alpha Beta 

16 0.04133 2.4255 0.05603 2.4026 0. 07501 2.4177 
8 0.03096 2.6642 0.04451 2.6711 0. 05318 2.7374 

Hydrogen Sulfur 
Ns Alpha Beta Ns/Np Alpha Beta 

6 0.03199 3.2577 22 0.05228 2.1914 
12 0.03644 2.4153 

expansion of the occupied SCF AO's are easily reproduced. 

These SCF AO's are then fitted by shorter expansions containing 

the following numbers of primitives: (4s,3p), (6s,4p), (7s,5p) 

in C, N, and O and (7s,5p), (8s,6p) in S. 

Coefficients and exponents for the fitting functions come 

from a simultaneous least squares, nonlinear fitting of the 

HP-AO's defined in the accurate basis set. The set of Ns AO's 

is first deorthogonalized according to the method of Raffenetti 

and Ruedenberg [24] to give the characteristic cuspless parts 

for the 2s and 3s AO's. With a straight minimization of the 
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sum of the individual deviations, one arising from each of the 

AO's, a problem of local minima is encountered. To circumvent 

this problem the quantity which was minimized was taken as: 

[Y(cf^ + Cg) - (3.1a) 

where = /drr^((|)f^° - (3.1b) 

The parameter gamma determines which of the two factors will 

dominate the fitting procedure. At gamma = 0.5 the standard 

deviations for the two orbitals are forced to be equal. For 

gamma >>0.5 the sum of the two deviations is being minimized. 

In sulfur the deviation of the Is was ignored. Once optimal 

exponents were found the orthogonal set of AO's was least 

squares fit. In practice a value of gamma = 0.510 - 0.502 was 

found best. 

The 2p orbital was fitted with a weighting factor cf 

1 + (l/r)/<l/r>. The value of <l/r> was the appropriate one 

for each particular atom. In sulfur the 2p and 3p were not 

weighted. 

A simple least squares fit was used for the hydrogen 

function. Some improvement was found by subsequent nonlinear 

variation of the exponents so as to obtain good energies for 

and CgHg. Table 15 contains the normalized fitting 

functions which have so far been tested. For hydrogen two 

expansion lengths were fitted to the normalized optimal Hg 



Table 15. Small basis contracted orbitals fitted to the accurate AO's 

Hydrogen s-symmetry 

3s-Expansion 
E&poneats Is AO 

0. 148553 
0. 655308 
4.427656 

0.466251 
0.563014 
0.114657 

43-Expansion 
Exponents Is AO 

0.129816 
0.441380 
1.655008 
10.337910 

0.354942 
0.524776 
0.227469 
0.039041 

Carbon s-symmetry 

4s-ElKpansion 
Exponents Is AO 

0» 202623 
0.. 811746 
5.. 754 02 7 

33.. 389878 

-0.020492 
0.092856 
0.697760 
0.362834 

2ii AO 

0.817607 
0.290926 

•0 .281660  
•0.073112 

6s-Expansion 
Exponents Is AO 

0.138121 
0.444623 
2 .001122  
5.827941 
20.804388 

113.717501 

-0.001569 
0.005631 
0.154740 
0.531046 
0.360747 
0.102334 

2s AO 

"~ÔT47ÎÔ38 
0.636181 

-0.033565 
-0.212924 
-0.078197 
-0.024723 

in 
w 

7s-Expansion 
Exponents Is AO 

0.122369 
0.354639 
0,977973 
3.672232 

11.287713 
41.339238 

226.646517 

0.002238 
-0 .008228 
0.046462 
0.410214 
0.462357 
0.198329 
0.042435 

2S AO 

"07365526 
0.1536622 
0.133139 
•0. 199845 
•0.119769 
•0. 048259 
0. 008021 



Table 15, Continued 

Carbon p-symmetry 

3p-Expansion 
Exponents 2p AO 

0.147838 
0„ 605057 
3,098134 

0.480664 
0.562737 
0.180847 

4p-Expansion 
Exponents 2p AO 

0.109285 
ID.363130 
1.305269 
6.372827 

0.306434 
0.543669 
0.316617 
0.071145 

5p-Expansion 
Exponents 2p AO 

0.089629 
0.256613 
0.767172 
2.578531 
12.217748 

0.202677 
0.470321 
0.386495 
0.153578 
0.028280 

4s-Expansion 
Exponents Is AO 

Nitrogen s-symmetry 

0.32901 I 
1,630404 
9.59765 I 
55,385702 

-0.022418 
0.151620 
0.708962 
0-297975 

2s AO 

*07923565 
0. 162535 
-0.291192 
0. 056177 

6s-Expansion 
Exponents Is AO 

0.211099 
0.680192 
3.702469 
11.450813 
41.979337 

230.153400 

-0.000723 
0.008060 
0.291556 
0.525890 
0.266764 
0.060764 

2s AO 

•~Ô.523Ô25 
0.594303 

-0.104707 
-0.190281 
-0.056515 
-0.015497 

7s-Expansion 
Exponents Is AO 

0. 137648 
0.368286 
1.061993 
3.869077 

1 1.90889 2 
43.634667 

237.621933 

-0.000603 
0.002022 
0.009878 
0.306304 
0.519810 
0.256764 
0.058217 

2s AO 

"ÔT2Ï3538 
0.623866 
0.322098 
-0.167548 
-0.161337 
-0 .062001  
-0.013066 



Table 15. Continued 

Nitrogen p-symmetry 

3p-£xpansion 
Exponents 2p 

0.208183 
0.894184 
4. 614036 

AO 

0.472236 
0.577238 
0.180851 

4p-Expansion 
Exponents 2p AO 

0.161404 
0.546277 
1.965585 
9.459355 

0.316113 
0.537646 
0.316878 
0.071462 

5p-Expansion 
Exponents 2p AO 

0.116362 
0.336080 
1.005332 
3.358313 

15.664872 

0. 167814 
0.451520 
0.412265 
0.181068 
0.034607 

Oxygen s-symmetry 

4s-E:Kpansion 
Exponents Is AO 

0.386277 
1.545005 

10.509882 
60.314388 

-0.019023 
0.093029 
0.694443 
0.364047 

2s AO 

"Ô78Ô34Ô8 
0.312281 
0.291847 
0.081221 

6s-Expansion 
Exponents Is AO 

0.257402 
0.843619 
3.416036 
10.465813 
37.621872 

206.035910 

0.000011 
0.002122 
0.143546 
0.540072 
0.364914 
0.101639 

2s AO 

'"07453908 
0.649143 

-0.011381 
-0.231562 
-0.086041 
-0.026007 

7s-Expansion 
Exponents Is AO 

0.226946 
0.667978 
1.868227 
6.800774 
20.764500 
75.689975 

414.465533 

0.002105 
-0.007057 
0.048697 
410281 
,461482 
,195948 

0. 
0 ,  
0 .  
0,041555 

2s AO 

'"07349596 
0.637572 
0.158121 

-0.206522 
-0.130158 
-0.050462 
-0.008549 



Table 15. Continued 

Sp-Expansion 
Exponents 2p AO 

0.268528 
1. 183311 
6, 129933 

0.476345 
0.569557 
0,195015 

Oxygen p-symaetry 

4p-Expa&siou 
Exponents 2p AO 

0.193895 
0.68544 3 
2.513505 
11.989289 

0.305329 
0.532386 
0.337723 
0.080587 

5p-Expansion 
Exponents 2p AO 

0.157876 
0.468683 
1.425085 
4.766168 

22.046385 

0.203772 
0.444734 
0.400592 
0. 177319 
0.033475 



Table 15. Continued 

Sulfur s-symœetry 

Ts-Ejcpansion 
Is 10 2s AO 3s AO Exponents 

"Ô7ÎÏÛ57Ô" 
0.251073 
0.516087 
2. 12*309 
5.304948 
35.887364 

167.934566 

0.001923 
-0.007188 
0.010630 

-0.025737 
0.065939 
0.606993 
0.460702 

0.004073 
-0.1017052 
0.047910 
0.563349 
0.527235 

-0.286144 
-0.156889 

0.249590 
0.560886 
0.389115 

-0.381585 
-0.216545 
0.089537 
0.045704 

Exponents 

'Ô7ÏT457Cr" 
0.251073 
0.550208 
2. 074844 
5.226022 

33.615957 
123.620370 
677.015440 

eis-Expansion 
Is 10 2s AO 3s AO 

0.0511160 
•0.016544 
0.0211989 
•0.037735 
0.073224 
0.529467 
0.447169 
0.123568 

0.003055 
-0.011412 
0.041373 
0.544466 
0.548925 

-0. 256656 
-0.158888 
-0.033874 

0.242476 
0.594288 
0.373527 

-0.386120 
-0.222491 
0.079678 
0.046966 
0.009872 

in 
«J 

5p-Expansion 
Exponents 2p AO 

0.088020 
0.212592 
0.587405 
4.216851 
19.004673 

0.032336 
-0.084300 
0.156428 
0.704031 
0.377793 

Sulfur p-symmetry 
6p-Expansion 

Exponents 2p AO 3p AO 

"Ô7:[Ô7422 
0.502224 
0.426991 
0. 174541 
•0.108104 

0.088020 
0.212593 
0.598660 
2.799767 
9. 196934 
35.452004 

0.008009 
-0.021284 
0.063398 
0.487347 
0.501222 
0.166538 

3p AO 

0.206883 
0.505160 
0.434205 

-0.105775 
-0.149470 
-0.040729 



58 

function. Although it was possible to generate fitted func­

tions with less than four s-primitives which gave less than a 

millihartree error for Hg, these were not optimal for C-H 

bonds. 

