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A study of the relative importance of one and two-electron contributions
to spin–orbit coupling

Dmitri G. Fedorov and Mark S. Gordona)
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The existing methods to estimate the magnitude of spin–orbit coupling for arbitrary molecules and
multiconfigurational wave functions are reviewed. The form-factor method is extended from the
original singlet–triplet formulation into arbitrary multiplicities. A simplified version of the
mean-field method~the partial two-electron method, P2E! is formulated and tested versus the full
two-electron operator on a set of representative molecules. The change of the one and two-electron
spin–orbit coupling down the Periodic Table is investigated, and it is shown that the
computationally much less demanding P2E method has an accuracy comparable to that of the full
two-electron method. ©2000 American Institute of Physics.@S0021-9606~00!30107-6#

I. INTRODUCTION

As computational capabilities improve, the ability to do
more accurate calculations and study finer features of mo-
lecular structure is facilitated. One of the features that has
begun to be widely studied relatively recently for molecules
rather than atoms is spin–orbit coupling~SOC!. It is one of
several interactions violating the commonly used adiabatic
approximation, since SOC allows mixing states with differ-
ent spin multiplicity, and it is the adiabatic approximation
that introduces the conservation of electron spin. As such, it
provides valuable information about dynamics of processes
otherwise forbidden~such as transitions at energy surface
crossings!. As a consequence of relativistic effects, as can be
seen directly from the reduction of the full relativistic Dirac
equation, it provides a correction to the energy levels, gen-
erally growing with the nuclear charge. Whereas the general
theoretical aspects of spin–orbit coupling have been known
for a long time, there has been a lack of generally available
tools with which it can be calculated.

In this work a general hierarchy of spin–orbit coupling
methods is described. These methods have been developed
and implemented into the electronic structure codeGAMESS.1

An approximate one-electron method developed by Koseki
in GAMESS was previously described for both main group2

and transition elements.3 The early studies by Blumeet al.4

considered the one- and two-electron contributions to spin–
orbit coupling in atoms. Veseth5 and Rosset al.6 studied
spin–orbit coupling for a number of atoms. Langhoff studied
core and valence contributions to spin–orbit coupling in mo-
lecular oxygen.7 A recent direct determinantal approach to
spin–orbit coupling has been suggested by Sjøvoll8 et al.
Although full two-electron Pauli–Breit SOC calculations
~vide infra! have been done by many researchers,9–11 their
codes have not been generally available. As a result of the
present work general SOC calculations can now be per-
formed withGAMESS, as described below. Several advances

in calculation methods have been made. The code is fully
capable of running in parallel withTCGMSG12 and MPI13

libraries.

II. GENERAL DESCRIPTION OF THE METHODS

The Pauli–Breit spin–orbit coupling operator is given
by14

Ĥso5
V2

2 H (
i 51

Nel

(
a51

Natoms Za

urW j2rWau3 @~rW i2rWa!3pW i #•SW i

2(
i 51

Nel

(
j Þ i

Nel 1

urW i2rW j u3 @~rW i2rW j !3pW i #•@SW i12SW j #J ,

~1!

where V is the fine structure constant,Za are the nuclear
charges,r i and r a are the electron and nuclear coordinates
respectively,p̂i is the electron momentum operator,Ŝi is the
electron spin operator.

The first double sum is known as the one and the second
as the two-electron SOC operators. The computational ex-
penses of SOC calculations are considerably different~by
one order of magnitude! for one- and two-electron operators.
In addition, due to the local nature of the operator and the
explicit dependence of the one-electron operator upon the
nuclear charges, the one-electron contribution to SOC tends
to grow rapidly with the nuclear charge, whereas the two-
electron part grows much more slowly, due to increased elec-
tron density in the regions close to the nuclei. This has mo-
tivated the development of several approaches wherein the
complexity grows from just one-electron~1E! to the full one-
and two-electron~2E! operators through an intermediate par-
tial two-electron contribution method~P2E!.

