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ABSTRACT 

The energy spectrum and level broadening of conduction electrons in 

the presence of a uniform magnetic field has been studied within the 

framework of the effective Hamiltonian formalism. A simple model which 

demonstrates the important ideas involved has been chosen, WKB solutions 

to the effective Hamiltonian have been found for this model. By using 

connection formulas which are accurate for all energies, we have shown 

how the degeneracies among the WKB solutions in different zones in reci

procal space are removed. These connection formulas were expressed in 

terms of a transmission amplitude p and a reflection amplitude q. 

It has been found that the Landau levels are given accurately by the 

Onsager rules and are essentially discrete except in the immediate vicinity 

of open orbits. The transition between the nearly discrete closed orbit 

region and the continuous open orbit region was found to occur in an 

energy range of only a fewlrju^. 

The eigenvalues and eigenfunctions of the effective Hamiltonian were 

shown to be consistent with the requirements of a group theoretical 

treatment of the exact Hamiltonian. Therefore, it has been concluded 

that no source of level broadening in a perfect crystal (other than inter-

band effects) has been omitted, 

A justification of Pippard's linear network model for magnetic break

down has been given within the effective Hamiltonian formalism. The 

effects of internal strains and dislocations on the energy levels have 

also been considered. 
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I. INTRODUCTION 

One of the most fruitful methods of determining the electronic proper

ties of metals has been the study of their response to a magnetic field. 

In particular, the de Haas-van Alphen effect has given detailed information 

about the Fermi surfaces of many of the common metals. The interpretation 

of these and other related effects has been based upon unusually simple 

arguments. For example, the rules of Onsager (1952) which quantize the 

allowed areas in k-space of the electron orbits and the equivalent Bohr-

Sommerfeld rules employed by Lifshitz and Kosevich (1956) have been quite 

successful in explaining the de Haas-van Alphen effect. 

In essence, we suppose that and £ =» ~ "f" A are canonical 1y conju

gate variables and the dispersion law or energy function for a band, E(j^, 

serves as the Hamiltonian in a semiclassical treatment (Wannier 1962). To 

introduce quantum mechanics into the problem, we can either use the Bohr-

Sommerfeld rules (Onsager 1952) or the Correspondence Principle where 2 is 

replaced by - iftV (Lifshitz and Kaganov I96O). The latter approach is 

called the effective Hamiltonian formalism (Wannier 1962). The equivalent 

of the Schrodinger equation is then 

E (-iV + A ) Y(£) " EY(r) . (l.l) 

The validity of the semi classical treatment or the effective Hamiltonian 

formalism can not be seriously doubted in most instances because of the 

overwhelming wealth of experimental information which has been so success

fully interpreted by their use. The formal or theoretical justification is, 

however, only mildly convincing. 



In 1930j the classic work of Landau appeared in which he solved the 

problem of the free electron in a magnetic field. Shortly thereafter, 

Peierls (1933) carried out the first analysis of a Bloch electron in a 

magnetic field. He found that, within the framework of the tightbinding 

approximation, (1.1) gave the correct energy levels, 

Luttinger considered the problem again in 1951 in terms of Wannier 

functions, and justified (1.1) only when interband matrix elements could be 

neglected. Adams (1952) showed that interband matrix elements had to be 

considered and found (Adams 1953) that, for bands which are separated by 

only a small energy gap, interband effects could be an important contribu

tion to the steady diamagnetism. 

Luttinger and Kohn (1955) found that for states near the bottom (or th 

top) of a band, an effective mass approximation to (l.l) was useful in 

describing impurity states in a semiconductor. Kohn (1959), in a compli

cated extension of this work, gave the first of the more recent attempts to 

justify a form of (1.1). He found that by making a series of unitary trans 

formations he could eliminate interband matrix elements to any order of H 

and thereby retain the form (1.1). in Kohn's treatment, the operator in 

(1.1) is replaced by a power series in H: 

2 
%(£.) + c ̂ 1̂ )̂ + "̂ 2 ̂ 2̂ )̂ +<..0 (1.2) 

c 

where _P * iV +'^ A. The lowest order term, (2), is just the energy 

band function E(P). The question of the convergence of this procedure to 

eliminate interband matrix elements was not answered, 

Blount (1962) reexamined the problem and purported to have simplified 

Kohn's original work. Blount established the asymptotic convergence of 
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Kohn's treatment and considered more general band structures. Roth ( I962 ) ,  

in a similar paper, also tried to simplify Kohn's work. Wannier (1960, 

1962) looked at the problem for both electric and magnetic fields. 

The major difficulty in the effective Hamiltonian formalism is now 

and was throughout the past 30 years the question of the importance of the 

interband matrix elements. The first experimental evidence of the importance 

of interband effects was pointed out by Cohen and Falicov in 1961. They 

suggested that the giant orbits observed in the de Haas-van Alphen effect 

in Mg were due to orbits composed of pieces of the Fermi surface in two 

different bands. The process of tunneling from one band to another was 

called magnetic breakdown. Since then, Pippard (1962, 1964, I965) and 

Chambers (1966) have treated the energy levels and Falicov and Stachowiak 

(1966) have treated the amplitudes of de Haas-van Alphen oscillations of a 

system of orbits coupled by magnetic breakdown. 

in the absence of serious interband effects such as breakdown, one can 

ask what are the energy levels given by (l.l). The first solution to 

(1.1) for a case other than parabolic bands was obtained by Harper in 1955-

He considered a simple cubic crystal with a tightbinding band structure: 

E(]0 =» E (cos ak + cos ak + cos ak ) (1.3) 
o x y z 

Harper solved the equivalent Schrodinger equation by a finite difference 

technique. Brailsford (1957), subsequently, repeated the calculation for 

a generalization of (I.3) and found Harper's results in error. Brailsford 

found that the energy levels were given quite accurately by the Onsager 

rules and were essentially discrete except for energies near open orbits. 

Chambers (1956) showed that the conclusions of Brailsford were correct for 
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band shapes other than tightbinding bands, although no detailed treatment 

of the energy levels was given. 

Zil'berman (1957a; 1957b. 1958) proceeded independently of the work 

described above. He derived an effective Hamiltonian formalism of his ov;n 

and examined the energy spectrum. The level broadening obtained by 

Zil'barman depended rather strongly upon the approximations that he made, 

but in general; the level widths were found to be quite small in the 

discrete region of closed orbits. 

Azbel' (196^). also independently of most of the work described above 

found a very complicated substructure of the Landau levels. His work is. 

as he pointed out, not experimentally significant because crystal imper

fections, impurities, and other scattering processes will obscure any such 

substructure. There is, however, the essence of the answer to the energy 

level problem buried in his work, although he did not consider it in any 

deta i1. 

A completely different approach has been tried by Brown (196^) and by 

Zak (1964e, 1964b, 1964c, I965). They have studied the exact Schrodinger 

equat i on 

.,2 

^ (-iV A) X(r_) 4- V(_r) X(_r) = EX(_r) , (1.4) 

where V(_r) Is the lattice potential. Brown found the irreducible represen 

tations of the exact Hamiltonian and Zak treated the lattice potential as 

perturbation using the proper symmetry-adapted wave functions. The pertur 

baticn approach can only establish the existence of broadening at best. 

The whole approach fails for even the most free-electron-like metals 

because the matrix elements of the lattice potential are much larger than 
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the separation of the unperturbed levels. Likewise, group theory can 

not establish more than the general nature of the solution. 

