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I. INTRODUCTION 

A. Statement of the Problem 

This dissertation is concerned with the multiple 

comparison problem. The model considered is the one-way 

classification with errors that are normally and independently 

distributed with zero mean and constant unknown variance . 

The observations are denoted by and the model is 

X.. = u. + e.. i = l,...,n 
 ̂ j = 1 rj 

in which the û  are unknown constants or parameters and the 

ê j are the errors. The data may be reduced to the sample 

means X̂  ̂ , i = l,...,n and the pooled estimate of , 

,2 ^2 denoted by s or where 

î " ̂  j ̂ ij ~  ̂(̂ ij " ̂i)' 

with R = S r. . 
i  ̂

We want to give some substance to the notion of evidence 

given by X̂ ,̂..., X̂  and ŝ  with respect to uĵ ,...,û  and 

. Some procedures which have been suggested in the 

literature will be reviewed in this chapter. These 

procedures uiffer considerably in the «ode of approach. 
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It is our view that the choice of a procedure must be 

based on prior opinions about the true means, that is, the 

values of û ,...,û  . These opinions may be used to develop 

a procedure for making assertions about the true means and 

differences between them. 

B. Review of the Literature with Minor Additions 

A very extensive review of multiple comparison 

procedures in current use is given in Duncan (1965), Miller 

(1966), and O'Neill and Wetherill (1971). For this reason 

we will give only a brief discussion on the significant 

contributions. For quick reference and in order to keep this 

work as self-contained as possible we will describe concisely 

some of the procedures. 

First, let us introduce some notation. A contrast of a 

set of p means is given by 

P 
Y = I c.u. , with E c. = 0 . (1.1) 

i=l  ̂̂   ̂

Y is estimated by 

Y = Z ĉ X̂  . (1.2) 

The variance of X. , i = l,...,n, is cr̂ /̂ i ' which 

is estimated by ô /rĵ  , where is based on v degrees 

of freedom with v = R-n, The procedures in current use give 
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significance tests and/or confidence intervals for sets of 

contrasts. The confidence intervals are of the form 

Y e y + A 

where the value of A is determined for each method. 

The Least Significant Difference (LSD) is applied to 

pairwise differences and uses 

 ̂= </2 'e '̂ •3> 

where t̂ yg is the upper lOOa/2 percent point of the 

Student's t distribution with v degrees of freedom. 

Fisher (1935) proposed the Fisher Significant Difference 

(FSD) which uses, instead of t̂ yg , t̂ y2h an experiment 

with h comparisons. This modification of the LSD was 

suggested by Fisher to overcome the fact that the LSD gives 

too many false significances as the number of comparisons 

increase. If Fisher were interested, before looking at the 

data, in m £ h comparisons he would probably use ^̂ /2m' 

Scheffe (1953, 1959) proposed the S-method. The S-

method states that the probability is 1-a that the values 

of all contrasts simultaneously satisfy the inequalities 

Y - S < V < V  +  S  ( 1 . 4 )  

where s = " 
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the upper o% point of the F distribution with parameters 

p-1 and V . This method is an inversion of the F-test. 

Even though the S-method is applicable to means based on 

samples of unequal sizes and also to means adjusted by 

covariates, it does not seem completely appropriate for 

selected comparisons, when the selection is made in the light 

of the data. 

Recently Olshen (1973) considered regression problems 

where simultaneous confidence intervals of the S-method are 

used after a preliminary F-test rejects the null hypothesis 

that the regression pareuneters are zero. He showed that for 

significantly large critical values and at least two degrees 

of freedom for error, the probability of simultaneous 

coverage, conditioned on the rejection of the F-test, is 

always smaller than the unconditional probability. In other 

words, in practice, we usually make simultaneous confidence 

intervals after a significant F-test in the analysis of 

variance table. Each conditional probability of 

simultaneous coverage is less than 1-a for all values of 

the unknown parameter when the F-test is made at level a . 

It appears that the same result extends to the Tukey T-method 

which will be described next. 

Many writers, for example Newman (1939) , Keuls (1952), 

Tukey (1953), and Duncan (1955) developed procedures based 

on the studentized range statistic for testing means with 

iequal number of replications. 
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Tukey (1953) suggested the T-method which for balanced 

data, states that the probability is 1-a that all the 

differences (û  - û ) , î j , simultaneously 

satisfy 

u. - u. - Ta_ < u. - u. < u. - u. + Tô  (1.5) 
1 ] e— 1 ] — 1 ] e 

a 
where T = g„ .,//r , (1.6) 

PfV 

a 
p=n , a =a , and is the upper 100a percent point of 

P P f V  p  

the studentized range distribution with parameters p and 

V . 

The problem of making statements about differences of 

the û  has also been approached in a multistage way. The 

nature of multistage procedures is as follows. First an 

overall test is made to make a judgment of whether the whole 

set of means exhibits significant differences. If the result 

is nonsignificant, no further steps are taken, while if the 

result is significant, statistical tests are applied to sub­

sets of the means. The overall test and the subsequent tests 

are based on the studentized range statistic. The Duncan 

D-method and the Student-Newman-Keuls (SNK) method both use 

Equation (1.5) but differ in the choice of a . If at some 

stage in the procedure a set of p-means is being compared in 

which at the beginning of the sequential procedure p equals 

n, and later p is less than n, the D-method uses 
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Op = 1 - while the SNK method uses = a 

throughout. 

In this multistage approach to the overall problem as 

any of the single stage approaches, the procedures depend 

intrinsically on the choice of the so-called error rates 

Op or a . No logic is given on how these are to be 

determined. In our view this is a critical aspect of the 

overall problem. The experimenter when using any of the 

procedures is assumed to be able to specify these "error 

rates." In fact, the contrary seems to be the case. In 

simple one stage statistical testing situations, the problem 

of choosing an a can be evaded by giving instead the so-

called P-values, leaving the problem of choice of a cut-off 

value to the discretion of the experimenter. Even in the 

case of a single test, for whether there are differences 

among the whole set of n means, this problem arises. It 

is common sense that if the data set is small in some sense, 

a test must not use a very small error rate, because then the 

power or sensitivity of the test will be very low. One 

approach in this simple case is to consider the power 

properties of tests with different null hypothesis error 

rates, a , and then to make a subjective judgment as to which 

test, determined by the value of a , has the most appeal. 

Modification» were given fcr rr-ultiple range tests, for 

testing means with unequal number of replications. by Kramer 



7 

(1956, 1957), Duncan (1957) and Bancroft (1968). 

Kramer (1956, 1957) suggested that for the D-method we 

should replace (1.6) by 

= 9^% / (I ' 

where = 1 - (l-a)̂ ~̂  and p = 2,...,n. Bancroft (1968) 

suggested that for the T-method we use 

'̂ 2 = ̂ n,v/" 

where — = i E (̂  ) . 
K " i 

In these proposed modifications all the distributional 

properties, significance levels, etc., are lost. 

Recently Spĵ tvoll and Stoline (1973) and Hochberg 

(1973) gave an extension of the T-method to include the case 

with unequal sample sizes. The method is applicable to any 

set of heteroscedastic uncorrelated means. In these 

extensions the distributional properties are preserved. 

Spĵ tvoll and Stoline (1973) proved 

P (i=l Vi ̂  I  i • 'a' 

r " + " where L, = max̂  S (a.H.) , - Z (a.) 
 ̂ Li=l  ̂̂  i=l  ̂̂  • 
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= max {0,â il̂ ) , = min (0,â il̂ ) , 

a? = ;̂  , and X, » = linear space of all 
X X>C 

(* 
In particular, for all pairwise comparisons of the 

linear combinations ; 2.̂ ,...,arbitrarŷ  . 

population means û ,... ̂ û  , we may meike the following 

statement 

p|(Ui-Uj) e (X̂ -Xj) + OgT3 , 1-a (1-8) 

a 
where T, = q' ̂  / min(/r.,/r.) , (1.9) 

O P / V 1 J 

' Gt a =a and p=n . Here q_ is the upper 100a percent 
P n, V 

point of the studentized augmented range distribution with 

parameters n and v . The studentized augmented range 

with parameters n and v is the random variable 

°A,v ' ' (l̂ 'n ' ]/»̂ (xJ/v) 

where 

|M|̂  = max ̂ IXĵ l j = max̂ l̂x̂  - X̂ , i j. 

and Xĵ ,...,X̂  are independent, standard normal random 

variables with , an independent variable on v 

degrees of freedom. An equivalent method of defining the 

studentized augmented range is 
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= {̂|X,-X,.|)//(xyv> 

where , i=l,...,n are given as before and Xq is an 

independent random variable with Xq = 0. 

Although unmentioned in the literature, extensions of 

the D-method and the SNK procedure to group means with 

unequal number of replications can be constructed. The D-

method would use (1.8) and (1.9) with = l-(l-a)̂  ̂  and 

p = 2,...,n , while the SNK would use = a and 

p 2,...,n. 

To use these new extensions of the D-method and the SNK 

procedure we need the upper a point of the studentized 

augmented range which is not tabulated. However, Tukey (1953) 

shows for n > 2 and a < .05 , that it differs from the 

corresponding upper a point of the studentized range by a 

practically negligible amount. For n=2, Tukey (1953) also 

shows that we may obtain the upper a point of the 

studentized maximum modulus by using the following relations; 

where Qi ,, (x) is the cumulative distribution function (cdf) 

of the studentized augmented range with parameters 2 and 

V , and V, (x) is the cdf of the studentized maximum 
6 # V 
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modulus with parameters 2 and v . 

Most of the multiple comparison procedures discussed so 

far do not give an unambiguous grouping of the means. 

Tukey (1949) suggested that a procedure based on the 

distribution of the studentized maximum gap statistic may 

help the experimenter to find the pattern or determine the 

grouping of the means. 

Murphy (1973) explored the consequences of using this 

statistic for finding the grouping in a set of means which 

are normally distributed with a common variance. He gave 

only the exact null distribution of the maximum gap between 

adjacent means when there are four or five means. Some 

approximations were also given when the number of means is 

greater than five and less than twenty. 

Here we develop an exact expression for the distribution 

of the maximum gap which involves n means from any popula­

tion which has a continuous form. Though the derivation is 

straightforward, the formula is not simple for the normal 

distribution. 

Let , i=l,...,n be distributed with cdf F and 

pdf f with ' the order statistics. It is 

required to find the distribution of 

(̂si) "ith g. = X(., - X̂ _̂ , 

and 2 = n-1 . 
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The joint density of all n order statistics is 

in! f (x, ) f (x,).. .f (x„) if X, < X, < —<x 
= ( 12 n 12 n (1.10) 

1̂ 0 otherwise. 

Let g = (gg, ĝ̂ ). Then by a linear transformation 

in (1.10) we obtain 

« " 
nl / n f (x + g, + g-+ • • •+g .)dx, 

-« 1=2  ̂  ̂
f-(g2f.. • fgn) if gĵ  > 0, (2£i<n) (1.11) 

otherwise. 

' ' ' ' ' 9n ̂ ~ \ 

I -
Also from (1.11) we get 

(y) = f/y V x(x,x+y)dx 
9i -00 (̂ (i) '̂ (i-1)̂  

= (l-2lf(n-i)l {1 - P(x+y)) 

•f(x)f(x+y)dx . (1.12) 

This expression was given in another context by Pyke 

(1965). 

Before we give the distribution of let us give the 

Boole formula for the n events . The 

probability of at least one of the Â  is 
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P f U A.] = 2 P(A.) - Z P(A.A.) +... (-1) 
\ i = l  ̂  i  ^  i < j  ^  ̂  

n-1 

P(Â A2...Â ) . (1.13) 

Let be the event > g}. Then (1.13) may now be 

expressed as 

P (g« >g) = E P(g. >g) - z P (g^ > g^g^ > g) 
V * ' i=2  ̂ i<j i?«l  ̂ ] 

+ ... (-1)̂ "̂  p(g2 > g/gj > 9/... rgjj > g) • (1.14) 

Therefore if F is the normal distribution we may obtain 

the distribution of Gĵ  by substitution in (1.14) . This 

general technique of finding the upper percentage points by 

the use of the Boole formula was described by David (1970). 

A special case was given by Fisher (1929) who used in our 

notation the first term of Boole formula for finding the 

upper percentage points. 

Using the first term of (1.14), we obtain 

n 
P(Gg >g) = I P(g. > g) . (1.15) 

 ̂ i=2  ̂

An upper bound ĝ ^̂  to  ̂ which is the upper a% point 

of is obtained by solving (1.15) for g . With the exist­

ing computer software , it is not very difficult to solve (1.15). 
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Let us define the studentized maximum gap by 

Rg = Gg/s with an unbiased estimate of with v Xr f V X 6 

d.f. and independent of the order statistics. 

The cumulative probability integral of the studentized 

maximum gap is given by 

P(R, < r) = P(G- < sr)f (sr)ds 
X / V — Q X» — 

2 
= —̂ -5 ŝ "̂  exp(-ivŝ )P(G5 < sr)ds , (1.16) 

r(iv) 0 2 a 

with the above expression we may calculate the 

distribution of the studentized maximum gap and the various 

upper percentage points of the distribution for different 

£ and v . 

These multiple comparison procedures are based on 

different principles and there are large differences between 

the solutions offered by these procedures. A major source 

of difference lies in the choice of the probability of a Type 

I error a . Some procedures control the per-comparison error 

rate which is the number of erroneous inferences divided by 

the number of inferences, while other procedures control the 

experimentwise error rate which is defined as the number of 

experiments with one or more erroneous inferences divided by 

the number of experiments. A basic question is how the 
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choice of a should be made, for example, in terms of a 

comparisonwise a or an experimentwise a or on some other 

basis. This is a question which has not been addressed. 

Another inadequacy in the area of simultaneous inference 

is the choice of a multiple comparison procedure. Since the 

S-method and the LSD are based on the F statistic, while the 

D-method, the SNK and the T-method use the studentized range 

statistic, it seems that the choice of a multiple comparison 

procedure is related to the choice of a pivotal quantity. 

This aspect of the problem has not been considered in the 

literature. 

Let us consider the work that was done on the logic for 

the choice of error rates. For the simple hypothesis vs the 

simple alternative Lehmann (1958) said that any experiment 

gives a convex curve passing through (0,1) and (1,0) of the 

admissible values of a and $ , the probabilities of errors 

of the first and second kind. To pick a he says that we 

may specify a series of indifference curves on the (a,3) 

plane and use this to pick an optimum a . But he abandons 

this approach because of the difficulty of specifying the 

indifference map and suggests that we fix a and select a 

test which minimizes B . This recipe does not tell us how to 

select a 

Lindley and savage in a series of papers, for example, 

Savage et al., (1962), and Edwards et al., (1963) showed under 



15 

certain assumptions for the simple hypothesis vs the simple 

alternative that the indifference curves are parallel 

straight lines whose slope is the prior odds-ratio when we 

assume a zero-one loss function. They gave a logic for the 

choice of a and a Bayes rule for the simple hypothesis vs 

the simple alternative. In this dissertation we will give 

the Lindley-Savage argument and extend it for the multiple 

comparison problem. 

Lindley (1961) considered the composite hypothesis vs 

the composite alternative and showed that the critical values 

depend on the loss function, the prior distribution and the 

sample size. This important result shows that a should 

decrease with increasing sample size. We will review the 

Lindley (1961) work and also extend his arguments in this 

dissertation. 

For the symmetric multiple comparison problem, the major 

contributions were Duncan (1961, 1965) and Waller and Duncan 

(1969). They developed a Bayes rule for the symmetric 

multiple comparison problem. Duncan (1965) showed that when 

the F ratio in the analysis of variance table for the one­

way classification is small, for example, F £ 2.5, the 

Bayes rule has the same character as the experimentwise 

a-rule, and when the F ratio is large, the Bayes rule has the 

same form as the comparisonwise a-rule. Waller and Duncan 

(1969) considered the one-way classification model with equal 

number of replications and variances unknown but equal. Using 
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a comparisonwise approach to the multiple comparison problem, 

they developed a Bayes rule and claimed to have a method for 

the choice of a . They used priors which are functions of 

the data. These priors have two difficulties in spite of the 

analytical convenience that they offer. They do not extend 

obviously to the case of unequal sample sizes and they depend 

on the data. The authors developed a Bayes Least Significant 

Difference. We will discuss the Waller and Duncan (1969) rule 

in detail in this dissertation. 

The work in this dissertation represents an improvement 

over Waller and Duncan (1969) because we are using priors 

which are not functions of the data and also because we have 

considered the one-way classification model with unequal 

number of replications and with a common unknown variance. 
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II. GENERAL FRAMEWORK FOR A BAYESIAN APPROACH 
TO THE MULTIPLE COMPARISON PROBLEM 

A. Introduction 

The main objective of this chapter is to present a 

general framework for a Bayesian approach to the multiple 

comparison problem. 

First, the probability space and Bayes theorem are 

discussed. Next the decision theoretic formulation of the 

multiple comparison problem for the one-way classification 

model is developed. This involves a discussion of a linear 

loss function used by Waller and Duncan (1969). Finally 

de Finetti's ideas of exchangeability are presented and it is 

shown how we can characterize our prior knowledge or beliefs 

by exchangeable priors. 

B. Probability Space and Bayes Theorem 

Consider the probability space (0,3 yPg : 6 e ©)» where 

{Pg : Ô e 0} is a family of probability measures defined on 

the measurable space (fi/5). Consider X as a 3 -measurable 

mapping of 0 onto ̂  , i.e., 

f Pg(B) = Pg(XeB) = Pg(x"^(B)) B . 
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In addition, consider a decision space D and a loss 

function, L : 0 x D—[0,®) . We may also define a class 

of decision rules. A* = {6 —» D}. The riek function 

R{0,'3) is given by 

R(6,e) = Ê [L(ô,6(x) )] 

Suppose O supports a a-field and a probability 

measure over it. Then we may find a Bayes rule by minimizing 

the expected risk. Let n = {ir : ir is a probability measure 

over (0 ) , where -C includes single points }, then the 

Bayes risk of 6 with respect to ir is given by 

B(Tr,6) = / R(6,@)dir(9) 

Now 6q is a Bayes rule with respect to IT if 

B(tt,6o) = inf B(ir,6) , 
" Ô e A* 

where A* is the class of randomized decision rules. Lehmann 

(1959) said it is convenient to consider this class. He said 

'actually the introduction of randomized procedures leads to 

an important mathematical simplification by enlarging the 

class of risk functions so that it becomes convex. In 

addition, there are problems in which some features of the 

risk function such as its maximum can be improved by using a 

randomized procedure.' The notion of using randomized 

procedures is unappealing from the viewpoint of the evidential 
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content of data. However, in the situations to be discussed 

this will not be involved. 

We will now characterize the measure on 0 by means 

of some density Tr(@) with respect to some dominating 

a-finite measure. The famous Bayes theorem is given by 

TT(@ |x) = p(x|9) 7f(©)/p(x) , 

where p(x) = / p(x|9) Tr(@)d9 

The Bayesians go a step further with the introduction of 

a utility function U[d(x),6], which is bounded, real-valued 

and defined over D x 0. It has become standard in decision 

theory problems to use the negative of the utility, and to 

call this number the loss. 

Bayesians claim that the decision problem is solved by 

maximizing the posterior expected utility which is given by 

//Uld(x) ,eip(xle)TT(8)dx de (2.1) 

where 0 may be a vector. If it(0) is a proper prior 

distribution then (2.1) is finite. Now by Fubini's theorem 

(2.1) is 

/ dx { / d0 U [d (x) ,0]p (x| 0)7r (0) } 

Therefore the best decision is the one which maximizes 

for each x, the quantity 

/ d0 U[d(x) ,0]p(x|e)7r.(0) . (2.2) 
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For a further discussion on the decision and inference 

problem the reader may refer to Lindley (1971a). 

In this development utility theory is a cornerstone of 

much decision theory. The reader must be aware of the fact 

that although many able statisticians use utility theory there 

are deep obscurities. Luce and Raiffa (1957) discuss some 

of the difficulties. They said that the problem of inter­

personal comparisons of utility has not been solved and that 

reported preferences of individuals never satisfy the axioms 

but are usually intransitivities. They also said "There can 

be no question that it is extremely difficult to determine 

a person's utility function even under the most ideal and 

idealized experimental conditions, one can almost say that it 

has yet to be done." Therefore one may ask the following 

question; Can one base statistical methods on utility theory? 

For further discussion see Kempthorne (1972). 

C. Decision Theoretic Formulation of the Problem 

From the one-way classification model let 

NID{û ,â /r̂ ), i=l,...,n . 

The multiple comparisons among the means are reduced to 

a set of separate comparisons between the means u. and u. . 
' iy i J 

A comparison of one mean û  to a given mean û  may be 

considered as the problem P(i,j), which allows two 
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decisions 

dtj : is significantly larger than , 

or > Uj 

d?j ; X̂  is not significantly larger than X̂  

or is unranked relative to Uj . (2.3) 

If we consider the complementary problem P(j,i) we 

obtain with a combination of P(i,j) and P(j,i) the 

familiar three-decision problem Q(i,j) / allowing the 

decisions 

dK = dt. A d?. : X is significantly larger than X. 
1] 1] ]i 1 ] 

d?. = d?. O d?. : X. is not significantly different from 
1] 1] ]i 1 

d?. = d9.r\ dt. : X. is significantly less than X. . (2.4) 
1] 1] ]i 1 ] 

Note we have ruled out the decision 

dtjO dt̂  ; X̂  is significantly larger than Xj 

and Xj is significantly larger than 

ic, . 

[See Lehmann 1957a and 1957b] . 

We have now reduced the multiple comparison problem to 

one of a three-decision problem 0(i,j) for all of the 
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combinations of (u. ,u.) taken simultaneously. 
Z X J 

For the single component problem P(i,j), an 

appropriate loss table may be given by Figure 1.1 . 

Si.>0 

States of 
Nature 

6i,<0 

Acts 

<1 

Gain Loss 

Loss Gain which 
depends on 

Figure 1.1 Loss Table 

Here we may represent gain by negative loss and îj~ 

In particular for the single component problem P(i,j), 

we will consider a simple linear loss function used by 

Waller and Duncan (1969). 