The following quantity based upon the Fermi golden rule
is useful for the description of the dynamics of SOC-induced
transitions~such as reaction dynamics!.a!Electronic mail: mark@si.fi.ameslab.gov
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~Dirac notation is used throughout,L̂ denotes the molecular
angular momentum operator, defined below.! This quantity is
hence called the SOC constant~SOCC!. Note thatS8 is ei-
ther equal toS or to S11, so there is no real asymmetry in
the formula. More details are given below.

Since many modern quantum-chemical methods are
based upon Slater determinants, with the total wave function
being a linear combination thereof, the methods below are
based on calculation of spin–orbit coupling matrix elements
between two determinants. Spin-adapted linear combinations
of determinants are known as configuration state functions
~CSFs!. Two different approaches can be taken. Given the
total wave function and an operatorÂ, consider̂ C1uÂuC2&:
• Direct approach uC&5S ICIDI . The individual matrix
elements between two determinants or CSFs^DI uÂuDJ& are
calculated one by one using the Slater rules, which reduces a
matrix element to a sum of MO integrals.
• Indirect approach^C1uÂuC2&5Tr@AP#5S i , jAi j Pji or
S i jkl Ai jkl Plk j i for one- and two-electron operators. Here,C
can be a single determinant, a CSF or their linear combina-
tion, A are integrals in the basis of molecular orbitals~MOs!
~i.e., Ai j 5^w i uÂuw j&) andP is the generalized density.

The advantage of the indirect method is that it does not
require storing of the 2e integrals usually kept in memory in
the direct method. The penalty for this advantage is having to
calculate, sort, and store the form-factors~vide infra!, from
which the generalized density is calculated. This effectively
restricts the practical applicability of the indirect approach to
the complete active space~CAS! type of wave function.
Thus, the indirect method is best used with small active
spaces and large basis sets, whereas the direct approach may
not be able to handle large basis sets due to limited computer
memory.

A recent determinant approach by Sjøvollet al.8 could
be classified as indirect in the terminology of this paper. This
approach provides considerable advantage over the previ-
ously existing form-factor method briefly discussed below,
as it provides the means of effectively calculating the gener-
alized density factors without having to sort them. On the
other hand, it takes no advantage of avoiding adding negli-
gible contributions as discussed in the threshold section be-
low and is limited to orthogonal orbitals. Nevertheless, this
determinantal approach appears very promising, especially
for wave functions consisting of a large number of determi-
nants.

An intermediate method also exists, known as the sym-
bolic matrix element method,15 wherein the CSFs are divided
into classes according to occupation schemes, and each
scheme is then treated with the indirect approach. While

found to work well, this method is not considered below as
its practical implementation requires an appropriate underly-
ing configuration interaction~CI! scheme currently not avail-
able inGAMESS. The foregoing discussion is summarized in
Table I.

Except for computation of the full 1e and 2e matrix
elements, the indirect approach is at a disadvantage com-
pared with the direct method, so it has not been implemented
for the other approaches. The indirect one- and two-electron
operator approach requires exponentially growing resources
as the number of active orbitals~i.e., all variably occupied
orbitals! increases, so the actual implementation is still lim-
ited to 26 active orbitals at most~denoted by* in Table I!.

Throughout this work, it is assumed that the two sets of
molecular orbitals~MOs! ~the sets for bra and ket! are bior-
thogonal with identical core~doubly occupied space in all
configurations!. It is only possible to biorthogonalize MO
sets for a pair of multiplicities in the CAS case16~or full CI,
FCI!. In all other cases identical MO sets have to be used to
avoid having to deal with nonorthogonal orbitals. In prin-
ciple, it is possible to work with nonorthogonal orbitals,17

with the computational expense increased by an order of
magnitude. Then a one-electron SOC nonorthogonal calcula-
tion would cost as much as a two-electron one with orthogo-
nal orbitals.

