
sses
ily. If
the
bility
point
s of

oint
run-
ssive
done
ffer

lude
nt to

Downloaded F
Li Wen

Changxue Wang

Peter Sherman

Department of Aerospace Engineering and
Engineering Mechanics,

Iowa State University,
Ames, IA 50011

Using Variability Related to
Families of Spectral Estimators
for Mixed Random Processes
Traditionally, characterization of spectral information for wide sense stationary proce
has been addressed by identifying a single best spectral estimator from a given fam
one were to observe significant variability in neighboring spectral estimators then
level of confidence in the chosen estimator would naturally be lessened. Such varia
naturally occurs in the case of a mixed random process, since the influence of the
spectrum in a spectral density characterization arises in the form of approximation
Dirac delta functions. In this work we investigate the nature of the variability of the p
spectrum related to three families of spectral estimators: Fourier transform of the t
cated unbiased correlation estimator, the truncated periodogram, and the autoregre
estimator. We show that tones are a significant source of bias and variability. This is
in the context of Dirichlet and Fejer kernels, and with respect to order rates. We o
some expressions for estimating statistical and arithmetic variability. Finally, we inc
an example concerning helicopter vibration. These results are especially pertine
mechanical systems settings wherein harmonic content is prevalent.
@DOI: 10.1115/1.1409257#
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1 Introduction
Spectral estimation has played a major role in a wide variety

theoretical and application areas of science and engineering s
the advent of modern computing and the FFT in the mid-196
Traditionally, the idea has been to find the ‘‘best’’ spectral estim
tor. Often the desire was to balance resolution and variability. T
is the idea behind both averaging of periodograms and autoreg
sive ~AR! order selection methods. Perhaps because of the lim
tions and expense of computing resources in the early years it
natural to rely on such selection methods. But it is also natura
question this entire approach if the variability within the family
spectra under consideration is significant. It may well be t
neighboring spectra exhibit measurable variability at certain
quencies, while not at others. In fact, this is exactly the case at
near frequencies corresponding to the point spectrum, when
random process includes a deterministic as well as regular c
ponent. Sinusoids are the most common source of point spect
Given an infinite number of correlation lags, they would appea
Dirac delta functions. But if the spectral family is indexed by t
number of correlation lags used, as the case in periodogram
and other methods, then the influence of the point spectrum
be seen as peaks whose values are, in and of themselves m
ingless, and as spectral leakage.

With the advances in computing resources it is now far easie
both compute and analyze a large family of spectral estima
than it was even 15 years ago. Even so, this family-based
proach to statistically reliable spectral estimation has recei
very little attention; in spite of the fact that it has been sugges
for over 15–20 years now. For example, in@1# and@2# the use of
periodograms with successively larger windows is proposed.
idea is that if the spectral information remains insensitive to
window size changes then one can have greater confidence
This work is intended to contribute a better understanding of
variability of spectral estimator families, with particular attentio
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to the cases that caused by the presence of point spectrum.
cifically, we address three families: the truncated Fourier tra
form, the averaged periodogram, and the AR spectra. This v
ability will be addressed in two stages. In Section 3 we w
investigate the variability of these families when the autocorre
tion information is exact. This will reflect the order-depende
theoretical spectral variability. It is also valuable in its own righ
since there are many applications where the amount of avail
data far exceeds the range of reliable correlation lags that
might consider. In Section 4 we address the statistical variab
associated with lagged-product estimates of the correlation in
mation. The value of the sample mean and corresponding varia
is one way of using a family of spectra, as suggested in@1# and
@2#. The value of this information is the subject of Section 5.
Section 6 we apply the results of the previous sections to vibra
data from a helicopter drive train. Our summary and conclusi
are given in Section 7. We now proceed to motivate our inve
gation and describe the types of processes we are concerned

2 The Structure of PSD Estimators for Mixed Spec-
trum Processes

We consider wide sense stationary~wss! random processes o
the form

x~ t !5s~ t !1«~ t ! (1)

where the signal,s(t), is composed of sinusoids with determini
tic amplitudes and frequencies$Ak ,vk%, and with independent
phases each distributed uniformly over@0, 2p!. The noise,«(t), is
regular, and is assumed to have a continuous power spectral
sity ~PSD!, S«(v). The PSD of~1! is given by

Sx~v!5(
k

Ak
2

4
d~v6vk!1S«~v! (2)

whered~v! is the well known Dirac-d function. Consequently,~2!
is only defined in the sense of a generalized function, in that o
its integral, the cumulative PSD, is well defined with jumps at t
signal frequencies. The model~1! is fundamental to mechanica
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systems, such as rotating machinery. Typically, processes as
ated with such systems include harmonics as well as highly
ored spectral components.

Let $Rx(t)%2(n21)
n21 be the theoretical correlation informatio

through thenth lag. Then the theoretical Fourier transform~FT!
spectral estimator is given by

SFPT~n!~v!5 (
t52~n21!

n21

Rx~t!e2 ivt (3)

We remark that in~3! and throughout the remainder of th
work it is assumed that the sampling interval is 1 second, so
all frequencies are in the interval@0, p!. It is commonly assumed
that ~3! will converge to ~2! when the number of lags,n, ap-
proaches infinity. In the absence of tones this will generally
true. But when tones are present it isnot true, as will be shown.
One solution to this problem turns out to be to use an averag
FT(n) spectra for a range of values ofn. In addition to solving
this problem, the use of such a family offers information that
use of any single PSD cannot offer, namely spectral variab
with respect to the number of lags. This is in addition to t
statistical variability associated with the use of estimated corr
tion lags. The theoretical truncated periodogram, PER(n), is one
such spectrum. Another common PSD estimator which uses
same n correlation lags is the AR(n) spectrum. The specific form
of the theoretical AR(n) spectrum is well known~e.g.@3#!, and so
it will not be repeated here. In contrast to the FT(n) spectrum,~3!,
the theoretical PER(n) and AR(n) spectra converge at almos
every frequency~except at the point spectrum frequencies! to the
continuous spectrum asn→`. The FT(n), and PER(n), and
AR(n) theoretical spectra all exhibit order-dependent variabi
due to the presence of tones, and become unbounded at the
frequencies asn→`. The use of estimated correlation inform
tion introduces statistical variability, in addition to the arithme
variability that we will investigate in the next section. Befo
doing so, however, we offer the following example to provi
more motivation for our investigation of the utility of a family o
spectral estimators.

Example 1. In this example we consider a process~1! consisting
of a single sinusoid, plus a regular component. The theore
PSD is given in Fig. 1. It includes thed-function associated with
the tone. The peak in the continuous spectrum was selecte
simulate a strong system resonance, while the dip correspon
an anti-resonance. This structure is commonplace in mecha
systems settings.