1 I î-î — 0 
L(dT.,e) = L(d;̂ ,9) = 

kgôij > 0 (2.5) 

where 0 = (u, ,a!) , 6.. = u. - u. , and k, and k, 
X il G Xj X J X 6 

diê positive. The nuinbers k, and k<, are very important 

in this approach because they represent the relative 
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seriousness of the Type I and Type II errors. The solution 

depends on and kg through k = k^/kg . 

Kempthorne and Folks (1971) say that in most real 

situations there is great difficulty in specifying L(d,6) 

because the consequences of terminal decisions extend into 

the indefinite future. Here we assume this difficulty has 

been solved by the users of this procedure. 

P(ô) 

5 0 

Figure 1.2 Loss Function and Prior Distribution 

We have used the above convenient loss function (Figure 

1.2) and do not claim that this loss function is appropriate 

to every problem that an experimenter faces in practice, nor 

of the appropriateness of the assumption of normality of the 

distribution of the data and the parameters. Hence our 

solution is not exactly optimal for any practical problem. 

We also have symmetry and monotonicity of the loss function. 

This loss function is also unbounded but Lhis property 

does not hinder us from interchanging the order of the 

I 

I 
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integrals in the expression for the Bayes risk in our 

search for a Hayes solution. Here we appeal to Tonelli's 

theorem which allows us to interchange the order of the 

integrals in Equation 2.1. A statement of the theorem is 

given below. 

Theorem (Tonelli) [Royden (1968)]. 

Let (XXZfU) and (Y,(8,v) be two o-finite measure 

spaces, and let f be a nonnegative measurable function on 

X X Y. Then 

i for almost all x the function f^ defined 

by f^Xy) = f(x,y) is a measurable function 

on Y, 

i' for almost all y the function f^ defined 

by fy(x) = f(x,y) is a measurable function 

on X, 

ii / f(x,y) dv(y) is a measurable function on 
y 

x, 

ii* / f(x,y) dy(x) is a measurable function on 
X 

y, 

iii f [f f dv]dy = / fd(]ixv) 
X Y X x Y 

= / [/ f dy]dv . 
Y X 

If d^'s are the component decisions of the form of 

(2.3) then for a multiple comparison decision d where 
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we obtain under the linear additive loss model 

L(d,6) = Z L(d^,e) . (2.6) 
i=l 

In this dissertation we have as a matter of convenience 

considered only an additive loss structure, but we can 

envisage cases where the loss structure is not additive. In 

certain cases we may be able to transform a non-additive 

loss structure to an additive loss structure. At the moment 

it is unclear how one deals with non-additive loss functions 

in general. 

D. Exchangeability 

De Finetti introduced the idea of exchangeability in 

1931 and 1937. The random variables are 

exchangeable if the n! permutations (X. } have 
^1 *n 

the same n dimensional probability structure. An excellent 

translation of his paper is given in de Finetti (1964) where 

he shows for random variables taking the values 0 or 1, 

that their distribution could be represented as the weighted 

average of probabilities obtained by coin tossing processes. 

He also extended this characterizsticn to general random 

variables. A proof of this general result is given in this 

p . 
d = d^ 

i=l 
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chapter. Hewitt and Savage (1955) studied this theorem for 

random variables in abstract topological spaces. 

This major result shows that if exchangeability is 

assumed for every n in @^,...,8^ , then a mixture seems 

to be the only way to generate an exchemgeable distribution. 

An alternative restatement is that an exchangeable sequence 

of random variables behaves like a random sample from some 

distribution with a (prior) distribution over the sampled 

distribution. Lindley (1971b) says that exchangeability can 

be a substitute for the concept of randomness and that 

exchangeability is an easier condition to check than the 

concept of independence which is involved in the concept of 

randomness. Here he means that one can easily see whether 

the joint distribution has the property of exchangeability, 

i.e., invariance under permutation of the suffices. The 

reader must be aware that this concept of exchangeability is 

not always valid, and that in some cases one may have to 

modify the idea of exchangeability and talk about between and 

within exchangeability. A simple example which demonstrates 

the inapplicability of this idea is given by the one-way 

classification model where some of the treatments are 

experimental varieties and some are controls. We cannot 

assume here that the treatment means are all exchangeable; we 

may suppose from a particular structure of the treatments 

thaé we have exchangeability between the controls and betwGsn 

the experimental varieties. In other cases our beliefs about 
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the structure of the treatments may show that the assumption 

of exchangeability is not applicable. 

Lindley (1971a, 1971b), Smith (1973a, 1973b), and 

Lindley and Smith (1972) used the idea of exchangeability to 

generate prior distributions in the estimation problem. We 

hope in this thesis to use this idea to generate prior 

distributions for an analysis of the multiple comparison 

problem. 

With the assumption of exchangeability we are imposing 

some form of structure in our prior information or beliefs. 

Also on account of the difficulty of assigning priors in 

higher dimensions in any meaningful way, by using exchange­

able priors we are able to reduce the dimensionality of the 

problem. This point will be illustrated later by an example. 

All the results given in this thesis are valid if we 

drop de Pinetti's idea of exchangeability, but we may regard 

exchangeability as a convenient way to generate prior 

distributions. This advice is given because the Hewitt and 

Savage (1955) theorem is true only in an infinite dimensional 

space while Lindley and Smith in their work quoted earlier 

appear to be using it for a finite dimensional space 

[Godambe, 1971]. When Lindley says that if exchangeability 

is assumed for every n in ' then a mixture is 

the only way to generate an exchangeable distribution, it 

seems that he is using the theorem for a finite dimensional 

space. 
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Let us restate these ideas on exchangeability by giving 

a formal definition of exchangeability and by reproducing a 

result which is given in Loeve (1963). But before we do this 

we need some notation. Let be the sample space. 

Define X^fXg,... as random variables on this space with 

distribution function F, ^ and with conditional 
1 m 

distribution function F, ^ where 6 is a sub a-field 
K-  e #  #K  1 m 

contained in (2 . 

Definition; The X's given B are conditionally 

independent if 

*l'''*m ^1 m 

where the subscripts form an arbitrary finite subset. Now if 

we take the expectation by integrating with respect to ^ 
o 

where 

P (B) = P(B) , B e , 
<8 

and using the definition of conditional expectation we obtain 

y  = E ( F ^ ' " F ^ )  . 
*l'''*m ^1 *m 

Note also if ̂  slvrays conditionally 

independent, so we assume 6 ^ . 
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Suppose the r.v's are conditionally independent with 

some common conditional distribution function F® ; then we 

have as above 

^k,...k = E(F (x^)*-*P (x^)) . (2.7) 
1 m 

So the joint distributions of any m r.v's do not depend upon 

their subscripts but only upon the number m. This leads to 

de Finetti's definition of exchangeability which may be 

restated 

Definition; The random variables are exchangeable if 

the probability that X. satisfy a given condition 
^1 ^m 

is the same no matter how the distinct indices i^,...,i^ 

are chosen. 

Theorem (de Finetti-Loeve). 

The concept of exchangeability is equivalent to that of 

conditional independence with a common conditional 

distribution function. 

Proof (LoWe» 1963) (Given in detail) ;^This is true 

from (2.7) where the joint distributions of any m of the 

#r.v's do not depend upon the subscripts but only on m. So 

the r.v's are exchangeable. 

Let 

= R. ^ and V x e R 
m JC- . • « K 

1 m 
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define 

®n'=" = n < X] 

From exchangeability 

®p[x. <xl] = p[xi<x] = g^(k) = m. 

and 

E [} [X^ < xl ̂  [Xj < x]]^ S 
= mg i^i 

Now for m < n 

[s„(x) -S„(x)] = E[i X] - è J, 

2 f® " 1 

^lj=i j 

= — +m(m-l)m2l + — [nm^ + nfn-llmg] 

- [mmj^+mcn-dmj] 

w — — -» 
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= o»! - m;) (i-i) , 

and as m,n •*• « E[S^(x) - S^(x)]^->- 0 . This shows that S^(x) 

is a Cauchy sequence which implies 3 

S(x) > E[S^(x) - S(x)]^-*-0. But convergence in mean 

square convergence in probability (Tucker (1967)]. 

Hence 

Sn(x) S(x) 

Since S^(x) is bounded by 1 , we have by the Bounded 

Convergence Theorem and the a.s invariance under finite 

permutations of X's of B =4B(S(x),x e R) 

E(Sn(Xi) • • • SJJ(x^)IB) -> E([S(Xj^). • • S(x^)]Ig) . 

The LHS = P* [*1 <*!'•• while 

RHS = S(x,)- • • S(x^) , 
X m 

q 
so P [X, < X,,... rX„ < x^] = S(x,) • • • S(x„) a. s XI mm 1 m 

Now S_(x) is a step function and is a d.f in X. Therefore 

S(x) has a.s the properties of a d.f in X, and from the 

above can be replaced by a conditional distribution function 

i.e., convergence in probability convergence in 
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distribution. Note that theorems on the existence of 

conditional distributions are given in Loève (1963). 

This major result by de Finetti shows that the p.d.f.'s 

of a class of exchangeable random variables are averages of 

independent random varieibles. It gives us also a method of 

obtaining exchangeable distributions. 

In the example given next we show how exchangeable priors 

are used in estimating the mean from a normal distribution 

with a known variance. 

Example 1.1. Suppose NlDfu^fO^) i=l,...,n where 

is known. 

Assume also the distribution of u^ V n is exchangeable. 

By our theorem 

n 
p(u) = / n p(u.|0)dQ(0) 

i=l ^ 

where p(u^|#) V0 and Q(0) are arbitrary p.d.f.'s. Note 

p(u) is a mixture weighting by Q(0) of i.i.d. distributions 

given 0 . 

By exchangeability we have E(u^) is a constant, 0, Vi. 

In particular, let u^ be i.i.d. N(0,r^ ) with f known. 

In addition, we assume 0 has a distribution which can be 

supposed diffuse and the variance for 0 tends to infinity. 

It is instructive at this point to mention that by assuming 

an exchangeable prior we have reduced the dimension of the 
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parameter space from n to one. 

From the above assumptions we have the elementary result 

X./o* +X./f 
E(u.|x) = — where X. = EX./n 

^ I/O* + 1/f "• 

As mentioned, before one applies the assumption of 

exchangeability it is necessary to check whether it is 

practically realistic. 
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III. ATTEMPTS OP A LOGIC OF CHOICE OF ERROR RATES 

A. Introduction 

In this chapter we review in detail some of the major 

contributions on the choice of a, the probability of a Type 

I error. First, the assumptions of a "rational" decision 

maker are given and using these assumptions we state a result 

due to Raiffa and Schlaifer (1961) which shows that a decision 

maker's indifference surfaces must be parallel hyperplemes. 

The Lehmann argument is discussed and the Raiffa and 

Schlaifer result is then used to reproduce the Lindley-

Savage argument on the choice of a. Hypothesis testing 

within a Bayesian framework is then discussed with the simple 

hypothesis versus the simple alternative. Lindley's argument 

on the choice of a for a composite hypothesis versus a 

composite alternative is also given with an extension of the 

argument to the multiple comparison problem. A critical 

discussion of the Waller-Duncan argument is also given. 

B. Assumptions of a "Rational" Decision Maker 

Raiffa and Schlaifer (1961) showed that under "three 

basic assumptions concerning logically consistent behavior," 

a decision maker's indifference surfaces must be parallel 

hyperplanes. In this discussion we will use a decision space, 

a bounded utility function, and a decision will be selected 
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which maximizes the expected utility. 

A basic assumption is that the parameter space 0 is 

finite. The three basic assumptions which will characterize 

a logically consistent behavior are 

i) Sure-thing Principle; Suppose G = {0^^/... and 

let a = {aj^,...ra^} be the utility for decision d^, 

and b = {b^,...,bp} the utility for decision dg . 

Then dj^>-d2 (d^^ is preferred to dg) if 

for all i, and a^ > b^ for some i. 

ii) Continuous Substitutability: Indifference surfaces 

extend smoothly from boundary to boundary of a region 

R in r-space in the sense that if a is a point on 

the indifference surface, and if we make a small 

change in any (r-1) coordinates, then by making a 

small compensating change in the remaining coordi­

nates, we can obtain a new point on the same 

indifference surface as a. 

iii) Suppose there are three decisions d^, dg, and dg 

such that d^^y/^ dg (d^^ is indifferent to dg). Then 

a mixed strategy which selects dj^ with probability 

p and dg with probability 1-p is indifferent to 

a mixed strategy which selects dg with probability 

p and dg with probability (1-p). 



36 

Theorem; 

Under these three assumptions, the decision maker's 

indifference surfaces must be parallel hyperplanes. 

Proof: See Raiffa and Schlaifer (1961) pg. 25-27. 

C. The Lehmann Argument 

Lehmann (1958) in his discussion on the choice of error 

rates considered X as distributed as 

dpx „ „(x) = C(@,v)exp[6U(x)+ Z v.T. (x) ]dy (x) 

with (@,v) e© , 

v= and T= (T^,...,T^) . 

Consider the problem of testing the hypothesis 

Hq;0=0q against the alternative > 6^ . By the Neyman-

Pearson theory, the uniformly most powerful unbiased test is 

given by 

1 if u>C(t) 

0(u,t) =  { Y(t) if u = C(t) 

0 if u < C(t) (3.1) 

with the functions C and y determined by 

Eq [0(U,T)|T=t] = a 
^0 

and 
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E. [U0(U,T)lT=t) = aE„ [U|T=t] for ail t. 
**0 **0 

Let be the class of tests satisfying (3.1). We want to 

select a specific test from € . 

For r=0 we have no nuisance parameters. Let a and 

8 be the error probabilities associated with testing 

Hq:0=6q against The attainable pairs (a,6) form 

a convex set, the lower boundary of which corresponds to the 

admissible test (3.1). This lower boundary S is a convex 

curve connecting (0,1) and (1,0). We need a method to select 

a point on this curve. Lehmann considers an indifference 

map as shown in Figure 3.1(a). 

He then suggests that the optimum test would be given 

by that point of S lying on the indifference curve closest 

to the origin. 

However, he abandons this approach by commenting on its 

complexity and by saying that the indifference map may be 

any family of curves running in a north-westerly to south­

easterly direction. 

Some other suggestions have been given. Consider fixing 

a without regard to power. Let L = {a|ct=a*} as shown in 

Figure 3.1(b). The required test is given by the intersection 

of L and S, which is the point (a',6'). 

We may also consider, as illustrated in Figure 3.1(c) 

the intersection of S and C, where C = {B|B=f(oi)} and 

f is a continuous strictly increasing function with f{0)=0. 



Figure 3.1 Diagrams for selecting a . 
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In particular we may take 3=ka. Since for all admissible 

tests B£l-a , we have a£k/(k+l) and l/(k+l) is an 

upper bound for a. The problem seems to be how to determine 

the function f. 

Lehmann also considers the case for r > 0 and gave 

some discussion on the choice of a and 6 . 

D. The Lindley-Savage Argument 

Consider the case of a simple hypothesis and a simple 

alternative. Savage et al., (1962) said our choice of 

(a,3) must be made subjectively. 

Let us consider the unit square with axes a., 0£a£l/ 

and B, 0£B£l. By the principle of admissiblity we will 

restrict our choice of (a,3) to the south-west portion of 

the square. Any experiment will give a convex curve passing 

through the two corners (1,0) and (0,1) and the 

statistician will select a point on this curve as the best in 

some sense. We know that the admissible tests on this curve 

are the likelihood ratio tests. 

Let us consider a family of indifference curves in the 

(a,B) plane. . By the argument given in Section IIIB these 

curves should be a family of parallel straight lines. So 

the question is how to pick the slope of these lines which is 

simply the rate at which one is willing to increase 3 per 

unit decrease in a , or the rate of exchange. 
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Since any decision will amount to the choice of a slope, 

we will arrive at a decision by being Bayesians with utilities 

and subjective probabilities. By Bayes theorem for A and 

D e *5-

P(a|d) =  ̂ p r o v i d e d  P(D)fO . 

Also P(A|d) =  ^ w i t h  P(D)fO . 

So P(AlD) = P(DIA) P(A) 

P(A|D) P(D|Â) P(Â) 

The left-hand side is the posterior odds for A over A and 

P(A)/P(A) is the prior odds, so posterior odds = likelihood 

ratio X prior odds i.e., n(A|D) = L(A:D) 0(A), where 

0(A|D) = P(A|D)/P(A|D) , L(A:D) = P(D|A)/P(D|A) and 

0(A) = P(A)/P(A). 

Now consider the following payoff matrix. 

Correctly Incorrect 

and the expected cash matrix. 
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Correctly Incorrect 

IP (A) 0 

JP(A) 0 

We will guess A iff IP(A) > JP(A). After an examination 

of the data we will guess A iff n(A|D) > 3/1 iff 

L{A:D) > J/(in(A)) = A, where A is the critical likelihood 

ratio. Therefore the indifference curves will have then slope 

-[J/(Ifl(A))]. So once we specify our prior odds and our 

utilities we can find our slope and our choice of (a,g) in the 

unit square. In particular, if J = 1 = I then the slope of 

the indifference curve is -P(Â)/P(A). 

Lindley showed the unsoundness of the minimax 

method which is sometimes employed in the selection of a . 

The Lindley-Savage argument provides a logic for the 

choice of a in the simple hypothesis versus the simple 

alternative. Using a Bayesian proof of the Neyman-Pearson 

lemma we restate formally the Lindley-Savage argument for 

determining a . 

E. Bayesian Hypothesis Testing 

1. Simple vs simple 

Let ® = (®o'*l* , D = (dg^d^) , where d^ accepts 

the hypûLheâiô while rejects itr Also let 
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0 i=j 

L (d / 9 j ) 
(3.2) 

such that > 0 and a^^ > 0, a(6)=p(5=d^|@Q) and 

B(6)=p(C=dQ|6^). Consider a prior distribution over © 

which is given by P(6=ÔQ)= IT > ue(0,l) and p(@=6^)=l-N . 

Now the Bayes risk 

such that a = agir and b = a^tl-n). For i=0,l let 

be the pdf of the observation X when 9=6^ . 

Given the above we may restate the Neyman-Pearson lemma 

for hqiôsôq versus h^:8=8^ . 

Lemma (DeGroot (1970)). For any constants a > 0 and 

b > 0, let 6* be a decision such that 

R(TT,6) = aQiTa(6) + a^(l-n)g(6) 

= aa(6) + b3(6) (3.3) 

6*(x) = dg if afgfx) >bfj^(x) 

and 

Ô*(x) = d^ if afgfx) <bf^{x) (3.4) 

The value of 6*(x) may be either dg or d^ if 

afQ(x) = bf^(x). Then for any other 6 
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aa(ô*) + bB(6*) < aa(6) +b3(6) . 

Proof. (See DeGroot (1970)). 

This lemma says that we should pick 

fl(x) a a-tt 
ô*(x) = d« if ^ 

0 fgCx) b a^tl-n) 

_ , _ fl'x' . a _ V . (3.5) 
- fgw ' e " qtt=ir 

The above result shows that in the simple hypothesis versus 

the simple alternative our choice of a decision function 

depends on our prior distribution, our losses or utilities 

and the likelihood ratio fj^ (x)/fQ (x). 

For the above test we know that a is the probability 

of rejecting Hq when Hq is true. Therefore in this case 

if we specify our prior probabilities and our losses or 

negative utilities we can calculate this probability and 

hence obtain the required value for a. 

By the above argument we have riot only found a logic 

for the choice of error rates but have also found a method 

for determining whether to reject or accept the hypothesis 

under discussion. 

As illustrations of the suggested process we give two 

examples. 
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Example 3.1. Continuous case 

Let HQifgCx) =1 xe [0,1] 

h^:f^(x) = 3x^ xe [0,1] 

Now L(x) = f^(x)/fQ(x) = 3x^ xe [0,1] 

By the above Neymain-Pearson lemma, 

reject Hq if L{x) > naQ/[(l-n)a^] 

or accept if L(x) < naQ/[ (1—IT) a^^l 

For X £ 3, 

a = Pa { x;L(x) > X \ = P* ( x;3x^ > X } 
®0 *0 

= l-(x/3)l/2 ^ 

Also 6 = Pg {x:L(x) < X }= Pg {x:x < (X/3)^^^} 

= (x/3)3/2 = (l-a)3 . 

Suppose the loss associated with decision d^^ is a^^ and 

P(HQ) = IT, then for TT = 3/4,  a^ = 3/2,  and a^ = 3 

X = naQ/[(l-n)a^] = 3/2 

So a = 1-(X/3)1^2 = 1-/2/2 = .293 . 

Example 3.2. Discrete case 

Consider the discrete r*v x f the probability under 
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X 0 12 3 

PQ(X) .1 .2 .3 .4 

p^(x) .2 .1 .4 .3 

Now L(x) = Pj^(x)/Pq(x) 

X 1 3 2 0 

L(x) 1/2 3/4 4/3 2 

Now let ag = = 1 and it = .6 

so ^ - {1-tr?a, - t! - i • 

a = P« / x:L(x) > X ̂  = P. { x=0 .1 
®0 ®0 ^ 

g = Pg { x:L(x) < = Pg { x=l or x=2 or x=3} = .8 
«1 «1 

so a = .1 and $ = .8 

2. Composite vs composite 

Here we will review the logic of Lindley (1961) for the 

choice of a when one has the following hypothesis testing 

problem: 

Hg:@= 0 versus 8^:0^0 where 0 is a nuisance parameter. 

Lindley discussed the use of prior probability distribu­

tions in statistical inference and decisions. He was concerned 

with the large sample problem and showed how the effect of the 
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prior distribution is minimal. He obtained results which are 

comparable to the large sample theory of testing. Let 

D = (dgfd^) where dg accepts Hq while dj^ rejects Hq. 

Let us make the following assumptions about the utility 

function. 

u(do;o,0) > u(dj^;o,0) 

and U(dQ;G,j3) < Utd^fG,*) . 

We note that the optimum decision which is obtained by 

maximizing (2.1), is not affected by subtracting any function 

of £ from U(d/£) = U(d(x),@) where 6 = (@,#). With the 

same notation the above inequalities are replaced by 

u(do;@,9) = 0 efo 

utd^io,#) = 0 

and U(d^;@,#) > 0 otherwise . (3.6) 

Following Jeffreys (1961) we will assume that along the 

line 0=0 there is a density nQ(p) with respect to 

Lebesque measure on this line, while over the rest of the 

parameter space we will assume a density n^(@,0) with 

respect to Lebesque area over 0 = (9,0) . 