It seems reasonable to conclude that the position of the energy levels 

is quite well established in most circumstances by the Onsager rules. The 

question of the broadening is, as Kohn (1959) pointed out, not clearly 

answered. There are, of course, many contributions to the level broaden

ing in a real crystal in addition to the natural line width that would be 

found in a perfect crystal. The effects of impurities has been treated by 

Dingle (1952a, 1952b) and is known as Dingle broadening. The effects of 

crystal imperfections has been treated only in brief by Pippard (19&5) and 

Chambers (ça. 196?) and may be important. 

The purpose of this work is to examine in detail the energy spectrum 

and the solutions to (l.l) in the absence of any scattering mechanisms. 

The general philosophy will be that the effective Hamilton!an formalism 

is valid within the limitations discussed above, and the validity of any 

conclusions reached will be subject to the validity of (l.l). 
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11. EFFECTIVE HAMILTONIAN FORMALISM 

Let us consider a nondegenerate band, for which the energy is given 

by E(J^ in the absence of any external fields. A band is nondegenerate if, 

at any _k, no other band has the same energy E(k). It may be that the energy 

range of the band will overlap the energy range of an adjacent band, but, 

so long as the bands do not touch at any point in J<-space, they are nonde

generate. 

Thé energy band function E(j<), in  the repeated zone scheme (Ziman 1964, 

p. 78-79), is periodic in reciprocal space. If JK is a reciprocal lattice 

vector, then 

E(J< + K) - E(k) . ( 2 . 1 )  

Another way to express (2.1) is to write 

E(k) > S W(R ) e - " , 
; J 

( 2 . 2 )  

where the sum is over all lattice vectors of the direct lattice, R.. The 
-J  

coefficients W(R.) détermine the band structure, 
J 

The effective Hamiltonian in the absence of any external fields is 

obtained by replacing J< by -iV in (2.2), The operator e'—J . ^ is 

simply a translation operator T(Rj) , 

T(Rj) Y(_r) - Y(r + Rj) (2.3) 

The equivalent of the Schrodinger equation is 

E(-iV) Y (r) - 2 W(R ) T(R.) Y(r) , 

j 

=» E Y(_r) , (2.4) 
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(When E îs written without any argument, it stands for an eigenvalue.) It 

is easy to show that the eigenfunctions of (2.4) are plane waves and the 

eigenvalues are given by E(J^. 
\. 

It should be noted that Y(r_) is not the actual wave function which 

would be a solution to the exact Schrodinger equation (1.4). Y(jr) is the 

wave function only in a certain representation, that of the effective 

Hamiltonian. As an example of the relationship between Y(jr) and the actual 

wave function, say X(_£), in the tightbinding approximation (Ziman 1964, 

p. 80-85), we have 

X(jr) - S Y(R ) U(J: - R ) , (2.5) 

j 

where u(_r) is an atomic orbital. 

When an external electric field exists, the effective Hamiltonian 

becomes E(-iV) + V(r_), where -VV(r_) is the electric field. This form has 

been useful for impurity states in semiconductors (Luttinger and Kohn 1955)» 

in the presence of a magnetic field H^, the effective Hamiltonian is 

E(-iV + ̂^s), where we take the vector potential to be 

A "2 — ̂  ' (2.6) 

The gauge (2.6) Is convenient because the translation operators T(jRj) 

commute with ̂  (Brown 1964), and the effective Hamiltonian operator is 

unambiguously defined. The eigenvalue equation is then 

E(-?V Y(r) - S W(Rj) e x p j R .  •  (bxr.) T(R^) Y(r) , 

=» E Y(r) , (2.7) 



o 
V 

where b ="-?= . (b is parallel to H since we have taken e as positive.) 
— f ic  ~  

The differential equation (2.7) is similar to the differential equation 

for a free electron in a magnetic field, 

zm ^ '  f ic  
^ (-'V + fr A)̂  X(r) = EX(r) , (2.8) 

in that the differential operator on the left-hand side of both (2.7) and 

(2.8) is a function only of - iV + ̂  Following Zak (I965) who gave a 

solution to (2.8) (because of the large degeneracy in the solutions to 

(2.8) J many forms are possible), we write Y(r_) in such a form as to reduce 

(2.7) to an equation in one variable, 

i k z + i k X - iixy k , V 
-'W ' = ' ' • (2-9) 

We choose the z-axis to be along H_. It is convenient to pick the y-axis 

to be along the shortest reciprocal lattice vector, say j(^, in the xy plane 

(the plane perpendicular to H). Since the motion of an electron along the 
'4 

magnetic field is unaffected by the field, k^ is a good quantum number. 

From group theory (Zak 1965), we know that we can also pick k (or k , but 
.  b  X  y  

- lyxy 
not both) as a good quantum number. The factor e , in effect, 

transforms the gauge from that of (2.6) to 

A - (-Hy, 0, 0 )  . (2.10) 

k* 

Substituting (2.9) into (2.7) and shifting the origin of y to ̂  , we 

can show, that (j)(y) satisfies the one dimensional equation 

SW(R ) exp i(k Z -7X Y - byX ) T(Y ) (j)(y) = E(j)(y) , (2.11) 
j j  ^ J ^ J J  J  J  
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where R. = (X., Y., Z.) and 
-J J J J 

T(Yj) 4l(y) - Ky + Yj) . (2.12) 

As in the free electron case, the eigenvalue is independent of k^. 

One might be tempted at this point to try to recover the free electron 

case by specializing to parabolic bands. We can not do this immediately, 

however, for the simple reason that the expansion (2.2) is periodic in 

reciprocal space and involves (for parabolic bands) a number of degenera

cies at the Brillouin zone boundary. For example, at the point -^K^, in a 

simple cubic crystal, the single band approximation we have assumed no 

longer is valid because the bands touch. (See Figure 1.) If we include 

interband effects, as in Pippard's analysis of magnetic breakdown (1962), 

then we can recover the free electron problem and obtain the correct 

eigenvalues, 

eH 
—— + (n + 1/2) fiw , where w = — . 
2m c c mc 

In simple semiconductors where the conduction band is parabolic near 

J< =» 0, it is well-known that an effective mass approximation to (2.7) is 

useful (Luttinger and Kohn 1955)» It is instructive to show how to obtain 

the effective mass equation starting from (2.7) in view of the previous 

paragraph. The essential difference between the semiconductor problem and 

the free electron problem is that we are interested in only a restricted 

region near the bottom of the band in the semiconductor case. 

We think of constructing Y(_r) by superimposing a number of plane 

waves as in a Fourier transform. 
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E  ( k )  

k 

Figure U Free electron energy bands in the repeated 

zone scheme. 
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Y(_r) = e'— — $(j<) . (2.13) 

So long as 5(J<) is large for only small values of Jk (as for states near the 

bottom of the band), it is proper to expand E(J<) about _k =« 0 first and then 

replace k by -iV + ̂ A . In such a manner, it is easy to obtain the 

effective mass equation 

2 
^ (_;v +|-A )^ f(r) - EYix) , (2.14) 

where for small k 

E(k) . . (2.15) 

In other words, when the energy is small relative to the bottom of the 

band, a form such as (2.14) is correct. 

Finally, it should be noted that the solutions to (2.11) must be of 

the Bloch form (in one dimension) because the differential operator on the 

left-hand side is periodic in y with period r^ =" — . As a consequence, we 

can label (j)(y) with a continuous index Q., where the significance of Q. is 

given by 

( y  +  r^ )  =  e  '  4%(y)  .  ( 2 . 16 )  

The range of Q. is restricted to — . 