For all the fitting basis sets a limited amount of addi­

tional nonlinear variation of the exponents was made at the 

equilibrium geometry and at a point on either side of the 

equilibrium point to see if a better fit could be obtained. 

Generally the final exponents were close to those obtained by 

the procedure described earlier. 

C. Minimal Basis Set Results 

Extensive tests were conducted on CO and Ng with the 

integral merging technique. Both minimal and augmented basis 

sets were employed» The minimal basis set calculations 

involved six runs at various internuclear separations with all 

integrals computed exactly and with the two-center ones 

approximated by use of the merging scheme. A (16s,Bp) ET basis 

was used for the exact calculations and for the one-center 

integrals which were stored for use with the merging technique 

calculations. At each point the deviation in total energy, one-

and two-electron components of the total energy, kinetic and 

potential energies, and the orbital energies were determined. 

In addition, the average deviation between the two sets of co­

efficients was computed. The values found for CO are contained 

in Table 16, those for Ng are listed in Table 17. 
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Table 16. Energy and orbital coefficient differences between 
merged and exact minimal basis set calculations on 
CO with a (16s,8p) ET basis 

"i El E2 T V 3s 4s ""5s "îil" 

1. 90 0.0 -2.0 2.0 4.4 -4.4 0.4 0.1 -0.2 0. 1 
3.3 4.3 6.7 0. 5 

0.7 2.4 -1.7 1.5 -0. 9 0.5 -0.6 0.4 0.0 
3.6 4.9 8.2 7.8 

4.5 -20.0 24. 6 55.7 -50.7 4.7 1.9 -4.5 2.4 
68.2 12.4 12.4 8. 0 

2. 13 0.0 -1 .5 1 .5 3.3 -3.3 0.3 -0. 1 -0. 1 0. 1 
2.4 3.1 3.6 0.9 

0.9 2.3 -1.4 0.3 0.6 0.0 -0.3 0. 5 0. 1 
3. 1 4.6 10.5 2.6 

2.0 -11.0 13.0 23.8 -21.8 3.5 -0. 3 -3.7 1.5 
51.2 65.8 70.5 7.4 

2. 30 0. 1 -1.2 1.3 2.7 -2.6 0.3 -0. 1 0.0 0. 1 
2. 1 2.7 1.6 0.9 

0.5 0.9 -0.4 0.6 -0. 1 0.0 -0.1 0.4 0.1 
3.2 4.8 7.9 4.2 

0. 8 -5.9 6.6 4. 1 -3.4 3.2 -1.4 -3.5 1.0 
46.8 41.4 35.6 8.1 

2. 50 0.1 -1.0 1.1 2.1 -2.0 0.2 -0. 1 0. 1 0. 1 
2. 1 2.4 2.9 0.4 

-0. 1 -1.5 1.4 1.9 -2.0 0.0 0.2 0. 1 -0. 1 
4.0 4.8 4.7 5.1 

0.1 0.6 0.5 -15.0 15. 1 2.9 -2.2 -3.3 0.6 
45.4 22i6 16.8 8.7 

2.70 0.0 -1.0 1.0 1.7 -1.7 0.2 0.0 0.1 0.1 
2.2 2.3 1.9 0.5 

-0.5 -2.2 1.8 2. 2 -2.6 -0.1 0.2 -0. 1 0. 1 
5.0 6. 1 5.7 3.3 

1.0 5.0 = 6.0 '22. 1 23. 1 2.5 -2.0 -3.1 0.4 
44.8 26.7 27.8 9.0 

all energy deviations are in aillihartrees. The basis sets are 
given ia the order (7s,5p), (6s,4p) and (4s,3p) top to bottom. 
Each entry in the four righthand columns contains the orbital 
energy deviation on top and the standard deviation in the or­
bital coefficients X(10**4) beneath it for the three sigma 
and Ipi occupied valence orbitals. The five lefthand columns 
are total, one-, two-electron, kinetic and potential energies. 
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Table 17. Energy and orbital coefficient differences between 
merged and exact minimal basis set calculations on 
N2 with a (16s,8p) ET basis 

R £ El E2 T V 3s 4s 5s Ipi 

1. 9 -0.6 1.7 -2.3 -8. 3 7. 7 0.5 -0.3 0.2 0.1 
1.5 2.6 13. 1 0. 1 

1.8 -0.5 2.3 4. 2 -2. 5 0.5 0. 1 -0. 1 0.2 
6.8 2.5 21. 1 0.3 

0.2 29.7 -29.5 -33. 4 33. 6 -4.7 -3.6 5.4 -1.5 
15.6 29. 5 42.3 3. 0 

2. 07 -0.2 2.7 -2.9 -9. 5 9. 3 -0.3 -0.5 0.2 -0. 1 
0.9 1.2 8.2 0. 1 

0.9 — 5.4 6.2 10. 3 -9. 5 0.5 0.9 0.4 0.2 
0.6 1.4 10. 2 0.4 

0.5 31 .6 -31.1 -9. 4 9. 9 -4.9 -4.0 3.5 -1.1 
26.2 9.0 46.4 2.6 

2. 3 0. 1 2. 1 -2.0 -7. 2 7. 3 -0.2 -0.3 0. 1 -0.1 
0.5 2.0 2.5 0. 1 

-0. 1 7.6 -7.7 9. 2 -9. 3 0.4 1.2 0.5 0.3 
6.0 1. 5 6.5 0.8 

1.4 37.3 -38.7 15. 4 -14. 0 -6.2 -4.5 1.2 -1.2 
40.8 34.0 64.5 1. 4 

2. 5 Ô. 1 0.4 -0.5 -3 . 3 3. 4 -0.1 -0. 1 0. 1 0. 1 
0.7 2. 3 0.7 0. 1 

-0.4 -4.6 4.2 3. 0 -3. 4 0.3 0.7 0. 3 0. 2 
6.3 1. 1 5.7 1.3 

1.5 38.2 -36.7 28. 1 -29. 6 -7. 1 -4. 4 0.0 -1.3 
48.6 34.9 74.4 0.0 

See material below Table 16. 
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As was noted previously the fitting procedure describes 

the near nuclear regions poorly. Thus the accuracy of the 

merging technique generally will decrease with decreasing 

internuclear separations. As R—the error will tend to zero 

since only the exactly computed one-center integrals will be 

left. Multiple bonding, such as in CO and Ng, represents a 

difficult test of the technique since the equilibrium bond 

lengths are so short, 2.13 and 2.07 bohr respectively. Some 

single C-0 bonds distances, as in methanol, are as large as 2.7 

bohr while some N-N bond distances, as in NgHg, are nearly 2.8 

bohr. 

An integral by integral analysis of the 319 two-center 

integrals for minimal basis set CO calculations shows a total 

absolute difference between the exact and approximated sets 

ranging from 0.013 for the (7s,5p) to 0.195 for the (4s, 

3p). The total difference was 0.005 for the (7s,5p), and 

-0.012 for the (4s,-3p)= Only 38 integrals had an error larger 

than 0.0001 a.u. for the (7s,5p), the maximum being 0.0008 a.u. 