By definition the prior-odds in favour of Hq is 

/  i T . ( 0 ) d 0  /  / /  ( e , 0 ) d e d 0  
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From the expected utility let 

X(dQ,x) = / U(do;0,#)p(x|0,9)no(*)dP (3.7) 

and X(d^,x) = // U(d^;6,#)p(x|@,#)n^(6,0)d6d0 . (3.8) 

Let us approximate the integrals (3.7) and (3.8). First 

let us introduce some notation. Let 

WQ(0) = U(dQ;O,0)TrQ(0) , (3.9) 

and w^(e,#) = U(dj^;ô/0)Trj^ (0,0) . (3.10) 

For X = (x^,...,x^) > Xj^ ̂  i.i.d. with p(x^|0) , let 

_ n 
p(x| e , 0 )  =  n  p(x. | e , 0 )  

i=l ^ 

and 

/V A j\ 2 n ^ 
à = det(nc..(ô)) with ne..(@)=- aa a log n p(x.|ô) , 

XJ — Ij ~~ CfW.t». X — 

where 0 is the maximum likelihood estimate (mle) of 0 

««•% 
while 0 is the mle of 0 when 0=0 . 

For the case of n independent and identically 

distributed observations Lindley (1961) under suitable 

regularity conditions approximated (3.7) by 

X(dQ,x) = /(2Tr)WQ(ï)p(x|0,?) [nc22(0,5)1"*^ (3.11) 

and (3.8) by 

= (2ir)w^(0,0)p(x|O,0)A ^ (3.12) 

Assuming that wq(0) and w^(0,#) are bounded away from 
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zero near the mle values, the rule is to accept Hq if 

x(dq,x) > x(dy%) , 

that is, if 

p(x|0,#) (9,0) r 2TTnCp^(O,0) 1 
— ^  ^  J  . (3.13) 
p(xj©,/J) WQ( 0 )  ^ A 

This test is the usual likelihood ratio test as shown 

by Lindley (1961). Let a^ be the value of the right-hand 

side of (3.13). Now a^ is obtained from the prior 

probabilities and utilities evaluated at the mle values 

and the sample size. 

We can get a better estimate of a^ by including more 

terms in the expansion of (3.7) and (3.8). Let 

A(x) = p(x|O,0)/p(x|@,p) 

then (3.13) becomes 

w ^ ( 9 , 0 )  zncggto,#) 
-21og A(x) < - log 

wj(^f) n^a 
+ log n . (3.14) 

Under Hq:G=0, the left-hand side of (3.14) is 

distributed as a with one degree of freedom. The left-

hand side is 0(1) . w i t h  n -> <» thé right-hand side in 

square brackets ténu» tG a finite liniit and the difference 

between it and the limit is 0(l//n). Lindley then replaced 
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the expression (3.14) by its limit which is obtained by 

replacing 6 by 8=0 and and 0 by 0^ . Therefore 

we may write (3.14) as 

x^<A ( 0 Q) + log n (3.15) 

with X N(0,1) and 

rw!(0,*o) 2*0,2(0,0 ) 1 

The right-hand side of (3.14) is a random variable. For 

the simple hypothesis versus the simple alternative the 

corresponding expression is a constant, so to make the right-

hand side of (3.14) a constant Lindley replaced it by its 

limit. In practice we do not know 0^ the true value. 

For this problem 

a = 2 l//(2n) exp(-t^/2)dt (3.16) 

"n 

where u^ = [A(0Q) + log n]*^ . Integrating (3.16) by parts 

we are able to bound (3.16) and show that a is asymptoti­

cally 

I(n/2 exp(A(j3g))n log n]~*^ (3.17) 
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Here a depends on 0^ , the true value, which is unknown. 

It appears that with the mle of 0 we may compute (3.17). 

With (3.17) Lindley concludes that a is asymptotically 

proportional to. [n log n]~*^ , so as n increases a 

should decrease. 

He also remarked that an extension of this argument 

can be made without difficulty for a finite number of 

decisions but we will adopt a slightly different point of 

view. 

In this test of a composite versus a composite 

hypothesis as proposed by Lindley (1961) there are many 

interesting questions one may ask. What is the required 

nature of a test here in the presence of a nuisance 

parameter? Does the procedure have the needed frequency 

properties? These questions are outside the scope of this 

study and will not be discussed here. 

C(a) tests were also proposed by Neyman (1959 and 1969) 

and Neyman and Scott (196b) for the test of a hypothesis in 

the presence of a nuisance parameter. Extensions of Neyman's 

C(a) test were given by Bartoo and Puri (1967) and Buhler and 

Puri (1966). 

3. Extension of the Lindley argument 

In our review of Lindley*s work we mentioned the fact 

that the techniques given may be extended to include the 

case where there is a finite number of decisions, such as in 
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the analysis of variance situation. Lindley said that we 

may find approximations to A(d^,x) for each d^ . 

Here we will not use this suggestion but will incorporate 

some of his basic results in our extension. 

In the one-way classification model with k treatments 

we may want to test the following hypothesis from the 

analysis of variance. 

HQ: *1 = *2 = = "k 

or equivalently 

Hq: Ui - Uj = 0 ij^j 

vs H^: - Uj 0 

Let = u^ - Uj , so we have 

Hqî «ij = 0 i?^j 

vs 6^j f 0 

and 0 is a nuisance parameter. As we have indicated before 

a comparison between two means u^ and Uj, i^j is 

considered as the problem P{i,j). By formulating the problem 

in this manner we can reduce the problem of comparison of k 

fk) 
means to h = I component decision problems where we compare 

two means at a time. By using the same utility and prior 
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structure as Lindley (1961) we accept Hq if X(dQ,x) > X(d^,x) 

iff (3.13) holds. So for the component problem which involves 

the means u^ and Uj , and two decisions dg and dj^ we 

have a* which is similar in form to (3.16) and is given by 

a* = 2 c l//(2n).exp{-t*/2}dt 
[A(0Q) +logn]-^ 

= [u/2 exp{A(/ZfQ) }-n lognl~^^^ 

'w|(0,frQ) 2wc22(0,#o) 
where A(^q) = - log 

"o (*o' " 

is replaced by 6^j=0, and 0 and 0 are replaced by 

0Q . Also VQ(0) and w^(O,0) are defined in (3.9) and 

(3.10). 

So 1-a* = P[|x| < [A(0q) + log n]^^^] where 

xf*N(0,l) 

Since for k-treatments there are h = 

component problems, by an application of a Bonferroni 

inequality, we achieve an a for the overall problem by 

using a* = a/h* for the component problem where h* = h. 

Hence from our previous calculations 

a* = a/h = [(tt/2 exp{A(0Q) }n log n] ^ 
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Therefore a = h[n/2 exp{A(jÏQ) }n log n] . As before we 

will use the mle value of in determining o. Therefore 

as in the two-decision problem, we see in the multiple 

comparison problem that a depends on the utility function, 

the prior distributions, the sample sizes, and the number of 

samples. The reader may wish to use also an improved 

Bonferroni inequality. Here the a* = " " ^ ̂ • 

Another recommendation may be that one uses a* 

irrespective of the number of treatments the experimenter 

may have to compare. 

It is interesting to note that the above recommendations 

depend on the choice of the priors, loss function, and the 

sample sizes. 

F. The Waller-Duncan Approach to the Multiple 
Comparison Problem 

Waller and Duncan (1969) gave a Bayesian approach to the 

symmetric multiple comparison problem. Here we will give the 

main ideas in this approach. They gave a Bayes rule for the 

symmetric multiple comparison problem and claimed to have a 

logic for the choice of error rates. 

Consider the one-way classification random effect model 

—  u +  ̂i j  '  i " l f  • . . , n ,  

i=l,...,r, 
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where e^^ NID(0,a^) and ^N(0,Og). Now 

NID(u^,a^/r) for i=l,...n and is an independent 

estimate of such that %^eE'^'^e ̂  (fg) • 

In Section IIC we reduced the multiple comparison 

problem to one of a three-decision problem Q(i»j) for all 

of the n(n-l)/2 combinations of (Uj^,Uj) considered 

simultaneously. For the P(i,j) problem we also gave a 

linear loss function. 

For X = ... ,X^), let y = OX where O is the 

Helmert orthogonal matrix with E(y) = n f n* = • 

Consider a normal prior on with mean zero and 

variance equals Og . On the unknown expected mean squares 

and + rOg = , the authors considered two 

independent prior distributions which are of the form 

^2 ®TP'®eP'^P'^P^ =K Pj (a^ls^p,qp)P3 (a^lSgp,fp) 

for 0 < Og < (3.18) 

where 

Pg(o^ I s^m) = ̂2™/^r (m/2)j(ms/o^)™^^exp (-ms^/(2G^) (l/o^) 

for 0^ e 

and 

K = P3(0ils&p.gplP3(0:|Sep.fp)d0&a0e • 
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Note the joint density of and is derived by 

considering the joint distribution of and 0^ obtained 

from the joint distribution of = (qp5^p)/a^ and 

Wg = (fpSgp)/Og which are independently distributed as 

with qp and fp degrees of freedom respectively. 

Now we may combine all these prior distributions over 

the parameter space %' = to obtain the prior 

distribution 

Since y^ is distributed normally with mean and 

variance o^/r and distributed independently 

of y^ as a Chi Square variable with fg d.f., we may now 

write the distribution of z = ••• • Y^-l'^eE^ 

X(Y) = Pi{n| (aj-a2)/r)P2(a^,o||sJp,s^p,qp,fp) . 

(n-1) (yj^ -
2 
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For the two-decision problem P(i,j), an application 

of Bayes theorem gives the Bayes risk proportional to 

9l2(z)=/ [L(d^2,%) -L(d°2,]r)]f(z|%)A(%)dY 

So one would take decision d^g if g^gfz) < 0 and d^g if 

g^gfz) ̂  0 • Using the loss function which is given in (2.5) 

we have 

0>gi2(2)= / _ kilGi2lf(z|l)A(l)d%-/ + k2Gi2f(z|l) 
w w 

• X (%) d% 

where w~ = {y *^12 — and w^ = {% *^12 ^ • From the 

above equation we obtain 

/ k, 
—% > ~ = k 
/_ |6,2|f(z|l)Ml)dx *2 
w 

Waller (1967) shows that integrating w.r.t. 

y2 - ̂ 2'*'"^n-l ~ ̂ n-1 ' critical region is given by 

I^(ti2/P,q,f)/El_(ti2,F,g,f)l > k 

where t,, = ^ ^ T^^e ' 
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with q = (n-1) + <3p » f = fg + fp where 

n-1 
= r I y|/(n-l) and s| = 2s|/r . 

Therefore the rule is 

is significantly greater than Xj if t^^ > t* 

X^ is not significantly greater than X^ if t^^ £ t* 

where for i,j=l,2, t*=t(k,F,q,f) is the solution for t^g 

of the equation 

I+(ti2»F,q,f)/[I_(ti2,Pfq#f)1 = k . 

We find that the critical t value t* is the same for all 

the P(i,j) problems because of the syirimetry of the loss 

function and the prior density. 

On a simultaneous application of the above rule to the 

P(i,j) and the P(j,i) problems we can derive the three 

decision rule for the 0(i,j) problem which is given as 

follows 

X. is significantly greater than X. if t.. > t* 
X  J  I j  

X^ is not significantly different from ïy if |t^^| s t* 

X^ is significantly smaller than 3^ if t^j < -t* 
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By the simultaneous application of this three-decision 

lA rule to all the I ) pairs of treatments we obtain the 

VI 
Bayes rule for this symmetric multiple comparison problem 

which is given as follows 

is significantly greater than if X^^ - Xj > BLSD 

Xj^ is not significantly different from Xj if 

|X. - X.( < BLSD 
'X 3 — 

X^ is significantly smaller than X^ if X- Xj < -BLSD 

where the Bayes Least Significant Difference 

(BLSD) = s^t(k,t,q,f) . 

The cut-off points t(k,P,q,f) depend on the P ratio, 

kf q, and f. So they depend on the data. The a used is a 

random variable. One would like, it seems, an a determined 

a priori by one's prior opinions and one's loss structure 

as in the case of a simple hypothesis versus a simple 

alternative. 

We view Waller and Duncan's work as limited and 

unsatisfactory for the following additional reasons. They 

considered the case of a one-way classification where the 

groups are equally replicated. In addition for they 

used a density which is proportional to a^ = a^ + r.a^, but 

this prior has two difficulties in spite of the analytical 

convenience that it offers: (i) it does not extend obviously 
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to the case of unequal sample sizes, (ii) it depends on 

the sample size r. 

There is no reason for an experimenter's prior opinions 

to depend on the data, though one's prior opinion may well 

influence the choice of the sample size. Concisely, a prior 

is chosen to represent the knowledge or beliefs of an 

experimenter before an experiment. It should not depend on 

what he plans to undertake next. Therefore, we adopt the 

view that a prior should be independent of the sample size 

and ease of integration should not be the motivating force 

in the choice of a prior dependent on the sample size, in 

view of the availability of high speed computers. 
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IV. A BAYES RULE FOR THE MULTIPLE COMPARISON PROBLEM 

A. Introduction 

The background for this work is the view that the choice 

of a testing procedure must necessarily be based on prior 

ideas or partial beliefs about the nature of the true means. 

Characterizing our prior beliefs, rather than our prior 

ignorance and using the Waller-Duncan decision theoretic 

formulation of the problem which is given in Section IIC we 

propose a solution to the multiple comparison problem. As 

mentioned, one convenient method of characterizing our prior 

ideas or partial beliefs is the use of de Finetti's ideas of 

exchangeability. 

Consider the one-way classification model with a common 

unknown variance and where there are no control treatments. 

The posterior distribution of u|z is derived and estimates 

of u are given. The Bayes rule for the multiple comparison 

problem is then found with an algorithm for the computation 

of the critical t values. 

B. The Posterior Distribution 

Consider the one-way classification model with a common 

unknown variance and with no control treatments. In the 

practical situation the variance components are unknown. The 

Bayesian process requires the assignment of priors to these 
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components. One method of doing this is the use of 

exchangeable priors, but as mentioned in Chapter II, the 

results given in here may be obtained without the use of 

exchangeable priors. 

The observations 

X^J N(U^FOG) T X—LR«..FN F 

and ]"lf•..,r^ . 

For the u^ which are unknown, we will assume conditional on 

Uq and Og that 

NID(UQ,Og) . 

As a prior for u^, we shall use the improper uniform 

distribution over (-»,»). It is surmised that this will 

have little effect, in that one could use a proper normal 

prior with very large variance. As prior distributions for 

Og and Og , which are the unknown variance components for 

the one-way classification model with a common unknown 

variance, we use the conjugate inverse-x* family. For given 

q2,f2»Sg2» and Sgg » we assume that 

(^2=12)/"â ^ "2' 

independently. Here we are using one mode of quantifying our 

beliefs or prognosis which can also be expressed in other 



63 

terms. 

From the additive loss structure as discussed in Chapter 

II the Bayes risk for the multiple comparison problem is the 

sum of the Bayes risk for the component problems. 

Therefore a minimization of the Bayes risk for the multiple 

comparison problem reduces to the minimization of the Bayes 

risk for each of the component problems. It is then 

necessary only to find the Bayes rule for the component 

problem P(i,j) and a simultaneous application of this rule 

to all the component problems gives us the Bayes rule for the 

overall problem. 

To find the Bayes rule for the component problem let us 

consider the decision problem P(i,i). The experimenter who 

is minimizing Bayes risk will pick the rule 

dt. if g. .(z) < 0 , ij^j 
if J 

or 

where g. .(z) is an (n+3)-fold integral and is given by 

g. .(z) = /[L(d+.,Y)-L(d?.,Y)] f(z(Y)X(Y)d7 (4.1) 
•«•J 

with A(Y) the prior distribution, f(zIy) the density of 

the data, Y=(Uo,5/G*,G*) and z = !(X^,... ,X^,s^j^). With the 
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loss function given in (2.5) 

9i j(z) = /_ kj^|ô^j|f(zjY)X{Y)dY 

- f. kjô. .f (z|Y)A(Y)dY 
0) 

where uT = 0} , w = > 0 } 

and ~ "i " "j * Therefore, we will pick dtj if 

/+ fiijf (2|Y)A(Y)dY 

/JÔ. .|f (z|Y)X{Y)dY ^ ki/k2 = ^ ' (*'2) 
w . J 

So the Bayes rule depends on the solution of (4.2). In this 

chapter we will solve (4.2). 

Let us consider the numerator of the right-hand side of 

(4.2) which is equal to 

(Uj^-Uj) n^(r./(2Trap) ̂ ^^expj^- Z (X. - u^^) V(2a^/r^)] 

f./2 (f,/2)-l , P 

'^1 ®el F772 f^ L^l®el/^^^e^ 
r(fi/2)2 ^ (0=) 1 

l/(2iTa|)"^^expjj E (U^-Uq) ̂/(2ag)J 

^ r(q,/2)2%2 
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\  '  f { f ^ / 2 ) 2  ^  

du^du dcr^da| . (4.3) 
U — G c 

Now (4.3) is proportional to 

/+(Ui-U.)p(UQ,u,a|,Iz)dUgdudaZda* 
(1) 

where p(UQ,u,Gg,Og|z) is the posterior distribution of 

Y|Z . 

We find 

-1/2 (n + f, +f_ + 2) 
p(UofU,a|,a||z) oC(cr|) 

-1/2 (n + +2) 
•(a|)  

• ®*p f ''2®B2'] • (4-4) 
B 

Using 

I (U^-UQ)^ Z (U^-U. )^ + Z (UQ-U. )^ 
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where u. = Zu^/n, we integrate (4.4) with respect to . 

This integration replaces in (4.4) by Z(u^-u.)^ 

and multiplies the expression by so (4.4) becomes 

-i(n+f+2) -i(n+q-+l) 
(*:) ̂  •<"1) ^ ^ 

e 

[" (i '"'2®|2Î] ' 
B 

where f^ + f^ = f and f^s^^ + fgS^g = fs^ . Now integrating 

with respect to and Og and using 

- 2l-k a" (^-1) / (a^) exp(-A/a^)dcT^0C A 

we obtain 

(u|z) oC^r^(X^-Uj^)^ + fs£] 

-|[n+f] 

"1 "&(92+B-l) 

. |^Z(u.-u.)2+ qgS^J 

So the posterior distribution of u is a product of 

two niultivariste t-distrib^tions. This distribution is 

similar to the one obtained by Lindley (1971a). Now 
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n •j(n+f) 

p(u|z) oC 1 + — 

l r. (X.-u.)2 
i=l 1 ^ ^ 

l (u.-u.)^ 

1 + i 

-^^n-l+gg) 

(4.5) 

It is instructive at this stage to note that distri­

butions of this type have been discussed by Tiao and Zellner 

(1964) and Fisher (1941, 1961a,b) in connection with the 

Behren's integral. We propose to use Fisher's methods which 

were applied also by Tiao and Zellner (1964) to find 

asymptotic expressions for the mean and variance of the above 

posterior distribution. In the Appendix we give some of the 

asymptotic expressions for the posterior distribution and the 

marginal distribution. 

The moments of the posterior distribution may be found 

by expanding (4.5) as a double inverse power series in f 

and q=q2 which are the degrees of freedom for the distri­

bution . Let 

C. Moments of the Posterior Distribution 
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V, = f , Vj = q , s|2 = s| , 

~ "T ^ ^ ̂ii ' 
®e ®B 

p. = — (u.-u.)^ / s=n-l 

" 4 

and 

f 

(4 

As shown in the Appendix we may write the posterior 

distribution which is given in (9.51) as 

00 00 . 

-1»-] p(u|z) = f(u;u.,v..) Z S d..v, Vy 
- 1 i=0 j=0 ^3 ^ 

for -co < u < ® r where the quantities d^j are given in 

(9.20) to (9.25). 

Using the first three terms of the power series in v^ 

and Vg^ we have 
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p(u|z) = f(u;u^,v^^)(1 + + V2^dQ^) + 0(1) + o(l) 

(4.7) 

where 

^10 - I 

and 

*01 - 4 

Q|-2nQj^-2 Z^^w?+2wuCi)j - + 

2n (J^ («1 + Si)) 

Q|-2(n-l)Q2-2( J^(Y? + 2p.Y.)j - (J^lTi + Pi)) 

2(n-l) {."^(Yi + Pil) 

n 
with Q, = 2 r.(X.-u.)2/s! and Q_ = Z (u.-u.)^/Sp 

1 1 1 1 e ^ i=i ^ " 
2 /„2 

The posterior distribution is the product of a multi­

variate normal distribution and a power series in v^^ and 

v^^ . As Vj^ and Vg get very large, all terms of the 

power series except the leading one vanishes so that the 

posterior distribution is asymptotically distributed 

N^(u,M~^) where u= (u.,...,u_) and 
n — — ± n 

M = diag ) '  
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The terms in the power series may be interpreted for finite 

values of v^ and Vg as the corrections in the normal 

approximations to the posterior distribution p(u|z). 

From the posterior distribution given in (4.7) we will 

give the marginal distribution of u^ where u = (u^suj,) • 

This distribution is derived in the Appendix and is given by 

(9.71) as 

p(u^(z) = f |l + + vJ^SQ J + 0(1) + o(l) (4.8) 

where 

- S. A ^ 
6.n=T -2 2 (0)?+2W.Ç.) -/ 2 (w. + Ç. ) - I (u.-X. )^ — } 
10 4L i=l ^ ^ ̂  \i=l ^ ^ i=l ^ ^ s^ 

, A n A _ r. 
•( L (oj. + Ç.) +2 S (0). +Ç.)+ Z (u.-X.)^~-2n M 
i=l ^ ^ i=2+l ^ ^ i=l ^ ^ s| U 

and 

a n A -1 
' { S(y. + p.)+2 Z  (y. +p.)+ Z (u,-u.^/sf-2sf 

i=l ^ ^ i=A+l ^ ^ i=l ^ » «Li 

This distribution is a polynomial in Uj^ . 