Assuming that a sufficiently large number of measurement
available~as the case with rotating machinery operating at c
stant speed! allows us to justify the use of theoretical correlatio
information. Figure 1 includes the62s arithmetic variability
~dashed lines! of the family of theoretical FT(n) spectra forn
532,33, . . . ,1024. While not immediately obvious from Fig. 1
this variability reflects the fact that all of these spectra accura
capture the spectral resonance region, while none of them ca
either the antiresonance or the tone. It is well known that
spectral leakage associated with the tone is the source of
variability. But here it is also responsible for non-local bias a
variability in regions where the PSD magnitude is not significa
In the region near the tone both bias and variability are mean
less, since in the PSD domain a tone is a Dirac-d function. The
practical implications of this are that the estimated amplitude w
converge to infinity asn→`, and, consequently, so will the var
ability of the family of estimators.

A major point of the following sections is to examine the abo
behavior in detail. Hopefully, this example has hinted at the
tential value of using a family of spectral estimators, as oppo
to a single ‘‘best’’ estimator, as is traditionally done. By observi
the behavior of variability over increasingly larger ranges on
~termed window closingin @1# and @2#!, it is possible to gain
greater confidence of the spectral structure. For example, in
resonance region there is very little variability, so that one c
Journal of Dynamic Systems, Measurement, and Control
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presume that this region is well characterized without concern
any order selection rules. In the region of the tone the variabi
range increases, suggesting that this region is not appropriat
characterization by a FT(n) spectrum for any value ofn. This
suggestion requires clarification. In many situations, such as
veloping noise and vibration specifications for mechanical s
tems, the window size,n, is required to be a specific value. I
such situations where everyone uses the same window size,
number of averages, etc. the FT(n), PER(n), and AR(n) PSD
estimators can provide proper spectral distribution informat
over frequency intervals. But just as often, if not more so,
value forn is not fixed. Asn grows so does the peak of any ton
associated with a PSD. This behavior does not appear to h
bothered many people, since it has been demonstrated routine
most of the high resolution spectral research conducted over
past 35 years, in the context of the two-sinusoid plus white no
setting~e.g.,@1#!. But in the context of using a family of spectra
as suggested in@1# and @2#, one would conclude that any regio
involving tones should be viewed as unreliable. In the realm
mechanical systems, and in particular, rotating machinery,
would adversely affect spectral analysis, as a whole. This co
lead one to apply spectral decomposition tools such as@4# to
eliminate this problem. But we will not address this approach
this work, since we are concerned here with the common pro
dure of analysis of the mixed spectrum, as it is. The FT(n) spec-
trum is perhaps not as popular as the PER(n) spectrum. Tradi-
tional reasons for this range from the fact that it can lead
negative PSD estimates, to the fact that the side-lobe beha
associated with the rectangular windowing operation results
excessive local spectral smearing. The above example sug
that the FT(n) family is not well-suited for accurate characteriz
tion of anti-resonance structure when tones are presentanywhere
in the spectrum.

To further motivate the following sections we offer the perfo
mance of a family of AR(n) spectra. Using a minimum number o
ordersn55,6, . . . ,10 inFig. 2~a! produces less variability in the
anti-resonance region than the FT(n) family does. Furthermore
by using ordersn520, . . .,100 ~far fewer and lower than the
FT(n)! Fig. 2~b! indicates not only lack of bias, but minima
variability everywhere except at the tone region. Also, the size
that region is lessening with the use of higher lags~in contrast to
the FT(n) spectra!. Thus, one can conclude that for accurate an

Fig. 1 Arithmetic mean and 2- s curves corresponding to use
of a family of theoretical FT „n… spectra. †Note: Where not
shown, the lower 2- s curve is À`.‡
DECEMBER 2001, Vol. 123 Õ 573
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resonance characterization the AR(n) family is more appropriate
than the FT(n) family. In the region near the tone the variability i
much more localized than that of the FT(n) family. Even so, since
the AR(n) family is a family of PSD estimators, at the tone fre
quency the amplitude will converge to infinity asn→`, as was
the case with the FT(n) family. Our analysis will reveal, however,
that the rate of convergence is markedly faster than that of
FT(n) family. This suggests yet another use of spectral familie
namely to use their convergence properties to identify tone co
ponents. We will discuss this point in greater detail.

The above example utilized theoretical correlation informatio
Hence, the bias and variability may be said to be arithmetic
nature, as opposed to statistical variability related to using e
mates of the correlation lags. We now proceed to a more deta
discussion of the arithmetic variability associated with the the
retical FT(n), PER(n), and AR(n) spectra, which utilize perfect
correlation information. The justification for this is in the fact tha
often in mechanical system analysis one has access to extre

Fig. 2 „a… 2-s curves for an average of 6 AR „n… spectra, n
Ä5:1:10; „b… 2-s curves for an average of 81 AR „n… spectra, n
Ä20:1:100.
574 Õ Vol. 123, DECEMBER 2001

rom: http://dynamicsystems.asmedigitalcollection.asme.org/ on 09/01/201
s

-

the
s;
m-

n.
in

sti-
iled
o-

t
mely

large amounts of data, in relation to the number,n, of estimated
correlation lags used for analysis. In such cases it may be rea
able to presume that the correlation information is highly reliab
We will, at times during this discussion, restrict our attention
the situation of a single tone plus white noise. The reason for
is twofold. First, the presence of a tone can have a signific
effect on spectral variability. Second, by use of band pass filte
it is sometimes possible to restrict the region of interest such
within that region the noise spectrum is relatively flat.

3 Arithmetic Variability of Theoretical FT „n…,
PER„n…, and AR„n… Spectral Families

In this section we investigate the arithmetic variability asso
ated with the use of theoretical correlation information for thr
spectral families. Two of these, namely the FT(n) and AR(n),
have been discussed above. The third is the family of trunca
periodograms, which we denote as the PER(n) family. This is by
far the most popular family of spectral estimators in use in pr
tically all areas of science and engineering. We will obtain qu
titative expressions for both the bias and variance. These
entail order-dependent terms, which will provide growth rate
formation in relation to tones.

We restrict our attention here to the case of the model~1! with
a single sinusoid:

x~ t !5A sin~vot1u!1«~ t !. (4)

To be sure, the two-tone problem is an important and comm
one. But such a setting would significantly complicate the ana
sis, possibly to the point of distraction from our main goal, whi
is to gain a better understanding of the variability of a spec
family in relation to a mixed spectrum setting. So little attenti
has been paid to this problem that we believe it is appropriate h
to restrict our investigation to the more simple setting~4!, in order
to achieve our goal.

