Using Variability Related to
Families of Spectral Estimators
for Mixed Random Processes
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Traditionally, characterization of spectral information for wide sense stationary processes
Changxue Wang has been addressed by identifying a single best spectral estimator from a given family. If
one were to observe significant variability in neighboring spectral estimators then the
Peter Sherman level of confidence in the chosen estimator would naturally be lessened. Such variability
naturally occurs in the case of a mixed random process, since the influence of the point
Department of Aerospace Engineering and spectrum in a spectral density characterization arises in the form of approximations of
Enginesring Mechanics, Dirac delta functions. In this work we investigate the nature of the variability of the point
lowa State University, spectrum related to three families of spectral estimators: Fourier transform of the trun-
Ames, 1A 50011 cated unbiased correlation estimator, the truncated periodogram, and the autoregressive
estimator. We show that tones are a significant source of bias and variability. This is done
in the context of Dirichlet and Fejer kernels, and with respect to order rates. We offer
some expressions for estimating statistical and arithmetic variability. Finally, we include
an example concerning helicopter vibration. These results are especially pertinent to
mechanical systems settings wherein harmonic content is prevalent.
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1 Introduction to the cases that caused by the presence of point spectrum. Spe-

L . . . . cifically, we address three families: the truncated Fourier trans-
Spectral estimation has played a major role in a wide varlety.f) rm, the averaged periodogram, and the AR spectra. This vari-

theoretical and application areas of science and_ engine(_ering S"&f)ﬁity will be addressed in two stages. In Section 3 we will

the g(_jvent of mo_dern computing a_nd the ,!:FT !,n the m'd'l%olﬁvestigate the variability of these families when the autocorrela-
Traditionally, the idea has been to find the *best” spectral estlmza—on information is exact. This will reflect the order-dependent
tor. Often the desire was to balance resolution and variability. Thclﬁ

. . ) ) - eoretical spectral variability. It is also valuable in its own right,
is the idea behind both averaging of periodograms and autoregrgsie there are many applications where the amount of available

Mitfsta far exceeds the range of reliable correlation lags that one

natural to rely on such selection methods. But it is also natural fasqciated with lagged-product estimates of the correlation infor-

question this entire approach if the variability within the family ot ation. The value of the sample mean and corresponding variance

spectra under consideration is significant. It may well be that 5ne way of using a family of spectra, as suggestefiLjrand

neighboring spectra exhibit measurable variability at certain frgs) The value of this information is the subject of Section 5. In

quencies, while not at others. In fact, this is exactly the case at a5@ction 6 we apply the results of the previous sections to vibration

near frequencies corresponding to the point spectrum, when Higa from a helicopter drive train. Our summary and conclusions

random process includes a deterministic as well as regular cogle given in Section 7. We now proceed to motivate our investi-

ponent. Sinusoids are the most common source of point spectriation and describe the types of processes we are concerned with.

Given an infinite number of correlation lags, they would appear as

Dirac delta functions. But if the spectral family is indexed by the

number of correlation lags used, as the case in periodogram, AR The Structure of PSD Estimators for Mixed Spec-

and other methods, then the influence of the point spectrum will

be seen as peaks whose values are, in and of themselves m fuu Processes

ingless, and as spectral leakage. We consider wide sense stationgwys9 random processes of
With the advances in computing resources it is now far easierttee form

both compute and analyze a large family of spectral estimators _

than it was even 15 years ago. Even so, this family-based ap- X()=s(t)+&(t) (1)

proach to statistically reliable spectral estimation has receiv@here the signals(t), is composed of sinusoids with determinis-

very little attention; in spite of the fact that it has been suggestéi¢ amplitudes and frequencig®\, ,w,}, and with independent

for over 15-20 years now. For example[i] and[2] the use of phases each distributed uniformly o{8r 277). The noiseg(t), is

periodograms with successively larger windows is proposed. Tregular, and is assumed to have a continuous power spectral den-

idea is that if the spectral information remains insensitive to ttgity (PSD, S.(w). The PSD of(1) is given by

window size changes then one can have greater confidence in it. A2

This work is intended to contribute a better understanding of the S(w)=2, K S w*w)+S,(0) )

variability of spectral estimator families, with particular attention x 4 ¢
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systems, such as rotating machinery. Typically, processes ass'

ated with such systems include harmonics as well as highly c [ B S
ored spectral components. - Aslzam
— ue

Let {RX(T)}’l‘(,}_l) be the theoretical correlation information 2
through thenth lag. Then the theoretical Fourier transfofFr)
spectral estimator is given by

n—-1

Sepr(n)(@) = 2 Ry(re " 3
r=—(n—1) 0
We remark that in(3) and throughout the remainder of this%

work it is assumed that the sampling interval is 1 second, so tt _,.
all frequencies are in the interved, ). It is commonly assumed !
that (3) will converge to(2) when the number of lags), ap- |
proaches infinity. In the absence of tones this will generally t -20f 1
true. But when tones are present itnist true, as will be shown. :
One solution to this problem turns out to be to use an average !
FT(n) spectra for a range of values of In addition to solving ] |
this problem, the use of such a family offers information that th :
i

0

use of any single PSD cannot offer, namely spectral variabili

L L

L I I
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with respect to the number of lags. This is in addition to th o o
statistical variability associated with the use of estimated correla-

tion lags. The theoretical truncated peHOdO.gram’ HER(S ON€ "£ig 1 Arithmetic mean and 2- o curves corresponding to use

such spectrum._Another_ common PSD estimator Whlqh uses %}ga family of theoretical FT (n) spectra. [Note: Where not

same n correlation lags is the AR(spectrum. The specific form ghown, the lower 2- o curve is —.]

of the theoretical AR{) spectrum is well knowiie.g.[3]), and so

it will not be repeated here. In contrast to the RY épectrum(3),

the theoretical PER() and AR() spectra converge at almost

every frequencyexcept at the point spectrum frequengiessthe presume that this region is well characterized without concern for
continuous spectrum as—o. The FT(h), and PERQ), and any order selection rules. In the region of the tone the variability
AR(n) theoretical spectra all exhibit order-dependent variabilityange increases, suggesting that this region is not appropriate for
due to the presence of tones, and become unbounded at the treracterization by a Ff spectrum for any value ofi. This
frequencies as—<. The use of estimated correlation informa-suggestion requires clarification. In many situations, such as de-
tion introduces statistical variability, in addition to the arithmetiweloping noise and vibration specifications for mechanical sys-
variability that we will investigate in the next section. Befordems, the window sizen, is required to be a specific value. In
doing so, however, we offer the following example to providsuch situations where everyone uses the same window size, type,
more motivation for our investigation of the utility of a family of number of averages, etc. the FJ( PER{M), and ARQ) PSD
spectral estimators. estimators can provide proper spectral distribution information