As shown in the Appendix by (9.80), we may obtain the 

joint density of the i-th and the j-th mean, i^g, for 

all i,j = 1;::;;"; olvsn the data. This joint density of 

Uj^ and Uj given the data is denoted by 
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p(u^,uj|z) = f (Uj, 

1 + (w? + 2W.S.+ + 2WjSj) - + ^ 

- (u.-X.)^ Y! +Y; +2 ? Y' + (u.-X.f %+ (u.-X.f 
J J S ' ] k=l si J J 

k^i,i 

r. 
x. f ̂  

4 

- 2n )] 
^v;^R-2(Y| + 2Y.p. +Y?+2YjPj) - (F J + ÎJ - (Uĵ -U.)̂ ^̂  

B 

- (u.-u.)^--)'fYY +YV + 2 Z Y" + (u.-u.)^ — 
' ^ ^ ' ,ï=^ 4 

+ (u.-u. ——2 (n-l)\ 1 
D  3 .  J  J  

k^i,i 

+ o(l) + o(l) / (4.9) 

where = u)i + and YV = + Pj^ 

To obtain the posterior density of u^|z we integrate 

respect to u. 

Appendix we obtain 

with respect to u^, jj^i and using Lemma (9.3) from the 
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p(u^|z) = f(u^;u^,v^^) 

1 + iv-l [-2(«! + 20.. q) - (Ï: - ^) ( fi + 2 

+ -% - 2^ ] 

iv;l[-2(v| + 2p^y.)- (• ÏÏ 
n 

+ 2 Z Y? 
j=l ] 
j?̂ i 

+ {u^-u.)^/Sg - 2(n-l)j + o(l) + o(l) (4.10) 

Using the expressions for the moments of a normal 

variable, we found the asymptotic expression for the moments 

of p(u^|z) in the Appendix. The moments are given by (9.88) 

as 

E(uw|z) 

.4. 

- 3 V? .u. + 15v. .u. + 4v. .u? 
XI X XX X XX X 

12X.V|. 
X X XX -1-111 ':(^11, 12X.u?v.. +12X?u.v.. -4XYv..| + | — ^i 

s: 
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n r 

j=l s; 

r. 
- (v.. + (u.-X.if 4u.v. . -4X.V. .1 +{2n — jj" Wj I'ii 

s' 

2ViiUi + 2X.V.. [ftï 

I- 3v?.u. +15v. .u. + 4v. .u? - 12u.v?. -12u.u?v. . i i i H 1 H i i i i ijL 

+ 12u?u.v.. -4u.v. . + — 
1 11 11 

B '  

? i (Vjj + (Uj-U.)^) 4UiVii - 4u.v.. 

2n 2v\^uu + 2u.v\^ + o(l) +0(1) . (4, 

To find the variance of u^|z we need to find the 

second raw moment from which we may calculate the variance 

using the fact that 

Var(u^|z) = E(u| | 2 )  - E*(u^|z) 

Therefore as given in the Appendix by (9.89), the 
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E(u? 1 z) 
M' ['• 

X .  
(.v?i + 2v%i } (vĵ f u?) 

-(Vii + Si)Vi + 2 
n 
Z 

j=l 
j?̂ i 

- 2n 
is: 

•2 Z Y: - 2n 
i=l 3 I 
iMi 

3v?i + 6u|v^^ +ui - 2X^u^ (Svji + u? ) + X| (vj^ + u|) 

'fil " 

s:' 
15v?. + 45v? .u? + 15v. .uf + - 4X. 
H  H »  i  a L  ^  *  

•(15v..u. +10v. . u < + u ? )  +6X?(3v?. +6u?v.. +uf) 
H  1  X I  X X  X  X X  X  X X  X  

•4x3(3Vii5^+S3) +xt(v.^ + Si) 

+ ̂  [coefficient] + o(l) + 0(1) (4.12) 

where the coefficient of is easily obtained. From the 

above two expressions we may find the variance of (u^|z). 
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Similarly we may obtain the higher moments of (u^jz). 

It is informative to note that Lindley (1971a) using the same 

hierarchial form of prior structure derived a Bayes estimate 

of (u^|z). In our notation he found the mode for the 

posterior distribution given by (4.5). Consider Equation 

(4.5), 

^ -1/2(n+f) 

p(u|z)<Jc[^fs^+ rj^(u^-X^)2j 

r , -j -1/2 (n-l+q,) 
LS2SA2 + : 

Let q2=q and Sg2=Sg . To find the mode of this 

distribution let us differentiate it with respect to u^ or 

let us differentiate its logarithm and set the result to zero. 

Then for 

s| = l^fs^ + Z r^(X^-u^)^j y^(n+f) (4.13) 

and Sg* = {^qSg + Z (u^-u.)^] /(n-l+q) (4,14) 

which are the modal estimates of and Og respectively , 

we obtain 
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1 

E 

(4.15) 

where u. = Ew^X^/Zwj^ (4.16) 

with w^ = r^/fr^Sg* + s^) 

If we consider the first term in (4.11) as an estimate 

of we find 

where u. = Ew.X./Zw. and w. = r./(r.s| + s^) . 
X I X  X  X  X  D  c  

It is interesting to note that by considering the first 

term of (4.11) as an estimate of we find that and 

Lindley's estimate differ in their definitions of the 

estimates of and cfg . The estimates have the same 

structure, i.e., a weighted average of and the overall 

mean, but the weights are different. 

The reader must note that Lindley's estimates of , 

, and u. are functions of the u., so that it is 
J9 X X 

extremely difficult to obtain estimates of , but u^ 

depends on the data and the prior information of the 

experime&ter and is very easy to calculate. 

1 

u (4.17) 
1 



77 

Since Lindley's estimates have the same structure as 

the first term of our estimate (4.11) in this sense, we may 

consider Lindley's estimate as a special case of ours. If 

we apply our method of analysis to Lindley and Smith (1972) 

and Smith (1973a, 1973b), we may obtain general estimates 

of the parameters of interest and show that the estimates 

of Lindley and Smith are only special cases. Our estimate, 

though not simpler than Lindley's gives more information for 

the estimation of u^. In the age of computers these 

estimates are easy to compute and as mentioned by Lindley 

(1971a) are more accurate than the modal estimates. Lindley's 

estimates are only likely to be good if the samples are 

fairly large and the resulting posterior distributions are 

approximately normal, whereas our estimate can be used for 

small samples also. 

D. A Bayes Rule 

As was shown before to find the Bayes rule for the 

multiple comparison problem, it is required to reduce (4.2). 

Integrating the numerator and denominator of (4.2) with respect 

to UQ,Gg,Gg and Uj^ , where A = l,...,n and & ̂  i and j , 

we obtain 
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/ ô..p(u.,u.|z)dô.. 
{6.. >0} 1] ^ ] 1] k. 

h2 > ^ = k (4.18) 

{Ô..<0} 13 1 D 13 
1] -

where = (u^-u^) for . 

Let 1^(2) = / 6^jP(u^,Uj|z)dô^j (4.19) 
{5lj >0} 

2)dô.. . (4.20) and I (z) = / |6..|p(u.,u.|z)dô.. 
{6,.<0} 13 1 3 13 

13 -

Then we will make decision 

+ I+(z) 

•• "i > "j ÎTÎÎT ^ " 

0 i+(z) 
or d.. : u. is unranked relative to u. if ^ . i < k . 

X] X J I_(z) — 

We will reduce (4.18) by first reducing (4.19) which will 

also reduce (4.20) after a few manipulations 

From the symmetry of the loss function and the prior 

distributions, it is evident that once a Bayes solution is 

obtained for the P(l,2) problem we will be able to give a 

Bayes solution for the P(i,j) problem with i/j, 

i,j=l,...,n. In other words, from the symmetry in the multiple 

comparison problem, it is only necessary to consider in detail 

the P(l,2) problem. 

Befors vc 3.tter?.pt to integrate (4.19), it will be 

informative to find the distribution of p(6(z) from 
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piu^fUglz) where Ô = • 

From (4.8) with {&«=2, we may write the distribution of 

pfu^fUglz) which is given by 

pfU^fUglz) = ffU^rUgfUi'Vii) 

Z (w? + 2a)jÇj^] 

- (  I (w. + Ç.) 
1=1 ^ ^ 

2 n 2 _ r. \-i 
/ Z (0). +Ç.) +2 S (0). +Ç.) + Z (u. -X.)2-i-2n U=1 ^ ^ i=3 1 1 i=l 1 1 s* /J 

+ + 2PiYi) -( 

2 \ 
- Z (u. -u.)^/s^) 
i=l 1 

S (Yi + Pj) 
i=l ^ ^ 

2 n 
• |  Z  ( y ^ + P j ) + 2  Z  ( Y J + P J )  
\i=l ^ ^ i=3 1 1 

+ Z - u. /Sg - 2(n-l) j 

+ o(l) + o(l) (4.21) 

Let us make the transformation from (u^fUg) to (ùyUg) where 

6 = - U2 . The Jacobian of this transformation is 1 . The 
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distribution of p(ô|z) is obtained by making the required 

transformation and integrating the distribution with respect 

to Ug . The computations are given in the Appendix leading 

to Equation (9.110). 

This posterior distribution may be written as 

2 -1 2 
p(ô|z) = (/{27r)/( Z V. .)] exp [-(6 - (Û, - Up) )^/(2 Z v. .)] 

i=l X ^ i=i 

•[l + (9io + «911 + S'Siz + '^9l3 * 4*914' 

+ '920 + «921 + + «̂ 923 + ] 

+ 0(1) + o(l) t (4.22) 

where (4.23) 

with 

girt = - Z (u. +2Ç.W.) - Z Y! 
i=l 1 ^ ^ i=l ^ 

2 n 
Z y : + 2 Z y Î - 2n 
i=l ^ i=3 ^ 

/ 
n \ r,) 

+ Z y • - n 
li=3 ^ 1 

I 

2 -1 
i s|J 

Xj + b'-aVi^-2bXi)+|2 ̂  

(If- aVĵ ĵ  - 2li^ + x|) 2 ̂  r- 6b' 
A L 

av 11 
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+ - 2 (X^ + Xg) (b^ - Sabvj^) + (Xj + 4X2X1 + X|) (b=-

1 /r- \ 4 
- 2b(Xj^x| + XjXj) + X|X|J + j ha^vjj^ - Sb^av^j^ + b 

\̂ e / 

- 4X2 (b^ - SabVj^j^) + 6X|b^ - GX^av^^ - 4x2b + X^ j 

3a^vJi - Gbfavii + b^ - 4Xib^ + 12X^^abVii + 6X|b=^ 

6X|aVj^l - 4bxJ + xj.rj ' (4.24) 

f ? y : - nil 2 -i (-2X, + 2ab + 2b - 2aX, ) + 2 — (2ab - 2aX_) 
k=3 ' " 4 

2 -12a*bVii + 4ab^ + 2b^ - ôabVj^^ - 2 (Xj^ + Xj) 
s L_ 

' (-Sa^v^i + 3ab*) - 2Xj^(b2 - av^i) + 2ab(xJ + 4X3X3^ + X|) 

4X2 (b̂  - av̂ i) - 2aXĵ x| - 23X̂ X2 + 2bx| + 4bXĵ X2 - 2x|xj 

|^12a:bVii + 4ab^ - 4X2 + Sab*) 

+ 12X|ab - 4x2a ] 
i] r -12a^bv, T + 4ab^ + 4b^ - 12abvji + 4Xj^ (Sa^v^i - Sab^) 
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-12X^(b^ - + 12x£ab - 4aX^ + 12bx| - 43^ J» (4.25) 

'12 

In \ r r, r,-| r,r-
E Y! -n 2 -i (1 + aZ + 2a) + 2a^ — + 2 

ii=3^ / L s! si J s" 

[-. I -Ga^v,, + Ga^b: - 6a=v,, + 6ab^ - 2 (X^ + X^) (2a:b + ba^) 
'11 '11 

+b^ - avji - 4Xj^ab + a^ (x| + 4X2X1 + x|) - BabXg + 2aX| 

+4aXj^X2 - 2bX2 + X| 1 + 

'1 " '"2n "2' 

-Ga^v^i46a^b^ 

1 /r, \ ^ r q 
-4X, (2a^b + ba^) + 6a^x2 + — -6a v,, + 6a^b^ 

^ 4J IgZj L 
^ e' 

+4(-3a*Vi2 + 3ab*) - 4Xj^(2a^b + ba^) + 6b^ - ôaVj^j^ 

-24Xiab + 6X|a^ + 12aX| - 12bXj^ + 6X% j , (4.26) 

= 2 (4a3b + 4a:b + 2ba:-2(Xi + X2)a^ + 2ab-2Xia:-4X2a: 

% 

,= . = , 3 

—23X2) + I —I * {4a b — 4x2a ) + 
®e' 

r _  \  2  

— 1 (4a\ + 8a2b 
s: 

— q 
+4ba^ — 4X^3 + Izab ~ ~ 12sX^ - 12=%- + 4b - 4X^) (4.27) 
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9l4 = 2 
=1=2 _4 

(a** + 2â  +â ) + I— I a 2 1 a4 
2 

/ r \ 2 
+ { — I (a + 4a + 6a^ + 4a + 1) * (4.28) 

n 
g,n = -2 2(Y^+2p.YJ- E Z Y^ + 2 Z Y" -2(n-l) 
20 i=i 1 ^ ^ i=l i=l 1 i=3 1 

s B 

Z Y? - (n-l) 
i=3 ^ / 

2u. +2b - 2av22 -4u.b | + i.bj 
s. B 

3a^v^l - Gb^av^^ + b^ - 4u.b^ + 12u.abVj^j^ + 6u2b* 

- GuSav^^ - 4u?b + uf J + ~ 'avii + b 

- 4u.b^ + 12u.abv^^ + 6uJb^ - GuSav^^ ~ 4u?b + uf + Sa^v^^ 

6b^av,, + b^ - 4u.b^ + 12u.abv^i +- 6u?b^ - 6u?av 
11 11 

-4bu ? + u? ] , (4.29) 

n 
g^, = -=- Z Y?-(n-l*(-2u. +4ab + 2b-4u 

U=3 ^ ^ 
12a^bv 11 

+ 4ab^ + 2b"' - Gabv^^ + 12u.a^v^^ - 12u.ab' - zu.b- + 2u.av^^ 
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+ IZabuS - 4u.b^ + ̂ u.av^^ - 4au? + 2bu? + 4bu? - 2u? J 

+ ^-12a2bv^^ + 4ab^ + 12u.a^Vj^j^ - 12u.ab^ + 12u?ab 

B 

4u?a - 12a+ 4ab^ + 4b^ - 12abVj^j^ + 12u.a2vj^j^ 

12u.ab^ - 12u.b^ + 12u.av^^ + 12u?ab - 4au? + 12bu? 

12u? ] (4.30) 

n 

^22 -t E YV - (n-1) 4 ^^=3 
(1 + 2a^ + 2a) + ^ 6a^b^ 

B  

6a*v^2 + 6ab^ - Su.a^b - 4u.ba^ + b^ - av^^^ - 4u.ab + 6uîa^ 

- Su .ab + 2au? + 4au? - 2bu. + u? + -^ | -6a^v^^ + 6a^b 

'• 

- 4u. (2a2b + ba^)+6u2a*- 6a^v^^ + 6a^b^-12a*v22 + 12ab' 

8u.a*b-4u,ba^ + 6b^ -6av^^ -24u.ab + 6u?a^ +12au2 

- 12bu . + 6u? J , (4.31) 
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g-- = (4a^b + 4a^b + 2ba^ - 4u.a^ + 2ab - 2u.a^ - 4u.a^ - 2au. ) 

4 

+ (4a^b - 4u.a? + 4a^b + 8a^b + 4ba% - 4u.a^ + 12ab - 12u.a* 

- 12au. +4b - 4u.) , (4.32) 

and 

g2^ — —^ (4a + 8a + 8a^ + 4a+l) (4.33) 
=B 

where a = (v^^+vgg)"^ (4.34) 

and b = (^2^22 ^22^* (4.35) 

We have now found an asymptotic expression for p(6]z) 

which is given in (4.22). As mentioned before it is required 

to find 

I. (z) = / 6p(6|z)d6 . (4.36) 
+ {Ô >0} 

Before computing (4.36) we note from Lemma 9.1 in the Appendix 

*2. ^ *2 2 
that for ô'*N(u*,G ) where u* = u^^ - Ug and a 
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that 

\ = 7TW f «''expt- i(6-u*)V(a')']d6 

k+i-1 

k+i 

•^ÎS±i=i j 1 (a*2) 2 . (4.37) 

Using (4.37) we see that (4.36) is given by 

I^(z) = ^ L^l^io + ̂2^11 ^3^12 ^4^13 ^5^14 ] 

1 _-l 
^2 [^1^20 ^2^21'*•^3^22 "*"^4^23 "*"^5^24] -^4.38) 

It is also required to find 

0 0 
I_(z) = / |ô|p(ô|z)dS = - / 5 p(ô|z)d6 . (4.39) 

Let T = -6. Then 

I (z) = -/ (-T)P(-T I z)dT = / T p(-T|z)dT 
0 

Now substitute 6 = -T in (4.22). Then 
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From the decision theoretic formulation we see for the 

component problem P(i,j) that the Bayes rule 

l+(z) 
is significantly greater than if ^ >k (4.42) 

for i,j=l,2. Now let 

I. (z) 
$12 = J. where (4^43) 

$12 = $12 (rj^fryS^rS^fXj^.XyVi^Vg) . (4.44) 

Once we obtain from the experiment the value of $12 we can 

compare it with our error-weight ratio k and make a decision 

on Xj^fXj for i=l,2. Waller and Duncan (1969) defined for 

for r%=r 

(Xi-Xj) , ̂ 

s y(2/r) , ~ 
®e 

and found 

$12 = $12(t,F,Vi,V2) (4.45) 

SO that they found a critical value t* which is the solution 

of (4.43) and gave the following rule: 
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is significantly greater than X^ if t^j > t* 

or X^ is not significantly greater than Xj if t^j £t* 

A further discussion of their results is given in Chapter 

II. 

We have found the Bayes solution for the component 

problem P(l,2) which is given by 

X^ is significantly greater than Xj if 

or X^ is not significantly greater than Xj if ^12 — ̂  

where i,j=l,2. since we picked a symmetric loss function 

and symmetric prior distributions, we are able to give the 

Bayes solution for the component problem P(i,j) V i,j=l,...,n. 

The symmetry in the multiple comparison problem permits us to 

generalize some of the expressions given before which are 

essential ingredients for the general solution of the multiple 

comparison problem. 

In general the posterior distribution of 6|z where now 

6 = U^-Uj is given by 

= 77257577 =*P[ - rfr 

'[  ̂ ^̂ 11 "̂ ^̂ 12  ̂ 1̂3 ''' 1̂4 y 
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+ (̂ 20 + ̂ 2̂1 + ̂ ^̂ 22 + "̂ ^̂ 23 ^̂ 2̂4) 1 

+ o(l) + o(l) . (*' 

where 

"ij = ''ii + "n ' 

«V /V A» 

"ij = "i - "i 

N = {!,]} f 

^ k^x,3 

+ 1 I T- -n\ •[ 2 ̂  (X| + b'- - 2bX.) + 2 ̂  
V k=l ^ ' L s j 
kfiin 

• {b^ - av^. - 2X.6 + XÎ)] + 2 ̂  [sa^vfi - 6b^av.i + b^ 

e 

- 2 (Xj^+X.) (b' - 3abVj^j^) + (X| + 4XjX^ + Xp (b' - av^^) 

- 2b(X,XÎ+X?X.) +X1X?] + ̂ |4'[3a'Vii- Gb'aVii+b* 
X J J. J J le^ / L. \Og/ 

- 4Xj (b^ - 3abv^^) + 6X?b^ - 6X?av^. - 4Xjb + xi] 



91 

[^3a^v^ - 6b^av^i + - 4X^b^ + 12X.abv^. 

6X|b2 - 6X|av̂ i - 4bx! + xj ] , 
(4.47) 

n 
Z ¥ Î - n 
k=l ^ 
Vi,j 

•(2ab - 2aXj) 

r r. 
2 — (-2X. + 2ab + 2b - 2aX. ) 

2 X 1 

r. 
- 2aX.) + 2 -i 

s 

r.r.r o q 
+ 2 .] -12a^bV;; + 4ab + 2b -6abv 

s L 11 11 

- 2(X^+Xj)(-Sa^Vji +3ab*) -2X^(b^ -av^i) +2ab 

•(X? + 4XjX^ + X?) - 4Xj(b^ -av^i) -2aX^Xj -2aX^Xj 

+ 2bX? + 4bX^Xj - 2X?X. ] + piï -Ua^bv.. + «ab^ 

-3 1 
- 4X. (-3a:v.. + 3abM + 12X^ab - 4X.a + — 

] ] ] J \s:j 

1^- 12a^bVj^^ + 4ab^ + 4b^ - 12abv^^ + - 3abM 

-.12X^(b: - avi^)+ 12x!ab - 4aX^ + 12bX? -4X^j , (4-") 
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12 

n 
S n-n 
k=l 

r.-i r^r. 
1 (1 + + 2a) + 2a2 -1 + 2 
2 «5^-1 S 

k?^i, j 

Ga^Vii + Sa^b* - ôa^v^^ + ôab^' - 2(X^+Xj) (2a^b + ba^) 

+ b* - av.. -4X.ab + a^(X? + 4X.X. +X?) - 8abX. + 2aX? 
XX 1 X J X j J j 

4aX^Xj -2bXj +X?j -6a + 6a^b^ - 4Xj 

•(2a'b + ba ) + 6a^X 

+ 4 + 3ab^) - 4X^ (2a^b + ba^) + 6b^ - 6aVj^^ 

- 24X^ab + 6X?a* + 12aX? - 12bX^ + 6X? j , (4.49) 

r.r. 
= 2 -î^ (4a^b + 4a*b + 2ba*-2(Xi+Xj)a3 + 2ab-2Xia*-4Xja I V  - 2  

- 2aX 
I r \ / 2^ 1 

X.) + -j-1 (4a^b - 4X.a^) + -^1 (4a?b + 8a*b 
j 1-2 S" 

4ba- - f 12au - IZX^a* = 12aX^ t 4b - 4X^) , (6.501 
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(a* + 4a^ + 6a^ + 4a + 1) , (4.51) 

Yon = -2 S (Y^ + 2p^Yk) - 2 I E ^"+2 2 >?J - 2 (n-1) 
keN ^ ^ ̂  keN^lkeN^ k=l % 

k̂ i,j 

s. B 

n 
Z 
k=l 

k?«i, j 

VJ- (n-l)l 2u. + 2b - 2av ii-4u.bj 

+ -^ r- eb^av^^ + b^ - 4u.b^ + 12u.abv\^ + 6u2b* 

- 6u2av\^ - 4u?b + uf J + ~ 6b^av\^ + b^ - 4u.b 

+ 12u.abv\^ - 4u?b + uf + 6u?b^ - 6u!av\^ + 3a*v?i - 6b^av^^ 

+ b^ - 4u.b^ + 12u.abv^^ + 6u?b^ - 6u?av^^ - 4bu?+u? , (4.52) 

21 
(-2u. + 4ab + 2b -4u.a) 

k^i,i 

2 [-12a^bv 11 
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+ 4ab + 2b^ - 6abv\^ + 12u.a^v\^ - 12u.ab% - 2u.b* 

+ 2u.av\^ + 12abu? -4u.b^ + 4u.av^^ - 4au? + 2bu? + 4bu? 