3.1 Variability of the Theoretical FT „n… Spectra. For the
model ~4!, Eq. ~3! takes the well known form~e.g. @2#!:

SFT~n!~v!5
A2

4
Dn~v2v0!1

A2

4
Dn~v1v0!1S« ^ Dn~v!

(5)
where Dn(v)5sin((2n21)v/2)/sin(v/2) is the Dirichlet kernel
@3# associated with the 2n21 point rectangular window. Now,

lim
n→`

SFT~n!~v!Þ
A2

4
d~v6vo!1S«~v! (6)

Notice that the middle relation in~6! is not an equality, but
rather anonequality. This reflects the fact that the family of Di
richlet functions does not converge~anywhere! asn→`. This is
exemplified in Fig. 3. There, we see that because the Diric
function is proportional ton, even though the major side lobe
move closer to the tone frequency for increasingn, they are also
increasing in size. Consequently, we see that at frequencies s
ciently far from this frequency the Dirichlet peak values do n
decrease with increasingn. This fact, while certainly not new,
seems to have been ignored in the vast majority of books
papers on the subject where the spectral density is defined via
limiting Fourier transform of the correlation function, using a
nite number of lags, as in~3!. Even though, relatively speaking
the energy at the origin will overwhelm that in other regions,
that it mayappear that the sequence is converging to a Diracd
function, it is not. In fact, at any fixed frequency other than that
the tone, the sequence of functions will neither converge nor
verge asn→`. Rather it will oscillate with bounded variation
This is of sufficient importance when assessing variability, and
so often ignored in systems and signals publications, that we
present a formalized statement of this for the family of rectangu
windows.
Transactions of the ASME
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Result 1. The Fourier transform pair: f(t)51⇔F(v)5d(v) is
not necessarily true. It depends on the selection of function
which f(t) is the pointwise limit. In particular, let w(n)(t)51 for
2(n21)<t<n21, and let it equal zero otherwise. Le
W(n)(v)5Mst52(n21)

n21 w(t)eivt be the Fourier Transform of
w(n)(t). Then lim

n→`
Wn(v)5 limn→` Dn(v) exist nowhere.

Specifically, W(n)(0) is O(n), while for uvu@0W(n)(v) oscillates
(as a function of n) between61/sin(v/2).

For the more mathematically inclined reader, we remark tha
rigorous definition of the Dirac-d function as the limit of a family
of functions requires the use of a family which is suitably we
behaved~@5,6#!. The discontinuities at the ends of the rectangu
function family are well known to be not well-behaved, to th
extent that they yield what is commonly known as the Gib
phenomenon. The fact is that one can never collect an infi
amount of information, be it data or correlation information. A
so the form of truncation becomes important if one desires
correctly infer the outcome, were all the information available

Recall, that this work is concerned with families of spect
Because of the undesirable properties associated with the co
tion of FT(n) spectra which utilize the expected value of t
unbiased correlation estimator, it may be of interest to investig
whether averaging them can offer any advantage. For a collec
of theoretical spectra$SFT(n)(v)%n5no

n1 , we now formally define

the arithmetic average and variability of the collection of FT(n)
spectra over the indicesno to n1 , respectively, as

SFT (no,n1)~v!5
1

n12no11 (
n5no

n1

SFT~n!~v! (7a)

gFT~no ,n1!~v!5
1

n12no11 (
n5no

n1

@SFT~n!~v!2SFT~no ,n1!~v!#2

(7b)

It was just noted that the FT(n) spectrum has the undesirab
property that the leakage influence associated with a tone
persist independent ofn. This is illustrated in Fig. 4, which is
related toExample 1. We see that not only is this family of ave
aged FT(n) spectra converging at the anti-resonance location
also yields progressively localized leakage in the vicinity of t

Fig. 3 Example of Dirichlet kernel for nÄ10, 20, and 30
Journal of Dynamic Systems, Measurement, and Control
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tone. Thus, as suggested previously by@1,2,4# and others, the use
of a family can provide an advantage over the use of any sin
spectra. One could proceed to use this averaging procedur
opposed to the use of a single FT(n) spectrum, even though i
would be more computational. The following result shows th
this averaging procedure may be implemented without the nee
perform the averaging computation.

Result 2. ~@7# p. 16!. For no51 and n15n Eq. ~7a! may be
expressed as

SFT~n!~v!5
1

2p E
2p

p

Sx~n!Kn~v2n!dn5SPER~n!~v! (8)

Here,Kn(v)51/n(sin(nv/2)/sin(v/2))2 is known as Fejer’s ker-
nel @3#. Also, SPER(n)(v) is the expected value of the popula
periodogram spectral estimator, and uses the biased lag
product correlation estimates, as opposed to the unbiased
used in~3!. To be precise,~8! is not the expected value of th
periodogram unless the order,n, is identical to the data record
size,N. More generally, forn less thanN it is referred to as the
truncatedperiodogram. For convenience we will not make such
distinction unless it is necessary. While perhaps not evident fr
~7a!, this kernel is exactly theaverageof the collection of Dirich-
let kernels from 1 ton. The fact that the rightmost equality in~8!
corresponds to the Fourier transform of the theoretical correla
function that has been windowed using atriangular, or Bartlett
window is well known. What the leftmost equality shows is that
~7a!, when summation indices range from 1 ton, we obtain the
expected value of the periodogram estimator. This observation
long known result, but one that is seldom noted in most books
signals and systems. Traditionally, the Bartlett window is used
reduce the intensity of the spectral side lobes associated with l
age. Our observation suggests that it should also be used to e
proper behavior of the family of spectra in the case of a mix
process such as~4!; namely, convergence asn→`.

Both the Fejer and Dirichlet kernels grow at a rate O(n) at a
tone frequency. But in contrast to the Dirichlet family, the Fe
family converges to a Dirac-d function; that is, the leakage awa
from the tone frequency goes to zero asn→`. This is illustrated
in Fig. 5~a!. In the absence of any tones, if the noise PSD
continuous, then~7a!, which is a Cesaro mean, will converg
uniformly ~in v! to the true PSD asn1→` ~@7# p. 16!. Since the

Fig. 4 Average of FT „n … theoretical spectra for the range 1
\n max for n maxÄ100, 200 and 500
DECEMBER 2001, Vol. 123 Õ 575
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~generalized! PSD limit in ~8! is absolutely integrable, it follows
@7# that even though convergence will fail at the tone frequenc
will take place elsewhere.

When n is sufficiently large, the expression for the arithme
variance, 7~b!, of the$FT(n)% family of theoretical spectra can b
approximated as the following:

gFT~v!>
A4

16
•

1

sinS v2vo

2 D 2 for uv2v0u@0 (9a)

gFT~vo!.
A4

16
•O~n2! for v5v0 (9b)

As mentioned above, at a tone frequency the variability of a
PSD family will grow with increasing order,n, as is the case in
~9b!. The fact that the variability of the FT(n) family persists at

Fig. 5 „a… Example of Fejer kernel for nÄ10, 20 and 30 in dB;
„b… comparison of the n th and the average of the first n Fejer’s
kernels for n Ä100 and 1000.
576 Õ Vol. 123, DECEMBER 2001
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frequencies removed from the tone, as given in~9a!, make that
family undesirable for use in the case of a mixed process. We n
proceed to a discussion of the variability of the more desirable
commonly used PER(n) family.