'"l 

In general, (j)(y) will be labeled with a discrete index n, as in the 

free electron case, and the continuous index or wavenumber Q.. Each n 

corresponds to a particular Landau level. The dependence of the energy on 

Q. corresponds to the broadening or the natural width of the levels. 
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ill. ONE-DIMENSIONAL COUPLING IN A SIMPLE MODEL 

The solution to the one-dimensional equation (2.11) for an arbitrary 

magnetic field direction in an arbitrary band structure would be a difficult 

problem. Fortunately, we can make a number of simplifying assumptions to 

obtain a model which demonstrates the important ideas involved. In view of 

the absence of experimental data concerning the details of the Landau 

spectrum (energy spectrum) and level broadening, it does not seem worth

while at this point to worry about complicated Fermi surface topology, but 

rather to emphasize only certain basic features. 

For our model, we assume that the band structure is such that 

E(k) - E^(kJ + Eztky) + E^(k^) , (3.1) 

where _H is directed along the z-axis. E^(k^) and E2(ky) are, of course, 

periodic (with periods and respectively) and we take them to be even 

about the origin (E (-k) = E(k)). Furthermore, we assume that Ej(k^) and 

E2(ky) are simple functions with maxima at the zone boundaries (+"2^1 and 

— 2" ^3^*^2^ can be considered a constant of the motion since k^ is a 

constant of the motion. For convenience, we absorb E^(k^) into the eigen

value E. 

Separating the k and k variables in (3.1) eliminates the cross terms 
-i^ X.Y. ^ y 

e ^ ^ in ( 2.11) because W(jRj) vanishes unless Xj or Yj = 0 .  1the 

general problem, the cross terms must be considered, but they cause no real 

difficulty. The effective Rami 1 tonian then becomes the sum of two terms, 

which can be looked upon as a kinetic energy term in operator form. 
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Egf-; ̂ 7)= Z W (Y ) T (Y ) , (3.2) 

j 

and a potential energy term, 

v,(y) =• E^(by) . (3.3) 

K] 
Vj(y) is periodic with period r^ = -g— and varies between 0 and (see 

Figure 2). The kinetic energy function EgXky) is similar and varies between 

0 and Wg. We suppose that is sufficiently larger than Wp so that a 

sizeable region of open orbits exists (T^, T^ and T^ in Figure 3). 

The equivalent Schrodinger equation (2.11) is for our model 

EgX-i •^) 4(y) + V^(y) (|)(y) = E (| (y) . (3.4) 

The period of the function Vj(y), r^, is quite large on an atomic scale 

2 ? 
(typically 10 to 10 lattice constants), and (y) is, therefore, a slowly 

varying function. Normally, we will be concerned with energies in the 

vicinity of the Fermi energy, so it is certainly proper to regard (3.4) as 

being in the quasi-classical region. Hence, a WKB approach is indicated 

(Landau and Lifshitz 1958, p. 157-185, Schiff 1955, p. 184-193). The WKB 

approximation has been used by several authors (e.g. Zil'berman 1957b, 1958, 

Blount 1962), but in a slightly different way. 

One might object that the kinetic energy operator in (3.2) and the 

equation (3.4) are not in the standard WKB form, but it is an easy manner to 

show that the WKB wave function, 

4(y) ~ exp (+ i J k(y') dy') , (3.5) 
Vv 

is an approximate solution to (3.4) if we take k(y) to be given implicitly 



V| (y) 

--Wi 

Figure 2. Potential energy function for a simplified model of the effective 

Ha.-ni Itonian formalism (V^(y) = Ej(by)). Shaded portion indicates 

the region where the wave function is exponentially increasing or 
decreas i ng. 



Figure 3- Contours of constant energy in the k(y)-y plane (E,(by)) + E_(k(y)) - E). T,: closed 

electron orbit; T^: closed hole orbit; T_, T. and T^; open orbits. P , P , p^ p, and 
Pq: points where orbits can couple. j I Z 3 4 
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by 

(k (y ) )  +  (y)  -  E ,  (3.6)  

and 

V ' I '  (k (y ) )  I  .  (3.7)  

(The prime denotes differentiation with respect to the argument.) Contours 

of constant energy in the k(y) - y plane which define k(y) are shown in 

Figure 3-

For energies less than Wp the wave function is oscillatory in the 

valleys between the turning points where (y) < E and exponentially 

increasing or decreasing in the region where (y) > E (see Figure 3)- The 

procedure in the ordinary WKB approximation would then be to connect the 

solutions in the adjacent valleys via the connection formulas and to 

determine the eigenvalues E by imposing the Bloch condition (2.16). Such 

a calculation was carried out, and it was found that the energy levels were 

given by the usual semi classical quantization scheme (Ziman 196^, p. 273). 

'2 , 
J k(y) dy =• (n + -J ) rt , (3.8) 

^1 

and the dependence of the energy levels on Q, (the broadening of the levels) 

was proportional to the probability to tunnel through the barrier, 

^3 
exp (- J |k(y)|dy). Hence, the broadening was found to be extremely 

^2 
small except for E near W^, and this result is in general agreement with 

the work of other authors which has been discussed in the introduction. 

When the probability to tunnel through the barrier is negligible, each 
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eîgenstate can be thought of as being localized in some valley. When the 

coupling between the states in adjacent valleys is negligible, all states 

are degenerate, and the levels are discrete. When the tunneling probability 

or coupling is not negligible, the degeneracies are removed and the discrete 

levels are broadened. Such is the case whether the coupling is intraband 

coupling, as discussed above, or interband coupling as in magnetic break

down. 

Since the WKB connection formulas and transmission coefficient 

(tunneling probability) are not accurate for energies near the top of the 

barrier or above the barrier, it was desirable to have a better approxima

tion in this region where all the interesting effects take place. Away 

from the turning points, the WKB solutions are certainly accurate enough 

for our purposes. It is in the neighborhood of the turning points where a 

more careful analysis is necessary in order to obtain the proper connection 

between the solutions in adjacent valleys. 

Azbel' (1964) gave a cursory treatment of the problem, but did not 

develop it enough to be of any help in the present investigation. The same 

type of barrier problem for the simpler kinetic energy operator -^ 

^ dy 

has been solved by Miller and Good (1953). The additional complications 

introduced by the operator E^^-i '^) are, however, minor, and the analysis of 

Miller and Good will be useful. 

For y near y r^, we can expand the potential about its local maximum: 

2 2 
v^ (y )  -  w,  -  (y  -  Y  +  .  .  .  .  (3 .9 )  

Since the kinetic energy. Eg (k(y)) , is small for y near r^ (most of the 
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energy is potential energy), it is permissible to write 

^2 (k(y)) -  ^ .  .  (3.10) 
2m2 

Tine effective mass is defined as positive, since the appropriate 

minus sign appears in (3.9), and the asterisk on m^ designates an effec

tive mass at the bottom of the band. 

in a restricted region around ̂  , then 

• (3.,0 
2m^ 1 

if we replace k(y) by ~in (3.11) and operate on (j)(y) , we obtain an 

equation which is correct for y near ̂  , and which can be solved 

exactly, 

 ̂ (y - 7 r,)̂  (j) » (E-W,)(j) . (3.12) 

dy 1 

2  1 / 4  1  
if we let S =« (—— b ) (y -

(m,m_") E - W, 

where , and m is the free electron mass, then (3.12) becomes 

^ + (a + S^) (j) " 0 . (3.13) 

dS 

The equation (3.13) arises when the scalar Helmholtz equation is 

separated in parabolic coordinates (Morse and Feshbach 1953, p. 1398-1405). 
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For every value of a, there are two solutions (Miller and Good 1953) 

'l " °l/2(ia-l) 
4 ,  -  D , , , t / z  s  ,  ( 3 . 1 4 )  

and 1^2 " ̂]/2( -ia - t) ^ ® '' ) • (3* 15) 

The functions D^(z) are defined by Whittaker and Watson (19^7^ p. 3^7)> but 

only their asymptotic form will concern us. 