- 2u?J + ^-12a^bv^^ + 4ab^ + 12u.a^v^^ - 12u.ab^ 

+ 12u2ab - 4u?a - 12a^bVj^j^ + 4ab^ + 4b^ - 12abVj^j^ + 12u.a^v^^ 

- 12u.ab^ -12u.b^ +12u.av\^ + 12u2ab-4au? + 12bu? 

- 12u (4.53) 

Y22 = — 
'B 

n 
S Y" -(n-1) 

k=l ^ 
(l + 2a^ + 2a) + -j + Sa^b^ 

- 6a*v\^ + 6ab2-8u.a*b - 4u.ba^ + b^ - av^^ - 4u.ab 

+ 6u?a^ - 8u.ab + 2au? + 4au2 - 2bu. + u?j + ^-6a^v^^ 

+ 6a^b^ - 4u. (2a^b+ba^) + 6u?a^ - 6a^Vj^^ + 6a^b^ - 12a%v\^ 

+ 12ab^ -Bu.a^b - 4u.ba^ + 6b^ - 6av\^-24u.ab + 6u?a^ 
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+ 12au2-12bu . + 6u?J , (4.54) 

Y__ = (4a^b + 4a^b + 2ba^ - 4u.a^ + 2ab - 2u.a^ - 4u.a^ - 2au.) 
s„ B 

+ (4a?b - 4u.a^ + 4a^b 4 8a^b + 4ba^ - 4u.a^ + 12ab - 12u.a^ 

- 12au. + 4b -4u.), (4.55) 

and 

y ~  ( 4 a  +  8 a  +  8 a ^  +  4 a  +  1 )  

B 

where a and b are now defined by 

(4.56) 

-1 / -1 -1 
^ = -Tii Tii + Vj] 

1-1 

(4.57) 

and b = ** "~1 "w —1 
"j'jj + I'ii + 'jj 

-1 
(4.58) 

Therefore 1^(2) and I_(z) are given by 

I^(z) = +A2Y11+A3Y12 •'•^4^13 •'•^5^14] 

•** ?̂ 2̂  [̂ 1̂ 20 2̂"̂ 21 '*'̂ 3̂ 22 '''̂ 4'̂ 23 '''̂ 5̂ 24 ] (4.59) 



96 

and 

I_(2) - + |'VJ^^[BJ^YIQ-B2YII + B3YI2"®4^13''"®5^14] 

+ [®1^20 ""®2^21 ••"®3^22 ~®4^23 •'•^5^24] <4-60) 

where 

= TXm ®*P[ * 

k+s-1 . V / X k+s 

»  ( u .  . / c t ? . ) ®  
IZ-JJ, 
si 

N=^) :W^ 

and 

®k = 7tm [• —4: 

k+s-1 . . k+s 

2 : '("ij) ' • (^•«) 

The Bayes rule for the component problem P(i,j) is 

is significantly greater than Xj if 

$(ri,rj,s|,s^,Xi,Xj,Vi,V2) > k 

or 

Xĵ  is not significantly greater than Xj if 

*(ri,rj,s:,s:,Xi,Xj,Vi,V2) < k 
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where and 

I+(z) 

= ïrrZT • 

This Bayes rule says that given a multiple comparison 

problem and the beliefs or experience of the experimenter, we 

can make a decision on the treatment means u^^ and u^ for 

all i,i=l,...,n by an application of the above rule. 

This multiple comparison procedure, unlike those 

mentioned earlier uses the prior information which the 

experimenter has in the form of past experiments and the 

results of other workers. 

This procedure may not seem easy for someone to use with 

a desk calculator. But with the use of high speed computers 

it is not difficult to program this procedure, so that when 

an experimenter walks into the consulting statisticians room 

with his data and his experience, we calculate (4.63) and tell 

him the various decision on his means. 

E. Normal Approximation 

In this section we will examine the main results obtained 

in the earlier sections of this chapter and determine their 

behaviour as we consider a normal approximation to the 

posterior distribution. We saw that the posterior 

distribution of u|z is product of a normal distribution and 
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w 1 *1 
a double power series in and Vg . 

In (4.7) we found the posterior distribution of u(z 

which is given by 

p(ulz) = f (u;u^,v^^) (1 + v^^ ̂ 10*^^2^ ̂ 01^ 

+ o(l) + 0(1) (4.64) 

where d^Q and d^j^ are given in (4.7). If we consider the 

first term in the double power series, the posterior 

distribution of (u|z) is 

p(u|z) = f(u;u^/V^j^) . 

From (4.7) the marginal distribution is given by 

p(u^|z) = f• 

Therefore u^|z is distributed N(u^,v^j) where 

(4.65) 

(4.66) 

^i = 

/ \ 

1 
-1 

4' 

'A + (4.67) 

-1 I^i 1 and V. . = — + — 
• g 2 g 2 
®e ^B/ 

for all i (4.68) 

Ab was pointed out in Section IVC Lindley (1971a) obtained 

posterior estimate of u^ using a hierarchical prior 
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structure. As mentioned before Lindley's modal estimates now 

have the same structure as our estimates of the mean of the 

distribution of u^|z which are given in (4.67). 

Let us also derive the Bayes decision rule for the 

multiple comparison problem by considering only the first term 

of the double power series in v^^ and Vg^. From (4.46), 

using the first term of the double power series in v^^ and 

Vg^ we have for 

= 7(W57T®==p[-
13 ij 

where a?j = Vj^j^ + Vjj 

- /»» /V 

and u^j ~ ̂ i ~ 

Therefore by (4.59) 

I (z) — / 5. . p(5j •lz)dô. • — A-j 

where A^ is given in (4.61) and 

I_(z) = / (-6..) p(6,.|z)d6.. = B] 
0} 

where B^ is given in (4.62). 
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So the full Bayes rule is 

dt. : Xis significantly larger than Xj r or u^^ > Uj 

if ^ > k 
®1 

d?j : Xj^ is not significantly larger than Xj or u^ is 

unranked relative to u. if ^ < k . 
] — 

A, 
Let $ = ==•• Then from the decision theoretic 

®1 

formulation we see for the component problem P(i,j) that the 

Bayes rule is 

X^ is significantly greater than Xj if $ > k 

or X^ is not significantly greater than Xj if $£k . (4.70) 

Then in an experiment, we compute the and k, and 

we get our Bayes rule 

Ui > Uj if $ > k . (4.71) 

From our decision theoretic set-ùp it seems that this is 

as far as one can go in the solution of the multiple 

comparison problem. But here we will go a little further and 

try to follow the mSthcd of Thaller and nimean (1969) . 
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F. The Equal Replication Case 

Let 1% = r , t_j = t = ^ 

sj + rŝ  

e 

Then 
: 4 

-1 

s Bi 

and -li 
'B 

SO 

#v . 
(Uj-Uj ) 

(V-.+Vj.) 
I7J 

.4 ' 

-1 

'B 

— (X,-X.)/ 2 

-1 -,V2 

il 

rsg + s: 

s. 

also 

Af A# 
= 

Vii+Vjj 'B 

-1 
— (X.-X.)/2 

-1 

s; 

= /{r/2)(t/Sg) , 
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so expanding (4.69) we obtain 

Let ff|j = + Vjj = , 

• Jo ^ t/s^f/ii • 

As before to obtain the Bayes rule it is required to solve 

(4.18). Let (Sj^j = 6. Then by Lemma (9.1) 

I+(t) / 6 p(ô|t)dÔ 
0 

= 7T5?r f ;f] Jo 

M H 
1+i 
~ 2i/2 (4.72) 
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Similarly 

I_{t) = / (-6..) p(6..|t)d6.. 
{«ij < 0} 

= 7&T ®*p[41 ' ;!] ifot ' ̂ 
e 

1+i 
(j2j 2 gi/Z , (4.73) 

Therefore from the decision theoretic point of view we 

see for the component problem P(i,j) that the Bayes rule is 

X. is significantly larger than X. if t.. > t* 
1 J ^ J 

or X^ is not significantly larger than X^ if t^^j ^ t* , 

where t* is the solution of the equation 

I . (t) 
ntT'" • (4-74' 

Here we note that to obtain t* one must specify the 

following values r, s^, s^, and k. We will give a further 

discussion on the solution of (4.74). 

On a simultaneous application of the above rule to the 

P(i,j) and the P(j,i) problems we can derive the three-

decision rule for Q(irj) problem which is given as follows 
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is significantly greater than if tj^j > t* 

X^ is not significantly different from X^ if j tj^j | £ t* 

X^ is significantly smaller than X^ if t^j < -t* 

where t* = t(k,Sg,Sg,r) . 

By the simultaneous application of this three-decision 

rule to all the 
n\ 

pairs of treatments we obtain the Bayes 
[21 

rule for the symmetric multiple comparison problem, which is 

given as follows 

Xj^ is significantly larger than Xj if X^-Xj > BLSD 

X^ is not significantly different from Xj if 

|X.-X.I < BLSD 
'X 3 — 

Xj^ is significantly smaller than Xj if Xj^^-Xj < - BLSD 

where the Bayes Least Significant Difference 

(BLSD) = s^ ̂  t(k,sg,s|,r) . 

For the case of comparing two out of n means we saw the 

critical value depends on k,s|,s|, and r. 

We now present a step by step outline of an iterative 

solution of equation (4.74) which is 

I. (t) 

n t T ' "  
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1) Specify {k, s^, Sg, and r} and note that 

2) Choose an initial value of t. A first choice may be 

t = tg = /p , 

3) Calculate I+(t), I_(t) , K*(t) = I+(t)/I_(t) 

and K' (t) = ̂  (K*(t)) . 

4) Compare K*(t) and k 

(i) If |K*{t)-k| £ 3# B some specified precision level 

then t*=t is the Bayes significant t value and 

is the solution of (4.74) for given values of k, 

s^, Sg, and r, and we are done. 

(ii) If |K*(t)-k| > g , then a better approximation for 

t using Newton's method is given by 

t^ = t + (k-K*(t)/K' (t) 

and we return to step 3. 

The above steps calculates the Bayes critical values. 
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V. EXTENSIONS 

A. Introduction 

The derivation of the Bayes rule in Chapter IV may be 

extended for other designs and for different loss or prior 

structures. Here we sketch some of the main arguments that 

may be used in such extensions. First, we consider the one­

way classification model with response surface priors and no 

control treatments. Then we include a control treatment. We 

also investigate the effect of exchangeable and response 

surface priors on data which arose from a randomized block 

experiment. In the cases investigated we derive the posterior 

distributions. With these distributions, we may find the 

moments, estimates of variance components, and a Bayes rule 

for the pairwise comparisons of the means. 

B. The One-way Classification 

1. Response surface priors and no control treatments 

As before the model is 

X-» — u « 4" e « ' , X—1, «.. ,n, j—l,...,r» (5.1) 
XJ X Xj X 

where are the observations, u^^ are the unknown constants 

or parameters and e^j are the errors which are normally and 

independently distributed with zero mean and <x constant unknown 

variance . We assume also that the treatment effects 
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u=(uj^,... ,Ujj) correspond to the levels of a single 

factor and that the effects lie approximately on some 

polynomial response curve of degree s when s<n-l. For 

example, if y^ represents the levels of a certain fertilizer 

with the corresponding treatment effect, we may say that 

the response of the treatment to different levels of the 

fertilizer is linear or quadratic. A Bayesian formulation for 

the situation where is known has been advanced by Smith 

(1973a). It is assumed that, conditional on t*'=(tg,...,t|) 

and , the u^ are independent and 

Now (5.2) gives a probability density proportional to 

(o^^'^/^exp |^-(u - Pt*) ' (u-Pt*)/(2o )̂| (5.3) 

where Eu = Ft* and the i-th row of P is (1,%%,...//^). 

Smith (1973a) called (5.2) a response surface prior. The idea 

is to allow for lack of fit, by the presence of the variance 

term a^. Therefore though the relationship between the u^'s 

is approximately a polynomial of degree s, we are not certain 

about its actual numerical specification. As a prior for each 

TQ,...,Tg t we shall use the improper uniform distribution over 
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(-00,00), It is commonly thought that this will have little 

effect in that one could use a proper prior with a very large 

variance, but there may be difficulties in this point of view, 

with regard to the existence of modes and means. Novick (1972) 

raises the possibility of biomodality of posterior distributions 

with particular choices of prior distributions. 

For the unknown and a} we follow the usual path of 
U 

using the conjugate inverse x^-family as the prior distri­

butions; that is for given v,X,v^,X^, we assume independently 

that 

(vX/ff^) xj and (VyXu/o*) xj • (5.4) 

We may rewrite (5.3) as 

P(u|T*,G^) oc (aj)~^'^~®^^^exp jj(u - PT) ' (u - PT)/(2CT^) J 

'(Oy)"^/^exp |j-(T* - T)'P'P(T* - T)/(2ay)J (5.5) 

where T is given such that P*PT = P*U . 

We rewrite (5.1) in general matrix notation to cover this 

and other cases, as 

X = Au + e 

Then, as given by Smith (1973a) 

P(X|u,a^) oc (o^l'^^^expF - (u-u)'A'A(u-u)j/(2a^) J (5.6) 
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H /s yy /V 

where R = Z r. , = (X - Au) ' (X - Au), where u is given 
i=l ^ 

by A'Au = A'X. 

Combining (5.4), (5.5), and (5.6) and integrating with 

respect to t*, we obtain the posterior distribution of u, 

cr^, and which is given by 

p(u,a^,a^|X) oC (ct̂ ) " e x p  - ( u  - pt) ' (u - pt)/(2a^) J 

, "(v +2)/2 p -1 
'(<) ^ ^ [-Vu/(2<) j 

.(*:)-(* + exp[-vX/(2â )] 

expT - |s^ + (u-u) 'A'A(u-u)j 

which is 

oC (cr^j - (R+v+2)/2 expj^- |s^ + (u-u) 'A'A (u-u) 

+ vX) /(2cf2)J 

-(v +2+n-s)/2 J-
• (a^) expj^ - |(u - pt) ' (u - pt) 

+ • (5-7) 

Integrating with respect to and , we obtain the 

marginal distribution of ujX which is 

p(u|x)oc|s^+ (u-u)'A'A(u-u) + -(R+v)/2 

P- _ -(v +n-s)/2 
• (u - Px)'(u - Pt) +VyX n 
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r <52 (u-u) 'A'A (u-u)-; 
[1+ & + ~ vX ~ J 

_ (U-PT) • (U-PT)l 

• " v„x,- J 

where v" = + n-s . 

This posterior distribution (5.8) is similar to (4.5) 

which was obtained by using exchangeable priors. It can be 

shown that the above density is the product of two multivariate 

t densities. If in this expression (5.8) P is the matrix 

with all elements zero, we obtain 

/s A -(R+v)/2 
r Ç.2 (u-u)'A'A (u-u)-1 

P(u|x) " vX " J 

r +n)/2 
.|l+(u'u)/(v^X^)J 

which is of the form of (4.5) obtained earlier. 

As shown in Chapter IV we can expand this distribution 

as the product of a normal distribution and a double inverse 

power series in the degrees of freedom. Then we can find the 

moments of this distribution and a Bayes rule for the pairwise 

comparisons of the treatment means, as in Chapter IV. 
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2. A control treatment 

Consider the model (5.1). Suppose we have one control 

variety and i=2,...,n are the experimental varieties. We 

want to compare each experimental variety with the control to 

determine whether any of the experimental varieties differ 

from the control. Dunnett (1955, 1964) considered this 

problem and a good account of his solution is also given in 

Miller (1966). Here we will consider this problem from a 

Bayesian viewpoint. 

Here for the unknown u^ , the exchangeability of the Uj^ 

for all i is inappropriate because the first variety is a 

control and the remaining (n-1) are experimental varieties. 

But we will modify the assumption to one of exchangeability 

within the experimental varieties. It might be reasonable to 

say that our prior knowledge of the experimental varieties 

u^, i=2,...,n is exchangeable, and that this group of 

treatments is independent of the control treatment. 

Suppose 

Uj^ /<-N(0,a^) , 

u^ N(0,Og) , i=2,...,n 

and these distributions are independent. Since and 

are unknown, we will specify priors for and cf^ . We 

will use the conjugate îôiriily cf priors vrhich in this situation 

i s  t h e  i n v e r s e  x ^ t  t h a t  i s  g i v e n  v , X , v ^ , a n d  X ^  ,  w e  
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assume that (vX/a^) 

(v X )/a^/«-x^ » and that these varibles are independent, 
e e e 

Combining the likelihood and the priors by Bayes theorem we 

obtain the posterior distribution which is proportional to 

r n ^ expf- —— I .-u.)2 1 
Li=l J L (20=) ij 1 J 

VV2 , . . r V_/2l-1 
(Vc^c /*A) (a*)- expj-VcXc/tZOc) J 

-(2Tra|)"^""^^Uxp .2^*1/(20*^ (v^Xg/o*) ® (a^) ^ 

f  \  r  V e / Z l  
exp ̂ VgX/ (2a2)J |r ( v ^ / 2 )  2  ® J 

< (o2,-(R+v+2)/2e%p^_ j'E (X^.-u^)^ + VX]/(2OM ] 

•la|) (u| + Vj,X^)/(2o^) J 

-(n+v +l)/2 r / n \ « 1 
[a'l expj- y^ui + VgXj /(aa^) J (5. 

where R = Er^ . 

We find by integrating (5.5) with rêspëc'c to and 

that the posterior distribution is 
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oc (Xij -"i)'+ VI ] 
- ( R+V) / 2  r  

13 
["i +^c*c] 

-(n-l+v )/2 
6 

so p(u|x^j) OC 1 + E 
ij 

(%i1 - "j)' 
vA 

-(R+v)/2 

1 + uJ/( v^X^) 
-(l+Vç)/2 

1 + 

n 
Z u. 
i=2 ^ 

Ve\e 

-(n-l+v^)/2 

(5.10) 

This density is the product of three multivariate t densities 

densities. From this distribution with an appropriate loss 

function, we may find estimates of u^^, i=l,...,n and a Bayes 

rule for the (n-1) component problems, where a component 

problem is a P(l,i) problem which involves a comparison 

between a u^ and u^ for i=2,...,n. We can use the methods 

of Chapter IV to obtain the Bayes rule. 

C. Randomized Blocks 

Suppose the observations in a randomized block experiment 

arose from the model 
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*ij ~ y+Ui + 3j+®ij/ i=l,...,a, j=l,...,b (5.11) 

where y, and 3^ are unknown constants such that 

Zu^ = Z3j = 0 and e^^ '^NID(0,a^). 

To find a Bayes rule for the pairwise comparisons of the 

treatment means we will first assign priors to the unknown 

parameters or constants and use some appropriate loss function. 

But before' we find a Bayes rule, it is instructive to find the 

posterior distribution of 6 = (y,u',3'). 

For convenience we will assume that the block effects are 

exchangeable and independently that a response surface prior 

is suitable for the treatment effects. . As discussed before 

a response surface prior reduces to an exchangeable prior if 

we consider the polynomial to be of zero degree. 

We may write the above model in general matrix notation 

as 

X = Ae + e . (5.12) 

Then, as given by Smith (1973a), 

p(X|e,G:) # (G:)~l/(2n)expr- — ls^+ (0-6) 'A'A(9-9) H (5.13) 
L (2aM^ / J 

where n = total number of observations, (X-A6)*(X-A0) 

and 9 is the solution of the equations 
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A'Ae = A'X 

H@ = 0 where H' = 

0 0 

la." 

0 1, 

The priors for B and u are given by 

P<6|o=) oc (o2)-l/2(b-l)e%p 

P(U|T^,CT^) OC (ct^) ^^"^^exp r - (U-PT"*") ' (U-PT"*") 1 
L (20^) -» 

where Eu = Z zts. = Pt^ with P =[5,1 where the 
- j_o ] ] ^ ^ s J 

Çj•s are normalized orthogonal polynomials over the set of 

numbers • Here it is assumed, as in Section B, 

that the treatment effect u = (u^,...,u^) correspond to the 

levels yi < •••< y of a single factor. Now we take the 

priors for y and as uniform over (-*,»). The prior on 

depends on y^ which may render the results rather 

suspect. 

As before we use for , al, the conjugate inverse p u 

X^-family, i.e., for given we assiuïiê. 

independently, that 
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Combining the likelihood and the priors by Bayes' theorem and 

distribution we obtain the marginal posterior for 8 which is 

given by 

where HÔ = 0 and n = ab. So the posterior density of 9 is 

a product of three multivariate t densities. This 

distribution was obtained by Lindley and Smith (1972) and 

Smith (1973a). . 

We have already discussed in the one-way classification 

model how to obtain a Bayes rule for the pairwise comparisons 

of means when the posterior distribution of B is a product 

of multivariate t distributions. These same ideas may be 

extended. 