3.2 Variability of the Theoretical PER„n… Spectra. The
theoretical PER(n) spectrum, which is exactly the expected val
of the truncated periodogram, is given by

SPER~n!~v!5 (
t52~n21!

n21

Rx~t!Bn~t!e2 ivt (10)

where Bn(t)5(n2utu)/n is the triangular, or Barlett window
whose Fourier transform is thenth Fejer kernel,Kn(v). In the
manner of~5!, it may be expressed as

SPER~n!~v!5
A2

4
Kn~v2vo!1

A2

4
Kn~v1vo!1Se ^ Kn~v!

(11)

Notice that if v052pk0 /n for any integerk0 then the first two
terms in~11! vanish at all discrete computation frequencies oth
than v0 ; that is, the tone spectral leakage will not distort t
continuous spectrum information at those frequencies. Unfo
nately, in practice one seldom has control over such precise pl
ment of the tones in relation to the sampling frequency.

An explicit expression for the arithmetic variability of th
PER(n) family can be obtained in the same manner as was d
for the FT(n) family. We begin by noting that since the Feje
kernels are O(n) at the tone frequency, then so is the arithme
average of the theoretical PER(n) spectra. And since, unlike the
Dirichlet family, the Fejer family is O(1/n) at frequencies re-
moved from the tone frequency, then the arithmetic variability
the PER(n) family is O(1/n). What follows is a more quantitative
description of this behavior.

For a collection of theoretical spectra$SPER(k)(v)%k51
n , we de-

fine the arithmetic average and variability of the collection
PER(n) spectra over the indices 1 ton in the usual way. The
average over the theretical periodogram family is simply the
erage over the Fejer kernels, which for largen is approximately

c~n!~v!5
1

n (
k51

n

K ~k!~v!>
1

12cos~v! F ln n

n
1

1

2n2

2
1

2n
lnS 1

2~12cos~v!! D G for vÞ0 (12a)

.~n11!/2 for v50 (12b)

for vP@0,2p). Therefore the averaged PER(n) spectra is

SPER~n!~v!5
A2

4
c~n!~v2vo!1

A2

4
cn~v1vo!1S« ^ c~n!~v!

(13)

From~12!, as expected, thePER(n) spectrum is growing at a rate
of O(n) at thev56v0 . At frequencies away from the sinusoid
the PER(n) spectrum will converge to true spectrum at a rate
O(ln(n)/n). It follows that the kernelc (n)(v) will converge to the
Dirac-d function.

For the case of white noise, since the last term in~13! is simply
s«

2, ~13! is controlled entirely by~12!. The 3-dB bandwidth of the
average of the firstn Fejer kernels is two to three times great
than that of a single PER(n) spectrum. Figure 5~b! shows the
comparison of thenth and the average of the firstn Fejer’s kernels
for values of n5100 and 1000. In contrast to thenth Fejer’s
kernel, the average of Fejer’s kernels does not have side lobe
frequencies far away fromv50 the average kernel converges
zero asn→`.

For a process consisting of white noise plus a sinusoid, it is a
straightforward to show that for largen the arithmetic variance of
the collection$SPER(k)(v)%k51

n is approximately:
Transactions of the ASME
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VarPER~n!~v!>
A4

16
@gK~n!~v2v0!1gK~n!~v1v0!#

(14a)

where

gK~n!~v!5
1

n (
k51

n

~Kk~v!2c~n!~v!!2

>
1

n~12cosv!2

3Fp2

4
2

1

2 S p2

6
2

pv

2
1

v2

4 D2S p2

8
2

pv

4 D
2

1

n S ln n1
1

2n
2

1

2
lnS 1

2~12cosv! D D
2G

for vÞ0

>~n221!/12 for v50 (14b)

In particular, at the tone frequency the square root of~14a! be-
comes

sPER~n!~vo!>
A2

4 *
n

3.464
(14c)

Thus, at the tone frequency the standard deviation of Fejer ke
family increases by 3 dB asn doubles~at rate O(n)!, while at
frequencies removed from the tone it decreases at a rate of 1
per doubling~at rate O(1/n)!.

3.3 Variability of the Theoretical AR „n… Spectra. We
now turn to the arithmetic mean and variability of the AR(n)
family of spectra for a mixed process. These two quantities
defined exactly as they were in~7! for the FT(n) family. Because
the AR(n) spectrum is based on prediction of the correlation la
of orders greater thann, we do not have the situation where
kernel function~which is independent of the noise spectral stru
ture! may be analyzed. For this reason we will restrict our att
tion in this section to processes of the form~4!, where the noise is
white. In this case, it can be shown that the theoretical ARn)
spectrum for single~complex! sinusoid plus white noise is give
by

SAR~n!~v!5s«
2Y U12

r

11rn
Dn~v2vo!U2

(15)

Here r,(A2/4)/s«
2 From ~15! it follows trivially that for rn

@1:

SAR~n!~vo!>s«
2u11rnu2>

~A2/4!2n2

s«
2 (16a)

and

SAR~n!~v!>s«
2/u12~1/n!Dn~v2vo!u2, uv2vou@0

(16b)

Equation ~16a! states that at the tone frequency the theoret
AR(n) spectrum is proportional ton2, and to thelocal SNR,
defined as (A2/4)/(s«

2/n) for rn@1. At the tone frequency the
AR(n) spectrum is O(n2). Equation~16b! states that forrn@1,
at frequencies sufficiently far from the tone frequency the AR(n)
spectrum will be close to the noise spectrum, and will, in fa
converge to it asn→`. This is due to the fact that the Dirichle
kernel is scaled by a factor of 1/n, so that it converges to one a
the tone frequency and to zero elsewhere. It is possible to
more insight into the rate of convergence of~16b! by expressing
the difference between it and the limits«

2:
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22SAR~n!~v!5s«

2S ~1/n!Kn~v2vo!1~2/n!Dn~v2vo!