For the (4s,3p), 34 integrals exceeded 0.001 a.u. in error, the 

maximum being -0.006 a.u. The greatest difficulty seemed to 

lie with hybrid integrals involving the Is function. This is 

probably a result of the poor description of the cusp. Of 

course each integral enters the Fock matrix multiplied by some 

element of the density matrix. Therefore no straightforward 

connection exists between the error in a given integral and 

the final error in the total energy. As is evident from the 
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results in Tables 14 and 15 the procedure utilizes the devia­

tions which do exist in the integrals in such a manner that a 

high degree of cancellation of error occurs. In most instances 

the total and orbital energies are an order of magnitude more 

accurate than the one and two electron components of the total 

energy. 

Tests of the 3s and 4s fittings of the optimal contracted 

orbital from Hg are shown in Table 18 for scale factors of 1.10 

and 1.14. Although the differences in total energy are nonzero 

for the 4s fit, as mentioned earlier this choice of exponents 

gave good C-H bond results. The error which does exist is 

quite stable over a wide range of internuclear distances. 

Table 18. Minimal basis set total energy differences between 
merged and exact calculations on H2 with a 6s basis^ 

R Scale Factor = 1.10 Scale Factor = 1.14 

1.2 

1.4 

1.6 

1.8 

0.5 
1.8 
0.5 
0.9 
0.5 

-0.2 
0.5 

-0.9 

0.5 
1.9 
0.5 
0.7 
0.5 

-0.6 
0.4 
-1.2 

^Top entry is from the 4s fit, bottom is from the 3s fit. All 
entries are in millihartrses. 

For sulfur a (7s,5p) fit was made of a (22s,12p) ET set of 

AO's. The deviations in total energy, one-electron component 
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of the total energy, and orbital energies for this fit are 

listed in Table 19. 

Table 19. Minimal basis set differences between merged and 
exact calculations on with a 22s,12p basis^ 

R ET El 3s 4s 5s 9s Ipi 2pi 7pi 

w
w
w
 

00
 

-0.4 
-0.1 
0.1 

-9.4 
1.0 

-4.4 

1.2 
0.4 

-0.2 

-0.9 
—0.6 
—0.6 

-0.3 
1.0 
0.9 

— 0.6 
-0.5 
-0.4 

0.4 
-0.2 
0.1 

0.0 
-0.2 
-0.1 

-0.7 
-0.9 
-0.7 

^All energies are in millihartrees. 

In an effort to judge the accuracy of the method on poly­

atomic molecules further minimal basis set calculations were 

run on formaldehyde, ethylene and ethane with all the fitted 

basis sets. Although the error found for these systems with 

the smallest fitting bases were significantly larger than in 

the diatomic cases the error were constant in going from ethane 

to ethylene. This suggests that heats of reactions for similar 

systems may be predicted fairly well with this small basis. 

The deviations in total energy and the average absolute devia­

tions in the orbital energies are listed in Table 20. 

D. Extended Basis Set Results 

When the contracted basis set is larger than the minimal 

AO set, then the merging technique uses the most diffuse primi­

tives from the fitting basis sets to augment the atomic 

orbitals. Generally these primitives are not contained in the 
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Table 20. Minimal basis set differences between merged and 
exact calculations on formaldehyde, ethylene and 
ethane^ 

Basis AE orbital dev. 

(4s,3p/3s) -0.1 2.5 
-8.0 3.5 
-8.9 4.7 

(4s,3p/4s) -5.0 2.1 
-6.7 2.5 
-6.4 3.1 

(6s,4p/3s) 0.3 0.5 
2.2 0.8 
2.0 1.2 

(6s,4p/4s) -0.2 0.3 
1.8 0.3 
2.0 0.2 

(7s,5p/3s) 0.3 0.7 
-0.2 0.9 
-0.9 1.7 

(7s,5p/4s) 0.0 0.2 
0.1 0.3 
0.0 0.3 

^All energies are in millihartrees. 

original large basis set so that additional primitives must be 

added to the large basis in order to run a check on the 

accuracy of the merging technique. For example, the (3s,2p) 

contraction on CO with the large (16s,8p) basis would require 

one additional s-primitive and one set of p-primitives per atom 

to test the merged calculations against. In the largest case 

the (5s,4p) contraction was tested against a full ab initio 
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calculation done with (19s,lip) primitives. Table 21 shows the 

energy losses with various contractions using the merging 

Table 21. Energy losses for contracted basis set merged 
calculations on CO 

R(bohr) 
(3s,2p) Contr. 

AEt 
(4s,3p) Contr. 

AEy 
(5s,4p) Contr 

AE^ 

2.0 0.4 
1.0 
11.3 

-0.3 0.2 

2.13 0.3 
0.9 
8.5 

-0.1 
-0.4 

0.1 

2.2 0.2 
0.7 
6.7 

2.5 0.2 
0.3 
3.2 

^All energies are in millihartrees. 

technique. The relationship between the uncontracted (16s,8p) 

CO energy and the energy obtained with various HP-AO contrac­

tion lengths using the diffuse primitives from the fitting 

basis sets is given in Table 22. All values given in this 

table are from full ̂  initio calculations. 

In an effort to expedite extended basis set calculations 

on sulfur the two most diffuse s- and p-type primitives from 

the (22s,12p) set were used as the most diffuse primitives in 
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Table 22. Energy differences between an uncontracted (16s,8p) 
ET basis and the HF-AO-diffuse primitives contrac­
tion scheme on CO with diffuse primitives from the 
fitting basis sets& 

Contraction Fitting Basis E (total) 3s 4s 5s Ipi 

(5s,4p) (7s,5p) -1.9 0.2 0.4 -0.1 0.3 
(5s,4p) (6s,4p) -3.4 -0.4 1.2 0.2 1.1 

(4s,3p) (7s,5p) -5.0 0.9 2.5 0.2 1.7 
(4s,3p) (6s,4p) —6.2 -1.1 1.6 -0.5 0.5 
(4s,3p) (4s,3p) -20.1 0.7 -0.4 -1.3 -0.5 

(3s,2p) (7s,5p) -27.0 32.5 6.1 -4.2 7.3 
(3s,2p) (6s,4p) -19.1 19.4 3.1 -5.0 3.5 
(3s,2p) (4s,3p) -25.5 8.8 0.7 -2.8 0.5 

(2s,Ip) none -149.9 194.2 53.0 36.4 54.3 

^All entries are in millihartrees. The four columns on the 
right contain the deviation in the orbital energies. 

the fitting set. Thus, for contractions equal to or less than 

5s,4p no new additional primitives need be added to the larger 

set in doing the one-center integrals. If this had not been 

done the large basis set would have ballooned to (24s,14p) or 

larger in the case of some extended basis set calculations. 

The inclusion of d-symmetry primitives in the basis does not 

present any unusual problems for the technique. When such 

functions were added to the basis on CO a merged calculation 

gave little additional error. 

As a further test of the accuracy of the sulfur functions, 

calculations were done on the SOg molecule in its ground state. 

Two contractions, a (3s,2p/2s,Ip) and a (6s,4p/4s,2p), were 
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chosen. The ̂  initio values of the total energy are 

-546.7544 and -547.0035 a.u. for the two contractions 

respectively. Although the (7s,5p) fitting basis for sulfur 

performed adequately at the minimal basis set level its 

performance deteriorated when the additional contracted 

orbitals were introduced. For this reason two extra fits were 

made of sulfur, an (8s,6p) and a (9s,7p). The results for the 

total, kinetic, potential, one and two-electron components of 

the total energy and the average absolute deviation in the 

orbital energies is given in Table 23. No attempt was made to 

Table 23. Minimal and extended basis set calculations on 

Fitting Basis ST El E2 T V e 

(7s,5p/7s,5p) -4.2 
-9.3 

-0.9 
-11.4 

-3.3 
2.1 

26.9 
39.7 

-31.1 
-49.0 

0.5 
0.6 

(8s,6p/7s,5p) -0.4 
-1.8 

7.0 
-3.1 

-7.4 
1.3 

-5.9 
13.8 

5.5 
-15.6 

0.2 
0.2 

(9s,7p/7s,5p) 0.3 
-0.5 

0.7 
-4.1 

-0.4 
3.5 

4.5 
27.3 

-4.2 
-27.3 

0.1 
0.1 

&A11 entries are in millihartrees. The top entry for each 
basis corresponds to miminal basis set calculation, the bottom 
to the {6s,4p/4s,2p) calcuation. 

improve these last two fits with any further optimisation of 

the exponents with regard to the SO2 energy values. Our desire 

was to determine in a rough fashion how rapidly the merged 

basis calculations would improve as the size of the fitting 
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basis was enlarged. It can be seen that the kinetic and 

potential energies of the (9s,7p) fit are worse for the longer 

contraction than the (8s,6p). This situation could probably 

be improved by further optimization of the (9s,7p) basis. 