From expression (5.14) we may examine what are the 

coHâêywSncss if our prior knowledge of the is diffuse. If 

Vg = 0 then p(3) cCd3 and it seems that the third factor of 

integrating out T^,UrCT^»a^, and from the posterior 

p(6|X) Of [yX + s:+(e-ê)'A'A(@-@^ -l/2(n+v) 

. (u-Pt) ' (u^ft^]"l/2(a+vy-s--1/2(a+v^-s-1) 

(5.14) 
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(5.14) should be replaced by unity. The posterior distribution 

of 9 will be given then as the product of two multivariate t 

distributions which was discussed before. 

From (5.14) we may find the mean and the variance of the 

posterior distribution of 9 = (w,u/,g'). In a randomized 

block design the experimenter is usually interested in treat­

ment differences rather than block differences. So we can 

express the posterior distribution of 9 = (ii,u*/3*) in terms 

of a triple inverse power series in and which are 

the degrees of freedom. Though the details of this expression 

have not been given before, it seems that it is a natural 

extension of the idea of expressing a product of two multi­

variate t distributions as a double inverse power series in 

the degrees of freedom. 

We can then find, by integrating out the unwanted 

parameters, the marginal posterior distribution of u|x , 

i.e., p(u|x). This distribution can be used to find a Bayes 

rule for the pairwise comparisons of the treatment means using 

the methods of Chapter IV. 
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VI. SUMMARY 

In this dissertation we considered the multiple comparison 

problem. The model investigated is the one-way classification 

with errors that are normally and independently distributed 

with zero mean and common unknown variance o^. The 

observations are denoted by and the model is 

X • • " u • 4* e • • X""l f •.. f n 1J i XJ 
j=l,...,r\ 

where the u^^ are unknown true means or parameters and e^^ 

are the errors. From the sample mean (X^,...,3^) and the 

sample variance s^, we want to give some substance to the 

notion of evidence with respect to u^,...,u^ and . 

A critical review of the existing multiple comparison 

procedures which have been suggested in the literature is given. 

These procedures differ considerably in the mode of approach. 

It is our belief that the choice of a procedure must be based 

in some way on prior opinions or guesses about the true means. 

These opinions may be used to develop a procedure for making 

assertions about the true means and differences between them. 

The currently available non-Bayesian procedures use a 

concept of error rate, a, of assertions derived from the data 

with regard to parameter values. It was hoped to develop some 

partial logic for the choice of error rates by the incorporation 
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of prior opinions, represented by prior distributions on 

parameter values. This led to the development of Bayes rules 

for the meUcing of assertions on differences among the true 

means. 

In Chapter I a review of the multiple comparison procedures 

in current use is given. An extension of the Duncan and the 

Student-Newman-Keuls procedure is proposed. The Duncan method 

would use (1.8) and (1.9) with = 1 - (1-a)^ ^ and 

p = 2,...,n, while the Student-Newman-Keuls method would use 

Op = a and p = This extension is based on the upper 

percentage points of the studentized augmented range 

distribution. 

We also gave the exact distribution of the studentized 

maximum gap statistic. Let , i = l,...,n be distributed 

with cdf P and pdf f with »•••» the order 

statistics. Consider 

where G- = max g. with g. = X,.. -X,. ,. , 
2 < i < n ^ ^ 

Z = n-1 and s^ an unbiased estimate of with v d.f. 

and independent of the order statistics. We may assume 

Xj^ ^NtWifOg). Then 
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= 2 Ç exp{-vsV2)P(G^^sr)ds 

where P(G^^sr) is given in (1.14). The studentized maximum 

gap statistic may be used to develop a grouping procedure. 

In Chapter II we gave a general framework for a Bayes 

approach to the multiple comparison problem. The decision 

theoretic formulation of the multiple comparison problem for 

the one-way classification is given. 

In Chapter III we reviewed in detail some of the major 

contributions on the choice of a, the probability of a Type 

I error. We considered the two-decision problem and gave the 

Lindley-Savage argument for the choice of a in the simple 

hypothesis versus the simple alternative. Under certain 

assumptions of a "rational" decision maker they showed that 

his indifference curves are straight parallel lines whose 

slopes are the prior-odds with a zero-one loss function. Using 

this system of indifference curves and our admissible tests we 

can select an a which is a function of our prior information 

and our losses. In the composite hypothesis versus the 

composite alternative, we reviewed the Lindley (1961) argument 

which shows that a is a function of our priors and losses. 

In particular a decreases as the sample size increases. This 

idea viâs extended for the multiple comparison problem using a 

comparisonwise approach. We found that a depends on the 
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utility function, the prior distributions, the sample sizes 

and the number of samples. 

A critical review of the Waller and Duncan (1969) argument 

is also given. Their work uses priors which are functions of 

the data. These priors, even though they are convenient 

analytically do not extend obviously to the case of unequal 

sample sizes. The authors found a Bayes rule for the multiple 

comparison problem and claimed to have a logic for the choice 

of a, but the cut-off points for their rule depend on the data. 

In the context of a theory of testing hypothesis, it seems that 

the error rate should be determined a priori by one's prior 

opinions and loss function as in the case of a simple hypothesis 

versus a simple alternative. Bayesian arguments do not lead to 

a logic for choosing this error rate. 

In Chapter IV we tried to extend the Lindley-Savage 

argument/ using a Waller-Duncan type decision theoretic 

formulation of the multiple comparison problem. Characterizing 

our beliefs or prognosis and using an additive linear loss 

function we attempted a logic for the choice of error rates. 

But we were only able to give an improved Bayes rule for the 

multiple comparison problem in the one-way classification model, 

with a common unknown variance and no control treatments. We 

first derived the posterior distribution of u|z, (4.7); then 

we partitioned u = (u#:u^) and found the distribution of 

u^|z, (4.8). The moments of p(u^|z) were given by (4.11) 
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and (4.12). If we consider only the first term of our estimate 

of u^ we obtain as estimate which has a structure similar to 

those of Stein (1962) and Lindley (1971a), though with 

different weights. In effect we have derived a general estimate 

of u^ based on posterior means. In our derivation of the 

posterior distribution of u|z we expanded the distribution of 

u|z as a double power series in v^^ and Vg^ which are the 

degrees of freedom for the distribution. A detailed account of 

these expansions is given in the Appendix. We also obtained 

the distribution of 61 z where 6 = u^ - u^ and derived the 

following Bayes rule for the symmetric multiple comparison 

problem. Using the definition of I^(z) given by (4.59) and 

I_(z) given by (4.60) we proposed the following Bayes rule for 

the component problem P(i,j), i,j=l,...,n; 

is significantly greater than Xj if 

X^ is not significantly greater than X^ if 

$(ri,rj,s*,s^^Xi,Xj,vj,V2) Ik 

where 

*^^i'^j'®e'®B'*i'*j'^l'^2^ = I+(z)/I_(z) . 
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Therefore when an experimenter enters the consulting 

statisticians room with his data and his prognosis, we can 

calculate $(•) by a computer program and tell him the 

appropriate decisions on his means. 

We then examined the consequences of the main results 

which were derived earlier in this chapter as the degrees of 

freedom get large. We obtained the posterior distribution of 

ulz and found estimates of u. which have the same form as — ' 1 

the Lindley estimates but with different weights. We also gave 

a Bayes rule for the comparison of u^ and Uj i?^j • For the 

case where 

(i) r^ = r 

and (ii) » and , 

we were able to obtain a Bayes rule which depends on 

t = (X. - X. Ms /(2/r) ), which is like the standard t 
X 3 e 

statistic. The Bayes rule for the symmetric multiple comparison 

problem then takes the following form: 

Xj^ is significantly larger than X^ if 

X - X j > BLSD , 

X^ is not significantly different from X^ if 

IX^ - XjI <- BLSD , 
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is significantly smaller than X^ if 

X^ - Xj <- BLSD , 

where the Bayes Least Significant Difference 

BLSD = Sg/(2/r)t(k,s2,s2,r) 

This rule for this special case appears to be similar to the 

Waller-Duncan rule. It would be interesting to compare the 

two rules. We also gave an algorithm for the computation of 

the critical values for the Bayes rule which is derived in this 

chapter. 

In Chapter V we extended the results of Chapter IV to 

other cases and for different prior structures. First we 

considered the one-way classification with a common unknown 

variance, no control treatments and response surface priors. 

Then we looked at the one-way classification model with a 

control treatment. Finally we investigated the case where 

data arise from a complete balanced block design. 

Approaches to the multiple comparison problem that are 

commonly used involve the choice of a pivotal function and a 

choice of an error rate. This study started with the idea that 

it should be possible to obtain a logic for this process, both 

with regard to the pivotal function and the choice of a. . 

The underlying idea is that prior opinions of the nature of a 
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guess expressed in probability terms of the true situation with 

a specification of a loss function would enable the development 

of a procedure for deciding the existence of differences 

between the treatment means. 

Bayesian arguments can be used to develop a decision 

procedure as shown in this dissertation. 

The whole process may be questioned from the standpoint 

that the necessary ingredients in terms of prior distributions 

and loss functions will not be available in many situations. 

If an experiment is the first of its kind, a Bayesian proposal 

is to use what is called a vague prior, but there may be 

difficulties associated with this process. If experiments 

like the previous one have been performed before, the results of 

the previous experiments may be useful in suggesting appropriate 

priors for the various parameters in the present problem. It 

is not altogether easy to specify an appropriate loss function 

because one does not know the consequences of terminal 

decisions which extend into the indefinite future. The use of 

an additive loss structure is a strong defect of the develop­

ment. 

The classical procedures have known or developable 

operating characteristics. For some workers in statistics, 

knowledge of the operating characteristics of a statistical 

procedure is considered important. We have no knowledge of 

the operating characteristics of the procedures developed 
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herein and whether these procedures have reasonable operating 

characteristics is unknown. Whether they lead to error rates 

which are nearly constant and independent of nuisance parameters 

is unknown. Carmer and Swanson (1973) in an evaluation of ten 

pairwise multiple comparison procedures by Monte Carlo methods 

recommended the use of the Waller and Duncan (1969) procedure 

and the use of a preliminary F test with the LSD since these 

procedures are more sensitive in detecting real differences. 

But the procedures suggested in this dissertation are 

improvements over the Waller and Duncan (1969) procedure, so 

it is surmised that the procedures contained herein would have 

reasonable operating characteristics. 

In this dissertation we attempted a logic for the choice 

of a by extending the Lindley-Savage argument which was 

given for the simple hypothesis versus the simple alternative, 

to the multiple comparison problem. We found that even though 

we used priors which do not depend on the data, our critical 

values for the Bayes rule depend on the data. This shows that 

an extension of the Lindley-Savage argument does not give us 

a logic for the choice of a. 
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IX. APPENDIX 

A. Asymptotic Expansion of the Posterior Distribution 

In (4.5) we found the distribution of ujz. 

p(u|z)oc 1 + 

-1/2(n+f) 

i=l 
H 

1 + Z 
(u^-u.r 

^2®B2 J 

-1/2(n-l+qg) 

(9.1) 

Let Q, = 
i=l s 

= f f M, = diag ( — 

4 = 42 Qo = 
n 
Z 
i=l 

— (u.-u.)' 

'A " 

V, = 1-

Mj - diag | j , @ = u,k = n,k'= n-1 , = [X^,... ,X^] ' 

_ r. 
and = [u.,...,u.]'t u. = Zw.X./Zw. with w. = 

Then for k = k' we may write p(u|z) as 

p(@|z) = c"^ gfO^fOg), - <»< 0 < « 

where c = / gfOifO^ldG (9.2) 
—00 < 9 < 00 

i 
I 
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and g{Q,fQo) - n 
i=l -4 

-1/2(v^+k) 

(9.3) 

Box and Tiao (1973) in another context gave an asymptotic 

expansion of the multivariate "double t" probability density. 

This expansion which is sui extension of Fisher (1926) also 

appeared in Tiao and Zellner (1964). Here the main ideas are 

given. 

Expanding (9.3) as a double power series in v^^ and 

Vg^ which are the degrees of freedom for the distribution we 

have 

00 00 

gfOnrOn) = Bxp (-1/(2Q, ) ) exp (-1/(20» ) ) Z S (9*4) 
^ ^ ^ i=0 i=0 1 ^ ^ 

where 

Pn = 1 , 

pi = t <qi -

= à [='0Î - 4(3k+4)QJ + 12k(k+2)Q iJ (9.5) 

and 

90 

91 

— If 

i (Q| - 2̂ 2' 

3Q^ - 4<3k+4)Qf + 12k(k+2)0:l w ^ ^ J 
(9.6) 
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For vectors x, a, b, and c of length n and matrices 

A and B of dimension nxn it is evident that 

(x-a)'A(x-a) + (x-b)'B(x-b) = (x-c)*(A+B)(x-c) 

+ (a-b)»A(A+B)~^B(a-b) (9.7) 

where c = (A+B)~^(Aa + Bb) . 

Substituting (9.7) into (9.4) we obtain 

p(@|z) = c~^ gtO^fOg) = w~^h(e) (9.8) 

where h(0) =—LëL__ exp Z Z PigivT^vli 
( 2 w ) V  2  /  i = o  j = 0  ^  ^  ^  ̂  

for Q= (e-e) •M(«-e), M = M^+Mg , 

e = M"^(Mj^e^+M2e2) and 

w = / h(e)d9 . (9.9) 
—00 < Q < oo 

To evaluate (9.9), first, we find the joint cumulant 

generating function of and Qg which is defined as 

I"11/2 T 
K(t,,t») = log / exp(t, Q, + t,Q-- ̂ )de . (9.10) 

^ ^ -00 < Û < 00 (2n)*/̂  ^ ^ i ^ ^ 9 < 00 (2it) 

It can be shown that the cumulants are given by 



136 

= tr , 

= tr + ngMgHg J (9.11) 

and 

K^g = 2f+S"l(r+s-2) I [(r+s-l) tr + {rT\^ + sr)^)'^^ 

• (rrij^ + sn2) - - sn2G^^n2j r + s>2 (9.12) 

where G^® = M(m"^MJ^)^ (M'^M^)® 

and n. = (@-@.) for i=l#2 , (9.13) 

Cook (1951) derived formulae giving bivariate 

population moment-coefficients in terms of cumulants and 

cumulants in terms of moment coefficients up to the sixth 

order. Using Cook's inversion formulae we may write (9.9) as 

«» 00 
w = E E b. .v7 Vg^ (9.14) 

i=0 i=0 1 ^ 

where 

boo = 1 ' 

^10 = T 1^20 ̂  "^10 " ̂̂ "^10j ' (9.15) 

^01 ~ ? Po2 "^01 " ' (9.16) 
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b,, = f̂ 22 ^̂ 21̂ 01 *20̂ 01 •*• *20*02 "'" ̂ *12*10 "*" ̂ *11 
11 lo L 

+ + kJo*01 "*• *10*02 

- 2k(K^2 + "^21 •*• *02*10 *20*01 ^*11*01 ^*11*10 

+ *01=10 + *10^01)+ W^^*ll +*10*01) • (*'17) 

^20 = 55 (*40 4*30*10 "'• 3*20 6*20*10 """ *10^ 

-4 (3k+4) (<20 + 3*20*10 *10* 

+12k(k+2) (ic2q + icJq)] / (9.18) 

and 

'02 = 9? [3 (*04 ""̂ 02 " ̂̂ 03̂ 01 " "̂ 02"01 ' "01 brto — TTÏT I 3 (Knit 3K£o 4K,»-K/»i + 6lCA«*Kf>i + K^« ) 

-4 (3k+4) (Kq2 + 3*02*01 *01* 

+12k(k+2)(Kq2+ *01^ J * 

We can now substitute (9.14) into (9.8) to obtain an 

asymptotic expression for the posterior distribution of 0 

which is given by 

p(e|z) = exp [4 (e-e)'M(«-e)] s i 
(2Tr)^/^ L ̂  J i=0 j=0 ^3 -L ^ 

—CO < 9 < «0 (9.19) 
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where = 1 , (9.20) 

"̂ 10 = Pi - '>10 ' 

•^01 = 9l - ''01 ' 

dij = (Pj - b^gl (g^ - bgi) + bio''oi * ''ll ' (*.23) 

^ZO = Pz - ̂ 20 * *'10 - PAO ' 19-24) 

ana *02 = 9% - ''02 * "oi " 91^01 ' "-25' 

We have now expressed the posterior distribution as the 

product of a multivariate normal distribution and a power 

series in v^^ and v^^ . When v^ and Vg get very large, 

all terms of the power series except the leading one vanishes 

so that the posterior distribution is asymptotically 

distributed The terms in the power series can be 

interpreted for finite values of v^ and Vg as the 

corrections in the normal approximation to the distribution 

p(@|z). 

From our posterior distribution, we will now calculate 

the marginal distribution. Let 
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«' = (ej and M = 

«rr 

with m"^ = 
?&,, Var 

Vrr 

After integrating the unwanted parameters 9^ the marginal 

posterior density is given by 

-1,1/2 

P(9t|z) = 
l'iîi 

(2ir) 
J7J exp [4 («1 - ;%)' Vll (6» - )] f (*%) 

with -00 < 6 < » (9.26) 

where 

f(«j) = 
l"rrl 

1/2 

(2n)f/2 .CO < e 

CO CO 

. s s d..v7^v~^de^ 
i=0 j=0 ^3 -L ^ r 

(9.27) 

and = Gp- if I (0^ -9^) . 

As before let us partition the following matrices 
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A >N 

n = «ir>' ®2 = (*21 *2r) ' 

Ml-

®il£ 

®rjl ®rr 

M-^ = 

^11 ®jlr 

®rS, ^rr 

«2 = 
C&& 

5rJl ^rid 

and = 

^r2 ^rr 

The mixed cumulants of and Og given by 

"10 = «S B„ + YiBrrYl + <»l - «1*1 '=̂ <«1 - «u» ' <9-28> 
,.-1 

"01 - tc »« =rr + ̂ 2<=rrT'2<«1 " «rt'" ®2»> (9.29) 

and 

•h" w^g = 2Z+S"l(r+s-2)! [ (r+s-1) tr vT^ + (ry^ + SY2) 

• (rv^ + SY2) - rY{H^®Yl - SY2H"Y2 J + s > 2 , (9.30) 

where 

Yi = - Sir' + - «;xt' <«4 - «u» 

(9.31) 

(9.32) 

and Yj = (5^ - + (c-jc^j - M;Xt) - ê,*) (9.33) 
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Now from the above results the distribution of is 

|V 1-1/2 

exP bi (*& 

, z ô- vt̂ vii -00<e < 00 (9.34) 
i,j=0 1] 1 2 

where as before we may show that the quantities 6^^ are 

similar to the quantities d.. which are given by 

*00 = 1 ' (9-35) 

(9.36) 

(9.37) 

"^10 ' ^10 ~ ̂ 10 

^01 ' ^01 " ̂01 ' 

«il = gil - ̂11 - ̂10̂ 01 " ̂oao 2̂ 01̂ 10 ' (9.38) 

®20 = 920 • ̂20 - 910^10 ^10 ' 

*02 = 9o2-bo2-9oiboi+boi ' 

900 = 1 ' (9.41) 

9lo = i (w20 + WlO-2kWio) and (9.42) 

901 = i (Wo2+Woi-2kWoi) • (9-43) 

A .  
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It is interesting to note that for i=0, j=0 in (9.34) 

that p(@^|z) is a multivariate normal distribution with 

B. Some Useful Results in Integration 

In this section we give some lemmas which will be applied 

later in this Appendix. The simple proofs will be omitted. 

Lemma 9.1 

Let X-wN(y,a^) then 

/ x" exp[-| (^) ] ax 

= Tmr expI-HVUam 2 : 

. k+i-1 
1 n 

k+i 

Proof: Consider 

= exp -[p*/(2o*)] /*** x^ exp[-x*/(2a*)]exp[xp/a2]dx 
0 
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exp[-uV(2aMl I ^ /- x"+i 
i=0 0 

exp[-x2/(2o*)]dx 

exp[-yV(2aMl S | r (n+i+l)/2) 
i=0 

From , we may find Bj^ . 

Lemma 9.2 

Let X ̂  N(a,o*) then 

= a 

Mg = + a^ 

Wg = a(3a^ + a^) 

U4 = 3a^ + 6a*a* + a^ (9.44) 

where is the r-th moment of X . 
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Lemma 9.1 

Let u^'^N(ïï^,v^j^) then 

a) Y. = (0. +Ç. = — E(u. -X.) 
1  1 1 1  _ 2  I  s: 

and 

b) lu? + Ç| + 6Ç^u^ = 
r. s- x4 I—^1 E (u. ~ X. ) 

=  ̂[Si - . 
®e 

Proof : a) ECu^-X^)^ = + X ? 

Vii + 5|-25.Xi 

Vii + (u. - X^)' 

si 
= — Ç. ) 
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b) E (u^ - Xi) ̂ = V4 - 4X^u^ + 6X^y J - 4X?u{ + X? 

3v?. + 6u?v. . + uf - 4X.U. (3v. . + u?) 
H i H X i JL JLX -L 

+ 6X? (vji + u| ) - 4X?Ui + xi 

3Tii + + "i -

- 4X.Û? + 6X?v.. + 6X?u? 
1 1 X 11 IX 

- 4X?5^ + 

= 3(0? + g? + 

LemiPa 9.4 

Let X'^Nj^(y,W) then for any vector g and any positive 

definite symmetric matrix W 

(2n)*/2|w|l/2 

where g' = y'W ^ 

exp ̂ |g • WgJ = /exp ̂-|x' w"^X + g • xj dX 

C. Moments of the Posterior Distribution 

In Chapter IV we gave the first and second moments of the 

posterior distribution. We also gave a Bayes rule for the 

ccnipariGcn cf the treatment in a one-way classification 

where there are no control treatments. In this section we 
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derive the particular series expansion of the posterior 

distribution and the moments of the distribution. 