The general WKB solution will be a linear combination of the solutions 

( 3 . 7 ) .  For y > y^ , we write 

B, y By y 
6(y) =» — exp (i J kdy) + — exp (-i J kdy) , (3.16) 

s/v y^ v/v y^ 

and for y < y, , 

A, ^2 ^2 

^(y) " — exp (i r kdy) +~ exp (-i J kdy) . (3.17) 

v/v y VV 

(For convenience, the argument y in k(y) and the primes on the variable of 

integration have been dropped.) 

In the region where the solutions (3.14) and ( 3 .15) join onto the WKB 

solutions (3.16) and (3.17), it is reasonable to use the asymptotic form of 

(j)^ and (j)^ . From Miller and Good (1953), we have for S large and positive 

(with an appropriate normalization), 

1/2 ajt y 

(|l, --̂ -7 exp ( i  J kdy) ,  (3.18) 

Jv y, 

and for S large and negative. 
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r .1/4 at 2̂ ; /2 

(j,  ̂ exp (-! J kdy) - exp (i J kdy) , (3.19) 

vV y s/V y 

? lal "1/2'3 1 1 1 
where C = (—) (-̂ ) F (^ + y ia) cosh -j • (3.20) 

The second solution, ({l^ ; gives the complex conjugate of (3.18) and of 

(3.19). The solution (3.18) corresponds to a wave traveling to the right, 

away from the barrier in the region y > y^ (since the phase is increasing as 

y increases), whereas (3.19) is the sum of two terms, the first being a 

wave traveling to the right, toward the barrier in the region y < yg , and 

the second being a wave traveling to the left and away from the barrier 

(y < yg). Symbolically, we have 

> 

Let us now use the notation that Pippard (1962) used in the analogous 

situation in magnetic breakdown. First, assume that B2 i s zero so that we 

have only a transmitted wave for y > y^ . We write 

B, = P , (3.21) 

and = q , (3.22) 

where is the amplitude of the incoming wave for y < y2 , A^ is the ampli

tude of the reflected wave, and Bj is the amplitude of the transmitted wave. 

The factors p and q are the probability amplitudes (with definite phase) for 
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transmission and reflection. The transmission coefficient is |p|^ and con

servation of probability requires that |p|^ + jq]^' = 1 . From (3.18) and 

(3.19); we have 

p - C"^ e , (3.23) 

and q = -iC ^ e . (3.24) 

We can evaluate |c|^ by imposing the conservation of probability, 

Ic]^ =• 2 cosh Y art . (3.25) 

From ( 3 . 2 3 )  and (3.2$) we obtain the transmission coefficient 

1+e 

In the limit of large, negative a, ( 3 . 2 6 )  agrees with the usual WKB 

tunneling probability. 

if now we consider = 0, we can, with the help of (3.18) and (3.19) 

and the complex conjugates of (3.I8) and (3.19), show that 

A, = p , (3.27) 

and = q . (3.28) 

( 3 . 2 7 )  and ( 3 . 2 8 )  are to be expected since the barrier appears the same 

from ei ther s ide. 

Let us write C = ]c| e'^ , where from (3.20), 

0; = a (1- log ) + arg r (y + ia) j (3.29) 
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and from (3-25) , 

1 1/2 
|c| = (2 cosh Y 3jc) . (3-30) 

For a = 0, a = 0, and from asymptotic expansion of rC"!" + ̂  '^) large a 

(positive or negative) 

2 
« ^ log 2 ̂  ^ . (3.31) 

a 

which goes to zero as for large a. 

We now write (3»23) and (3.24) as 

p = e (1 + e ̂ *) , (3.32) 

q = -i e (1 + e^*) . (3.33) 

To connect the solutions in adjacent valleys, then, we merely employ p 

and q as in (3.21), (3.22), (3.27), and (3.28). We find 

Aj = q Ag + P ^2 ; 

and =» p + q . (3.34) 

Returning now to the calculation of the allowed energy levels, we 

rewrite (3-1?) as 

A^ y A, y 

4^y) = exp i ( J kdy-S) + — exp -i( J kdy-|) , (3-35) 

v/v ŷ  Vv ŷ  

where 
y 

§ 
2  

J kdy . (3.36) 

n 
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When a > 0 (E > W^), we take ^ and Yg = ̂  • 

From the Bloch condition (2.16), we find 

i(Qr,-5) 

= Ag e , 

î(Qr + Ç) 

and Bg = A, e . (3.37) 

Combining (3-3^) and (3.37), we have 

î(Qr + §) 

( ] - p e  )  A ^  -  q  A 2  =  0  ,  

'(Or, + §) :(Sr, -I) , 
and q e + (p - e ) Ag = 0 (3-38) 

If 3 . 3 8 )  is to hold, the secular determinant must vanish. Whence, 

after some simple manipulations we find the quantization condition 

-1 /2  

cos (§ - #) = cos Qr^ (1 + e ) . (3.39) 

For Q.r^ = ̂  , (3.39) becomes the quantization condition for the 

centroid of the energy level, 

cos (ç - a) * 0 

or § = (n + ̂0 K + 3 , (3.40) 

where n is an integer. 

For Gr^ ̂  ̂  , we set § - O: = (n + + Air , to obtain 

-1 /2  

sin Afl (-1)" ^ cos Q.r^ (I + e ̂ ") . (3.41) 

When the coupling is negligible (a large and negative), A will be small 
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enough so that we can replace sin Ait by Art, and (3.41) becomes 

n+1 -|a| 
Art =» (-1) cos Q,r^ e . (3.42) 

The range of A (denoted by 6n), which gives the relative line width Is, 

then, for weak broadening 

Gn = 2 e . (3.^3) 

In general, the relative broadening is given by 

-1/2 
sin (ôn ̂  (1 + e . (3.44) 

For a = 0, 6n = ̂  ! for a large and positive, gn becomes unity and the 

spectrum is continuous. 

It is interesting to note that the function on the right-hand side of 

(3.44) is the square root of the Fermi-DIrac function (Ziman 1964, p. 118), 

which implies that the transition takes place over an energy range of only 
* 1/2 

a few unless the effective mass (m^m^ ) is extremely small (see 

Figure 4). 

The presence of the a term in (3.^0), where (% is given by (3.29), 

shifts the energy levels up slightly above (a > O) and down slightly 

below (a < O). For |a| large, cc is slowly varying and nearly vanishes. 

The only level which the CC term will effect at all seriously is the level 

which falls closest to a = 0, where the derivative is singular. 