III. SYMMETRY SUMMARY

By application of the Wigner–Eckhart theorem18 and by
using the hermiticity ofĤso, it is possible to reduce the
number of matrix elements to be calculated from (2S11)
3(2S811) whereS andS8 are the bra and ketŜ2 quantum
numbers, to at most two.19 Application of symmetry selec-
tion rules can further reduce this number. It has been found
that the double group does not offer any advantage over the
point group formalism,19 if the matrix elements are calcu-
lated in the real-valued CI state basis. The matrix elements
reduce to

^aG iSMsuĤsoua8G8i 8S8Ms8&

5 (
q521

1

~S8,1,Ms8 ,2quS,Ms!^aG iSuL̂qŜua8G8i 8S8&

3~21!q, ~3!

wherea, G, and i are the symmetry labels of the CI states
and (S8,1,Ms8 ,quS,Ms) is a Clebsch–Gordan coefficient,Ŝ

is the reduced spin-operator andL̂q is an angular momentum
operator, whose exact definition is not needed since the sym-
metry properties are contained in the Clebsch–Gordan coef-
ficient. ^aG iSuL̂qŜua8G8i 8S8& is a so-called reduced matrix

TABLE I. Summary of SOC code development inGAMESS.

In GAMESS originally In GAMESS after this work

1E P2E 2E 1E P2E 2E

direct general none none general general general
indirect none none limited none none general~* !
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element ~RME!, with the property that RME(q51) and
RME(q521) are connected by a simple relation, so that
only two need to be explicitly calculated~e.g.,q50 andq
51). An important consequence of this formula is that for a
pair of states~e.g., determinants! only one q in the above
sum survives, namelyq5Ms82Ms .

The point group selection rules are deduced from the
product G3GLq

3G8 of the irreducible representations, to
which bra, angular momentumLq and ket belong. Matrix
elements between two singlets are zero. Provided that the
wave function is real, the matrix elements for bra equal to ket
are zero.

It is worth keeping in mind that usually the CI states are
not pure symmetry-wise, i.e., they belong to several irreduc-
ible representations with different weights, so the point
group symmetry rules hold only approximately if a state is
assumed to belong to only one of them.

Integral index permutational symmetry is discussed be-
low when the integrals are defined for the indirect method.

IV. INDIRECT METHOD

Furlani derived and coded a limited version of this
method as a part of his PhD thesis.20 The method itself was
derived for singlet and triplet states only. The code was lim-
ited to 10 active orbitals and up tod-functions.

Close examination of the derivations reveals that for the
general case of arbitrary multiplicities the following holds
for ^SMsuĤsouS8Ms8&:

• the matrix element is zero ifuS2S8u.1 or uMs2Ms8u
.1

• if Ms5Ms8 , then the formulas for singlet and tripletMs

50 can be used to calculate such a matrix element
• if Ms82Ms561, the formulas for singlet and tripletMs

561 are to be used.

A brief review of the generalized method is now given.C is
taken to be a linear combination of CSFs with coefficientsq,
each of which is a linear combination of Slater determinants
D with coefficientsC.

^C~S,Ms!uĤsouC~S8,Ms8!&

5 (
I 51

NCSF

(
J51

NCSF8

qlqJ8 (
K51
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(
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L
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I 51
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i 51
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Na
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DMs^w i

Msu l̂ DMs
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2 (
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(
k,l 51
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G i jkl
DMs^w i

Msw j
Msu l̂ DMs

~2! uw
k

Ms8w
l

Ms8&, ~4!

where l̂ so is what is left of the one- and two-electron spin–
orbit coupling operators after taking the scalar product over
the spin variables as defined below,k(L) denotes an orbital
with ordinal numberk in a determinantL. N is the total
number of doubly occupied core (Nc) and active (Na) orbit-
als, N52Nc1Na , Ne is the number of electrons in the ac-
tive space,DMs5Ms82Ms(uDMsu<1).

The quantitiesG i j
IJ andG i jkl

IJ are known as the one- and
two-electron form-factors~FFs! ~both areDMs dependent!,
and G i j

DMs and G i jkl
DMs are the one- and two-electron general-

ized density, respectively

G i j
DMs[ (

I 51

NCSF

(
J51

NCSF8

qIqJG i j
IJ

and ~5!

G i jkl
DMs[ (

I 51

NCSF

(
J51

NCSF8

qIqJG i jkl
IJ .