E. Calculations on HNO with Smaller Primitive Sets 

Thus far the basis sets which were fitted contained as 

many primitives as were necessary to approach within a milli-

hartree of the HF limit for the respective isolated atoms. 

This followed from our initial intent to derive an economic 

procedure for doing calculations at this level of accuracy. 

However, such long primitive expansions are not a prerequisite 

for the merging technique. 

Much smaller basis sets may be handled in a manner almost 

completely analogous to the large ones. Limitations on the 

smallness of the sets to be fit arise from the rapidly 

decreasing flexibility of the even smaller fitting basis and 

the lack of gaussians in the large set with a sufficiently large 

exponent to be classified as essentially "near nuclear" in 

nature. For example, if only three p-type primitives are used 

for a second row atom the largest exponent in the energy 

optimized ET set has a value in the range 3-10. This corre­

sponds to an <r> of ->.0.0-0.2 a.u. These are fairly difficult 

to approximate with the merging procedure. For practical 

purposes the lower limit of usefullness for the merging pro­

cedure falls around (8s,4p) for the basis set to be approximated. 
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If diffuse primitives are to be used in the approximate 

calculation, they will always be the most diffuse primitives in 

the fitting basis. However, as noted earlier in the discussion 

on CO, two choices present themselves with regard to how the 

exponents of these diffuse primitives can be determined. The 

most effective choice is obtained if all functions in the 

fitting basis are determined by optimally approximating the 

atomic SCF orbitals, thus also determining the diffuse primi­

tives. The only drawback of this procedure is that in com­

parison calculations with the large basis the diffuse fitting 

primitives must be added to the primitives of the large basis 

to obtain the correct extended basis. This might unduly 

increase the number of primitives in an already large basis. 

This inconvenience can be avoided by choosing as diffuse primi­

tives those of the large basis. But this implies that the most 

diffuse primitives in the fitting basis are predetermined, thus 

limiting the flexibility of the fitting basis and reducing its 

ability to approximate the large basis accurately. 

In general we find that a (6s,3p) fitting basis is needed 

to insure that errors in the total energy will remain on the 

millihartree level when the geometry is changed or when one 

progresses from a minimal basis set calculation to an extended 

basis set calculation. If we restrict ourselves to a minimal 

number of contracted orbitals then only a (4s,3p) fitting 

basis is required. The reduction in the number of primitives 

from (8s,4p) to (6s,3p), while not as spectacular as that for 
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a larger basis, still provides a 3:1 reduction in the number of 

integrals over primitives if the N**4 dependence holds true. 

Obviously this could be a considerable savings if an energy 

surface was being computed. 

We chose the HNO system to test the accuracy of the 

merging technique for small bases with the exponent restric­

tions mentioned above. We had previously performed calcula­

tions on this molecule in various geometries with an (8s,4p/4s) 

quality basis, both with and without polarization functions. 

Three geometries were chosen, one corresponding to a meta-

stable 0-H bond, one corresponding to a barrier with a three 

center bond, and one near the singlet ground state. The 

barrier height is ~80 millihartrees and involves relatively 

close internuclear distances. This represents the most diffi­

cult situation for the merging procedure. The metastable state 

is some 50 millihartrees above the groundstate. 

More accurate initio calculations done with a (lQs,5p, 

2d/4s,lp) basis at these same geometries shows a disagreement 

of - 3 millihartrees with the (8s,4p,ld/4s,lp) basis. Thus we 

would like the merged calculations to be as accurate. Table 24 

shows the deviations in total energy, one and two electron com­

ponents of the total energy, kinetic and potential energies, and 

the average absolute deviations in the orbital energies for the 

three geometries. 
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Table 24. Contracted basis set merged calculations on HNO^ 

Geometry E ip ^1 22 T V e 

^0-N 
0.6 

-0.2 
4.3 
3.2 

-3.7 
-3.4 

-4.9 
-4.7 

5.5 
4.5 

0.5 
0.4 

0 N 
0.3 

-2.1 
-23.8 
-2.7 

24.0 
0.6 

-25.3 
-6.1 

25.5 
4.0 

3.2 
0.6 

H 
0-N^ 

1.2 
0.6 

1.2 
0.9 

0.0 
-0.3 

-4.4 
-4.8 

5.6 
5.4 

0.4 
0.3 

All values are in millihartrees. e is the average absolute 
deviation in the orbital energies. The two entries for each 
geometry correspond to the following large basis set calcula­
tions, (8s,4p,ld/4s,lp) contracted to (4s,3p,ld/2s,lp) and 
(8s,4p/4s) contracted to (4s,3p/2s). 

In this molecule not all of the atoms were merged. No 

attempt was made to approximate any of the hydrogen centered 

functions. Thus as many or as few of the multicentered inte­

grals may be approximated in any given case, a flexibility 

which adds to the power of the method. 
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IV. THE HNO SYSTEM 

A. Objective 

Many triatomics composed of hydrogen and first row 

elements have been the object of study by theoreticians. From 

a theoretical standpoint an obvious practical reason for the 

continuing interest in this group of molecules is the oppor­

tunity afforded to perform highly accurate ab initio calcula­

tions. They thus serve as a testing ground for new techniques 

since limitations in the new algorithms must be measured 

against more elaborate calculations quite possibly approaching 

the exact result within several percentage points. Justifica­

tion for the interest in HNO and a review of past experimental 

and theoretical work on the molecule is presented in the intro­

duction to the work of Dombek [25]. Only the ground to excited 

singlet separation has been measured spectroscopically, the 

value being 1.63 eV. Ishiwata et al. [26] infer a triplet 

separation of 0.8 eV as a consequence of a mechanism they 

propose. The lowest singlet (A'-symmetry) and triplet (A"-

symmetry) states for the isomerization of linear HON to linear 

HNO were computed by Dombek at 13 optimal SCF geometries 

around the NO fragment. Because of the dominance of the SCF 

configuration it was implicitly assumed that the reaction path 

could be adequately determined at this level of calculation. 

To obtain the final set of orbitals and energies she utilized 

a technique known as the Full Optimized Reaction Space method 
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(FORS), which consists of alternate multiconfigurational self-

consistent-field (MCSCF) and configuration interaction (CI) 

steps in an attempt to converge to what is, in some sense, the 

optimal set of configurations at each geometry expressed in 

terms of an energetically optimal set of orbitals. A (6s, 

4p/4s) ETG basis set contracted to (3s,2p/2s) with exponents 

optimized at various points along the reaction path was 

employed. The MCSCF procedure is one developed by Cheung, 

Elbert and Ruedenberg [27]. 

In the present work an (8s,4p,ld/4s,lp) primitive basis 

contracted to (4s,3p,ld/2s,lp) is used to compute the ground 

and first excited singlet states and the lowest triplet state 

SCF energy surfaces and the corresponding MCSCF isomerization 

pathways. A least-motion approach of HON to another HON, with 

both in the doubly occupied singlet groundstate, is also 

investigated to ascertain the barrier to proton transfer. This 

reaction is a possible mechanism for the conversion of meta-

stable HON to stable HNO which would circumvent the 37 kcal/mole 

barrier to isomerization in the isolated molecule. The ground-

state singlet curve was repeated with an even larger (10s,5p, 

2d/4s,lp) primitive basis contracted to (5s,4p,2d/2s,lp) in an 

attempt to determine how close the (8s,4p,ld/4s,Ip) basis is to 

SCF limit convergence. 
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B. SCF Calculations and Geometry Optimization 

In Dombek's work on the isomerization curves an elliptic 

coordinate system (Rqn' S) was chosen for the geometry opti­

mizations since an ellipse approximates the path taken by the 

hydrogen as it travels around the NO fragment. Here n = 

[R(OH) - R(NH)]/R(ON) and Ç = [R(OH) + R(NH)]/R(ON). Thirteen 

values of n were chosen at which geometry optimizations with 

respect to the other two variables were performed. These 

geometries for the ground and first excited triplet states and 

the next highest singlet excited along with their SCF energies 

are listed in Table 25. The SCF electronic configurations for 

these states are given by properly antisymmetrized functions of 

the following space products with appropriate spin functions to 

make a singlet or triplet: 

(is)4(3a')2(4a')2(5a')2(6a')2(7a')2(la")2 (4.1a) 

•^A (linear) (is) '* (3a) ̂ (4a) (5a) ̂ (lirx) ̂  (liry) ̂  
[ (27tx) - (2'iry) 2] 

(4.1b) 