At this point it is interesting to examine the line shapes of the 

energy levels. Several theoretical treatments of the influence of broad

ening on the de Haas-van Alphen effect have assumed the line shape to be 
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Wi 

' •• 

OPEN ORBITS 

CLOSED ORBITS 

Figure 4. Landau level broadening in the transition 

region between open and closed orbits. 
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Lorentzian (Dingle 1952a, 1952b, Williamson, Foner and Smith 196^). 

From (3.^2) and (3.43), we have for weakly broadened lines 

A =« J 6n cos Q.rj . (3.45) 

- 1  

The density of states is proportional to (•^) , so that we find the distri

bution function f(e) describing the line shape to be given by (see Figure 5) 

2 2 
f(e) = (1 - e ) , e < 1 , 

and f(c) " 0 , > 1 , (3.46) 

where € is defined as 

e - . (3.47) 

is the centroid of the nth level, and 2ÔE is the total width. At higher 

energies, where the broadening is pronounced, A approaches a linear function 

of Q.O Consequently, the levels become rather broad and nearly uniform as we 

should expect for the continuous region of the energy spectrum. 

So far we have considered only closed electron orbits and the open 

orbits which are close to them (T^ and in Figure 3). When E exceeds W^, 

open orbits no longer exist, and we have closed hole orbits (T2). This 

means that the WKB solutions are not accurate near the origin when the 

energy is approximately W^ or greater. 

1 For y near y = 0 and k(y) near -r K„, E_(k(y)) reaches a maximum, W„, 

and we can expand 

2 
Egfkfy)) = W2 - ̂  (k(y) - J + . . . . (3.48) 
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f U )  

Figure 5. Shape of weakly broadened Landau levels. 

f(e) is the distribution function or 

density of states function for a given 

energy level. 
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Likewise, the potential energy can be expanded for y small 

. 2 . 2  2  
V ,  ( y )  ^  +  .  .  .  .  ( 3 . 4 9 )  

Hence, we have, for y near the origin and k(y) .near ^2' 

.2 , 2 .2,2 2 

ô T "  ( k ( y )  -  7  +  W y  +  ^  "  E  .  ( 3 . 5 0 )  
2 2m ̂ 

Ay; oy ^ 

tion by -1, 

Replacing k(y) by -i and operating on (j)(y), we obtain after multiplica-

( d^- 2 *7) '!' • ~H- 0 - ("2 - E) 4 • (3.51) 
2 ' 2m j 

Î/2K y m 2 1/4 

If we let 4^y) = e ^(y), S'= (—% b ) y. 

(m, W- - E 

c 

then T l(y) obeys an equation analogous to ( 3 . 1 3 ) ,  

2 
+ (a' + S'2) 11 » 0 , (3.52) 

dS' 

for which there are two solutions T]^ and T|g . 

Let us define the turning points y^', y^' and y^' analogously to y^, 

y2 and y^ (see Figure 2) except shifted to the left by-^- r^, and let 

%(y) = k(y) Kg . Then the asymptotic expressions (3.18) and (3.19) can 

be taken over, for y > 0 
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1/2 a' Jt y 

-q exp (i r H dy) , (3.53) 

s/V 

and for y < 0, 

^3 

,/L , 2̂' . 2̂' 

Y| ^ Ç1 ® ^ * exp [ H dy) - -p- exp (i J % dy), (3.54) 
'l y VV y 

1/2 |_,i -1/2 ia' , , , 

where C = (—) "2 '3')cosh ̂  a'% • 

The second solution. Tig, gives the complex conjugate of (3.53) and of (3.54) 

Multiphying (3.53) and (3.54) by the factor e'^^ gives the form of 

(j)(y) near the origin. 

From (3.50), it is easy to see that the WKB solutions approach 

y 

4^y) " ~ exp i ( J  K«y ±  i  f n  d y )  , (3.55) 
s/v 

for y near the origin, and join onto the solutions 

!/2 K,y i/2 K,y 

e Tlj and e Tj^ 

Hence, the connection formulas are given by equations like (3.21), (3.22), 

(3.27), and (3.28) if we replace p and q by p' and q'. The primes denote 

replacing a by a' in CX and in (3.32) and (3.33). 

if the open orbit region is sufficiently large, the WKB solutions are 

accurate for the entire zone except near the origin. The Bloch condition 

can then be imposed, and the quantization condition can be derived as for 

electron orbits. The only difference between the hole orbits and the 

electron orbits is the way in which energy is measured. For electrons. 
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energy is measured according to E - and for holes, according to - E. 

The analysis of this section has been for what could be called one-

dimensional coupling because the solutions couple only at points like 

Pg and P^ in the electron orbits and at P^ P^ in the hole orbits. As a 

consequence, the energy levels depend only upon a one dimension wavenumber Q.. 

In a recent paper. Roth (1966) has derived a quantization condition 

similar to (3.39), but from a different point of view. As a final example 

of one-dimensional coupling, we examine the self-intersecting orbit 

(Figure 6) also considered by Roth (1966) and originally studied by Azbel' 

(1962). In Figure 1, a band structure is shown which would give rise to 

such orbits. Near the origin, a saddle point exists such as was considered 

before at"^ r^ , The WKB solutions on either side of the origin can be 

connected with the aid of the p - q formulas. At the turning points 

y2 (or y^) and -y^ (or -y^), we assume complete reflection. 

For y > 0, the WKB solution is 

B, y B y 

ti'(y) "7" exp i ( J kdy) + — exp -i( J kdy), (3.56) 

N/V y^ N/V yj 

and for y < 0, 

A. -y, A„ -y, 

'j'(y) = — exp i ( J kdy) + — exp -i( J kdy), (3.57) 

V V  y N / V  y 

where for E > W^, y^ = 0. 

At the origin, we find 

B^ =- p A^ + q B^ , and A^ q A^ + p B^ . (3-58) 
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k ( y  )  

Figure 6. Self-intersecting orbitd 
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E, (by) 

\ • 

f E2 

\ E| 

- y j - y g  - V | 0  y |  ^ 2  ^ 3  
y 

Figure 7» A possible band shape giving rise to a self-intersecting 

orbi t. 
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At Ygj we have 

^2 , (3.59) 

and at 

Ag e"'S . -i e'^ , (3.60) 

J2 
where 5 " Jy • Solving the secular determinant, we find the quantiza

tion condition 

-1/2 

cos (2§ - a) » - (1 + e ) . (3.61) 

(3.61) is identical to Azbel's result (1961) when the orbit is symmetric 

about the origin. The energy levels in the neighborhood of the saddle 

point are shown in Figure 8. The transition from one quantization scheme 

to the other is quite rapid, occurring within a few about W^. The 

levels are shifted, but remain discrete since there is no infinitely 

coupled set of orbits involved. 



E 

W| -

Figure 8. Energy levels near a self-intersecting orbit. 
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IV. TWO-DIMENSIONAL COUPLING 

In the previous section, the energy spectrum was calculated for orbits 

which were coupled only at 

y 1 ± \  ' (4.1) 

or at 

y = Oj ± Tj, .+ Zr^ . . . (4.2) 

but not both. If now we let approach Wj so that only a narrow region of 

open orbits exists, coupling occurs at both the points (4.1) and (4.2). 

The intermediate open orbit (T^ in Figure 3) is an example of such two-

dimensional coupling when is nearly equal to W^. The term "two-dimen

sional" arises because ^(y) can be labeled with a two-dimensional wave-

vector (Q.J, 0.2)} in place of the one-dimensional Q. of Section III. 