The FFs are derived from application of the Slater rules
to pairs of determinantsDK and DL and comparison of the
left and right hand sides.
The main properties of the form-factors are:

~1! G i j
IJ andG i jkl

IJ are dependentonly uponNe andNa and are
sparse.

~2! G i j
IJ are zero unless bothi and j are in the active space.

~3! G i jkl
IJ are zero unless~i! all indices are in the active space

or ~ii ! two indices are from the core and two from the
active space~of which there are four combinations!. In
the latter case they are independent of the core indices
~This is analogous to the direct method: These core-
active form-factors correspond to the partial two-electron
direct method considered below.! and are proportional to
G i j

IJ .

The MOsw are taken as linear combination of atomic
orbitals ~AO! x, and by using the index permutational sym-
metry the final result for the matrix element in Eq.~4! is

^C~S,Ms!uĤsouC~S8,Ms8!&

5 (
g51

NAO

(
r51

g21

(
a51

Natom

^xgu l̂ DMs

~1! ~1,a!uxr&D̂gr
1

2 (
g51

NAO

(
n51

NAO

(
r51

g21

(
m51

v

^xgxnu l̂ DMs

~2! uxrxm&D̂gnrm
2 , ~6!

where

l̂ DMs

~1! ~ i ,a!5Za /urW i2rWau3@~rW i2rWa!3pW i #DMs
,

l̂ DMs

~2! ~ i , j !51/urW i2rW j u3@~rW i2rW j !3pW i #DMs
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and

l̂ q
~1!~ i ![(

a
l̂ q
~1!~ i ,a!, l̂ q

~1![ l̂ q
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~2![ l̂ q
~2!~1,2!,

~7!

L̂q[L̂q
~1!1L̂q

~2! , L̂q
~1![(

i
l̂ q
~1!~ i !, L̂q

~2![(
iÞ j

l̂ q
~2!~ i , j !.

Note that for atomsL̂q5L̂q
(1) , where L̂q is the total elec-

tronic angular momentum.
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DMscg i
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Ms8c
m l

Ms8,

D̂gnrm
2 5

1

11dnm
@4Dnm
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1 13Dgn

c D̂rm
1

13Dnr
c D̂mg

1 13Dgm
c D̂rn

1 13Dmr
c D̂cg

1

1Bgnrm1Bgmrn2Brngm2Brmgn# ~8!

~following Furlani’s convention with a few extra definitions
for use below!.

Thec are MO→AO expansion coefficients for the active
orbitals:c without superscript refers to the core orbitals~as-
sumed to be independent ofMs). The superscripts ‘‘c’’ and
‘‘ a’’ refer to core and active, respectively. Rapidly growing
computational expenses can be seen in Table II.

It should be noted that the FFs are first generated and
then sorted by MO indices. The number of FFs for a given
set of MO indices is not knowna priori, but the code has to
allocate space before the generation starts. This can be done
in two ways. One is to allocate a sufficiently large amount of
space, however, this increases the size of the disk file. An-
other option is to first generate the form factors and save the
number of form factors for each set of indices while not
saving the FFs themselves. Then the proper space is allo-
cated and during the second run the FFs are actually gener-
ated and sorted. In Table II the last line~@10/10#! shows the
disk space associated with the second~disk saving! option:
all other lines reflect the fixed space option.

V. DIRECT METHODS

A. Introductory definitions

Similarly to the indirect case@Eq. ~4!#

^C~S,Ms!uĤsouC~S8,Ms8!&

5 (
I 51

NCSF

(
J51

NCSF8

qIqJ8 (
K51

NDET

(
L51

NDET8

CKCL8^DKuĤsouDL8&. ~9!

The Slater rules are now applied dynamically, for each pair
of determinants. While there may be a very large number of
them, it has to be recognized that for large CI expansions
many products of CSF coefficients will be very small in
magnitude. Keeping in mind that these coefficients them-
selves are obtained with finite precision, one is justified in
omitting contributions from such very small coefficients.
This is achieved via introduction of a threshold value; the
details are given below.