(is) ̂pa' ) 2 (4a' ) ̂ (5a' ) ̂ (6a' ) ̂ (7a' ) 
(la")': (2a") 

(4.1c) 

(linear) = (is) (3a) ̂ (4a) ̂ (5a) ̂ (Ittx) ̂  (Ittv) ̂ 
[ ( 2ttx) ( 2 n y ) - ( 2 n y )  ( 2 n x ) ]  

(4.Id) 

(is)4ï3a')2(4a')2(5a')2(6a')2(7a' ) 
(la")^(2a") 

(4.le) 

(linear) = (is) (3a) ̂ (4a) ̂ (5a) ̂ (Ittx) ^ (l iry)  ̂  
[  ( 2 7tx )  ( 2 7 r y )  +  ( 2 n y ) ( 2 n x ) ]  

(4.If) 
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Table 25. Optimal geometries and sCF energies foc the lowest 
singlet, lowest triplet and excited singlet states 
of H NO with the (8s,4p,1d/4s,1p) basis set 

Designation/Eta State R (ON) /2 Xi Energy 

A S (A') 1.200 2.47 -129.6240 
(-1.0) T(A") 1.205 2.47 -129.7069 

S (A") 1.200 2. 47 -129.6487 
S" 1.200 2. 47 -129.6089 

B S(A') 1.179 2.40 -129.6751 
(-0.9) T (A") 1.231 2. 14 -129.7413 

S (A") 1.220 2. 33 -129.6811 
C S(A') 1. 176 2. 24 -129.7053 

(-0.7) T(A") 1.259 1. 98 -129.7503 
S (A") 1.220 2. 17 -129.7022 

D S(A') 1. 194 2.07 -129.6868 
(-0.5) T(A") 1.259 1. 98 -129.7503 

S (A") 1.238 2.00 -129.6894 
E S (A') 1.210 1.89 -129.6477 

(-0. 3) T (A") 1.262 1.81 -129.7161 
S (A") 1.242 1. 86 -129.6572 

F S (A') 1.199 1.81 -129.6207 
(-0. 1) T(A") 1.249 1. 70 -129.6754 

S (A") 1.227 1. 81 -129.6267 
M S (A') 1.185 1. 84 -129.6243 

( 0.0) T (&" ) 1.240 1. 75 -129.6666 
S (A") 1.220 1. 89 -129.6303 

G S (A') 1.161 1. 95 -129.6426 
( 0.1) T(A") 1.211 1.85 -129.6752 

S (A") 1.232 1.92 -129.6495 
H 5(À=) 1.130 2. 21 - 129.7005 

( 0.3) T(A") 1.202 2.07 -129.7110 
S (A") 1.232 1. 99 -129.6914 

I S (A') 1.115 2. 30 -129.7463 
( 0.5) T(A") 1. 188 2. 17 -129.7389 

S (A") 1.236 2.09 -129,7202 
J S(A') 1. 106 2. 47 -129.7575 

( 0.7) T (A") 1.152 2. 36 -129.7471 
S (A") 1.234 2.23 -129.7247 

K S (A') 1.111 2. 60 -129.7108 
( 0.9) T (A") 1.114 2, 56 -129.7326 

S (A") 1.132 2.55 =129=6868 
L S (A') 1.121 2. 65 -129.6419 

( 1.0) T(A'») 1. 123 2. 65 -129.7013 
S (A") 1.121 2. 65 -129.6580 
S" 1.121 2. 65 -129.6163 
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where (is) represents the totally symmetric innershell orbitals 

on O and N. One additional singlet state, a combination 

2 2 corresponding to the (2nx) + (2ny) occupancy in the linear 

configuration was not included in this study, because it was 

substantially higher in energy than the other states. Two SCF 

calculations were performed on this state at the linear geom­

etries. These are indicated as S" in Table 25. 

The optimal path for the singlet A' state given in Table 

25 is plotted in Figure 7. All three states have very similar 

curves so that differences between individual paths would not 

be discernible in a plot of this scale except near the midpoint 

of the paths. Even here the differences are not great. Varia­

tions in the NO bond length are indicated and a set of energy 

contours from a fixed NO distance of 2.20 bohr is superimposed 

over the path to indicate the degree of latitude the path could 

have. Outer contours for the two minimas have a value of 

— TOO T? rnVtA 4 4 c  A m  A m -w  ̂  w «www W V« «W V * * WW V4*. V  # W 9 

Although variations in the structure of HNO for the three states 

are not large, to take point J as an example, the use of the 

groundstate singlet geometry for the other two states would 

have resulted in an energy loss of 0.006 for the triplet and 

0.012 E^ for the excited singlet. No geometry optimizations 

were attempted with the large (10s,5p,2d/4s,Ip) basis. 

The geometries of Table 25 can represent the "standard" 

reaction paths corresponding to the steepest descent from the 

barrier top only to the extent that the latter approximate 



'A '  OPTIMAL HYDROGEN PATH 
WITH ENERGY CONTOURS 

FROM RQ^= 2.20 bohr 
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Figure 7. SCP geometry optimized path for the hydrogen atom around the 
NO fragment for the groundstate of HNO 
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elliptic curves in the vicinity of the thirteen n values 

chosen for this series of calculations. In the cases where 

this approximation holds a determination of the C coordinate 

would amount to an energy optimization along a coordinate ortho­

gonal to the reaction path. How close the geometries of Table 

25 are to the standard path can be approximately inferred from 

Figure 8 where contour and perspective plots of the lowest 

singlet state for a constant R(ON) value of 2,20 bohr are 

shown. While the true reaction path is a function of all three 

geometry variables, a good indication of its position is 

obtained by looking at a slice of this three dimensional hyper-

surface which corresponds to a fixed R(ON) value. An ellip­

tical path would be represented by a horizontal line in Figure 

8 approximately connecting the two minima. The particular 

choice of the N-0 bond length is a near optimal value from the 

stable geometry minimum. Contour increments are 0.012 for 

the contour plot. The lowest contour has an energy of -129=757 

Ej^ for the HNO side. Although a single configuration wave-

function, as was used for these figures, cannot correctly 

describe the dissociation of groundstate HNO -> H + NO, the 

paths for this reaction are clearly visible as valleys leading 

up from the two minimas. Eventually, as the length of the 

bond to hydrogen increases, the energy surface becomes planar 

with a value equal to the SCF dissociation energy. 

Variation in the total energy as a function of n for the 

values listed in Table 25 is plotted in Figure 9. Since 
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HNO-NOH 'A' SCF 
ISOMERIZATION SURFACE 

CONTOUR AND PERSPECTIVE PLOTS IN 
ELLIPTICAL COORDINATES 

AT CONSTANT RQN = 2.20 
CONTOUR INCREMENT= 0.012 a.u. 

LOWEST HNO CONTOUR = -129.757 a.u. 

-0.8 -0 6 -04 -0 2 00 0.2 04 06 08 

Figure 8. SCF potential surface for the groundstate 
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Figure 9. SCF energy curves for the three lowest states of HNO 
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earlier calculations with a much smaller basis yielded an 

inverted order for these states at geometry J compared to the 

values in this table, _i.e., the triplet state was lower in 

energy than the groundstate singlet and the open shell singlet 

was almost equal in energy to the closed shell singlet, it was 

desirable to further investigate the effect of the basis set 

size on these curves. In Figures 10a and 10b the relative 

similarities of the groundstate and lowest triplet curves are 

demonstrated by plotting the difference between the rest of the 

curve and point J for a (6s,3p/3s), (8s,4p/4s), (8s,4p,ld/4s, 

Ip) and (10s,5p,2d/4s,lp) basis set. Along with the vertical 

excitation energies this is a more significant indication of 

the quality of a basis set than the absolute magnitude of the 

total energy. If extra basis functions merely lowered the 

curves by a constant amount they would be an expendable luxury 

for chemists. 