Example 1In this example we consider a procé&sconsisting over frequency intervals. But just as often, if not more so, the
of a single sinusoid, plus a regular component. The theoreticallue forn is not fixed. Asn grows so does the peak of any tone
PSD is given in Fig. 1. It includes thé&function associated with associated with a PSD. This behavior does not appear to have
the tone. The peak in the continuous spectrum was selectedbtithered many people, since it has been demonstrated routinely in
simulate a strong system resonance, while the dip correspondsnaost of the high resolution spectral research conducted over the
an anti-resonance. This structure is commonplace in mechanipakt 35 years, in the context of the two-sinusoid plus white noise
systems settings. setting(e.g.,[1]). But in the context of using a family of spectra,

Assuming that a sufficiently large number of measurementsas suggested ifil] and[2], one would conclude that any region
available(as the case with rotating machinery operating at comvolving tones should be viewed as unreliable. In the realm of
stant speedallows us to justify the use of theoretical correlatiormechanical systems, and in particular, rotating machinery, this
information. Figure 1 includes the-2¢ arithmetic variability would adversely affect spectral analysis, as a whole. This could
(dashed lingsof the family of theoretical FTif) spectra forn lead one to apply spectral decomposition tools suchl4dsto
=32,33...,1024. While not immediately obvious from Fig. 1,eliminate this problem. But we will not address this approach in
this variability reflects the fact that all of these spectra accuratelyis work, since we are concerned here with the common proce-
capture the spectral resonance region, while none of them captduee of analysis of the mixed spectrum, as it is. TherjT¢pec-
either the antiresonance or the tone. It is well known that theum is perhaps not as popular as the PER¢§pectrum. Tradi-
spectral leakage associated with the tone is the source of lotiahal reasons for this range from the fact that it can lead to
variability. But here it is also responsible for non-local bias andegative PSD estimates, to the fact that the side-lobe behavior
variability in regions where the PSD magnitude is not significanassociated with the rectangular windowing operation results in
In the region near the tone both bias and variability are meaningxcessive local spectral smearing. The above example suggests
less, since in the PSD domain a tone is a Difatmction. The that the FT() family is not well-suited for accurate characteriza-
practical implications of this are that the estimated amplitude wilion of anti-resonance structure when tones are premgywhere
converge to infinity as—o0, and, consequently, so will the vari- in the spectrum.
ability of the family of estimators. To further motivate the following sections we offer the perfor-

A major point of the following sections is to examine the abovenance of a family of AR) spectra. Using a minimum number of
behavior in detail. Hopefully, this example has hinted at the perdersn=5,6, . ..,10 inFig. 2(a) produces less variability in the
tential value of using a family of spectral estimators, as opposedti-resonance region than the F)(family does. Furthermore,
to a single “best” estimator, as is traditionally done. By observingy using ordersn=20, .. .,100 (far fewer and lower than the
the behavior of variability over increasingly larger rangesnof FT(n)) Fig. 2b) indicates not only lack of bias, but minimal
(termedwindow closingin [1] and [2]), it is possible to gain variability everywhere except at the tone region. Also, the size of
greater confidence of the spectral structure. For example, in tiat region is lessening with the use of higher I@igscontrast to
resonance region there is very little variability, so that one cahe FT(n) spectra. Thus, one can conclude that for accurate anti-
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Fig. 2 (a) 2-o curves for an average of 6 AR (n) spectra, n
=5:1:10; (b) 2-o curves for an average of 81 AR (n) spectra, n

=20:1:100.

large amounts of data, in relation to the numberpf estimated
correlation lags used for analysis. In such cases it may be reason-
able to presume that the correlation information is highly reliable.
We will, at times during this discussion, restrict our attention to
the situation of a single tone plus white noise. The reason for this
is twofold. First, the presence of a tone can have a significant
effect on spectral variability. Second, by use of band pass filtering
it is sometimes possible to restrict the region of interest such that
within that region the noise spectrum is relatively flat.

3 Arithmetic \Variability of Theoretical FT (n),

PER(n), and AR(n) Spectral Families

In this section we investigate the arithmetic variability associ-
ated with the use of theoretical correlation information for three
spectral families. Two of these, namely the RY(and AR(),
have been discussed above. The third is the family of truncated
periodograms, which we denote as the PERf@amily. This is by
far the most popular family of spectral estimators in use in prac-
tically all areas of science and engineering. We will obtain quan-
titative expressions for both the bias and variance. These will
entail order-dependent terms, which will provide growth rate in-
formation in relation to tones.

We restrict our attention here to the case of the moétlelvith
a single sinusoid:

X(t)=Asin(wyt+ 0) +e(t). 4

To be sure, the two-tone problem is an important and common
one. But such a setting would significantly complicate the analy-
sis, possibly to the point of distraction from our main goal, which
is to gain a better understanding of the variability of a spectral
family in relation to a mixed spectrum setting. So little attention
has been paid to this problem that we believe it is appropriate here
to restrict our investigation to the more simple settiAg in order
to achieve our goal.

3.1 Variability of the Theoretical FT (n) Spectra. For the
model (4), Eq. (3) takes the well known fornte.g.[2]):
2 2

SFT(n)(a))= TDn(w_wO)+ ZDn(w+wO)+Ss®Dn(w)

(5)
where D, (o) =sin((2n—1)w/2)/sin/2) is the Dirichlet kernel
[3] associated with ther?—1 point rectangular window. Now,

AZ
6

lim Sgrn)(w)# vy Sw*wy)+S,(w)
n—oe
Notice that the middle relation if6) is not an equality, but
rather anonequality This reflects the fact that the family of Di-
richlet functions does not converganywherg¢ asn—co. This is
exemplified in Fig. 3. There, we see that because the Dirichlet

resonance characterization the ARR(family is more appropriate function is proportional tan, even though the major side lobes
than the FT() family. In the region near the tone the variability ismove closer to the tone frequency for increasmghey are also
much more localized than that of the Flj(family. Even so, since increasing in size. Consequently, we see that at frequencies suffi-
the AR(n) family is a family of PSD estimators, at the tone freciently far from this frequency the Dirichlet peak values do not
quency the amplitude will converge to infinity as—, as was decrease with increasing. This fact, while certainly not new,
the case with the FT() family. Our analysis will reveal, however, Sééms to have been ignored in the vast majority of books and
that the rate of convergence is markedly faster than that of tR@Pers on the subject where the spectral density is defined via the
FT(n) family. This suggests yet another use of spectral familiemiting Fourier transform of the correlation function, using a fi-
namely to use their convergence properties to identify tone cofite number of lags, as if8). Even though, relatively speaking,
ponents. We will discuss this point in greater detail.
The above example utilized theoretical correlation informatiothat it mayappearthat the sequence is converging to a Difc-
Hence, the bias and variability may be said to be arithmetic fanction, it is not. In fact, at any fixed frequency other than that of