In Equation (4.5) we derived the posterior distribution. 

p(u|z) oc 
n r.(X.-u.r 

1+2 —L_ 
i=l fsi 

-1/2(n+f) 

(u.-u.)^ 
1 + Z —^ 
. i 92=^2 

-1/2(n-l+qg) 

(9.45) 

Using the results of Section A and B we will now expand (9.45) 

as a double inverse power series in the degrees of freedom f and 

q2 . In (9.45) let q = qg , s^g = ®b ' 

n r.(X^-Ui)= 

i=l ? 
@2 with v^ = f , (9.46) 

n Cu. - u. )^ 
E —i 

i=l s 
= Og with Vg = q , 

B 

(9.47) 

and s = n-1 . Then 

p(u|z) oc 
-4 

-1/2(n+v^) -l/2(s+V2) 

from (9.46; and (3.47) wc have 
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M- = diag / — 
^ s! 

and 

M2 = diag 

With M = M^+Mg / ©i = ' and 9^ = [u.. 

we have by using 

.-1 e = M ^(M^e^ + M^eg) , 

@ — (U^r•••fU^) 

/r 
where -A + J^ 

=: =A 

Also M = diag (vT^) 

-1 1=1 1 
where v • ^ = — + — 

- \s| a: 

Let 

f (u;u^,v^^) = [ n (2Tv)"'̂ /̂ exp[-|( Ẑ (uĵ -û )̂ v 

From (9.19) we may write the posterior distribution of 

with u = 6 as 
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00 00 

p(u| 2 )  = f(u;u.,v..) Z I d..v,^v"^ 
" 1 i=0 j=0 1 ^ 

(9.51) 

where -« < u < * and the quantities d^j are given in (9.20) 

to (9.25). 

Let us find the first three terms of the double power 

series in and . From (9.21) 

^10 = Pi" ̂10 • 

From (9.5) and (9.15) 

1̂0 = |(Qi - 4 (<20 + "^10 " ZkKio) 

From (9.11), (9.13),(9.48), and (9.49) 

.-1. 
<10 = tr M M^ + 

n I r. \ n r. 
= Z (v.. — J + E — {u. — X. P 

i=l Us! i=l s! 1 1 

From (9.12) 

'20 
= 2 jtr(m'^Mj^) ^ + 2nj^M(M"^Mj^) J 

= 2 

7 

Let = 
17"" 

(9.52) 
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s: 
and g. = (u. - Xi . (9.53) 

X _ 9 1 X 

Then k, ̂ = Z (o). + Ç. ) (9.54) 
i=l ^ ^ 

and <20 ~ ^ Z (w| + 2a)^Çj^)j . (9.55) 

Similarly if we let 

y. = —v.. (9.56) 
X 2 IX 

and p. = — (Û. -u.)^ , (9.57) 

4 

we have from (9.11) and (9.12) 

n 
K^, = Z (Yj+Pj) (9.58) 

and Kq2 ~ 2 Z (yf+Zp^Yi^ • (9.59) 

Therefore with n=k 

^10 ~ " ̂"®1 " "^20 " *^10 

= i [oi - 2nOi - 2 [ ("1 + 2»iîi)J - ("i + 5i'] 

+ 2n ( .%^(Wi + 5i^)] • (9.60) 



150 

Also with s=k 

*̂ 01 " Ï " 2SO2 ~ "̂ 02 ~ *01 ŜKQl ̂ 

= i[Q|-2sQ2-2 (J^(YÎ + 2Piïi)) - (J^tïi+Pi)) 

+ 2s ( Z^(Yi + Pi)j J . (9.61) 

We may rewrite (9.51) as 

p(u|z) = f (u;u^,v^j^) (1 + + V2^dQ^) + o(l) + o(l). (9.62) 

From the posterior distribution given in (9.51) we may 

derive the marginal distribution of u^ where u' = (u^;u^) • 

By (9.34) with u=0 and u=6 

PCU^IZ) = lVjJ-l/2(2^)-V21g^pj-.l 

00 

• E 6..vT^v%] for -00 < U» < 00 , (9.63) 
i,i=o 13 1 ^ -% 

where the quantities 6^^ are given in (9.35) to (9.43). 

Let us find the first three terms of the power series in 

Vj^^ and Vg^. From (9.36) 

•̂ 10 ~ 9io ~ 1̂0 
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Using (9.15) and (9.42) with n=k, we have 

^10 ~ 4 (^^0 "** "^10 " 2*^10 " *^20 ~ *^10 2**10) 

From (9.28) 

"10 = "rr®rr + + 'Ht ' 'Ht " Su' 

where ^rr'^rr'^i' ̂ 11 and are defined in Section IXA 

Making the necessary substitutions, we find 

"lO " 

n / r.\ n r. 
S (v.. —I + Z — (u. - X. )2 

i=&+ll sM i=A+l s* 

& _ r. 
+ Z (u. - X. )^ — 
i=l 1 1 sf 

e 

Using (9.52) and (9.53) we have 

n 
"10 = 

a ^i E (OJ. + Ç. ) + 2 (u. - X. )^ 
i=A+l ^ ^ i=l 1 1 sf 

(9.64) 

Also from (9.30) 

"20 = 2 [tr (»;! B-l' + rr 

= 2 
n / r.\ 2 n /r. \ 

i=Lir"3 

Using (9.52) and (9.53) we have 
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~  ̂f~  ̂ 2(1). Ç • ) ~| « 
L i=&+l ^ 1 1 J 

(9.65) 

Similarly with (9.29), (9.30), (9.56), and (9.57) we may show 

n 
b) 01 ~ 2 (Yi + P^) + Z (u^-u.)y& 

i=A+l i=l 
2/_2 (9.66) 

(9.67) 

Therefore 

•̂ 10 ~ 4 [*̂ 20 *̂ 10 • 2**10 " *̂ 20 " "̂ 10 "*• 2'̂ '̂ ioj 

1 
4 

2 E (w? + 2(0. Ç.) + 
i=A+l ^ ^ ^ 

& r? 
+ Z (u. - X. )^ — 
i=l 1 1 8 = 

e 

f  n 
S (ù). + Ç. ) 

i=A+l ^ ^ 

n Z _ r. 
•2n I Z (ui. + Ç. ) + E (u. - X. )2 — 

i=A+l ^ ^ i=l 1 ^ 3^ 

n 
•2 Z (w?+2w.g.) 

i=l 1 ^ ^ 

n 
S (tOf + Çj )' 

[i=l ^ ^ 

n 
+2n E (h). + Çj ) 

i=l ^ 1 
(9.68) 
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1 
4 

n 
-2 Z (o)? + 2tû. Ç • ) + / Z (u) . + C i )  

i=l 1 1"! i=&+l 1 "1 

A _ r. 
+ S (u.-x.)^ ! 
i=l ^ ^ 

f n 
Z (O). + Ç: ) 

i=l ^ ^ 

n n % _ r. 
+2n I Z (w. +5,)- Z (w, +g.)- Z (u. -X.)2 -± 

ii=l 1 ^ i=t+l 1 1 i=l 1 1 s 2 

1 
4 

£ Il & _ r. 
-2 Z (w? + 2a).Ç.)+ - Z (u). +Ç.)+ Z (u. - X. — 

i=l ^ 1 1 l i=l 1 1 i=l 1 1 sf 

n r. 
V \2 _Îl , Z (oj. + Ç• ) + 2 Z (ti). + Ç. ) + Z (u. - X. ) — 

i=l ^ ^ i=A+l ^ ^ i=l 1 ^ s! 

+2n I Z (o). + Ç. ) -
i=l 

A _ r. 
Z (u. - X. —-

i=l ^ ^ s: 

1 
T 

r. 
—2 Z (u. + 2aj. Ç. ) 

i=l 1 ^ ^ 
Z (to. + Ç. ) - Z (u- - X. — 

li=i 1 1 i=i 1 1 s! 

'A n £ _ 
Z (oj. + Ç. ) + 2 Z (o). + Ç. ) + Z (u. - X. ) 
i=l ^ ^ i=&+l 1 1 i=l 1 1 

V \2 fi 
2 
— - 2n 

(9.69) 

Also 

•^01 " ̂01 "^01 

~ ï[ ̂ 02 0̂1 ~ ZswQi - <02 " "̂ 01 •*• ̂ *̂̂ 01] 
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1 
? 

n n 
2 S (Y| + ZTjPi) + I E (Ŷ  + Pj_) 

i=&+l ii=&+l 

& . . \2 
+ 2 (u. - u. /s^ 

i=l ^ ® 

n 
Z 

1=4+1 
•2s/ Z (Yi + Pj^) + Z (u^-u.)^/s| 

£ 
Z 

i=l 

n 
"2 S (Yj^2p.Yj) 

i=l 1 ^ ̂  

n n 
S (Yi + P^) + 2s E (Y^ + P^) 

i=l i=l 

1 
4 -2 I (Y| + 2p^Yi)- Z (Yi + P^)- ^ (u^-u.r/s 

i=l i=l 1=1 

2 /«2 

n 
Z (Yi+Pj+2 2 (Yi + Pj )+ Z (u. - u.)^/s^ - 2s 

11=1 ^ ^ i=A+l ^ ^ i=l ^ " ' 

(9.70) 

Now substituting (9.69) and (9.70) into (9.63) we may 

write (9.63) using only the first three terms of the power 

-1 -1 
series in Vj^ and Vg as 

p(Uj^lz) = f(ut;%i,Vii) Sio+v; ̂ «Ol] 

+ o(l) + o(l) , (9.71) 

where ô£q and 5^^ are given by (9.69) and (9.70) 
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respectively. Note that (9.71) is a polynomial in . 

From Equation (9.71) , with £=3 we have the joint 

distribution of u^, Ug, and Ug given z which is 

p^UifUgfUglz) = f (u^,u2ru3;u^,v^^) [l + v^^ ^10 "'•^2^ 

+ o(l) + o(l) . (9.72) 

For 1=2, we find the values of ^qi * (9.68) 

we have for &=3 

i f "  /  n  3  _  r .  
«in=T 2 Z (w? + 2aj.Ç.)+ ( E (w, +%.)+ Z K - X. )^ ~ 

^ L i=4 (i=4 ^ ^ i=l 1 s^ 

(n 3 _ r.\ n I (w. + g.) + 2 (u. - X. )^ —I -2 Z (to? + 2a). Ç. ) 
i=4 1 1 i=l 1 1 s* I i=l 1 ^ 

n n 
- I Z (o). + Ç. ) I + 2n Z (o). + Çi ) 

i=l ^ ^ i=l ^ -1 

Let = w^i^^i * Then we may rewrite 

'10 
1 
4 

n 
2 Z (u? + - 2II>2 " ̂^2^2 ̂  
i—1 

^i?^l,3 

r n J _ r. 
Z y ! + Z (u.-X.)2 — 
i=l 1 i=l 1 1 si 

Li7«l,3 î 2 

- *2+ 
®ej 

^ r  
- /2n 

- n 3 _ r. 
Z Y!+ Z (u.-X. )2 — 
i=l ^ i=l 1 1 s: 

i?^l,3 i^2 

+2nj^- Y' + (ug-Xg): — 

t  

11 
I > — ^ Zj iU). T 6Ù) . ̂ . / 

Jj i=l 1 1 1 

T ' ) m y \ 
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n 
Z Y! 

Li=l 

n 
+ 2n Z Y! 

i=l 1 
(9.73) 

From (9.73) consider 

n 3 r. r_ 
Z Y! + I (u.-X.)2-3^- Y' + (u--X^)^ — 
i=l 1 i=l 1 1 sf ^ si 

i^2 ®  ® -

n 3 _ r. 
Z Y!+ Z (u.-X.)^ — - YJ 
i=l 1 i=l 1 1 s* 

^i?«l,3 ifi2 

n 3 _ %. 
Z Y! + Z (u.-X.)2 —T 
i=l i=l 1 1 s2 2 

i?îl,3 i^2 ® -

+2(U2-X2)^^ 

n 3 r. 
Z Y!+ Z (u.-X. )2 — 

i=l 1 i=l 1 1 8 = 
1^1,3 ±fi2 ®-

+ -2YJ 
r n 3 _ r. 

Z Y! + Z (u.-X.)^ — 
i=l i=l 1 1 s! 
if%,3 i7^2 ®-' 

+ (Ug-Xg)^ 

2^2 + 2(U2-X2) -- ' 
n 

J (9.74, 

ifl,3 i?^2 ® 

We insert (9.74) in (9.73) and using Lemma 9.3 from Section 

IXB where 

r. 
WÎ = -i E(u.-X. )^ for all i and 
X 2 X X 

(9.75) 

(3aj? + Ç| + eç^o)^) 
fZi 

E(u^-X^)^ (9.76) 
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we combine (9.73) with the density and 

integrate with respect to Ug to obtain 

^10 - I 

n / n 
2 2 (ojf + 2ai.Ç. ) - 2(ij2 - 4a)-Ç,+ / Z Y! 
i=l 1 ^ ^ ^ ^ ^ I i=l 1 

-i?«lr3 \i?^l,3 

3 r. / n 3 _ r.\ 

i=l 1 1 s!, ^ i=l 1 i=l sM 
i?i2 ® / \ ifl,3 ij<2 ®' 

+ 3a.| + {| + 6(2%: + 21̂ 1 Ĵ ï! + (u.-X. )= ̂  j 

- 2 y;: - /an/ z *:+ : (u.-x,)'—\ +2n(-Yi + Yi] \ 
2 \ i'l 1 i=l 1 1 s' ( 

L \i^l.3 i9^2 ' J 

n 
2 E (u>? + 2w. Ç. ) -
i=l 1^1 

n 
+ 2n Z V! 

i=l ^ 

1 
4 

n n 
V \2 1 E (u i f  + 20). g.) + Z Y! + Z (u. -X. 

i=l ^ i=l ^ i=l ^ ^ s! 
L i?^l/3 ^ij^l,3 i?^2 

/ n 3 _ r. 
-2rJ Z Y! + Z (u.-X.f 

1 i=l ^ i=l ^ ^ si 
ifl,3 i^2 

n I - n 
Z Y! + 2n Z ¥! 

n 
-2 Z (u)? + 2a). Ç. ) 

i=l ^ ^ ^ 

i=l i=l 

f. 3 
- 2 (u)£ + 2u)ĵ Ç̂  + Wg + ZWgSg) - ( i- - Z (û -X̂  

 ̂ i?(2 
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n 3 _ r. 
. \ Y: + Y' + 2 Z r! + E (u.-X.)2-i-2n 

^ ^ i=l ^ i=l 1 1 3 = 
i?^lr3 1^2 

Similarly, we may find with ¥? = , 

' 2 { y \  

(9.77) 

^01 ̂  I r| + 2YiPi + Y| + 2?,,,) - IÏJ + (u.-u. )» /s|j 

n j 
Y" + Y" + 2 Z Y? + Z (u.-u.)2/s| - 2(n-l) 

i=l ^ i=l ^ B 
i?«l,3 if2 

(9.78) 

Therefore using ô^q and as given in (9.77) and 

(9.78) we see by integrating out (9.72) with respect to Ug 

that 

PfUl'Uslz) = f (U]^,U2;U. ,v. .) 1 f^v"^ ̂lo +T^2^ 

+ o(l) +o(l) (9.79) 

Comparing p^u^fUgjz) and p^u^/uglz) which is easily 

obtained from (9.70) with &=2 , we can see the symmetry in the 

distribution so that if we have the joint distribution of u^^ 

and Ug we may write the distribution of u^ and Uj , i^j 

for all i,j=l,...,n. 

Therefore we may write the joint density of Uj^ and Uj 

given the data as follows 
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p(u^,u. |z) = f (u^,u.;ïï^,v^^) 

-2 (u? + 2a). Ç. + w? + 2w . Ç . ) 
X 1 X J J J 

- Iv! +Y! - - (u.=X.)^-4 
i  3  1  1  g 2  J  J  g 2  

• (fî+l". +2 Z Y ' + (u. -X. )^ — + (U.-X. -i - 2n j 
13 k=l ^ J ^ 3 = 

kfi,i ® 

+ ï^2^ -2(Y?+2Y^Pi + Y; + 2YjPj) - (fj + 

(u^-u.)^ /s| 

k^^,j 

+ (uj-u.^/sg+(u^-u.^/s*-2(n-l) B 

+ o(l) + o(l) (9.80) 

To obtain the posterior density of u^|z we integrate out uj, 

and using Lemma 9.3 from Section IXB we obtain 

p(u^|z) = f (uj^;u^,v^^) 

1 + JV-^ + 26.. q) - - (u.-X.)=' ̂  ) 
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Iv! +2 Z + (u.-X. —- 2n) 
\ 1 4=1 ] ^ ^ ] 

jr^i 

+ jj2(Y?+2p^y^) -(yj- (u^-u.)Vs|) 

.+ 2 S + (Uj^-u.)Vs^-2(n-l)) jj 

j^i 

+ o(l) + o(l) (9.81) 

Employing the expression for the moments of a Normal variable, 

we will now derive an asymptotic expression for the moments of 

p(u^iz). 

In (9.81) consider the coefficients of ^v^^ and ^Vg^ 

respectively in the power series in v^^^ and v^^ . Therefore 

[-2 («,? + 20.^5.) - (f ! - (u.-X^)' [^1*2 Y' + ^ - 2»)] 

® jfii ® 

= 1-2 (w? + 20). Ç. ) - IY! 2 + 2^; Z ¥Î + w; (u.-X. ) 
| _  ^  ^  ^  V  ̂  ^  j = l  J  1 1 1  

r. 
V \2 

- Y! (u.-X. )^ — - 2 (u.-X. f— Z Y! - (u.-X. )^. f—^ - 2n Y' 
1 1 1 1 1 s2 j^l D 11 \g2/ 1 

® m  
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+ 2n(u i -v5)] 

n 
2 (w? + 20), Ç, ) - Y : 2 - 2Y! Z Y! + 2nY! 

1 1 1 1  1  i  

(u.-X.)2^f 2 Z Yl-2n) + (u.-x.)^ 
1 1 s2\ 4=1 ] I ^ 1 

j?^i 

Similarly the coefficient of is 

^ri \ ^ 

s e / 

(9.82) 

n 
= r-2 (y? + 2y . p • ) - yv ̂  - 2yy z yv + 2 (n-1) hf? 
L ^ ^ ̂  ^ ^ j=i J ^ 

(u.-u.)^ / n 
^ (2 I Ï5-2(„-1))HU,-U.)^ 

® j/i ® 

(9.83) 

If we consider the leading term of the power series in 

(9.81) we see that 

N(u^,v^^) (9.84) 

Before we find the moments of (9.81), it will be instructive 

to evaluate the fcllcwing cxpre ssions with reapect to u. 

which is distributed N(u^,v^^) 
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E[u^(u^-X^)^] = E[u^(u? - 2u^X^+ X^)] 

= U3 - 2%^%^ + X?u 

— •" 2X^v^^ ~ 2X^u^ + X^u^ « 

(9.85) 

The last line follows immediately from Lemma 9.2 which is 

given in Section IXB. Also 

E[u^ (U^-X^)^] = [y^ - + 6X?y| - 4X?u' + xfw{] 

= 15v..u. +lOv ..u? + u? - 4X.(3v?. + 6u?v.. + u|) 
il 1 iJL i i JL aL JL J* i <1» • 

+6X?u.(3v.. +u?) - 4X?(v.. +Û?) +xfu. . (9.86) 
X  i  H  X X  X I  X  X X  

Now using (9.81) to (9.86) we have the mean of the posterior 

distribution is given by 

E(u^| z)  ̂ 1 ""1 
Ui+fVi 

n 
-2 (o)? + 20). Ç . )u. - T! ̂u. - 2¥îu. I ^ 

X  X X X  X X  X X  -J — 2  J  

j?^i 

+ 2nY!u. + — (2 Z Y!-2ni | 3u.v., +uf - 2X.v. . 

' 4 ( ' M 

- 2X^5| + j [l5v. .S. + lOv. .Sj + S® - 4X, 

• (3v|i + 6u|v^^ + u^) + 6X?u^(3Vj^^ %i) -4xf(v..+u!) 
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[coefficient] 

"71 Mi * '"i • * *i') "i 

^ I (Vii + 2Vii (5i-Xi)'+ (ûi-Xi) ') "i 
M — 4 \ ^ 

n 
2u.Y! Z Y : + 2n f — 
1 1 i=l ] 

(Vii + u| - 2u^X^ + X?)Uj^ 

'fi 

S: 

n 
2 Z Yl-2n 
j=l ^ 
3f^i 

3u.V.. + uf -2X.V.. -2X.u? i H jL * i i i 

* vi] * :7 (ISViiUi + 10v\^uf+ u?-12X^v?^ 

- 24X.u?v.. -4X.uf + 18X?u.v.. + 6X?u?-4X?v.. 
X  X  I X  X X  X X  X X  X X  X  X X  

"̂4 -4xf u| + jqu^) + [coefficient] (9.87) 

yw 1 
Ui+jVi (S) 

®e 
(-2v|iSi - 4ViiS? + SSÎV. .X. 

-4ViiX5Si - vî .5^ - 2v. .Û^ + 4Ô?v. .X. - 2v^^S.Xj 

- S? 4 45fe - 6S?X? + 45?X? -xfû + 15v, ; S, "i ' ""i-1 "i"! -i"! 11 1 
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+ lOv. .u^ + u? - 12X.V?. - 24X.u?v. . - 4X.uf H 1 1 1 H 1 1 H i i 

+ 18X?u.v. . + 6Xfu? - 4X?v. . - 4xju? + j^u.) 1 i H i i «L H i i «L 

^ /y A* A 
~ i^ii ~ i i i 

- 2u.X| + 6u.v.. + 2ÏÏ? - 4X.V.. -4X.u| + 2X 1  1  1  1 1  1  1 1 1  1 1  i"i] 

+ 2n 
I ^ Af 3 _ Af m— —n Af ^ ^3 

— Lv-^u. +u. - 2u?x. +xfu. -Bu.v. . -u. 2 XX X X XX XX X XX X 

+ + 2X^u? - xfUj + iv2^ [coefficient] 

/V 1 —T 
+ 4Viig? - IZXiV*! 

- 12XiSlVii + 12X|S.v..-4x3v..|+ ^ 
®e 

\ pil 

(Uj-Xj)^ll I 4u. V. . - 4X^v. . 

I 
2n!i 

. 4 , 

{-2ViiSi + ZX^v 1 vjl [(i) ' ( -3ViiSi + 15^11=1 

+ 4v. .uf - 12u.v?. -12u.u?v. . +12u?u.v. . -4u^v. 
%  %  1  X X  X X X  X X X  X X /  
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+ (2n/SG) { -2v^^u^ + 2u.v^^J . (9.88) 

To find the variance of u^|z it is only required to find the 

second raw moment from which we may calculate the variance 

using the fact that 

Var(u^|z) = E(U?!Z) - Ef(u^|z) . 