First, consider the basic schematic equation:

^DuĤsouD8&5Hact–act
1e 1Hcore–act

2e 1Hact–act
2e ~10!

(Hcore–core
1e 1Hcore–act

1e 1Hcore–core
2e is zero as shown below!.

The three indirect methods can be defined as follows:

One-electron method:

^DuĤsouD8&5Hact–act
1e .

Partial two-electron method:

^DuĤsouD8&5Hact–act
1e 1Hcore–act

2e .

Two-electron method:

^DuĤsouD8&5Hact–act
1e 1Hcore–act

2e 1Hact–act
2e .

It is shown below thatHcore–act
2e becomes pseudo-one-

electron after summing over the core. The exact algebraic
definitions of all of these quantities are given below. The
one-electron method is usually implemented by introducing
semiempirical parameters~charges!, Zeff , in order to make
up for the neglect of the two-electron terms. It is shown
below that the partial two-electron method provides reason-
able accuracy without the need for fitted parameters.

Recall the Slater rules for a pair of determinants. First,
the spin–orbitals in the second determinant are reordered in
such a way as to put them in the same order as the first
determinant, with different~discoincident! orbitals being
placed at the end. The number of these discoincident orbitals
needs to be less than or equal to the number of coupled

TABLE II. The rapidly growing number of FFs.

CAS@m/n#a # singlet CSFs # triplet CSFs # 1e FFs # 2e FFs FF disk, bytes

@2/2# 3 1 8 16 192
@4/4# 20 15 320 2896 76 800
@6/6# 175 51 3368 78 810 6 693 488
@8/8# 1764 2352 294 370 12 282 038 232 448 352

@10/10# 19 074 29 700 8 214 402 536 127 134 4 656 497 344

a@m/n# denotesm electrons inn orbitals.
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particles in the operator~i.e., one or two!, for a matrix ele-
ment to be nonzero. For the partial two-electron method
~P2E! the number of discoincidences should be less than or
equal to one, because two discoincidences can only come
from two active orbitals and this term is omitted in the P2E
method. The cases for 0, 1, and 2 discoincidences are given
below ~note that only one spin-discoincidence is allowed, as
the spin operators couple only one electron!:

^DuĤsouD&5 (
m51

Ne

^cmuĥso
l ucm8 &Om

1 (
m,n51

Ne

@^cmcnuĥso
2 ucm8 cn8&

1^cncmuĥso
2 ucn8cm8 &2^cmcnuĥso

2 ucn8cm8 &

2^cncmuĥso
2 ucm8 cn8&#Omn ,

^DnuĤsouDs&5^cnuĥso
1 ucs8 &Ov1 (

m51

Ne

@^cmcnuĥso
2 ucm8 cs8 &

1^cncmuĥso
2 ucs8cm8 &2^cmcnuĥso

2 ucs8cm8 &

2^cncmuĥso
2 ucm8 cs8 &#Omv , ~11!

^DmnuĤsouDrs&5@^cmcnuĥso
2 ucr8cs8 &1^cncmuĥso

2 ucs8cr8&

2^cmcnuĥso
2 ucs8cr8&

2^cncmuĥso
2 ucr8cs8 &#Omn .

Orbital overlaps Om[PnÞm
Na ^cnucn8& and Omn

[PrÞn,m
Na ^crucr8& do not include core overlaps equal to one.

By convention, the Greek indices are used for molecular
spin-orbitalsc5ws and Roman indices for molecular orbit-
alsw. Greek indices are also used for atomic orbitals.Dv and
Ds denote determinants different by one spin–orbital (v and
s!.

It is worth remembering that SOC between two identical
states is zero by hermiticity, therefore, in case of orthogonal
~rather than biorthogonal! orbitals for bra and ket states the
case of zero discoincidence need not be considered, because
the contribution vanishes by symmetry.