the energy at the origin will overwhelm that in other regions, so

nature, as opposed to statistical variability related to using edtite tone, the sequence of functions will neither converge nor di-
mates of the correlation lags. We now proceed to a more detaileetge asn—«. Rather it will oscillate with bounded variation.
discussion of the arithmetic variability associated with the thed-his is of sufficient importance when assessing variability, and is
retical FT(n), PER{), and AR(n) spectra, which utilize perfect so often ignored in systems and signals publications, that we now
correlation information. The justification for this is in the fact thapresent a formalized statement of this for the family of rectangular
often in mechanical system analysis one has access to extrenveilydows.
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) ) ) tone. Thus, as suggested previously{by2,4] and others, the use
Result 1. The Fourier transform pair(f) = 1< F(w) = 6(w) IS of 3 family can provide an advantage over the use of any single
not necessarily true. It depends on the selection of functions gfectra. One could proceed to use this averaging procedure, as
which f(t) is the pointwise Iimit_. In particular, let W)(t)fl for opposed to the use of a single FiJ(spectrum, even though it
—(n—1)<ts=n—1, and let it equal zero otherwise. Letyoyld he more computational. The following result shows that
Wry(w)=Ms]_% _w(t)e'" be the Fourier Transform of this averaging procedure may be implemented without the need to
Wy(t). Then lim_ Wy(w)=lim, .. Dy(w) exist nowhere. perform the averaging computation.

Specifically W, (0) is O(n), while for |w|>0W,,(w) oscillates ~ Result 2 ([7] p. 16. Forn,=1 andn,=n Eq. (7a) may be

(as a function of n) between 1/sin(w/2). expressed as

For the more mathematically inclined reader, we remark that a 1 (=
rigorous definition of the Dira&function as the limit of a family Serm(@)= 5= f S{(1)Kp(@—v)dv=Spern (@) (8)
of functions requires the use of a family which is suitably well- 2m |,

behaved(5,6]). The discontinuities at the ends of the rectangul
function family are well known to be not well-behaved, to th
extent that they yield what is commonly known as the Gibb
phenomenon. The fact is that one can never collect an infin

Z—ﬁere,Kn(w)=1/n(sin(nw/z)/sin(wlz))2 is known as Fejer’s ker-
,gel [3]. Also, Spermy(w) is the expected value of the popular
Rgriodogram sp_ectral _estimator, and uses the biasgd lagged-
amount of information, be it data or correlation information. Androduct correlation estimates, as opposed to the unbiased ones
so the form of truncation becomes important if one desires H?e.d in(3). To be precise(8) is ot the' expected value of the
correctly infer the outcome, were all the information available. Periodogram unless the orde, is identical to the data record
Recall, that this work is concerned with families of spectr. _|ze,N. Morg generally, fom less tharN itis referred to as the
Because of the undesirable properties associated with the colligncatedperiodogram. For convenience we will not make such a
tion of FT(n) spectra which utilize the expected value of th Istinction unles_s it is necessary. While perhaps_not e""?'?”t from
unbiased correlation estimator, it may be of interest to investig ), this kernel is exactly thaverageof the collection of Dirich-

whether averaging them can offer any advantage. For a collectigh K6rnels from 1 tar. The fact that the rightmost equality i)
. n i corresponds to the Fourier transform of the theoretical correlation
of theoretical spectrgSgr(n)(w)},L,, , we now formally define

=n,’ function that has been windowed usingreangular, or Bartlett
the arithmetic average and variability of the collection of B)I( window is well known. What the leftmost equality shows is that in

spectra over the indicas, to n,, respectively, as (7a), when summation indices range from lripwe obtain the
ny expected value of the periodogram estimator. This observation is a
Ser— (@)= 1 2 S (o) (7a) ang known result, but one t_hat is seldom noted i_n most_ books on
FT(noina) n—ne+155 ~ signals and systems. Traditionally, the Bartlett window is used to

reduce the intensity of the spectral side lobes associated with leak-
age. Our observation suggests that it should also be used to ensure
YET(ng (@)= F—— 2 [Slznn)(w)*spm(w)]z proper behavior of the family of spectra in the case of a mixed
1 Yot =n=n, process such ag); namely, convergence as—©.
(70) Both the Fejer and Dirichlet kernels grow at a ratenDét a

It was just noted that the FMj spectrum has the undesirabletone frequency. But in contrast to the Dirichlet family, the Fejer
property that the leakage influence associated with a tone wfdimily converges to a Diraé-function; that is, the leakage away
persist independent af. This is illustrated in Fig. 4, which is from the tone frequency goes to zeroras:ec. This is illustrated
related toExample 1We see that not only is this family of aver-in Fig. 5a). In the absence of any tones, if the noise PSD is
aged FT() spectra converging at the anti-resonance location, dontinuous, then(7a), which is a Cesaro mean, will converge
also yields progressively localized leakage in the vicinity of theniformly (in w) to the true PSD as;—« ([7] p. 16). Since the

Ny
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wof T ‘ ' ' —5 frequencies removed from the tone, as giver(9a), make that
= - n=20 family undesirable for use in the case of a mixed process. We now
proceed to a discussion of the variability of the more desirable and

commonly used PERY) family.

3.2 Variability of the Theoretical PER(n) Spectra. The
theoretical PER{) spectrum, which is exactly the expected value
of the truncated periodogram, is given by

n—-1

Sperm(©)= ; , Re(MBo(me™” (10)
T=—(n—
where B,(7)=(n—|7])/n is the triangular, or Barlett window,
whose Fourier transform is theth Fejer kernelK (). In the
manner of(5), it may be expressed as

dB

A? A?
SPER(n)(w) = Z Kn(w— o) + Z Kn(w+w,)+S.8K,(w)

(11)

0
Frequency(radian) Notice that if wg=2mky/n for any integerk, then the first two
(a) terms in(11) vanish at all discrete computation frequencies other

than wg; that is, the tone spectral leakage will not distort the
sl continuous spectrum information at those frequencies. Unfortu-
L - ovemge |l nately, in practice one seldom has control over such precise place-
14 ment of the tones in relation to the sampling frequency.

or 1 ’ An explicit expression for the arithmetic variability of the
@ o ’ N 1 PER() family can be obtained in the same manner as was done
or - Ts 1 for the FT() family. We begin by noting that since the Fejer