The WKB solutions are accurate except near the points (4.1) and (4.2), 

where the solutions are to be connected with the p-q formulas. In Figure 

3, it is clear that the pairs of solutions coupled at (4.1) are not the 

same pairs coupled at (4.2). Hence, we must couple all possible solutions 

of the type k(y) + mKg where m is an integer. The WKB solution now 

becomes an infinite sum over m. We write for y < yg' 

^(y) = Z exp i(mK_y + J kdy) 

m VV y 

B :2' 

+ s — exp i(mKgy - J kdy) , (4.3) 

m \f\I y  

and for y^' < y. 
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C y D y 
(j)(y) "S — exp i (mK.y + J kdy) + S — exp i (mk„y - J kdy), (4.4) 

m V v  ,  m V v  ,  

where k(y) is the branch depicted by Tj^ or the closed orbit branches 

nearest That (4.3) and (4.4) are solutions to (3.4) can be verified 

by direct substitution. 

Near y = 0, we can see from (3-50) that 

y 1 y 
r kdy - - Km (y -y , ' )  + J Hdy , 

Yg' Yg' 

Yz' , Yz' 

and J kdy = g ̂ 2 (y2' - Y) + ̂  ̂ dy , (4.5) 

y y 

so for a given m, ^ ̂ and represent outgoing waves while and 

^ represent incoming waves near y = 0. 

^ ^m + 1 ^m ^ 

B D ^ , 
m ^ ^ m + 1 

The connection formulas give 

-i/2 K _ y _ '  -!/2 K , y , '  1/2 K y  ' 
Cm = = P' Bm G + q' Om + 1 = 

and 

;/2 K _ y _ '  -!/2 K  y  ' !/2 K y  '  

Am + - q' Bm G + P' Om + , " • 
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The appearance of "m + 1" terms In (4.6) reflects the two-dimensional 

character of the problem, because the coupling at y = 0 is between "m" and 

1-
"m + 1" solutions while the coupling at ̂  r^ involves only "m" solutions. 

At Y the connection formulas give after imposing the Bloch condition 

-f(S + + %,r.) 

_ [F JP ' (ç 0.1 f i) 
and e » q e ̂  + p e , (4.7) 

2̂' 
where ?" J kdy 

Vl 

We can solve (4.6) and (4.7) if we assume that 

! V2 
Am + , - = Am ' 

'G,r 

and Dm + 1 = ̂  . (^.8) 

Kg 2^ 
where r^ * -g— and Q,^ is a wavenumber of range — . The secular equation 

gives the quantization condition after some manipulations, 

cos [2§ + J KgCy^' - yg') + 3 + 3'] 

cos Q.^r^ 

. 1/2 

[(l+e-=*)(l+e-* ")] 

cos Q_r 
2 2 . (4.9) 

aitv . a'lr 
[(l+e"")(l+e" ")] 

It can be shown that (4.9) gives the correct results for one-dimensional 
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coupling when exceeds by a few or more. It is also clear that 

for all closed orbits, except those near open orbits, the energy levels 

are essentially discrete. For the relative line width at E = 

= (a = a' = O) is unity and significant broadening extends roughly 

twice as far into the discrete region of the spectrum as in the case of 

one-dimensional coupling. The dependence of the eigenvalues on a two-

dimensional wavevector (Q.^ Q.^) is similar to the magnetic breakdown case 

in hexagonal metals (Pippard 1964, Chambers I 9 6 6 ) .  

The two-dimensional coupling case is particularly important because 

the effective Hamiltonian solution can be related to the actual solution of 

the Schrodinger equation (1.4) in an interesting manner. In Section 11, 

it was shown that the eigenvalues are independent of k^, but from group 

theory (Brown 1964) we know that there must indeed be some dependence upon 

the X component, as well as the y component, of some wavevector. As we 

shall demonstrate, the wavevector (Q^, Q.^) serves this purpose and thus 

makes the effective Hamiltonian analysis consistent with the requirements 

of group theory. 

in ( 2 , 5 ) ,  a simple relationship between Y(rj and X(r_) was given for 

the tight binding case in the absence of a magnetic field. When a field 

exists in any general band structure we take the form to be that given by 

Brown (1964) as derived from group theory, 

X(r) = Z Y(R.) u(_r, R ) , (4.10) 
J J 

where now u(£_, ̂ ) is the magnetic analog of the Wannier functions. 

The general form of Y(r_) for our model is from (2.9), (4.3), (4.4), 
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and (4.8) 

h k 
îk z + ik x - 17 xy • i[mK„(y - 7—) + mQ^r_] k 

'  e :  *  2 Z  e  =  ^  ^  ( 4  ^ ^  

m 

where g(y) is of the form (except near the turning points) 

y y 

g (y) exp (ij kdy) + exp (-if kdy) . (4.12) 

s/V Vv 

In (4.10), only the value of Y(£_) at _R. is important. Since K^Yj equals an 

integral number of 2ît and br^ = it is easy to see that the infinite sum 

vanishes unless 

k*- 42+^- ' (4-'3) 

where p, is an integer. Although the eigenvalues are formally independent 

of k , the actual wave function vanishes unless (4.13) is satisfied, so in 

effect the eigenvalues do depend upon k^. The wavefunction and the eigen

values also depend upon since g(y) is of the form 

iQ,r, 

g(y + r^) = e g(y) . (4.14) 

Since r^ and r^ are much larger than the lattice spacings (typically 

2 3 
10 to 10 times larger), Q.^ and span only a small fraction of the 

Brillouin zone. One can, in fact, show that the fraction spanned is the 

same as predicted by group theory. Following Brown ( ig64),  we require b 

to satisfy 

, (4.15) 
"^1=2 

where N is an integer, a.^ and a^ are the lattice spacings and the x and y 
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directions. A requirement such as (4.15) is necessary if periodic boundary 

conditions are to be imposed upon a finite volume (Brown 1964). 

Since br, = K, and K, = — , (4.15) implies that 
1 I 1 a I 

r j =• Na^ . (4.16) 

Similarly, for we have 

i'2 " Nâ  . (4.17) 

The range of Q.^ is — , which is, from (4.16), . Likewise, the 

23t  ̂  ̂
range of is . The range of Q.j and the range of 0,^ coincide with 

those described by Brown, so the proper fraction of the Brillouin zone is 

spanned. 

One can also show that the effective Hamiltonian formalism accounts 

for all the states and the appropriate degeneracies in accordance with 

group theory. In a unit area of the xy plane, there are ^'2it)^ ^^ 

states in the fraction of the Brillouin zone spanned by Q.^ and Q.^. Just 

as in the group theory approach, the states are degenerate with respect to 

jjl in (4.13). I f we allow pL to take on N values, the range of k^ is , 

and the total number of states per unit area for a given k^ and n (Landau 

level quantum number) is , which agrees with Brown. it would, there

fore, appear that the effective Hamiltonian formalism is completely consis

tent with the dictates of group theory. 