11~1/n!Kn~v2vo!1~2/n!Dn~v2vo! D
(17)

We know that at frequencies removed from the tone frequency
Fejer kernel converges to zero at rate O(1/n). Thus, the error~17!
is dominated by the Dirichlet term in the numerator. Since
error is O(1/n) it follows that both the arithmetic average an
standard deviation of the collection$AR(k)%k51

n are O(1/n).
To evaluate the utility of these results for the case of colo

noise, we consider Fig. 6 corresponding toExample 1. They in-
clude the arithmetic meanS̄AR

(n)(v) and standard deviation
sAR

(n)(v) of AR spectral family for order ranges 2 ton520, 40, 80,
and 160. Figure 6~a! shows that the average converges to t
continuous spectrum at all frequencies removed from the t
frequency, while at the tone frequency the rate of growth
O(n2). Figure 6~b! shows that at frequencies removed from t
tone frequency the variance decreases at a rate O(1/n), while at
the tone frequency it increases at a rate of O(n4).

To summarize this section, we have provided order-related r
of behavior for the FT(n), PER(n), and AR(n) theoretical spec-
tra, as well as rates related to their arithmetic means and stan
deviations. This was in the context of mixed spectrum proces
of the form~4!. At the tone frequency it was noted that the FT(n)
and PER(n) spectra grow at a rate O(n), while the AR(n) grows
at a rate O(n2). At frequencies removed from the tone, the va
ability of the FT(n) family is O~1!; that is, it never converges to
the true spectrum. The variability of the PER(n) spectra are
O(1/n). We now proceed to address the statistical variability
the families.

Fig. 6 Arithmetic „a… mean and „b… standard deviation of col-
lection of ˆAR„k…: kÄ2,m‰ spectra for m Ä20, 40, 80, and 160
DECEMBER 2001, Vol. 123 Õ 577
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4 Variability of the Estimated FT „n…, PER„n…, and
AR„n… Spectra

There is a wealth of literature on the statistical properties of
marginal FT(n) and AR(n) spectral estimators in the case
regular random processes~see e.g.@8# for references!. One can
argue that in view of the orthogonalizing property of the fr
quency decomposition those results should hold in all but the lo
regions associated with sinusoids. However, we saw in the
section that those local regions can extend over a significant a
In this section we summarize results, having to do with the sta
tical variability of FT(n), PER(n) and AR(n) spectral estimators
in the case of random processes with mixed spectrum. Bot
these rely on the statistics of the lagged-product correlation e
mator. The following result@9# provides this. Let

R̂x~t!5
1

N (
n51

N2t

x~n!x~n1t! (18)

denote the biased lagged-product estimatorRx(t). Let Rx

5@Rx(0), . . . ,Rx(n21)# tr and letR̂x denote the estimator of it
Then

Result 3. @9# AN(R̂x2Rx)2N(0,S) asN→`.
The form of the covariance,S, given in@9# is lengthy and does

not offer much insight. The following expression of@10# affords
insight in the frequency domain:

S5
2

2p E
2p

p

$4p~A2/4!d~v6vo!1S«~v!%S«~v!g~v!g~v! trdv

(19)

where g(v) tr5@1,cos(v), . . . ,cos(n21)v#. This expression will
be useful in characterizing the statistical variability of both t
FT(n) and AR(n) families. It reveals the direct contribution of th
tone at the tone frequency, as well as how it contributes to v
ability at other frequencies.

4.1 Statistical Variability of the FT „n… Family of Spectral
Estimators. In keeping with~3!, we define the FT(n) spectral
estimator as

ŜFT~n!~v!5 (
t52~n21!

n21

R̂~t!e2 j vt (20)

Recall that~18! is biased. The bias factor equals 12t/N, so that
for t!N the bias will be small. Thus, in the case wheren!N the
mean of~20! is approximately equal to the theoretical FT(n) spec-
trum ~3!. In many applications involving mechanical systems o
has access to a very large amount of data relative to the numb
correlation lags selected for spectral analysis. Proceeding u
this assumption, and then to compute the variance of~20!, notice
that it may be expressed as

ŜFT~n!~v!52g~v! tr R̂x2R̂x~0! (21)

Since ~21! holds, as well, when the estimated correlations
replaced by the theoretical ones, and sinceR̂x(0) is unbiased for
Rx(0), it follows that

Var$ŜFT~n!~v!%5~4/N!E$@g~v! tr~R̂x2Rx!#
2%

5~4/N!g~v! trSg~v!. (22)

Substituting~19! and ~22! gives

Var$ŜFT~n!~v!%5
4

2pN E
2p

p

$4p~A2/4!d~n6vo!

1S«~n!%S«~n!ug~n! trg~v!u2dn (23)

To simplify ~23! notice that
578 Õ Vol. 123, DECEMBER 2001
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ug~n! trg~v!u2>~n/4!Dn
2~v,n!Kn~v2n!

2Dn~v,n!Dn~v2n!11 (24)

whereDn(v,n)5cos@(n21)(v2n)/2#. The approximate equality
in ~24! relies on the fact thatn is sufficiently large so that for a
givenv the above kernels contribute a negligible amount at ne
tive frequencies. Substituting~24! into ~21! yields the following
new result.

Result 4. For a process of the form (4) where the noise is wh
with variances«

2, the variance of the FT(n) PSD estimator (20)
is given approximately as

Var$ŜFT~n!~vo!%>@~A2/2!pn212s«
4#/N (25a)

Var$ŜFT~n!~v!%>~21np/2!s«
4/N, for vÞvo (25b)

If n and N are selected such thatn/N→0 as n, N→`, then
~25b! yields the well-known variance value of 2s«

4/N at frequen-
cies removed from the tone location. At the tone location we s
from ~25a! that the statistical variability for largen is dominated
by the tone arithmetic variability, and is O(n2). Figure 7 com-

Fig. 7 „a… Comparison of simulation results against predic-
tions „25… at tone’s frequency f Ä0.25 Hz, „b… Comparison of
simulation results against predictions „25… at noise frequency
fÄ0.1 Hz.
Transactions of the ASME
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pares~25! with variances obtained from running 500 simulation
The record size wasN52000, and for each record correlation la
estimates up to ordern5400 were computed using~18!. The
agreement is reasonable, but both of the predicted quantitie
~25! are slightly less than the observed values. We believe that
is, in part, due to neglecting the influence of the Dirichlet kerne
in favor of the Fejer’s kernels in obtaining~24!. It is not unex-
pected that at the tone frequency the variance becomes domin
by the arithmetic variance of the tone asn→`. This will also be
seen to be the case with the PER(n) and AR(n) estimators.