-5¢ T T 1 kernels are Qf) at the tone frequency, then so is the arithmetic

ok~ T 7' =4 average of the theoretical PER)(spectra. And since, unlike the

—15] m m m ﬂ ﬂ ﬂ ﬂ k ﬂ mm (m mm Dirichlet family, the Fejer family is O(1) at frequencies re-

e P e Ty moved from the tone frequency, then the arithmetic variability of
’ ’ ’ “Frequency (radfs) ’ ’ ’ the PER() family is O(1h). What follows is a more quantitative

description of this behavior.
; ‘ ; v For a collection of theoretical spect{8pery)(w)}i-1, We de-

or fine the arithmetic average and variability of the collection of

200 | PER() spectra over the indices 1 toin the usual way. The
average over the theretical periodogram family is simply the av-
10- H 1 erage over the Fejer kernels, which for largées approximately
i e 1 _12”: < 1 Inn+ 1
- (@)= 2 Kio(@)=T=oq oy | v T 2n2
wgo—"-/”’ ‘\““‘:
. »||||1HHHH“HHHH . HHH'H\HIHHH“IH . 1 ( 1 )
—=—In|lz——+— for w#0 (128
- 08 Frequen?:y (rad/s) 03 ! 2n 2(1_ Coiw)) ( )
(b) =(n+1)/2 for w=0 (120)
Fig. 5 (a) Example of Fejer kernel for n=10, 20 and 30 in dB;  for w €[0,2m). Therefore the averaged PER(spectra is
(b) comparison of the n'" and the average of the first n Fejer's A2 A2
kernels for n =100 and 1000. Srerm(@) = T Yim(@— wo)+ T Yn( @+ o) + S, ® (@)

(13)

From(12), as expected, theER(n) spectrum is growing at a rate
of O(n) at thew=* wg. At frequencies away from the sinusoid,
the PER(n) spectrum will converge to true spectrum at a rate of

(generalized PSD limit in (8) is absolutely integrable, it follows
[7] that even though convergence will fail at the tone frequency,

will take place elsewhere. :
Whenn is sufficiently large, the expression for the arithmetigi(rgg_]()s/?ahgﬁfgrl]lows that the kemnely(w) will converge to the

variance, ), of the{FT(n)} family of theoretical spectra can be For the case of white noise, since the last terrd) is simply

approximated as the following: o2, (13) is controlled entirely by12). The 3-dB bandwidth of the
A? 1 average of the firsh Fejer kernels is two to three times greater

Yer(0)=15- —7-——7z for |o—wo[>0 (%) than that of a single PER] spectrum. Figure () shows the
sin 0) comparison of theth and the average of the finstFejer’s kernels
2 for values ofn=100 and 1000. In contrast to theth Fejer’s
4 kernel, the average of Fejer’s kernels does not have side lobes. At
Ver(wo) = E-O(nz) for w=w, (9b) frequencies far away fromw=0 the average kernel converges to

Zero asn—oo,

As mentioned above, at a tone frequency the variability of any For a process consisting of white noise plus a sinusoid, it is also
PSD family will grow with increasing orden, as is the case in straightforward to show that for largethe arithmetic variance of
(9b). The fact that the variability of the Fhj family persists at the coIIection{SpER(k)(w)}E:1 is approximately:
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4
Vargerm(w)= E[W(n)(w* o) + Y@+ wp)]

(144)
where
10
(@)= 5 2 (K@) =ty ()?
B 1
" n(1-cosw)?
o1 ”_2_2+“’_2)_(”_2_E)
4 216 2 4, 8 4
- — InnJri—Eln(—1 ))2}
2n 2 '\ 2(1-cosw)
for w#0
=(n’-1)/12 for w=0 (14b)

In particular, at the tone frequency the square rootldgh) be-
comes

AZ2 n
Trern)(@o)= 7% 375 (14c)

(1)K p(0— o)+ (2N)Dp(0— wy)
1+ (IN)Ky(w—wy)+ (2IN)D (0 — wy)
(17)

2 _ 2
;= Sprmy(@) =0

We know that at frequencies removed from the tone frequency the
Fejer kernel converges to zero at rate @{1/Thus, the errof17)

is dominated by the Dirichlet term in the numerator. Since the
error is O(1h) it follows that both the arithmetic average and
standard deviation of the collectigAR(k)}r—, are O(1h).

To evaluate the utility of these results for the case of colored
noise, we consider Fig. 6 correspondingBrample 1 They in-
clude the arithmetic mearS{}(w) and standard deviation
o (w) of AR spectral family for order ranges 2 to= 20, 40, 80,
and 160. Figure @& shows that the average converges to the
continuous spectrum at all frequencies removed from the tone
frequency, while at the tone frequency the rate of growth is
O(n?). Figure &b) shows that at frequencies removed from the
tone frequency the variance decreases at a raten(thile at
the tone frequency it increases at a rate oh®)(

To summarize this section, we have provided order-related rates
of behavior for the FTit), PER{), and AR(n) theoretical spec-
tra, as well as rates related to their arithmetic means and standard
deviations. This was in the context of mixed spectrum processes
of the form(4). At the tone frequency it was noted that the RY(
and PER() spectra grow at a rate @), while the AR{) grows
at a rate Of?). At frequencies removed from the tone, the vari-

Thus, at the tone frequency the standard deviation of Fejer keraéllity of the FT() family is O(1); that is, it never converges to

family increases by 3 dB as doubles(at rate Of)), while at

the true spectrum. The variability of the PHR(spectra are

frequencies removed from the tone it decreases at a rate of 1.5dBLih). We now proceed to address the statistical variability of

per doubling(at rate O(1r)).

3.3 \Variability of the Theoretical AR(n) Spectra. We
now turn to the arithmetic mean and variability of the AR(

family of spectra for a mixed process. These two quantities are

defined exactly as they were (i) for the FT(n) family. Because

the AR(n) spectrum is based on prediction of the correlation la¢ 2
of orders greater than, we do not have the situation where a
kernel function(which is independent of the noise spectral struc
ture) may be analyzed. For this reason we will restrict our atter

tion in this section to processes of the fot#), where the noise is
white. In this case, it can be shown that the theoretical AR(
spectrum for singlédcomplex sinusoid plus white noise is given

by
o 2
_. 2
SAR(n)(w)_a's/ 1- 1+—ann(w_wo) (15)
Here p£(A%/4)/a? From (15) it follows trivially that for pn
>1:
5 , (A%4)%n?
Sarm)(@o)=0g| 1+ pn| =07 (164)
and

SAR(n)(w)EU§/|1_(1/n)Dn(w_wo)|2, |o—wo|>0
(160)