E(u?|z) = P2(w? + 2ca^4^)y^-1'|2p. _2H'| ? Vîy' 
•- j—1 

j?^i 

0) 2(J^?:-2n) - 2m^X. + X|yj) 

® m 

r. ̂ 2 
[MJ - 4X.UJ + 6X|u4 - 4x3y-

+ jV2^ l^coefficien^ . 

2 

= (Vii+u|) +iv-^[-2 (vîj^ + 2v^i(û^-Xj^)^) 

e 

(v. . +u?) - (V... +u?) Y! fv! + 2 Z yî-2n) 
11 1 xj- J- J. V i=l ' 

m 
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^ (2 - 2n) ( 3v|. + ea'Vii + - 2X^u^ 

2 

•(3Vii + U?) + X? (Vji + U?) j 
il / icr-S , ^e_2 %2 %, ̂ 15vf. + 45v2.5! 

^e' 

+ 15v..uf +uf - 4X.(15v..u. +lOv..u? +u^) 
X X  X X  X X X  X  X X  X  X  

+ 6X| (3vf^ + 6u?v^^ + uf) - 4X? + u?) 

+xf(Vii + u?)JJ +jV2^ Coefficient] , (9.89) 

where the coefficient of may be obtained by symmetry. 

To find the Bayes rule we need p(5|z). Let us now find 

p(6|z}. From (9.71) let £=2 then 

piUi/Uglz) = f (U]^,U2;u^,v^^) [ 1 + 

+ o(l) + o(l) (9.90) 

where 

«10 = T[-2 ) 

,2 n 2 _ r. T 
.( Z (u>. +Ç.) + 2 Z (w. +Ç.)+ Z (u.-X.)^ —- 2n) . 
Vi=l ^ ^ i=3 ^ ^ i=l ^ ^ s| /J 

(9.91) 

and 

«01 = i [-2 j/Y| + 2PiYll - ( j/Yi + Pi) -
B 
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.2 n 2 1 \1 
*{ ^ (Yi + p. ) +2 Z (y. + p. ) + E (u.-u. -=— 2 (n-l)j . 
Vi=l ^ ^ i=3 ^ ^ i=l s| W 

(9.92) 

Perform the transformation of (u^fUg) to 6 = U^-Ug and 

Ug in (9.90). Then the leading term of the power series in 

(9.90) which is the joint density of and Ug such that 

u^ N(Ui,v\^) for all i becomes after integrating with 

respect to Ug 

2 - 1 - 1  

f(6;u^,v^^) = [/(2it)/{ E exp ̂  g (^-(u^-UgM J • 
i—1 o r . .  

(9.93) 

Therefore the leading term in the posterior distribution of 

ÔI z is distributed normally with mean variance 

(*11+'22' • 

Let Y2 and 6 = U2-U2 then (9.91) becomes 

«10 = J [-2 + " + 

r_ \ / 2 n r _ 
(u,-X,)2 ( E Y! + 2 E Y! - 2n + -i. (6 + u^-X, )= 

g2 2 2 / \ 1=1 1 i=3 1 s2 ^ 

e 
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Similarly with ^2 " ̂i ̂  "^i ® ~ ̂i ~ ̂ 2 (9*92) becomes 

1 r ^ ^ ^ ^ \ 
ô-,=i -2 Z (y2 + 2Y,p,)- Z Y? 2 Y?+2 Z Y"-2(n-l)) 
O-L « L i=]_ i=i 1 \i=l ^ i=3 ^ / 

+ u, -u.)^ f Z W? - (n-l)U— (u,-u.)2 ( Z vy - (n-1)) 
^ \i=3 ^ ! si ^ k=3 ̂  ' 

+ -^ (6 
=B 

,-Uj )̂ (6 + Ug - u. )̂  + (Ug-u* ) ̂ + -% (G+Ug-u. J 

' k " '  -  :  • .  

(9.95) 

Therefore 

p(6,U2|z) = f (ô^UjfUj^fVj^j^) [1 + •'• ^2^^01^"*" +©(1) (9«96) 

where and are given by (9.94) and (9.95) 

respectively. Here f^ôfUg/UifV^^) is obtained from 

f (Uj^,U2;Uj^»v^j^) by performing the transformation of (u^^^ug) 

to 6= u^-ug and Ug . 

Before we integrate (9.96) with respect to Ug to obtain 

p(ô(z) it is helpful to compute the following integrals. Let 

the leading term of (9.96) be 

2 • X/2 
J = (2%) ^ exp[- y (6 + Ug -

I (U2-G2): V22 

Also in (9.93) let I = f(6;u\,Vjj) 
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Then f (5 JdUg 

= /{(6 - + u| + 2u2 (5 - X^)} J dUg 

= (5 - X^)^ I + /uz J dUg + 2(6 -X^) /Ug J dUg 

Now /Ug J dUg 

= [.Viî [4 
'•1=1 

/Uj exp [-|{u|[v^j; + v;^]+2 Uj [(«-û^)v;;J 

" "2*22 ])] aug • 

By Lemma 9.4 in Section IXB the above expression becomes 

where Ug ̂  

with Wi = - - û; v;^] 

ana U2 = (*11+ ̂22)"^ 

Therefore we may show /UgJdUg = lE^Ug) 
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So /(6+U2-Xj^)^ JdUj 

= (6-X^)Z I + I (u') + 2I(6-Xj^)y£ . (9.97) 

Similarly 

/(Ug-Xg)^ JdUg = 1(^^-2X2^1 + 3^) (9.98) 

also /(Ug-Xg)^ (ô + U2-X2)^'^^^2 

= /(u| - 2U2X2+x|)[(6-Xj^)^ + u|+2(6-XĴ )u2] Jduj 

= I [̂ 4 + 2 [(<S-Xĵ ) -X̂ V̂ + [(Ô-X]̂ )̂  - 4X2 (ô-X̂ ) + X|] 

+ 2 [(5-XJ^)X2' (fi-X]^)"" X2]y{+X|(Ô-X^)=^ , (9.99) 

/(u2-X2)^Jd«2 I [U4 - 4X3^3 + 6X1^1-4X2^1+X2 ] (9.100) 

and /(Ô - Xj^+u2)^jdu2 = ^^[^4 4 (6-X^) + 6 (g-X^)^^ + 4 (ô-X^^) 

+ (Ô-Xj^)^] . (9.101) 

Using (9.97) to (9.101) we may now write the integral of 

(9.96) w.r.t U2 as 

p(ô(z) = f(ô;u^,v^^) [1 + ^10'''^2^^0ll^°^^^ +o(l) 

(9.102) 
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where 

5 10 

, r 2 2 / 2 n V 
= i -2 E (wf + 2w. Ç. ) - E Y! Z Y! +2 Z Yj - 2n ) 
4 L_ i=l 1 i=l ^ \ i=l ^ i=3 ^ f 

( S (2 ~ + 2(6-X]^)w{] + ̂ 
' i=3 Sg 

+ 2 ̂  [M'-ZXgP'+X^]) 
®e 

^1^2 + 2 (li^ + 2[ô-X^-X2]w^+ [(Ô-X]^)^- 4X2 (g-X]^) 

7 
+ X|]y' 

+ 2 [(6-Xj^)X|-(6-X3^)2 Xjlyi + XlCS-Xj^)^ j 

(2 *  \  ^  -7) • <"4 - *hH * - 4j^ui + xj) 

(^) (w^ + 4 («-X]^) + 6 («-X]^):w^ +4(6-Xj^)^u^ 

+ (Ô-X^)^) (9.103) 

and 

'01 
1 
4 -2 S (Yi+2p.Y.) 

i=l ^ 

2 / 2  n  \  
- I Y Y I E 4".'+2 I Y? - 2(n-l) 

i=l ^ \i=l ^ i=3 / 

^ E yV - (n-1) j (6-u.)2+li^+2(6-u.)u£ 

B 
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+ (u^ + 2(6-2u.)n^ 

+ [ (6 - u. )̂  - 4u. (Ô-U.) +U?1U2 + 2[{0 - U.)U5- (Ô-U.)^U.] 

• Vi£ +u? (6 - u.)^ + -^ (y^ - 4u.y^ + ~ + uf) 

+ ̂  (u^ + 4(ô-u.)ii^ + 6(ô-u.)2y^ + 4(ô-u.)^y{ 

B 

+ (6 - u.) ) .(9.104) 

It is instructive to note that 

= E(u2) where Ug ̂  N(y£,y2) , 

"1 = " ['® • -"2 ̂ 22] ' til + '2^ 
-1 

and 

"2 = ['il+'22] ̂ 

For y| = 6a + b where a = -'ii [''ii"'''22] 

and " = [V22'^"l'ii] ['n'^'22] we have 

"2 

fcom Leirima 5.2 in Section txb we have 
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Hg = ~®^ll (fia-fe b)^ 

= a^ô^ + 2ôab + b^ - avj^j^ (9.106) 

also Wg = (ôa + b) [3 (-avj^j^) + (5a+ b)^] 

= a^ô^ + ô^(2a^b+ba^) + 6 (-Sa^v^^^ + Bab^) +b^ 

- 3abv22 (9.107) 

= 3(-aVj^j^)^+ 6(ôa + b)^ (-avj^^^) + (6a+b) 

= 6^a^ + 46^a^b + 6^ (-6a^v^]^ + 6a^bM + 6 (-12a 

+ 4ab^) + 3a^v|j^ - 6b^av^^ + b^ . (9.108) 

Substituting (9.105) to (9.108) in (9.102) we obtain 

p(61 z) = I 
1 1 r 2 2 

I + tvT -2 E (w? + 2Ç.o).)- S Y! 
^ L i=l 1 11 i=l ^ 

-f Z Y! + 2 Z Y! - 2n^ + f Z Y! - n ̂  
U=1 ̂  i=3 ^ ' \i=3 ^ / 

3^ 
2 — [5^ - 2ôX| + Xj + a^5^ + 26ab + b^ - av^^^ + 2(ô-Xj^) 

'(6a + b)]+2 [a^6^ + 2ôab + b^ - av^^^ - 2X3(5a + b)+x|]j 

''e 
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f 

+ 2 + 4Ô^a\ +ô^(-6a\j^j^ + 6a^b2) 

®e 

+ S (-12a^bv^^ + 4ab^) + Sa^v^^ " 6b^av^^^ + b^ 

+ 2(6 -X^ -Xg) (a^6^ + 6^ (2a^b + ba^) + 6 (-3a^Vj^]^ + 3ab^) 

+ b^ - 3abV]^^) + (6^ - 26X^ + X| - 4X26 + 4X2Xj^ + x|) 

"(a^6^ +26ab +b^ + 2 (ÔX| - Xj^x| - 6^Xg 

+ 26X^X2 -X^Xg)(6a + b) +>x|ô^ -2X|ôX^+ X^X^] 

r ^ 
+ (-^ . (a^6^ + 46^a\ + 6^ (-Ga^v^^^ + 6a^b^) 

+ 6 (-12a^bv^^2 + 4ab^) + 3a- 6b^av^^ + b^ 

- 4X2 (a^6^ + 6^ (2a^b + ba^) + 6(-3a^v^j^ + 3ab^) 

+ b^ - 3abv2^2^) + 6X2 (a^6^ + 26ab + b^ - av^^^) 

r ^ 
- 4X2('5a + b) + j^) + • (a^5^ + 45^a^b+6^ 

e 

(-6a^V22 + 6a^b^) + 6(-12a^bV22 + 4ab^) 

4- 3a-v^^ - Gb^av^^ : t 4(6 -X^^) (a^6^ + ,,^2^ + ba^) 
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+ 6 (-3a^v^^ + 3ab2) +b^ - 2abv^^) + (66^ - 126Xj^ + 6X|) 

•(a^ô^ + 2ôab + b^ - av^^^) +4(6"^- SÔ^X^ + 36X^ - X^) 

•(ôa + b) + 6^ - 46%^ + 66^X| - 4ôxJ + X^)] 

+ J (coefficient] +o(l) +o(l) 

Simplifying we obtain 

p(6|z) = I 
, 1 r 2 2 

1 + iv, - 2 Z (w? +2g.w.) - Z Y! 
4 1 L i=l ^ ^ ̂  i=l ^ 

• f s V ! + 2  E ¥ ! - 2 n ]  +  f  S  ¥ !  -
\i=l ^ i=3 ^ ' U=3 ^ / 

^2 i [gz (1 + + 2a) + 6 (-2X^ + 2ab + 2b - 2aXj^) 

+ X^ + b^ -aV]^]^-2bX^] 

+ 2 — [6^a^ + 26 (ab - aXg) +b^ - av^^^ " ̂Xgb + X^]) 
si 

+ 2 r6^(a^ + 2a^ + a^) + 6^(4a^b + 4a^b + 2ba = 
s_ 

- 2 (Xj^ + Xg) a^ + 2ab - 2X^a^ - 4X2a^ - 2aX2) 
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+ - ea^v^j^ + 6ab^ - 2 (X^^ + Xg) (2a^b + ba^) 

+ b^ - av^^ - 4X^ab + a^ (X| + 4X2X^ + x|) - SabXg + 2aX| + 4aXj^X2 

- 2bX2 + X|) + ô (-12a^bv^^ + 4ab^ + 2b^ - ôabv^^^^ - 2 {.X^^ + X^) 

.(-3a^v^^ + 3ab^) - 2X^ (b^ - av^^^) + 2ab(Xj + 4X3X3^ +x|) 

- 4X2 (b^ - - 2aXj^x| - 2aXjX2 + 2bX| + 4bXj^X2 - 2X^\) 

+ ~ + b^ - 2 (X^ + Xg) (b^ - Sabv^^) 

+ (X| + 4X2X2 + X|) (b^ - av^^) + 2b (-xj^x| - X|X2) + ̂2*1 ] 

r ^ 
+ [a^6^ + 6^ (4a^b - 4X2a^) + 5^ (-Ea^v^^^ + 6a^b^-4X2 

.(2a^b + ba^) + 6a^Xp + 6 (-12a^bV]^j^ + 4ab^ - 4X2 

•(-3a^Vj^j^ + 3ab^) + 12x|ab - 4X2^) + 3a^v|j^ - ôb^aVj^^ 

+ b^ - 4X2 (b^ - 3abvj^3^) + 6X| (b^ - avj^^^) - 4X3^ +^] 

j. 2 
+ (-%) [5^(a^ + 4a^ + 6a^ +4a + l) + 6^(4a^b + 4(2a^b + ba^) 
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- 4X^a^ + 12ab - 12X^a^ - 12aX^ + 4b- 4X^) 

+ 6^ (-6a^v^^^ + 6a^b^ + 4 (-Sa^v^^^ + 3ab^) 

- 4X^ (2a^b + ba^) + 6b^ - 6av^^ - 24Xj^ab + 6X|a^ 

+ 12aXj - 12bX^ + 6X|) + 6 (-12a^bVg^2 + 4ab^ + 4b^ 

- 12abv^j^ - 4X]^ (-3a^v^^ + 3ab^) - 12X^ (b^ - av^^^) 

+ 12xjab - 4axJ + 12bX^^ - 4xJ) + 3a^v^^ - 6b^av^j^ 

+ b^ - 4X^ (b^ - 3abv^^) + 6X^ (b^ -

- 4bxJ + xJ)]J + [coefficient J 

+ o(l) + o(l) . (9.109) 

The coefficient of ^^2^ is easily determined from our 

previous calculations. By a rearrangement of the terms in 

(9.109) we have the posterior distribution of 6|z is given as 

p(6|z) = f (5;u^,Vj^j^) 

•[l + |v-^ (g^o + «911 + «'912 + + «S4' 

+ (gjQ + 6g2i + {''922« ' ^ 2 3 * ^  '24* (S-llO) 
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where 

2 2 2 n 
g,n = - Z (w? +2Ç.W.) - E Y! / Z Y! +2 E Y! - 2n) 

i=l ^ ^ ^ i=l ^ \i=l ̂  i=3 ^ I 

+ -nj ^2 "Y (X| + - 2bX^) 

r,r. 
+ 2 -| (b^-av^j^-2X2b + x|)j + 2 — 

•[3a^vJl - 6b^av^]^ +b^ - 2(X^ fXg) (b^ - 3abv^^^) 

+ (X| + 4X2X^ + X|) (b^ - av^^) - 2b(X^X^ + X^Xg) + x|xj] 

"• Gb^av^^^ + b^ - 4X2 (b^ - Sabv^^) 

+ eXgb^-GX^av^^ -4x|b + x^]+ (^) [ 3a'v|^ - eb'av^^ 

+ b^ -4Xnb^+12X,abv,, + 6X?b^ - 6X?av 1̂°"̂ 11 " """1" 1 "11 

-4bX^ + X^ ] (9.111) 

'11 
= f E YÎ - n] 

^i=3 ^ ' 

_ _ r_ 
2 — (-2X, + 2ab + 2b - 2aX, ) + 2 — 

=1 ' ' =: 

•(2ab-2aX2) +2-^ [-12a+ 4ab^ + 2b^ - 6abv^^ 
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- 2(X^ + Xg) (-3a^v^^ + 3ab^) - 2X^ (b^ - av^^^) + 2ab 

'(X| + éXgX]^ + X|) - 4X2 (b^ - av^j^) - 2aXj^x| - 2aXjX2 

r ^ 
+ 2bXj + 4bXj^X2 - 2x|xj+ (-|j [- 12a^bv ĵ̂  +4ab^ 

®e 

r ^ 
- 4X2 (- 3a^v^]^ + 3ab^) + 12X|ab - 4^a] + (—) 

®2 

[-12a^bv^j^ + 4ab^ + 4b^ - 12abv^^ + 4X^ Oa^v^^^ - 3ab^) 

- 12Xj^ (b^ - av^^) + 12x£ab - 4axJ + 12bxj - 4xJ ] (9.112) 

( Z Y! - n W2 (1 + a^ +2a) + 2a^ —^ + 2 
\i=3 ^ 7 I s^J Sg 

'(-6a^v^^ + 6a^b^ - Sa^v^^g^ + 6ab^ - 2(X^ + X2) (2a^b + ba^) 

+ b^ - - 4X^ab + a^ (xj + 4X3X3^ + x|) - BabXg + 2aX| 

+ 4aX]^X2 " 2bX2 +x|^ "•• ("f) ("^^^'^ll " ̂^2 
' ®e 

•(2a^b + ba^) + Sa^X^ j ^ "6a + 6a^b^ 

4 4 \-3a^v,, 4- 3ab^î - 4X- + ba^) + 6b^ - 6av,, 
11 ^ 
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24X^ab + exja^ +12aXj - 12bX^ + 6xJ J (9.113) 

= 2 (4a^b + 4a^b + 2ba^ - 2 (X^^ + X2) a^ + 2ab - 2Xj^a' 
®e 

- 4x2a2 -2aX2) + fr) («®^b-«2a^) + (^) 

•(4a-^b + Sa^b + 4ba^ - 4X^a^ + 12ab - 12X^a^ - 12aX^ 

+ 4b-4X3^) (9.114) 

9l4 = 2%2 (^4 + 2a3 + a^) + p 
. 2 

Is 

(a^ + 4a^ + 6a^+4a+l) (9.115) 

2 2 2 n \ 
g.n = -2 Z (Y? + 2p.Y4)- Z Y)' ( Z YV +2 I Y?-2(n-l) 

i=l ^ ^ ^ i=l ^ Vi=l ^ i=3 ' 

'B 

^ Z YY - (n-l)j [jzu! + 2b^ - 2av^^ - 4u.b] 

•4 

[" 3a^v|l -Gb^av^^ + b^ - 4u.b^ + 12u.abv22 + 6u?b^ 

- 6u?av, . -4u?b + u^l + [sa^Vn 1 - 6b^av,, + b^ 
11 J u --
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- 4u.b^ + 12u.abv^2^ + 6u?b^ - 6u?av^^ - 4u?b + uf 

+ 3a^v^^ - 6b^av^2 + b^ - 4u.b^ + 12u.abv^^ + 6u?b^ 

- 6u5av22 ~ 4bu? + u? J (9.116) 

— f ? YV - (n-1)] (-2u. + 4ab + 2b-4u.a) + ~ 

-|j 12a^bV]^2^ + 4ab^ + 2b^ - Gabv^^^ + 12u.a^V]^^ - 12u.ab^ 

q 
- 2u.b^ + 2u.aVj^j^ + 12abu? - 4u.b^ + 4u.av^^ - 4au. 

+ 2bu! + 4bu? - 2u?] + -^ [ -12a^bv^^ + 4ab^ + 12u.a^v 

% 
11 

- I2u.ab^ + 12u?ab - 4u?a - 12a^bv2j + 4ab^ + 4b^ - 12abVj^j^ 

+ 12u.a^Vj^j^ - 12u.ab^ - 12u.b^ + 12u.av22 + 12u?ab - 4au? 

+ 12bu?-12u?J (9.117) 

^ ? Y? - (n-l)j (1 + 2a^ + 2a) + [-6a^v^^ + 6a^b^ 

®B " ' "B 

- ea^Vj^j^ + 6ab^ - Su.a^b - 4u.ba^ + b^ - av^^ ~ 4u.ab 

+ 6u?a^ - 8u.ab + 2au? + 4au? - 2bu. + uj] + 

% 
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+ 6a^b^ - 4u. (2a^b + ba^) + 6u?a^ - Sa^v^^^ + 6a^b^ 

- 12a^v^j^ + 12ab^ - 8u.a^b - 4u.ba^ + 6b^ - 6av^^^ 

- 24u.ab + 6u?a^ + 12au? - 12bu.+6u?J (9.118) 

(4a^b + 4a^b + 2ba^ - 4u.a^ + 2ab - 2u.a^ - 4u.a^ - 2au. ) 

+ i (4a^b - 4u.a^ + 4a^b + Sa^b + 4ba^ - 4u.a^ + 12ab 

- 12u.a^ - 12au. +4b - 4u.) (9.119) 

(a^ + 2a^ + a^) + -^(2a^ + 4a^ + 6a^ + 4a + 1) 

(4a^ + 8a^ + 8a? + 4a + 1) . (9.120) 