4.2 Statistical Variability of the PER„n… Family of Spec-
tral Estimators. The expected value of the PER(n) spectral es-
timator associated with~4! is given by~11!. For regular random
processes~i.e., without tones! the statistical variance of this est
mator is well known. At this point we must recall that we a
considering the truncated periodogram, where the number of
lized correlation lags,n, is less than the record size,N. Rather than
using ~18! in ~10! it is more common to compute the truncate
periodogram as an average ofN/n periodograms associated wit
the contiguous data. Since the single periodogram variance
proximately equals toS2(v) for a colored noise process, the var
ance of this average ofN/n periodogram estimators will converg
to zero asN/n→`, and becomes approximately

Var$ŜPER~n!~v!%>nS«
2~v!/N, for uv2vou@0 (26)

Notice that~26! is constant in the case of the non-truncated pe
odogram (n5N). This is the well known inconsistency proper
of the periodogram. When a tone is present then one can s
that, because of the nature of the Fejer kernel, for sufficie
large order,n, the tone influence will be localized aboutvo . In
that region the statistical variance will be dominated by the ar
metic variance, which is O(n2) regardless ofN. It should be ex-
pected that whenn is sufficiently large then~26! will hold ap-
proximately at frequencies removed from the tone frequency.
there is one more very important point to mention. Commonly
has been speculated that~26! will hold for reasonably narrowband
processes@1,2,8#. When conducting PSD analysis it is often pr
sumed that one is dealing with a purely regular process. In
situation the estimate of~26! is obtained by replacing the theore
ical, and unknown spectrum, with the estimated one. While
shown here, it turns out that~26! holds very well even in the cas
of a tone, which is the limit of a narrowband process. If one w
to replace the noise spectrum in~26! by ~11!, then one obtains the
variance expression

Var$Ŝassumed
PER~n!/~v!%5nFA2

4
Kn~v2vo!1

A2

4
Kn~v1vo!

1S« ^ Kn~v!G2Y N (27a)

Clearly, away from the tone frequency~27a! yields a value close
to the correct variance~26! for largen. At the tone frequency, if
we ignore the negative frequency contribution~27a! becomes

Var$Ŝassumed
PER~n!~vo!%5nFAo

2

4
n1s«

2G2Y N (27b)

However, in actuality, for a mixed process of sinusoid p
normal white noise with form~2!, whereS«(v)5s«

2, if the tone’s
frequencyvo is exactly at a bin frequency, it is straightforward
show that the variance of the PER(n) estimators at the tone’s
frequencyvo is:

Var$ŜPER~n!~vo!%5
nS«

2~vo!

N S 11
nA0

2

2S«~vo!
D (28)

where,A0
2/(2S«(vo)/n) is the local SNR at the tone frequenc

Comparing~27b! with ~28!, we see that the presumed varian
~obtained for example, usingMatlab! will behave similar to the
Journal of Dynamic Systems, Measurement, and Control
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true variance as a function ofN, which is O(1/N). However, there
are notable differences. For example, as a function of order,n, the
presumed variance will behave as O(n3), while the true variance
will behave as O(n2). For a large number of averages,N/n, the
chi-squared distribution used in theMatlab estimation of a speci-
fied (12a)% confidence interval~CI! can be approximated usin
a normal distribution via the central limit theorem. In this case
presumed 2-s CI will use ~27b!, while the actual one will use
~28!. In either case, it will still be a factor of 2N/n above and
below the estimated PSD, as would be the case for noise al
However, at tone frequency it is ill-defined in the sense that iN
andn are increased in a way such thatN/n is held constant, then
the CI will change accordingly at the tone frequency, while
maining the same at other frequencies. Simply, this is because
PSD estimate of the tone itself is ill-defined, as discussed ab

4.3 Statistical Variability of the Ar „n… Family of Spectral
Estimators. Result 3 above was significant in that it was th
first characterization of the statistics of the lagged-product au
correlation estimator for processes with mixed spectrum. It w
the essential ingredient for obtaining the following result for t
family of AR(n) spectral estimators. LetŜAR(n)(v) denote the
AR(n) PSD estimator based on the estimated autocorrelation
given by ~15!. The following result is from@10#:

Result 5@10#.

AN@ŜAR~n!~v!2SAR~n!~v!#→
d

N~0,Vn! (29)

The form ofVn is quite involved, and so is not repeated here
the sake of brevity. The interested reader may refer to@10#. In
order to illustrate~29! we offer Fig. 8~a!, which illustrates how the
standard deviation depends on the AR order,n, both at the tone
frequency and at a frequency removed from it. We see tha
frequencies removed from the tone frequency, it increases sha
for values of the AR order,n, typically used in spectral analysis
while at higher orders the rate becomes more constant, an
approximately 1.5 dB per order doubling. We also notice that i
very insensitive to the SNR. As noted above, the complex na
of Vp in ~24! precludes its use to predict this rate. However,
view of the orthogonalizing role that kernels such as the Dirich
and Fejer type play, it is possible to obtain a simple approximat
for it. This expression is from@11#, for the case of a process wit
no tones. It is given by

Vn>2nS«
2~v!/N, uv2vou@0 (30)

The variance expression in~30! is extremely simple relative to
that in @10# for the variance in~29!. Furthermore, it does predic
the noted rate. A comparison of~26! and ~30! shows that for a
given order,n, the AR estimator variance is three times grea
than the periodogram. The fact is, however, that due to the p
resolution of the latter in favor of the former, the value ofn used
in periodogram analysis is usually orders of magnitude larger t
that used in AR analysis. In the context ofExample 1, Fig. 8~b!
illustrates the variability of an AR~40! PSD estimate based on
record of sizeN55000.

5 Statistical Properties of Averages of Families of PSD
Estimators

The last two sections addressed the general behavior of fam
of FT(n), PER(n), and AR(n) spectra, in terms of arithmetic an
statistical variability. We will investigate the behavior of averag
of a given family, and in particular, what advantages might
gained. In this section we investigate the possible advantage
using an average of PSD estimators of a given type, as oppos
a single one. As noted inExample 1of Sec. 2, it can provide some
level of increased confidence in the order selection process
section 3 we discovered that by averaging FT(n) spectra, one
arrives at an estimator which has more desirable properties.
main difficulty with conducting an analytical study of statistic
DECEMBER 2001, Vol. 123 Õ 579
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properties of an average of estimators is that of obtaining all of
joint statistics. For this reason, we will here resort to the use
simulations. Specifically, to estimate the mean and variance inf
mation associated with a family, we will use 200 realization
Each realization includes 10,000 samples of the process~4!. We
investigate three data sets of different SNR50.1, 1.0, and 10. We
keep the noise power constant while changing the power of
sinusoid to change SNR. These simulations will be used for
FT(n), PER(n), and AR(n) investigations.

Fig. 8 „a… Evaluation of the variance expression in „28… as a
function of model order at a noise frequency. Also shown is the
estimated variability of the average of AR spectra „See Section
5 for related discussion …. „b… Comparison of predicted „using
„28…… 2-s regions associated with an AR „40… model, and an av-
erage of AR „p… models for p Ä2:160. Also shown is the esti-
mated variability of the average of AR spectra „see Section 5
for related discussion ….
580 Õ Vol. 123, DECEMBER 2001
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5.1 The FT„n… Spectra and Their Averages. From ~8!, we
have that the average of the$FT(k)%k51

n spectra is simply the
PER(n) spectrum. Hence, here we will denote this average by
latter.