Equation(16a) states that at the tone frequency the theoretic

AR(n) spectrum is proportional tm?, and to thelocal SNR,
defined as A2/4)/(a§/n) for pn>1. At the tone frequency the
AR(n) spectrum is O¢?). Equation(16b) states that fopn>1,
at frequencies sufficiently far from the tone frequency the MR(

spectrum will be close to the noise spectrum, and will, in fac _is

converge to it a;m—oo. This is due to the fact that the Dirichlet
kernel is scaled by a factor ofri/ so that it converges to one at

the tone frequency and to zero elsewhere. It is possible to gain

more insight into the rate of convergence(tbb) by expressing
the difference between it and the limif:
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Fig. 6 Arithmetic (a) mean and (b) standard deviation of col-
lection of {AR(k): k=2,m} spectra for m =20, 40, 80, and 160
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4 Variability of the Estimated FT (n), PER(n), and [Y(1) " y(@)]?=(nld) A%(0,v)K(0—v)
AR(n) Spectra

. ) . ) —Ay(w,v)Dy(0—r)+1 (24)

There is a wealth of literature on the statistical properties of the ) i
marginal FTf) and AR() spectral estimators in the case ofVheréAn(w,v)=cog(n—1)(w—p)/2]. The approximate equality
regular random processésee e.g[8] for references One can N (24) relies on the fact than is sufficiently large so that for a
argue that in view of the orthogonalizing property of the fredivenw the above kernels contribute a negligible amount at nega-
quency decomposition those results should hold in all but the lodie frequencies. Substitutin@4) into (21) yields the following
regions associated with sinusoids. However, we saw in the 14§V result. o )
section that those local regions can extend over a significant arealXesult 4. For a process of the form (4) where the noise is white
In this section we summarize results, having to do with the stati#ith varianceo?, the variance of the Fn) PSD estimator (20)
tical variability of FT(n), PER() and AR() spectral estimators is given approximately as
in the case of random processes with mixed spectrum. Both of A
these rely on the statistics of the lagged-product correlation esti- Var{sFT(n)(wo)}z[(Az/z)77“2+Z‘Tg]/N (259)

mator. The following resulf9] provides this. Let Var{SFT(n)(w)}E(2+mr/2)ag/N, for w*w, (250)

N—17
R (7)= 2 x(n)x(n+1) (18) If nandN are selected such thatN—O asn, N—o, then
TN =1 T (25b) yields the well-known variance value oirZ/N at frequen-

) ) cies removed from the tone location. At the tone location we see
denote the biased Iaggted-produgt estimatoR,(7). Let R, from (25a) that the statistical variability for large is dominated
=h[Rx(0), ... ,R(n—1)]" and letR, denote the estimator of it. py the tone arithmetic variability, and is 6%). Figure 7 com-
Then

Result 3[9] yN(R,—R,)—N(0,3) asN—.
The form of the covariance, given in[9] is lengthy and does

not offer much insight. The following expression [df0] affords

insight in the frequency domain: N=2000, Simulation size=500
2 ™ 250
s= Ef (Am(AYA) 5= wg) + S,(0)}S,(@) (@) (@) dw pod
(19) 200 - d
where y(w)"=[1,c0sf), . . . ,cosfi—1)w]. This expression will

be useful in characterizing the statistical variability of both th 21
FT(n) and AR(n) families. It reveals the direct contribution of the g
tone at the tone frequency, as well as how it contributes to va
ability at other frequencies.

100 - i

4.1 Statistical Variability of the FT (n) Family of Spectral
Estimators. In keeping with(3), we define the FT{) spectral
estimator as

. - . I R T
SFT(n)(w): 2 R( T)e’J‘”T (20) Number of Lags, n
7=—(n—-1) (a)
Recall that(18) is biased. The bias factor equals-*/N, so that
for 7<<N the bias will be small. Thus, in the case whereN the
mean of(20) is approximately equal to the theoretical ) (spec-
trum (3). In many applications involving mechanical systems on
has access to a very large amount of data relative to the numbe
correlation lags selected for spectral analysis. Proceeding un %3 1
this assumption, and then to compute the varianc@@f, notice
that it may be expressed as 025-

Serim(@)=2y(w)"R,— R,(0) (21)

Since (21) holds, as well, when the estimated correlations ai
replaced by the theoretical ones, and siR;€0) is unbiased for ~ °'°f 1
R,(0), it follows that i

Var{Ser (@)= (4N E{ ()" (R~ R 1%} |
=(4IN) y(0)"S (o). (22)
Substituting(19) and (22) gives 0

Q.4

N=2000, Simulation size=500
035

0.2+ B

Variance

Q.05

i . . . .
Q 50 100 150 200 250 300 350 400
Number of Lags, n

X~ 4 ™ 5 (b)
Var{S,:T<n)(w)}=m ) {47(A“14) (v w,)

Fig. 7 (a) Comparison of simulation results against predic-
+SS(V)}Ss(v)|y(v)"y(w)|2dv (23) tions (25) at tone’s frequency f =0.25Hz, (b) Comparison of
simulation results against predictions (25) at noise frequency
To simplify (23) notice that f=0.1Hz.
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pares(25) with variances obtained from running 500 simulationstrue variance as a function & which is O(1N). However, there

The record size walsl=2000, and for each record correlation lagare notable differences. For example, as a function of ordéhne

estimates up to orden=400 were computed usingl8). The presumed variance will behave asr@), while the true variance

agreement is reasonable, but both of the predicted quantitiesjj pehave as O?). For a large number of averagds/n, the

(25) are slightly less than the observed values. We believe that thigi_squared distribution used in théatlab estimation of a speci-

is, in part, due to neqlectlng the influence of the Dirichlet kernelfied (1 )% confidence intervaCl) can be approximated using

in favor of the Fejer’s kernels in obtainin@4). It is not unex- a normal distribution via the central limit theorem. In this case the

pected that at the tone frequency the variance becomes domingigssumed 2r Cl will use (27b), while the actual one will use

by the arithmetic variance of the tone as>oc. This will also be (28). In either case, it will still be a factor of /n above and

seen to be the case with the PBR@nd AR(n) estimators. below the estimated PSD, as would be the case for noise alone.