Since the eigenvalues and eigenfunctions found in the effective 

Hamiltonian approach are of the form required from group theoretical consi

derations of the exact Schrodinger equation (1.4), it would seem that the 

analysis is correct, and that no source of level broadening due to the 
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lattice potential has been omitted. Hence, the Landau levels in a perfect 

crystal are discrete even in the presence of the strong lattice potential 

of a real metal except when some type of infinite coupling of the orbits 

exi sts. 
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V. OTHER SOURCES OF LEVEL BROADENING 

As shown by Pippard (1962, 1964) and by Chambers (1966), magnetic 

breakdown can cause significant level broadening. The manner in which the 

levels are broadened is similar to the intraband effects studied above 

in that degenerate orbits (in different bands) are infinitely coupled to 

lift the degeneracies. Intraband effects take place at the Fermi level, 

Ep, only if 

Aw 
c 

lEp - W, 
> I  ,  (5.1) 

unless the effective masses are extremely small, whereas interband effects 

(magnetic breakdown) occur when (Ziman 1964, p. 282) 

Am E-

, (5.2) 

E^ 
gap 

where E^^^ is the energy gap between bands at the zone boundary. The 

requirement for intraband effects (5.1) is much more stringent than for 

magnetic breakdown (5.2) since it is rare that the Fermi energy will 

approach a saddle point, W,, by less than typical values of E . The 
I gap 

•3 
factor Er/E is of the order of 10 to 10 (or more in some cases of spin 

F gap 

orbit spli tting). 

The analyses of magnetic breakdown by Pippard and by Chambers are 

more or less semi class!cal and appeal largely to one's intuition. The 

present analysis of intraband effects can be extended to magnetic break

down in order to provide a partial justification of their analysis within 



43 

the framework of the effective Hamiltonian formalism. 

in Figure 9; the form of k(y) for Pippard's (1962) network model (a 

one-dimensional model) for orbits at an energy E is shown. Pippard has 

assumed only one Fourier coefficient of the lattice potential to be present. 

The shaded lens orbits are in a higher energy band than the continuous open 

orbits in this nearly free electron band structure. Magnetic breakdown is 

said to occur at points such as A and B. In Figure 10a, a close-up of the 

point A is shown, in the gap region between y^ and the wave function 

is not oscillatory but is exponentially increasing or decreasing since no 

real values of k(y) for the energy E exist. In other words, the gap region 

behaves as if a barrier were present. 

We can draw some general conclusions without specifying the exact 

nature of the barrier. The amplitudes of the WKB solutions on either side 

of the gap must be connected via the p-q formulas (3.21), (3.22), (3.2?), 

and ( 3 . 2 8 ) ,  where now p and q are not given directly by (3-32) and ( 3 - 3 3 ) ,  

but by some generalization of (3*32) and (3.33)» As Pippard (19^2) has 

shown, Ipl^ + |q|^ 1 and pq* + p*q ̂  0. It is clear that (3-32) and 

(3.33) satisfy these conditions as they must since these conditions surely 

hold whether the barrier is due to intraband effects or interband effects. 

The magnitude of p has been discussed by a number of authors including 

Harrison (19&2), Blount (I962), Pippard (1962), and Chambers (I966). The 

most common form of |p| is 

-H /H 
|p| = e ° , (5.3) 

where is a critical field which can be realized experimentally in such 
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k(y )  

Figure 9. Linear network model for magnetic breakdown (Pippard 1962). 

Shaded portions represent lens orbits. 



k  ( y )  

( a )  (b)  

Figure 10. Two choices of the k(y)-y coordinate system which coincide 

with the principal axes of a saddle point. 
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metals as Mg (Falicov and Stachowiak I 9 6 6 ) .  

When is extremely large, no breakdown occurs and p = 0. In this 

limit, we have total reflection at y^ and y^ (in Figure 10a), and from the 

analogous case of total reflection in the intraband case we take q = -i. 

In the limit that H^/H is nearly zero, the orbits must be essentially free 

electron orbits and there can be no phase change in the transmitted wave, 

so that p =« 1. it seems reasonable, therefore, to regard p as real and q 

as pure imaginary for all values of H^/H. Such a choice satisfies 

pqVf + pVfq z 0. (This is just opposite to Pippard (1962) who arbitrarily 

took p imaginary and q real.) Hence, we have 

-H /H 

P ̂  e , (5.4) 

2 1/2 
and q " -i (1 - P ) • (5.5) 

At the points C and D in Figure 9, total reflection occurs since we 

assume no coupling to other orbits at these points. The WKB wave function 

for C < y < A is (we denote y^ by A and y^ by C and ignore the finite gap 

width at a) 

A A B A 
(j)(y) = 2 -r exp i (mK^y + J kdy) + S exp i (mK^y - J kdy) , (5.6) 

mv/V y m Vv y 

where is the reciprocal lattice vector in the k^ direction (the separa

tion of the lens orbit centers for example). For A < y < B, 

C y D y 

(j)(y) =• S — exp i (mK.y + J kdy) + S — exp i (mK^y - J kdy) . (5.7) 

mv/v A m Vv A 

Finally, for B < y < D, 



/, -T -r/ 

E y F y 
(|)(y) « s — exp i (mK y + J kdy) + 2 exp i (mK.y - J kdy) . (5.8) 

v/v B m VV B m 

in ( 5 . 6 ) ,  (5.7), and (5*8), k(y) stands for the branch CABD in Figure 9. 

At A, for a given the A^ ̂  ̂ term represents the outgoing wave for 

y < A and the B^ term represents the incoming wave for y < A. Likewise, 

stands for the outgoing wave for y > A, and ^ ] 's the incoming 

wave for y > A. Hence, we find 

A m + , - P Om + ! + q ' 

and Cm ' ^ + I + ̂  ' <5-9) 

At B, we rewrite (5.7) as 

C B D_ B 
'l(y) = Z —- exp i (mK„y - J kdy + §) + E — exp i (mK.y + J kdy - §) , (5-10) 

m v V  y  m v V  y  

B _ 

where I =" J kdy . Now ^ ̂ e and, from (5.8), represent outgoing 

^ i5 
waves, and C^e ^ and F^ ̂  ̂ represent incoming waves, so 

D ^ , e-'S ' P Fm + , + ̂  
m + 1 

E,, . q , + p e'S . (5.11) 

At C, we can rewrite (5.7) as 

A y B y 
(})(y) =* Z — exp i (mK„y - T kdy + [) + S — exp i (mK y + P kdy - Ç) , (5.12) 

ms/V c mv/v ^ c 

A . . . ̂ 

where C J kdy. So A^e ̂  is the incoming wave and B^e ^ is the outgoing 
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wave, thus 

Sm ' A. ' '5.13) 

Î C ~ Î c 
Likewise at D, E e ̂  is the incoming wave and F e ^ is the outgoing m ^ m 3 3 

wave, 

F e"'G .-i E e'^ . (5. l4) 
m m 

Again, we assume that a "m + 1" term equals e times the "m" term. 

The set of equations (5-9)j (5.11), (5.13) and (5.14) will then have 

a solution if the secular determinant vanishes. The quantization condi

tion becomes 

cos V, - ' '5.15) 

which is the same as Pippard's (1962) result except that we have correctly 

ncluded the factor of jt/2 when a phase integral is set equal to (n + -r)::. 
1' 

For example, when q -• 0, (5.15) implies that cos § 0 or Ç == (n + y)rt. 

where Pippard's analysis would give sin § = 0 or § =»= njc. 

In a hexagonal metal, such as Mg, where the breakdown coupling is 

two-dimensional (Pippard 1964, Chambers 1966), the semi classical treatment 

is restricted to field values H =« A/4a Ne{_a^ where a_^ and a^^ are 

basic vectors of the crystal lattice in the plane normal to JH, and N is an 

integer of the order of 10^. Such a requirement arises because one wants 

the network of classical electron trajectories in real space to repeat 

itself in an integral number of lattice vectors. This means, for example, 

that orbit centers always fall at the same point in the unit cell. No 



49 

such restrictions are necessary in the effective Hanniltonian formalism of 

breakdown since we do not concern ourselves directly with the crystal 

lattice. In essence, the effective Hamiltonian formalism is in reciprocal 

space and one never needs to refer to the direct space. 