Several effects are noticeable. The most dramatic of these 

is the large destabilization of the linear configurations with 

respect to the rest of the curve. Part of this is due to the 

fact that more d-primitives are of the proper symmetry to con­

tribute to the occupied MO's for the nonlinear geometries than 

for the linear. The rest of the change seems due to the 

increase in s- and p-primifcives. A barrier height reduction of 

24 millihartrees (15 kcal/mole) is also obtained in going from 

the small to the large basis. This could conceivably be 

reduced even further by enlarging the hydrogen basis set. 
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Figure 10a. SCF dependence on the quality of the basis set for 
the 1a' state 
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Figure 10b. SCP dependence on the quality of the basis set for 
the ^A" state 
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A review of past and present HP-SCF calculations at the 

optimal geometry and near the experimentally determined geom­

etries for the two singlets is given in Table 26. Using flash 

photolysis Dalby [28] gives the experimental geometry for the 

groundstate as R(NH) = 2.007 a.u., R(ON) = 2.288 a.u. and 

<HNO = 108.5° and the excited state singlet geometry as R(NH) = 

1.958 a.u., R(ON) = 2.345 a.u. and <HNO = 116.2°. The geom­

etries listed for the current work are either the optimal 

geometry for the indicated basis or the experimental geometry 

for the groundstate. The latter 5CP energies were required for 

the vertical excitation energy determination. Although the 

groundstate geometry is predicted quite well, the excited 

singlet state's NO bond length is larger than the experimental 

value and the bond angle is predicted to be smaller than that 

of the groundstate in disagreement with the experimental 

ordering. 

C. The Full Optimized Reaction Space Curves for HNO 

Most chemically interesting phenomena can be adequately 

described, at least qualitatively, by methods capable of 

recovering a substantial fraction of the valence correlation 

energy. The orbitals involved are those which are occupied at 

the HF level along with some low lying virtual orbitals. To 

meet the above requirement and to facilitate the interpretation 

of orbital changes which occur during the isomerization reac­

tion, Dombek and Ruedenberg chose to restrict themselves to an 



Table 26. Hartree-Fock SCf results liear the gcouadstate geometry for HNO 

State P(NH) P(NO) <HNO Basis Energy Ref, 

singlet 2. 109 2.311 105.1 Minimal-STD -129.3359 T^r" 
(A*) 1.962 2.496 110.4 (7s,3p/4s,1p) -129.5880 [30] (A*) 

expo exp. 109.0 gaussian lobe (-129.695) [31] 
exp>« exp. exp. gaussian lobe -129.7344 [32] 

1.871 2.305 109.5 6-31G -129.7843 [33] 
exp. exp. exp. (6s,3p/4s) -129,3497 this work 

1.945 2.360 108.9 -129.3522 If II 

exp. exp. exp. (85,4p,1d/4s,1p) -129,7555 II II 

1.959 2.224 108.6 -129.7589 If If 

exp. exp. exp. (10s,5p,2d/4s,1p) -129.8209 II 11 

1.959 2.224 108.6 -129.8254 II II 

triplet 2.007 2.288 124.0 gaussian lobe (-129.700) [31] 
(A") 2.007 2.288 120.0 gaussian lobe (-129,734) [32] (A") 

2.007 2.288 108.5 (6s,3p/4s) -129.3491 this work 
1.947 2.618 106. 1 (6s,3p/4s) -129,3730 II II 

2.007 2.288 108.5 (8s,4p,1d/4s,1p) -129.7466 n M 

1.922 2.201 106.2 -129.7496 II II 

singlet 2.007 2.288 120.0 gaussian lobe (-129.703) [32] 
(A") 2.007 2.288 108.5 (88,4p,1d/4s,1p) -129.7171 this work 

1.925 2.460 104.1 -129,7265 n II 

Énergies within parentheses are estimated from plots contained in the 
referenced work. These numbers are probably accurate to within a few 
aillihartrees. 
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orbital space obtained by considering only those orbitals in 

the valence shell of the isolated atoms. This formal minimal 

basis consists of the Is, 2s and sp orbitals for nitrogen and 

oxygen and the Is for hydrogen. These eleven functions are 

divided into nine MO's of A' symmetry,and two of A" symmetry, 

but the two inner shell orbitals, corresponding to the Is on 

nitrogen and oxygen, will be kept doubly occupied throughout 

all calculations. We are interested in obtaining the best 

possible wavefunction within this space. 

The procedure followed here is the same as that used by 

Dombek. A complete CI in the space of these nine orbitals is 

performed. The CI spaces are of dimension 1316, 1722 and 1204 

for the groundstate singlet, triplet and excited state singlet 

respectively. Then based on the expansion coefficients in a 

natural orbital expansion of this wavefunction the dominant 7-9 

configurations are selected for use in an MCSCF calculation 

to optimize the orbitals in the space of the full AO basis set. 

Although more configurations could be used, the total energy of 

the full CI is rather insensitive to any additions. Following 

this, a second CI is done to see if the important configura­

tions have changed as a result of the MCSCF orbital optimiza­

tion. If the important configurations have changed from the 

previous CI, a second MCSCF step on this new list of configura­

tions is done. A final full CI is performed. Since the 

original HF calculation does not occupy all eleven orbitals a 

preliminary small MCSCF calculation, with the occupied SCF 
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orbitale frozen, is used to provide an approximate initial 

guess for the remaining orbitals in the first CI. The twelve 

configurations used in this small MCSCF are some obvious ones 

which provide left-right correlation in the three bonds. 

Total energies in the FORS approximation using the (8s, 

4p,ld/4s,lp) basis are listed in Table 27. Not all of the 

Table 27. Total energies in the FORS approximation for HNO* 

Point s(A') T(A") S (A") Point S(A' ) T ( A" ) S (A" ) 

A -129.7226 .7674 .7226 G -129.7851 .7778 (.751) 

B -129.7814 (.811)* .7587 H (-129.837) (.804) (.781) 

C -129.8170 .8363 .7811 I -129.7574 . 8216 .8043 

D (-129.808) (.824) (.772) J -129.8844 . 8364 .8105 

E (-129.783) (.802) (.756) K -129.8317 . 8205 .7899 

F -129.7633 .7791 .7330 L -129.7583 .7908 .7583 

M -129.7698 .7751 .7358 

^Those energies enclosed in parentheses are estimated from the 
adjacent correlation energies. 

thirteen points were actually computed. In an effort to mini­

mize the computational load the correlation energies for 

several of the geometries were estimated from an average of 

the values computed at adjacent points. This estimate is 

probably accurate to a few millihartrees, Energy curves from 

this table are shown in Figure 11. Compared to the SCF curves 
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of Figure 9 the linear geometries are even higher in energy 

with respect to the groundstate while the barrier to isomeri-

zation is lower. Compared to the FORS curves of the (6s,4p/4s) 

basis the groundstate singlet barrier is reduced from 37.8 

Kcal/mole to 33.7 Kcal/mole. The triplet barrier is reduced 

from 46.9 Kcal/mole to 38.4 Kcal/mole. 

In order that a direct comparison between the small and 

large basis set curves could be made the curves are super­

imposed at point J in Figures 12a and 12b. The actual differ­

ence in total energy for the (6s,4p/4s) and (8s,4p,ld/4s,lp) 

basis sets is approximately 0.24 E^. A surprising feature of 

the FORS plots is the lack of any significant reduction in the 

barrier since in the SCF approximation the reduction in going 

from a small basis to a large basis was almost 15 Kcal/mole. 

In previous studies of the effects of basis set truncation at 

the CI level, changes in the total energy curves were larger at 

the CI level than at the SCF level. If similar behavior could 

be expected for the FORS curve the 34 Kcal/mole A* singlet 

barrier would be reduced to about 19 Kcal/mole. Figure 13 

shows how the correlation energy recovered varies over the 

reaction path for the two basis sets. On the HON side of the 

curve the two are in near quantitative agreement, while at the 

barrier they differ by about 15%. 

On the whole the final natural orbital CI in the large and 

small basis sets showed a great similarity with respect to the 

ordering of configurations. About the only exception occurred 
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near the groundstate geometry for the A' state where the third 

and fourth most important configurations with expansion co­

efficients of 0.12 and -0.08 in the small basis do not appear 

in the top ten configurations for the large basis. 

The reason for the unexpected similarity of our FORS 

results with both basis sets could lie with the use of the 

conceptual minimal basis set space. In calculations on LiH 

and Ng, where an accurate estimate of the entire valence corre­

lation energy was available, this minimal basis set space has 

recovered from 45%-83% of the valence correlation energy. 

Since the minimal basis for hydrogen is a single function, 

compounds containing hydrogen will generally recover a smaller 

percentage of the correlation energy than compounds without it. 

An MCSCF-CI calculation by Benioff [34] on NOg with the minimal 

basis set space yielded about 66% of the estimated valence 

correlation energy. It might be argued that 60%-70% is still 

too small 3. fraction to reflect the true effect of altering the 

size of the basis. On the other hand, perhaps this particular 

choice of configuration generating orbitals is truly capable of 

giving quantitative results which are somewhat insensitive to 

basis set truncation. 