However, at tone frequency it is ill-defined in the sense thét if

4.2 Statistical Variability of the PER(n) Family of Spec- andn are increased in a way such thiétn is held constant, then

tral Estimators. The expected value of the PEM(spectral es- the CI will change accordingly at the tone frequency, while re-

timator associated witkd) is given by(11). For regular random maining the same at other frequencies. Simply, this is because the

processesi.e., without tonesthe statistical variance of this esti- PSD estimate of the tone itself is ill-defined, as discussed above.

mator is well known. At this point we must recall that we are L o .

considering the truncated periodogram, where the number of uti-4-3 Statistical Variability of the Ar (n) Family of Spectral

lized correlation lagsy, is less than the record siz¢, Rather than EStimators. Result 3 above was significant in that it was the

using (18) in (10) it is more common to compute the truncatedirst che}racterlgatlon of the statistics qf the' lagged-product auto-

periodogram as an average Min periodograms associated Withcorrelatlon_es_tlmato_r for processes with mlxed_spectrum. It was

the contiguous data. Since the single periodogram variance g?)e _essentlal ingredient for o_btammg the following result for the

proximately equals t&%(w) for a colored noise process, the varifamily of AR(n) spectral estimators. Le&Byrn(w) denote the

ance of this average ®i/n periodogram estimators will convergeA_R(“) PSD estimator based on the estimated autocorrelation lags

to zero asN/n—, and becomes approximately given by (15). The following result is fron{10]:
Result 5[10].

Var{Spern)(@)}=nS(w)/N, for [o—w[>0 (26) )

Notice that(26) is constant in the case of the non-truncated peri- \/N[ASARW)(w)—SAR(n)(w)]HN(O,Qn) (29)
odogram (=N). This is the well known inconsistency property.l.he form of
of the periodogram. When a tone is present then one can sh

that, because of the nature of the Fejer kermel, for sufficient rder to illustratg29) we offer Fig. §a), which illustrates how the

large order,n, the tone influence will be localized abowt, . In -
that region the statistical variance will be dominated by the arm?_tandard deviation depends on the AR orderboth at the tone

. ) S r n n fr ncy removed from it. Wi h
metic variance, which is @) regardless oN. It should be ex- equency and at a frequency removed from it. We see that at

. . . frequencies removed from the tone frequency, it increases sharply
pected that whem is sufficiently large ther(26) will hold ap- ¢, \a1ues of the AR ordem, typically used in spectral analysis,

proximately at frequencies removed from the tone frequency. B\E/ﬁile at higher orders the rate becomes more constant, and is

there is one more very important point to mention. Commonly, . . ; L
. pproximately 1.5 dB per order doubling. We also notice that it is
has been speculated tH&6) will hold for reasonably narrowband very insensitive to the SNR. As noted above, the complex nature

processe$1,2,8. When conducting PSD analysis it is often preqs ) “in’(24) precludes its use to predict this rate. However, in

h X . D
sumed that one is dealing with a purely regular process. In thi, 'of the orthogonalizing role that kernels such as the Dirichlet
situation the estimate @26) is obtained by replacing the theoret-a d Fejer type play, it is possible to obtain a simple approximation

ical, and unknown spectrum, with the estimated one. While ngt_ - : A :
' ) ! . r it. This expression is frorh11], for the case of a process with
shown here, it turns out th&26) holds very well even in the case no tones. It is given by

of a tone, which is the limit of a narrowband process. If one were
to replace the noise spectrum(i26) by (11), then one obtains the Q,=2nF(w)IN, |o—wy>0 (30)
variance expression

. is quite involved, and so is not repeated here for
% sake of brevity. The interested reader may refefl@. In

The variance expression i80) is extremely simple relative to
A? A? that in[10] for the variance in(29). Furthermore, it does predict
7 Knlo=wo)+ 7=Ky(w+ o) the noted rate. A comparison ¢26) and (30) shows that for a
given order,n, the AR estimator variance is three times greater
2/ N than the periodogram. The fact is, however, that due to the poor

var(§ssimed o f(w)}=n

+ S, @Ky (w) (273)  resolution of the latter in favor of the former, the valuenofised

in periodogram analysis is usually orders of magnitude larger than
Clearly, away from the tone frequencg7a) yields a value close that used in AR analysis. In the context Bkample 1 Fig. 8b)
to the correct varianc&6) for largen. At the tone frequency, if jllustrates the variability of an ARO) PSD estimate based on a
we ignore the negative frequency contributi@®Ya) becomes record of sizeN=5000.

2

0 2 . . . e
- / N (2M) 5 Statistical Properties of Averages of Families of PSD

4
. . . . _ Estimators
However, in actuality, for a mixed process of sinusoid plus

normal white noise with fornf2), wheres, (w) = oﬁ, if the tone’s The last two sections addressed the general behavior of families

frequencyw, is exactly at a bin frequency, it is straightforward to®f FT(n), PER(), and AR() spectra, in terms of arithmetic and

show that the variance of the PER(estimators at the tone’s statistical variability. We will investigate the behavior of averages
frequencyw, is: of a given family, and in particular, what advantages might be
o is:

gained. In this section we investigate the possible advantages of
N nSﬁ(wo) nAS using an average of PSD estimators of a given type, as opposed to
Var{Spern)(@o)} = — 25w )) (28) asingle one. As noted iixample Iof Sec. 2, it can provide some
s level of increased confidence in the order selection process. In
where,AS/(ZSa(wO)/n) is the local SNR at the tone frequency.section 3 we discovered that by averaging ®T&pectra, one
Comparing(27b) with (28), we see that the presumed variancarrives at an estimator which has more desirable properties. The
(obtained for example, usinilatlab) will behave similar to the main difficulty with conducting an analytical study of statistical

Var{Sssumed o (wo)=n|—n+o?
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7

B
L
=

T

Theoraticai sid of singls AR{p) spectrum

-~ SNR=10
— SNR =109
- SNR=0.1

5.1 The FT(n) Spectra and Their Averages. From(8), we
have that the average of tHET(k)}i_, spectra is simply the
PER(n) spectrum. Hence, here we will denote this average by the
latter.

Comparison of the Means of the 1) and PERnN) Spectra
In this subsection there is no need to resort to simulations, since
we have expressions for the means of both spectra. The means of
these two spectra are given more generally(yand (11), re-
spectively. Because our current investigation focuses on white
noise, only the last term in each of these equations is altered.
Specifically, the terms are simply replaced by the noise variance,
(rg. Thus, the advantage offered by averaging is simply that the
Dirichlet kernel is replaced by the more desirable Fejer’s kernel.
They are equal at the tone frequency, and away from it the latter

ey [ —Zsnm=10 - will be closer to the true noise spectrum than the former.
AT Comparison of the Standard Deviations of the (RY and

Averages

Sample std of AR family 4

1 .
80 160 120 140 160

Qrder (n)

(a)

dB

T T

- - mean-2'sid of AR(40)
—— lrue specirum
—— mean+2-std of average AR(2--180}

T t
= mean+2'51d of AR(40}
—— mean-2'sid of average AR(2-~150)

L
0.05

ot

"
0.2

n L 2 s .
0.25 03 035 o 0.45
Fraquency (Hz)

(b)