Another source of level broadening could be crystal imperfections 

such as internal strains and dislocations (Pippard 19&5, Chambers ca. 

1967)0 Essentially no quantitative experimental information is available, 

except that the amplitudes of de Haas-van Alphen oscillations seem to 

depend upon the thermal history of the specimens studies.* 

Let us first consider a small, periodic strain, if the period of the 

strain were to coincide with an integral number of lattice spacings, Na^ 

it might at first appear that such a strain would be serious since it 

breaks the band structure into N subbands separated by small gaps. (The 

reciprocal lattice in the direction of the strain is nowin place of 

~ .) However, the gaps separating the subbands are so small that the 

effect of the broken symmetry is minute. 

We can think of the strain introducing an additional potential 

(Ziman 1964, p. 177-178) 

ô \ f { r )  = S E.. W.. e'—— (5.16) 
ij 'J 'J 

where E.. is a deformation potential tensor and W.. e'— — is the strain 
U U 

tensor. The presence of the rest of the Fermi sea screens 6V, so that 

the effective potential is (5.16) reduced by the static dielectric constant. 

" 1 am indebted to Dr. A. V. Gold and Mr. R. A. Phillips for 

discussions of this point. 
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e(2), (Ziman 1964, p. 129-132) 

.2 

€(T) ̂  , (5.17) 

T 

where is the screening radius. 
A 

For a longitudinal strain, for example, the size of the gaps between 

E|, w,, 

the subbands must be of the order of — • Typical values of the 

parameters involved are 

E,, " 10 eV 

w„ - 0
 

1 VJ
 

\ = 
10^ cm 

.rM T =« 10 cm 

So €(%_) =» 10^; and the gap is of the order of 10 ̂  eV, Typîçal yalyes çf 

-4 -3 
are of the order of 10 to 10 eV, so the gap is considerably 

smaller than h'Xi . 
c 

Another, and perhaps more convincing, way of treating the strain is 

to consider the screened deformation potential as a perturbation. We 

consider only the discrete levels since the open orbits are already con

tinuous and the additional broadening would be of no consequence. in the 

effective Hamiltonian formalism, let us assume that the strain is along 

the y direction. The perturbation will remove the degeneracy among the 

various solutions localized in different valleys or zones. An upper bound 

to the matrix elements between different solutions is the maximum value of 

-8 
the potential which is, as shown above, 10 eV and is much less than 

Hence, it does not appear that internal strains give rise to any signifi

cant broadening. 



The effect of dislocation planes can be important, however, as will 

be demonstrated below in a simple example. Consider the effect of a 

dislocation plane perpendicular to the y axis falling somewhere between 

the turning points y^ and y^ in Figure 2. The WKB solutions are not 

accurate at the dislocation plane since it must surely act as a barrier of 

some type. The solutions on either side of the barrier can be connected 

with a generalization of the p-q formulas as in the case of magnetic 

breakdown. Let us again take p to be real and q = -i(l-p ) . Let y = d 

be the point where the dislocation plane falls. 

One can show quite simply that the quantization condition for discrete 

levels is (the analysis is similar to that of the self-intersecting orbit 

in Section 111) 

cos (§j + 5%) + Ist cos (§2 - §j) = 0 (5.18) 

where 

Since the dislocation plane can fall at any point d, between y^ and 

y2 or their equivalents in another valley, cos (§2 ~ §^) can be any value 

between -1 and 1. Normally jq| will be small or else the Landau levels 

will be completely destroyed. So letting §^ + ̂ 2 = (n +-j)rt + Ajt, we find 

for smal1 jq| 

Art = (-1)" |q| cos (^2 " 5]) (5.19) 

The relative level width is then 

6n = ̂  |q| (5.20) 
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If |q| =" 0.1, the broadening would certainly be detectable experimentally 

in the de Haas-van Alphen effect. 
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VI. DISCUSSION 

A detailed analysis of a simplified model of the effective Haaii Itonian 

formalism has been given. The simplifications assumed were made primarily 

for convenience and clarity, and were not essential to the analysis. The 

conclusions drawn from the model are, in fact, correct beyond its range of 

validity. As a bridge between the model and the general problem, a brief 

description of the analysis of the general problem will be indicated. 

in the general problem, where the energy band function E(j<) can not 

be separated as in (3.1), Zil'berman (1957b) and Blount (1962) have shown 

that a WKB solution exists where now k(y) is given by 

E(- by, k(y), k^) == E (6.1) 

and the velocity is given by 

v.i|||-| . (6.2) 

As before, k^, which is along ]^, is a good quantum number. 

Blount (1962) has discussed the types of solutions to be expected 

when (and k^) are oriented at an arbitrary direction with respect to a 

symmetry axis. The repetitious pattern of the curves of constant energy 

for fixed k^ (such as Figure 3) can be quite tortuous , but we should not 

expect the degeneracies among solutions in different zones to be lifted in 

the absence of any coupling. 

As we have shown in Section II, the general problem can be reduced to 

an equation in a single variable y. But, this one-dimensional approach is 

not useful for complicated orbits such as a star-shaped orbit. The 



one-dimensional approach only works nicely if the coupling points are of 

the type of Figure 10a or 10b. That iSj when k(y) and y coincide with the 

principal axes of the saddle point. In the star-shaped orbit, for example, 

the k(y)-y coordinate system can not be chosen so that all of the coupling 

points (assumed to be at the tips of the star) are of the two types in 

Figure 10. The local equations near the coupling point mix k(y) and y 

since there are cross terms in an expansion of E(J<) about the saddle point. 

The cross terms complicate the differential equations for (j)(y) when k(y) 

is replaced by -i-^ 

Perhaps an even simpler approach to the general problem, than that 

of the model, is an equivalent semiclassical treatment such as Pippard's 

(1962, 1964) analysis of magnetic breakdown. In the semiclassical approach, 

we suppose that the electron is a wave packet traveling about a trajectory 

in real space similar to the k(y)-y curves of Figure 3» The phase change 

of the wave packet between two points is related to simple geometrical 

properties of the trajectory as in the Onsager rules. When a wave packet 

of unit amplitude encounters a coupling point, the amplitude of the trans

mitted portion is p and the amplitude of the reflected portion is q. 

Since we have verified the semi classical approach for a one-dimensional 

network in Section V, we expect it to be quite useful for the complicated 

networks found in real metals, if we are not concerned with details such 

as •J in factors of (n + y)#' 

Whether we treat the orbits in terms of wave functions or in terms of 

semiclassical wave packets, the conclusions must be the same as in the 

model. Significant broadening of the energy levels associated with closed 
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orbits in a perfect crystal can only occur when there is either intraband 

coupling, or interband coupling, to other degenerate orbits. Broadening 

can also arise when dislocation planes are present, but it appears that 

small periodic strains are effectively screened out, and thus do not give 

a contribution to the natural line width of the energy levels. Since we 

have been able to show that the effective Hamiltonian formalism is 

completely consistent with the requirements of a group theoretical treat

ment of the exact Hamiltonian, it would appear that no source of level 

broadening has been omitted, and the analysis given in this investigation 

is essentially correct. 
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