A semi-quantitative representation of the groundstate 

singlet A' FORS energy surface is given in Figure 14. The NO 

bond distance is fixed at the same value as that chosen for 

the SCF surface in Figure 8, namely 2.20 bohr. Since an entire 

grid of points would have been prohibitively expensive, eight 
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FORS calculations were distributed in a roughly even fashion 

over the surface. The correlation energy at these eight points 

was interpolated to obtain an estimate of the correlation 

energy at the remaining grid points. These estimates were 

added to the computed SCP energies to fill in the grid. 

Judging from the magnitude of the change in correlation energy 

as a function of geometry on this grid, the linear interpola­

tion is probably accurate to ±10 millihartrees. Even though 

the coefficient of the SCF configuration in the natural orbital 

expansion of CI wavefunction, which is an indication of the 

configuration's importance, doesn't drop below 0.9, the differ­

ences in the two surfaces are quite substantial. In the transi­

tion from an SCF to an MCSCF-CI description of this surface the 

large barrier separating the HON minimum from the HNO minimum 

is greatly reduced. More importantly, the barrier to dissocia­

tion from HON to H + NO is completely eliminated. The sum of 

the energy for NO in the identical FORS approximation, given in 

Table 31 at R = 2.1747 as -129.324 and the energy of the 

hydrogen atom in this basis, -0.4965 E^, is -129.821 E^. This 

is 0.004 E^ lower than the energy of HON at geometry C listed 

in Table 27, namely -129.817 E^. 

Inclusion of p-orbitals on the hydrogen in the configura­

tion generating MO's would seem like the next step in allevia­

ting the deficiencies in the formal minimal basis set. This 

inclusion could substantially lower the HON state with respect 

to dissociation since such functions would not contribute to 
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the isolated hydrogen atom. The total correlation energy for 

a single 0-H bond is in the range of 0.23 from large calcu­

lations on the water molecule. The total valence correlation 

for the hydrogen molecule is 0.041 E^. A two configuration 

FORS calculation recovers 45% of this. Adding p orbitals to 

the configuration generating space increases this to about 75%. 

If similar behavior could be expected in HON, the molecule 

would again be predicted to be stable, quite possibly by some 

tens of kilocalories per mole. The barrier to intramolecular 

isomerization would be further reduced. 

Even with quite large s,p basis sets, such as the (10s,5p), 

the singlet A* and triplet A" states, as determined by HF-SCF, 

lie within a few millihartrees of each other near the experi­

mental geometry. The inclusion of polarization functions seems 

necessary to provide a quantitatively correct spacing of the 

levels from a HF-SCF calculation. The triplet differs from the 

closed shell singlet in that one electron from the a' irrep is 

excited into the a" irrep. However, only one third as many of 

the polarization functions are of a" symmetry. Thus the ground-

state benefits more from the inclusion of polarization functions 

to the basis. 

The experimental vertical excitation energy from the 

groundstate to the excited singlet is 1.63 eV [26]. Although 

the phosphorescent emission from the triplet has never been 

observed, some experimentalists have estimated it to be in the 

neighborhood of 0.8 eV from certain kinetic considerations. Our 
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vertical excitation energies are 0.24 eV and 1.05 eV for the 

triplet and excited singlet at the HF-SCF level and 1.23 eV 

and 2.16 eV at the FORS level. Both values seem high by about 

0.5 eV. 

A previous CI calculation of this spectrum by Wu, Buenker 

and Peyerimhoff [32] would appear fortuitously close, reporting 

a singlet-singlet separation of 1.60 eV and a singlet-triplet 

separation of 0.71 eV. This almost certainly results from 

their particular choice of basis set which yields an SCF sepa­

ration for these three states comparable to our (8s,4p/4s) 

basis without polarization functions. The correlation energy 

recovered by the two basis sets used for the FORS calculations 

does not change drastically, so that a good estimate of how 

much correlation energy would be recovered with the (8s,4p/4s) 

can be made. If this estimate is added to the SCF vertical 

excitation spectrum for this basis a final separation quite 

close to the Wu, Peyerimhoff and Buenker value is obtained. 

The small basis tends to underestimate the energy differences 

while the larger basis tends to overestimate with respect to 

the currently accepted experimental value. 

D. Bimolecular Reactions 

Although extensive efforts have not been made to experi­

mentally observe the HON state, the absence of any experimental 

evidence for the existence of this geometry, when theoretical 

results indicate that it should be quite stable with respect to 
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dissociation to H + NO, suggest the possibility of a mechanism 

for converting this geometry into the more stable HNO. The 

intramolecular isomerization has been discussed earlier in 

this work. Perhaps the next simplest process would involve 

the conversion of two HON molecules to two HNO facilitated by 

the formation of some hydrogen bonds. 

If one HON molecule is approached by a second HON molecule 

lying in the same plane as the first and oriented such that the 

N-0 bond of the second is parallel to that of the first with 

the oxygen atoms across the diagonal from each other the system 

possesses Cgh symmetry and is in an ideal orientation to simply 

pass the two protons from one to the other. This involves the 

breaking of two 0-H bonds and the formation of two N-H bonds 

but no pairs of electrons need be broken apart since the bond 

pairs simply transform into lone pairs. The reaction is in 

fact a proton transfer. 

Like previous studies of multiple proton transfers [35] we 

find a multiple minima situation on the energy surface. Figure 

15 shows the two minima connected by a barrier of approximately 

0.017 Ej^ (10.7 Kcal/mole). The surface shown in this Figure 

corresponds to an 0-N bond distance of 2.52 bohr and a fixed 

H(z) of 1.96 bohr. A small (6s,3p/4s) basis was used to gener­

ate the SCF surface in this Figure, but the accuracy of the 

results were checked against the large (8s,4p,ld/4s,lp) basis 

in the region of the barrier. Energy values on this surface are 

given in Table 28. The surface was constructed by fitting two 
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Table 28. HOH-HON energy differences with respect to the top 
of the barrier for the surface in Figure 15 

H( X )  H(y )  Es £1 B H(x) H( y )  Es El 

1.50 6.50 -0.010 5.0 1.50 3.50 0.009 
1.70 6.30 0.008 1.70 3.30 0.033 0.041 
2.00 6.00 -0.019 2.00 3.00 0.017 
4.00 4.00 -0.323 2.50 2.50 0.000 0.000 
6.00 2.00 0.032 3.00 2.00 0.044 0.040 
6.20 1.80 0.049 3.20 1.80 0.052 
6.50 1.50 -0.009 3.50 1. 50 0.025 

1.50 5.50 -0.007 6.0 1.50 4. 50 0.000 
1.70 5.30 0.015 1.70 4.30 0.023 
2.00 5.00 -0.017 2.00 4.00 -0.002 
3.50 3.50 -0.219 3.00 3.00 -0.109 
5.00 1.00 0.038 4.00 2.00 0.044 
5.20 1.80 0.050 4.20 1.80 0.051 
5.50 1.50 -0.002 4.50 1.50 0.004 

1.50 3.00 -0.029 4.0 1.00 3.00 -0.502 
2.00 2.50 0.002 1.50 2. 50 -0.097 
1.25 1.25 0.006 0.011 2.00 2.00 -0.070 -0.055 
2.50 2.00 0.015 2.50 1.50 -0.095 

-0.055 

3.00 1.50 -0.017 3.00 1.00 -0.584 

The small (6s,3p/4s) basis gave a~barrier of"-2587543 Hartrees. 
The latye (85,4p,ia/4s,1p) basis gave a Darriet of -259.367 
Hartrees. 
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overlapping regions of the coordinate plane with a least 

squares guartic procedure and then piecing the two fits 

together along the line passing through zero with slope one. 