PER(n) Spectra For n sufficiently large the arithmetic standard
deviations of these collections of theoretical spectra can be ob-
tained from(9) and(14). The statistical variances of each of these
single spectra for a given can be obtained fron®25) and (26),

(28). But since the PERY) spectrum is exactly the average of the
{FT(K)}¢_, spectra, clearly, it includes the arithmetic variance of
this collection as a portion of its statistical variance. So the ad-
vantage of averaging, in terms of variance reduction at frequen-
cies removed from the tongecall, at the tone both the mean and
variance, being functions af, are both converging to infinity with

-8k . 4

A
B

dB

—o- Avg, SNR=1.0
—%— Avg, SNR=10.0 4
—£&- Avg, SNR=0.1
@ Single, SNR = 1.0
# - Single, SNR = 10.0
A - Single, SNR = 0.1

L L L L I ' I
50 100 150 200 250 300 350 400 450 500 550
Order n

(a)

Fig. 8 (a) Evaluation of the variance expression in (28) as a
function of model order at a noise frequency. Also shown is the
estimated variability of the average of AR spectra (See Section sk
5 for related discussion ). (b) Comparison of predicted (using
(28)) 2-o regions associated with an AR (40) model, and an av-
erage of AR (p) models for p =2:160. Also shown is the esti- o
mated variability of the average of AR spectra (see Section 5
for related discussion ).

dB

—©- Avg,SNR=1.0

5- —%— Avg, SNR=10.0 i
- . —£— Avg, SNR = 0.1

o O - Single, SNR = 1.0

* - Single, SNR = 10.0
A - Singls, SNR = 0.1

properties of an average of estimators is that of obtaining all of tt "%~ e 150 0 0 300 a0 40 40 500 550

joint statistics. For this reason, we will here resort to the use « Order n

simulations. Specifically, to estimate the mean and variance infc. (b)

mation associated with a family, we will use 200 realization

_Each _reallzatlon includes 10’0(.)0 samples of the protgssive single order PER (n) and the averaged PER (n) spectral esti-

investigate three data sets of different SN&1, 1.0, and 10. We | 5tes for selected order n at nontone frequency f  =0.1Hz. (b)

keep the noise power constant while changing the power of ta@mparison of statistical standard deviation of single order
sinusoid to change SNR. These simulations will be used for ti&R(n) and the averaged PER (n) spectral estimates for se-
FT(n), PER(M), and AR() investigations. lected order n at tone frequency f =0.3 Hz.

%ig. 9 (a) Comparison of statistical standard deviation of
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7 ' ; v < to n? and to SNR when the noise power are constant. At the tone

= agnr-o1 -+ frequency, Fig. @) illustrates(28), and in particular, that the
I e | 1 statistical standard deviation of single order PERgstimate in-
ol e e | crease by 3 dB as doubles and by 5 dB as SNR increases by 10
ad —x= siSNR=10 times. From this figure we observe that the statistical standard
1ob el ?  deviation of PER(n) estimate has similar behavior to that of the
3 X// single order PER{) estimate, while offering a reduction of 3 dB
P 1 or 50% in standard deviation by averaging at tone frequency.
g 1 5.3 The AR(n) Spectra and Their Averages. The simula-
tions were run fon= 20, 40, 80, 160. Whil¢15) or (16) may be
-3 ) used to arrive at a form for the mean of tAR(n) spectral esti-
o ‘ . . ‘ l . mator, we will forego this exercise, and simply note that at all
20 40 60 80 100 120 140 10 frequencies except that of the tone the average will converge in
order the mean to the true spectrum, while at the tone frequency it will
(@) approach to infinity at a rate of @f). This is the same behavior
60 , . \ ] as that of the mean of the single order ARR(estimator for large
n.
&~ av.SNR=0.1 | - Comparison of the Standard Deviations of the AR(n) and

si,SNR =0.1 . .- .
o ausRe i | AR(n) Spectra At w# wq, (30) predicts that the statistical vari-

- :;}?S’\:\IRR=:110 ] ance ofAR(n) spectral estimate is approximately proportional to
= SSNA=10 the noise power square and to the ordeFhus, we see about 1.5
dB increase as n doubles in Fig.(2Dand the standard deviation

is the same for the three datasets with different SNRs while the
noise power keeps constant. The statistical standard deviation of
the AR(n) estimate is about 2 dB smaller than that of the corre-
sponding single ordeAR(n) spectral estimate. Ab= w,, the
standard deviation oAR(n) spectral estimate is, as mentioned
below (29), quite complex, and not amenable to analysis. The

2 0 8 8 wrder 100 120 40 %0 simulation results in Fig. 1@) show it increases by about 7.5 dB
(b) asn doubles and for large, it increases by 20 dB as SNR in-
creases by 10 times which could also be approximately predicted
Fig. 10 (a) Comparison of statistical standard deviation of from (30), if we replace the noise power spectrum with the sinu-

single order AR (n) and the averaged AR (n) spectral estimates ~ Soid’s power spectrum at the tone’s frequency(30). Thus the

for selected order n at non-tone frequency f =0.1Hz. (b) Com-  statistical variance ab= w, is approximately, proportional to the
parison of statistical standard deviation of single order AR (n)  square of SNR and ta®. We gain more than 2 dB decrease in
and the averaged AR (n) spectral estimates for selected order n statistical standard deviation by averaging and the gain will be
at tone frequency f =0.3 Hz. higher by increasing SNR and the averaging omler

) ) ) ) ) ) Application to The Westland Helicopter Vibration
increasingn) is obtained by simply comparin@5b) to (26). The Data
averaging procedure offers only 1 dB of reduction in the standard ) ] o o
deviation. The last section suggested that there might exist little gain, in
. terms of variance reduction, by averaging eithRER(K)}r_, or
f5'2 “Th(E PEE(EI)QSpictra andtThzervera?ets. Thtle(averlage {AR(k)}r_, collections, with the exception being that averaging
of a collection{ &)}k=1 Spectra does not, to our Knowledge o former can eliminate spectral oscillations in the side lobe leak-
have a well known closed form, as was the case in the last s

on. H h ¢ d d Cmulati . je. So, in this section our focus will be limited to the variability
section. Hence, here we are forced to conduct simulations In orgty,e collections, as was the case in the example in Section 2.