Comparison of the Means of the FT(n) and PER(n) Spectra.
In this subsection there is no need to resort to simulations, s
we have expressions for the means of both spectra. The mea
these two spectra are given more generally by~5! and ~11!, re-
spectively. Because our current investigation focuses on w
noise, only the last term in each of these equations is alte
Specifically, the terms are simply replaced by the noise varian
s«

2. Thus, the advantage offered by averaging is simply that
Dirichlet kernel is replaced by the more desirable Fejer’s kern
They are equal at the tone frequency, and away from it the la
will be closer to the true noise spectrum than the former.

Comparison of the Standard Deviations of the FT(n) and
PER(n) Spectra. For n sufficiently large the arithmetic standar
deviations of these collections of theoretical spectra can be
tained from~9! and~14!. The statistical variances of each of the
single spectra for a givenn can be obtained from~25! and ~26!,
~28!. But since the PER(n) spectrum is exactly the average of th
$FT(k)%k51

n spectra, clearly, it includes the arithmetic variance
this collection as a portion of its statistical variance. So the
vantage of averaging, in terms of variance reduction at frequ
cies removed from the tone~recall, at the tone both the mean an
variance, being functions ofn, are both converging to infinity with

Fig. 9 „a… Comparison of statistical standard deviation of
single order PER „n… and the averaged PER „n… spectral esti-
mates for selected order n at nontone frequency f Ä0.1 Hz. „b…
Comparison of statistical standard deviation of single order
PER„n… and the averaged PER „n… spectral estimates for se-
lected order n at tone frequency f Ä0.3 Hz.
Transactions of the ASME
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increasingn! is obtained by simply comparing~25b! to ~26!. The
averaging procedure offers only 1 dB of reduction in the stand
deviation.

5.2 The PER„n… Spectra and Their Averages. The average
of a collection$PER(k)%k51

n spectra does not, to our knowledg
have a well known closed form, as was the case in the last
section. Hence, here we are forced to conduct simulations in o
to estimate the statistical variability of thePER(n) spectral
estimator.

Comparison of the Means of the PER(n) andPER(n) Spectra.
It follows from ~12a! that at nontone frequencies, the mean
PER(n) estimate converges to the true spectrum at r
O(ln(n)/n), which is slower than the convergence rate of the me
of single order PER(n) estimate, which is O~1/n!. At the tone
frequency, it follows from~12b! and~11! that the mean ofPER(n)
estimate is half that ofPER(n), or 3dB smaller. Because the join
statistics have no bearing on the mean of thePER(n) estimator,
we were able to compute the mean,~13!, without the need for
simulations.

Comparison of the Standard Deviations of the PER(n) a
PER(n) Spectra. To evaluate the potential advantage in terms
variance reduction, we offer Fig. 9~a! shows that the statistica
standard deviations of bothPER(n) and PER(n) spectral esti-
mates are nearly independent of SNR and both increase by 1.
per order doubling at non-tone frequencies. But we gain abo
dB or 37% decrease in standard deviation by averaging for e
selected order. At the tone frequency, according to~28!, the sta-
tistical variance of PER(n) estimate is approximately proportiona

Fig. 10 „a… Comparison of statistical standard deviation of
single order AR „n… and the averaged AR „n… spectral estimates
for selected order n at non-tone frequency f Ä0.1 Hz. „b… Com-
parison of statistical standard deviation of single order AR „n…
and the averaged AR „n… spectral estimates for selected order n
at tone frequency f Ä0.3 Hz.
Journal of Dynamic Systems, Measurement, and Control
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to n2 and to SNR when the noise power are constant. At the t
frequency, Fig. 9~b! illustrates ~28!, and in particular, that the
statistical standard deviation of single order PER(n) estimate in-
crease by 3 dB asn doubles and by 5 dB as SNR increases by
times. From this figure we observe that the statistical stand
deviation ofPER(n) estimate has similar behavior to that of th
single order PER(n) estimate, while offering a reduction of 3 dB
or 50% in standard deviation by averaging at tone frequency.

5.3 The AR„n… Spectra and Their Averages. The simula-
tions were run forn520, 40, 80, 160. While~15! or ~16! may be
used to arrive at a form for the mean of theAR(n) spectral esti-
mator, we will forego this exercise, and simply note that at
frequencies except that of the tone the average will converg
the mean to the true spectrum, while at the tone frequency it
approach to infinity at a rate of O(n2). This is the same behavio
as that of the mean of the single order AR(n) estimator for large
n.

Comparison of the Standard Deviations of the AR(n) a
AR(n) Spectra. At vÞv0 , ~30! predicts that the statistical vari
ance ofAR(n) spectral estimate is approximately proportional
the noise power square and to the ordern. Thus, we see about 1.5
dB increase as n doubles in Fig. 10~a! and the standard deviatio
is the same for the three datasets with different SNRs while
noise power keeps constant. The statistical standard deviatio
the AR(n) estimate is about 2 dB smaller than that of the cor
sponding single orderAR(n) spectral estimate. Atv5v0 , the
standard deviation ofAR(n) spectral estimate is, as mentione
below ~29!, quite complex, and not amenable to analysis. T
simulation results in Fig. 10~b! show it increases by about 7.5 d
as n doubles and for largen, it increases by 20 dB as SNR in
creases by 10 times which could also be approximately predi
from ~30!, if we replace the noise power spectrum with the sin
soid’s power spectrum at the tone’s frequency in~30!. Thus the
statistical variance atv5v0 is approximately, proportional to the
square of SNR and ton5. We gain more than 2 dB decrease
statistical standard deviation by averaging and the gain will
higher by increasing SNR and the averaging ordern.

6 Application to The Westland Helicopter Vibration
Data

The last section suggested that there might exist little gain
terms of variance reduction, by averaging either$PER(k)%k51

n or
$AR(k)%k51

n collections, with the exception being that averagi
the former can eliminate spectral oscillations in the side lobe le
age. So, in this section our focus will be limited to the variabil
of the collections, as was the case in the example in Sectio
Furthermore, we will not include the FT(n) family here, as its
properties are, in our opinion, not sufficiently attractive for use
mixed spectral analysis using spectral families.

In order to illuminate the value of the variability of the collec
tions, we make a comparison of 95%~or 2-s! confidence intervals
of the PER(n) estimators forn5256 and 1024 and of the AR(n)
estimators forn520 and 40 spectral in relation to real vibratio
data from Westland Helicopter data set~file w3003001.bin!. The
file size is 412,464. The data were sampled at 103,116.8
which we have normalized to 1 Hz. The data time duration is th
T54 seconds, which corresponds to a maximum~1/T! frequency
resolution of 0.25 Hz. Since we utilize a normalized the sampl
frequency, 1 Hz is actually 103,116.8 Hz. The spectral structur
complicated and contains many sinusoids plus highly colo
noise. For this reason we heterodyned the data~including decima-
tion by factor of 10! to restrict the range of interest to the norma
ized frequency range of@0.16-0.21#Hz.