Table 29 gives the optimal geometries of the HON-HON 

system as the distance between the N-0 bonds decreases. All 

Table 29. HON-HON optimal geometries and energies 

R R(ON) H(x) H(y) H(z) Energy AE^ 

Predominantly HON: 

infinite 2.580 infinite 1.69 1.98 -258.6520 32.8 
8.0 2.571 6.31 1.69 1.97 -258.6527 32.3 
6.0 2.560 4.30 1.70 1.99 -258.6722 20.1 
5.0 2.522 3.30 1.70 1.96 -258.6756 17.9 
4.7 2.440 2.35 2.35 1.83 -258.6588 28.5 

Predominantly HNO: 

4.7 
5.0 
6 . 0  
8 . 0  

infinite 

2.440 
2.381 
2.360 
2.370 
2.360 

2.35 
1.81 
1.84 
1.83 
1. 84 

2.35 
3.19 
4.16 
6.17 

1.83 
1.88 
1.85 
1.82 

infinite 1.81 

-258.6588 28.5 
-258.7102 -3.8 
-258.7161 -7.5 
-258.7030 0.8 
-258.7042 0.0 

^AE = E(R) - 2E{HN0) in Kcal/mole. 

geometrical parameters were optimized for fixed R and under the 

constraint of Cgh symmetry. H(x) and H(z) are the cartesian 

coordinates of one hydrogen atom with respect to an origin 

centered along the N-0 bond. The second hydrogen's position is 

obtained by rotating the position of the first by 180 degrees 

about the axis, as seen in Figure 16. 
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Figure 16. Orientation for HON-HON geometry optimization 

The barrier seen in Table 29 is much smaller than that of 

the intramolecular isomerization and provides a possible con­

version mechanism. It should also be noted that the actual 

energy surface will be somewhat more complex because the singlet 

A* state in the HON metastable geometry is above the triplet A" 

and then crosses over to become the groundstate for the HNO 

geometry. Hence there will be an avoided crossing of the energy 

surfaces which results from the singlet coupling of the two 

triplets. There will also be a triplet and a quintuplet 

coupling for the two triplets, but only the singlet has a possi­

bility of interacting with the singlet calculated here. 
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However, this approach of the two molecules requires a 

rather restrictive orientation of the two HON fragments. If 

the Cgh symmetry is relaxed and we bring the HON's together in 

such a fashion that the 0-H—N-0 portion of the system lies in 

a straight line, another strong hydrogen bond is observed. 

Table 30 gives the results of a series of SCF calculations with 

Table 30. SCF energies for the in-line HON-HON reaction 

Distance between HON's Total Energy 

2.00 -258.6032 
3.00 -258.6515 
4.00 -258.6580 
5.00 -258.6547 
6.00 -258.6525 
8.00 -258.6513 

the small (6s,3p/4s) basis for various internuclear distances 

between the fragments ̂ The geometries of the individual HON 

units were frozen at the optimal isolated molecule geometries 

and the two atoms not lying on the line (N and H) were trans to 

each other. Once the first hydrogen bond is formed, the system 

has a greater chance of the second hydrogen coming within range 

to transfer both hydrogens, thus performing the conversion of 

two HON to two HNO. 
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E. The Ground State of Nitric Oxide 

As indicated in the FORS energy surface of the singlet A' 

state, dissociation of the HON metastable geometry to H and NO 

with subsequent formation of HNO appears to be the energeti­

cally favored route for uni-molecular isomerization. In order 

to quantitatively describe this dissociative process it is 

necessary to compute an FORS wavefunction for the NO molecule 

using the same (8s,4p,ld) basis set as was used for HNO. 

Besides its relevance to the HNO system, nitric oxide is of 

interest in its own right, since it is an important atmospheric 

emitter. Previous work on this molecule includes a 200 con­

figuration CI calculation using the Iterative Natural Orbital 

(INO) technique. This was done by Green [35-37] at the experi­

mental equilibrium distance. A 20 configuration optimized 

valence configuration (OVC) MCSCF calculation followed by a 40 

configuration CI along the energy curve was reported by 

Billingsley [38] using the same large STO basis as Green. 

Billingsley also reported several expectation values, such as 

the dipole moment, as a function of the internuclear distance. 

To generate the list of configurations needed for the FORS 

wavefunction we proceed as we did for HNO. Within the formal 

minimal basis set space of six sigma and four pi orbitals we 

generate all possible space-spin products consistent with the 

doublet pi nature of the groundstate. The SCF configuration is 

^tt = (la) 2 (2a) 2 (3a) % (4a) % (5a) % (I tt) ( 2 tt) ^ (4.2) 
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There are 125 space products and 5 spin functions which yield 

252 space-spin products when appropriately combined. 

With these 252 configurations we have performed an FORS 

calculation on NO at the experimental bond distance of 2.1747 

bohr with the same quality basis as that used by Green and 

Billingsley, although the mixture of sigma and pi orbitals was 

slightly different. Our (14s,7p,2d) ETG primitive basis was 

contracted to (5s,3p,2d) to give 24 sigma and 10 pi AO basis 

functions as opposed to 20 sigma and 12 pi in the STO basis of 

Green. Both sets yielded SCF energies within a millihartree of 

each other, the ETG energy being -129.289 E^. An even larger 

calculation by Green with a near HF limit basis yielded an 

energy only 5 millihartrees lower. The final FORS energy was 

-129.406 E^ as contrasted to Billingsley's -129.368 E^ corre­

sponding to an increase of almost 50% in the quantity of corre­

lation energy recovered. Since the FORS energy of the sep­

arated atoms lies within less than two millihartrees of the 

corresponding SCF energy, as shown in the subsequent paragraph, 

D will be the difference between the sum of the atomic SCF' 
e 

energies in this basis, -129,209 E^, and the molecular FORS 

energy. This value is 0.197 E^ (5.36 eV) or roughly 80% of the 

experimental value of 6.61 eV [39]. Billingsley obtained 0.159 

Ejj (4.33 eV) . 

However, since we are particularly interested in the dis-

Oi nON tu K ânu NO We made more detailed calculations 

with the same basis as was used for the calculations on HON, 
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namely the (8s,4p,ld) basis. Since one goal of the work by 

Billingsley was to accurately determine vibrational energy 

levels up to v=17 we computed a portion of the potential 

curve with this basis so as to judge the parallelness of the 

two curves. The sum of the atomic energies in this smaller 

basis is -129.126 E^. The largest expansion coefficients from 

the final natural orbital CI in the FORS calculation and the 

total energies at the three internuclear distances chosen by 

Billingsley are given in Table 31 for our (8s,4p,ld) basis. 

Orbital occupancies for the valence sigma and pi orbitals in 

the configurations listed assume that the first through third 

sigma orbitals are doubly occupied. 

At a distance of 10 bohr all of the FORS occupied orbitals 

with the exception of the fifth and sixth sigma orbitals cleanly 

separate into isolated atomic orbitals on nitrogen and oxygen. 

These two natural orbitals remain a plus-minus combination of 

the two p(z) AO's. Since no such separation occurs in 

Billingsley's wavefunction, his final CI expansion has a great 

many more nonzero terms than the FORS wavefunction. If the two 

remaining nonlocalized natural orbitals are replaced by local­

ized p(z) orbitals the FORS-CI expansion would contain only 

three terms in the dissociation limit. The groundstate poten­

tial energy curve is shown in Figure 17. 

The difference in energy between R = 2.1747 bohr and R = 

3.0747 is 0.127 in the current work and only 0.118 E^ in the 
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OVC calculation. This discrepancy could affect the computed 

vibrational levels. 

Table 31. CI expansion coefficients of the leading natural 
orbitals and total energies for the ground state 
of NO 

Orbital Occupancy CI Expansion Coefficients 
4s 5s 6s ITT 27T spin^ R=2.1747 R=3.0747 R=10.00 

2 2 0 4 1 1 0.966 0.840 0.000 
2 0 2 4 1 1 -0.059 -0.130 0.000 
2 2 0 2 3 1 -0.143 -0.272 0.000 
2 2 0 3 2 1 -0.040 0.258 0.500 

2 -0.011 0.096 0.289 
2 0 2 3 2 1 0.002 -0.055 -0.500 

2 0.000 -0.011 -0.289 
2 2 0 2 3 1 -0.092 -0.178 0.000 

2 -0.093 -0.099 0.000 
2 2 0 1 4 1 0.071 0.105 0.000 
2 1 1 3 2 1 0.044 0.058 0.000 

2 0.082 0.117 0.000 
3 0.010 0.056 0.408 
4 -0.010 -0.063 -0.408 

0 2 0 4 3 1 -0.059 —0.046 0.000 

SCF Energy -129.208 -128.979 -128.868 
FORS Energy -129.324 -129.197 -129.128 

^The 5 electron spin functions are defined (using 9_ = (ag-ga)/ 
1^2, 8+ = («B+ea)/r2") as 

0 ^  =  8 _ 8 _ a .  

®2 = Q_iQ+OL-^aa&}//~3 . 

6 3  =  { e ^ e _ a - j / ^ a a 0 _ _ B } / .  

64 - {aa66+6Baa - 1/2 8^8^}a//^ . 
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The dissociation energy for the (8s,4p,ld) basis is essen­

tially the same as that obtained with the larger (14s,7p,2d) 

basis. The computed equilibrium distance is 2.214 bohr, 

slightly too large. Most of this error would be eliminated by 

using the larger basis since the calculated equilibrium 

distance at the SCF level is shorter by 0.02 bohr for this 

basis. 
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