to .estimate the statistical variability of thBER() spectral Furthermore, we will not include the Fiij family here, as its
estimator. - properties are, in our opinion, not sufficiently attractive for use in
Comparison of the Means of the PER(n) @ABR(n) Spectra  mixed spectral analysis using spectral families.
It follows from (12a) that at nontone frequencies, the mean of |, order to illuminate the value of the variability of the collec-
PER(n) estimate converges to the true spectrum at raigns, we make a comparison of 95%r 2-0) confidence intervals
O(In(n)/n), which is slower than the convergence rate of the meaj} the PER() estimators fon= 256 and 1024 and of the AR
of single order PER{) estimate, which is @/n). At the tone estimators fom=20 and 40 spectral in relation to real vibration
frequency, it follows from(12b) and(11) that the mean dPER()  data from Westland Helicopter data sfite w3003001.bih The
estimate is half that dPER(n), or 3dB smaller. Because the jointfile size is 412,464. The data were sampled at 103,116.8 Hz,
statistics have no bearing on the mean of #eR(n) estimator, which we have normalized to 1 Hz. The data time duration is thus,
we were able to compute the medf3), without the need for T=4 seconds, which corresponds to a maximiT) frequency
simulations. resolution of 0.25 Hz. Since we utilize a normalized the sampling
Comparison of the Standard Deviations of the PER(n) anfdequency, 1 Hz is actually 103,116.8 Hz. The spectral structure is
PER(n) Spectra To evaluate the potential advantage in terms afomplicated and contains many sinusoids plus highly colored
variance reduction, we offer Fig.(® shows that the statistical noise. For this reason we heterodyned the ¢iatduding decima-
standard deviations of botRER(N) and PER() spectral esti- tion by factor of 10 to restrict the range of interest to the normal-
mates are nearly independent of SNR and both increase by 1.5id&d frequency range ¢0.16-0.21Hz.
per order doubling at non-tone frequencies. But we gain about 2Comparison of 95% (or 2f) Confidence Intervals Correspond-
dB or 37% decrease in standard deviation by averaging for edaoly to the PER(n) Estimate§igure 11 shows that the 95% CI
selected order. At the tone frequency, according2®), the sta- (Fig. 11(a)) and standard deviatioffFig. 11(b)) of PER256) and
tistical variance of PER{) estimate is approximately proportionalPER1024 PSD estimators calculated usimdatlab, which ap-
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(b)

Fig. 11 (a) Comparison of 95% (or 2- o) confidence interval of PER (n) for n
=256 and 1024 for Westland data. (b) Comparison of 2-sigma of PER (n) for n
=256 and 1024 for Westland data.

plies Kay's formul# 2]). The orders 256 and 1024 is chosen betl we can be reasonably confident that there is a sinusoid at
cause people traditionally use these two orders in periodograthi761 Hz. At the other three frequencies, this increase of stan-
based spectral analysis. Asis large enough, by the central limit dard deviation is close to 9 dB. We need to note that first, at these
theorem, the variance of the PER(from estimate can be pre- three frequencies, the local SNR is much smaller than that at
dicted by(26) at nontone frequencies, and by af&¥a) at tone 0.1761 Hz. Second, if the tone frequency is not exactly at bin
frequencies. Figure 14) and Fig. 11b) show that at 0.1671 Hz, frequency, the extent of the increase would be a little less than 9
0.1729 Hz, 0.1761 Hz, and 0.1834 Hz, the standard deviationsdB. So, the spectra suggest that each of the three frequencies may
the PER1024) estimate are approximately 8 dB, 7 dB, 9 dB, andvell also correspond to tones. It is shown (@6) that at non-

8 dB, respectively, larger than those of the FEF®) estimate. At tone’s frequency, the variance of PER(is just O(), which is 3
other frequencies, we only see about 3 dB increase frogB increase from the standard deviation of REF®) to that of
PER256) to Pef1024. Now, (27a) indicates that for large fixed PER1024. Therefore, at other frequencies, it is just regular pro-
N, if the local SNR is large, the variance of P&ER at tone’s cess. If we compare the behavior of the means of the (PEiR
frequency would be G(°), correspondingat a 9 dBincrease of and PER1024 estimates wit{(11), the same conclusion follows.
standard deviation from PER56) to PER1024). Thus, from Fig. At the four tone frequencies the mean increases by approximately
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Fig. 12 (a) Comparison of 95% (or 2-o) confidence interval of AR (n) for n
=20 and 40 for Westland data, (b) Comparison of standard deviation of AR (n)
spectral estimates for n =20 and 40 for Westland data.

6 dB from the PERR56) to the PER1024) estimate, while re- gests that they are a consequence of the distribution of extraneous

maining essentially unchanged at other frequencies. model poles. In Fig 1@), we see a 6 dBncrease in the mean at
Comparison of 95% (or 2¥) Confidence Intervals Correspond-the frequency, 0.176 Hz B§16), this amount of increase is con-

ing to the AR(n) Estimate¥he AR20) and AR40) spectral esti- sistent with the presence of a tone. At other frequencies the two

mates were selected since their orders are in the range that waeddfidence intervals are nearly identical. Hence, in those regions

be obtained using most of the popular order selection rides  one might assume the spectrum is not only devoid of tones, but is

[2]). The 95% C.I. of AR20) and AR40) estimates are plotted in well characterized independent of the model order.

Fig. 12a). They were obtained by usin@0) to estimate the stan-

dard deviation, along with a normality assumption. According t .

(30), for largeN, at a tone frequency, the standard deviation o% Summary and Conclusions

AR(n) spectral estimator should be @%). While at a frequency  This work was concerned with the properties of families of

away from the tone, it should be @). Figure 12b) shows that at spectral estimators. The families included the ®T(PER(M),

0.1761 Hz, the standard deviation of AR) spectral estimate is and AR(n) PSD estimators, where n denotes the number of cor-

7.5 dB larger than that of the AR0) spectral estimate. However, relation lags used. The interest was to identify what factors control

at frequencies removed from this frequerioutside of the inter- both arithmetic and statistical variability within a family. The pro-

val (0.17, 0.18] the standard deviation increase is only about 1.&esses considered were those composed of tones and colored

dB. While at several frequencies between 0.167 Hz and 0.183 Himise. For very low orders the arithmetic variability will be

there is more than 3 dB difference between the standard devidesely related to the noise color. For this reason, we elected to

tions of the two spectral estimators, their uniform spacing sufpcus predominantly on the case of white noise. In this setting the
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arithmetic variability associated with spectral bias is caused by ttfee vast majority of tone detection algorithms are based on the
presence of the tone. We reported behavior of both bias and vaaitter, it is quite possible that the former could offer significant
ability in terms of order dependence rates. Some of the resulisprovement. This was, in fact, the basis fao].
reported have been known, but perhaps not well known. The un-
desirable properties of the Fi) spectrum, stemming from the
Dirichlet kernel, were such that it was decided to see if averagifycknowledgment
could improve matters. This average is, in fact, the tap¢ted  This work was supported under AFOSR Grant #F4962098
averaged periodogram which is so popular. The AR family was
noted to have Qf?) behavior in both mean and standard devia-
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