Comparison of 95% (or 2-s) Confidence Intervals Correspond
ing to the PER(n) Estimates. Figure 11 shows that the 95% C
~Fig. 11~a!! and standard deviation~Fig. 11~b!! of PER~256! and
PER~1024! PSD estimators calculated usingMatlab, which ap-
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Fig. 11 „a… Comparison of 95% „or 2-s… confidence interval of PER „n… for n
Ä256 and 1024 for Westland data. „b… Comparison of 2-sigma of PER „n… for n
Ä256 and 1024 for Westland data.
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plies Kay’s formula~@2#!. The orders 256 and 1024 is chosen b
cause people traditionally use these two orders in periodogr
based spectral analysis. AsN is large enough, by the central lim
theorem, the variance of the PER(n) from estimate can be pre
dicted by ~26! at nontone frequencies, and by and~27a! at tone
frequencies. Figure 11~a! and Fig. 11~b! show that at 0.1671 Hz
0.1729 Hz, 0.1761 Hz, and 0.1834 Hz, the standard deviation
the PER~1024! estimate are approximately 8 dB, 7 dB, 9 dB, a
8 dB, respectively, larger than those of the PER~256! estimate. At
other frequencies, we only see about 3 dB increase fr
PER~256! to Per~1024!. Now, ~27a! indicates that for large fixed
N, if the local SNR is large, the variance of PER~n! at tone’s
frequency would be O(n5), corresponding to a 9 dBincrease of
standard deviation from PER~256! to PER~1024!. Thus, from Fig.
MBER 2001

s.asmedigitalcollection.asme.org/ on 09/01/201
e-
am-
t

s of
d

om

11 we can be reasonably confident that there is a sinusoi
0.1761 Hz. At the other three frequencies, this increase of s
dard deviation is close to 9 dB. We need to note that first, at th
three frequencies, the local SNR is much smaller than tha
0.1761 Hz. Second, if the tone frequency is not exactly at
frequency, the extent of the increase would be a little less tha
dB. So, the spectra suggest that each of the three frequencies
well also correspond to tones. It is shown in~26! that at non-
tone’s frequency, the variance of PER(n) is just O(n), which is 3
dB increase from the standard deviation of PER~256! to that of
PER~1024!. Therefore, at other frequencies, it is just regular p
cess. If we compare the behavior of the means of the PER~256!
and PER~1024! estimates with~11!, the same conclusion follows
At the four tone frequencies the mean increases by approxima
Transactions of the ASME
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Fig. 12 „a… Comparison of 95% „or 2-s… confidence interval of AR „n… for n
Ä20 and 40 for Westland data, „b… Comparison of standard deviation of AR „n…
spectral estimates for n Ä20 and 40 for Westland data.
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6 dB from the PER~256! to the PER~1024! estimate, while re-
maining essentially unchanged at other frequencies.

Comparison of 95% (or 2-s) Confidence Intervals Correspond
ing to the AR(n) Estimates. The AR~20! and AR~40! spectral esti-
mates were selected since their orders are in the range that w
be obtained using most of the popular order selection rules~e.g.
@2#!. The 95% C.I. of AR~20! and AR~40! estimates are plotted in
Fig. 12~a!. They were obtained by using~30! to estimate the stan
dard deviation, along with a normality assumption. According
~30!, for large N, at a tone frequency, the standard deviation
AR(n) spectral estimator should be O(n5). While at a frequency
away from the tone, it should be O(n). Figure 12~b! shows that at
0.1761 Hz, the standard deviation of AR~40! spectral estimate is
7.5 dB larger than that of the AR~20! spectral estimate. Howeve
at frequencies removed from this frequency@outside of the inter-
val ~0.17, 0.18!# the standard deviation increase is only about
dB. While at several frequencies between 0.167 Hz and 0.183
there is more than 3 dB difference between the standard de
tions of the two spectral estimators, their uniform spacing s
stems, Measurement, and Control
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,

.5
Hz,
via-
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gests that they are a consequence of the distribution of extran
model poles. In Fig 12~a!, we see a 6 dBincrease in the mean a
the frequency, 0.176 Hz By~16!, this amount of increase is con
sistent with the presence of a tone. At other frequencies the
confidence intervals are nearly identical. Hence, in those reg
one might assume the spectrum is not only devoid of tones, b
well characterized independent of the model order.

7 Summary and Conclusions
This work was concerned with the properties of families

spectral estimators. The families included the FT(n), PER(n),
and AR(n) PSD estimators, where n denotes the number of c
relation lags used. The interest was to identify what factors con
both arithmetic and statistical variability within a family. The pro
cesses considered were those composed of tones and co
noise. For very low orders the arithmetic variability will b
closely related to the noise color. For this reason, we electe
focus predominantly on the case of white noise. In this setting
DECEMBER 2001, Vol. 123 Õ 583
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Downloaded F
arithmetic variability associated with spectral bias is caused by
presence of the tone. We reported behavior of both bias and
ability in terms of order dependence rates. Some of the res
reported have been known, but perhaps not well known. The
desirable properties of the FT(n) spectrum, stemming from the
Dirichlet kernel, were such that it was decided to see if averag
could improve matters. This average is, in fact, the tapered~i.e.
averaged! periodogram which is so popular. The AR family wa
noted to have O(n2) behavior in both mean and standard dev
tion at tone’s frequency. This is in contrast to the tapered p
odogram, whose behavior is O(n). We presented expression
which allow one to estimate the mean and variance informatio
certain cases. We then used this information to guide brief inv
tigation of the utility of using a family~and, in particular, an
average! as opposed to a single spectrum. It was observed
averaging can offer potential for reduced statistical variability
certain situations. We also noted that the use of a family, as
posed to a single spectrum, can reduce sensitivity of result
order selection factors. Finally, while many of our results emp
sized rates of convergence we did, in fact, provide a numbe
equations which would allow one to obtain more quantitative s
tistical behavior of both spectral estimators and their averages
important and immediate application of these results is the p
lem of detecting tones. For example, of the three spectral est
tors it was noted that only the AR(n) estimator converged to
infinity at a rate O(n2) at a tone frequency. Both the FT(n) and
the PER(n) estimators had a rate of only O(n). Thus, even though
584 Õ Vol. 123, DECEMBER 2001
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the vast majority of tone detection algorithms are based on
latter, it is quite possible that the former could offer significa
improvement. This was, in fact, the basis for@10#.
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