B. Spin summation

From the symmetry rules it is seen that only one specific
q survives from the sum@Eq. ~3!#, i.e., ĥso→ l̂ 2qŝq whereq

5Ms82Ms for a matrix element̂ SMsuĤsouS8Ms8&. Each
spin–orbital~with a Greek index! is now written as a product
of an orbital times the spin functions ~a or b!, and the
summation index is changed to Roman to signify this. It is
then possible to take scalar products over the spin variables.
The equations are simplified considerably especially for the
core orbitals.

The following elementary form-factors are introduced as
matrix elements of spin-operators in the spin-function basis
(s i denotes the spin part ofi th orbital!. These elementary
form-factors are similar to the form-factorsG introduced for

the indirect method except that they effectively connect two
determinants rather than CSFs andg are unsorted.

g i j
DMs[^s i uŝ2DMs

us j&,

g i jkl
DMs[^s i~1!s j~2!u$ŝ~1!12ŝ~2!%2DMs

usk~1!s l~2!&

5^s i uŝ2DMs
usk&d j l 12^s j uŝ2DMs

us l&d ik

5g ik
DMsd j l 12g j l

DMsd ik . ~12!

They are straightforward to calculate, e.g.,

gaa
0 [^auŝzua&5 1

2,

gabaa
1 [^a~1!b~2!uŝ–~1!12ŝ–~2!ua~1!a~2!&

5^auŝ– ua&^bua&12^aua&^buŝ– ua&501252.

There are only 16 of these for eachDMs , for DMs50, see
Table III.

Consider the one-electron case for zero discoincidence,
DMs is 0 in this case, sogaa

0 52gbb
0 51/2 and

Hcore–core
1e 5 (

m51

Nc

^cmuĥso
1 ucm8 &Om

5(
i 51

Nc

@^w jau l̂ z
1ŝzuw i8a&Oi1^w ibu l̂ z

1ŝzuw i8b&Oi #

5(
i 51

Nc

@ 1
2 ^w i u l̂ z

1uw i8&Oi2
1
2 ^w i u l̂ z

1uw i8&Oi #50. ~13!

Thus any doubly occupied orbital~including all core orbit-
als! does not contribute to the one-electron spin–orbit cou-
pling term. Similarly, the two-electron core–core contribu-
tion vanishes.Hcore–act

1e 50, because overlaps between core
and active orbitalŝwcuwa&50.

The following integral quantities are introduced:

Ai j [^w i u l̂ DMs

~1! uw j8&, Ai jkl [^w iw j u l̂ DMs

~2! uwk8w l8&,

Ai j
caca[(

c51

Nc

^wcw i u l̂ DMs

~2! uwcw j8&,

Ai j
acac[(

c51

Nc

^w iwcu l̂ DMs

~2! uw j8wc&, ~14!

Ai j
caac[(

c51

Nc

^wcw i u l̂ DMs

~2! uw j8wc&,

Ai j
acca[(

c51

Nc

^w iwcu l̂ DMs

~2! uwcw j8&.

The superscriptsc and a refer to core and active spaces,
respectively.

Symmetry properties of the integrals are
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Ai j 52Aji ,
~15!

Ai jkl 52Ak jil and Ai jkl 5Ailk j

~i.e., antisymmetric and symmetric for the first and second
particle, respectively!. This property holds for core integrals,
too, soAi j

caca[0.

In the code,l̂ 6 operators~defined as in the indirect case!

are written as7( l̂ x6 l̂ y)/&, and the program actually cal-
culates matrix elements of2 i l̂ x , 2 i l̂ y , and2 i l̂ z operators
~multiplied by imaginary unityi to get real-valued integrals,
as l5@r3p# and p52 i—. Note that— is anti-Hermitian,
whereasp is Hermitian!. Subsequently,l̂ 6 are reconstructed.

It is possible to rewrite the matrix elements as

^DuĤsouD&5(
i 51

Na

Aii g i i
DMsOi12(

i 51

Na H Aii
caca@ga ia i

DMs1gb ib i

DMs#1Aii
acac@g ia ia

DMs1g ib ib
DMs#

2Aii
caac@ga i i a

DMs1gb i i b
DMs#2Aii

acca@g ia ia i
DMs 1g ibb i

DMs#
J Oi

1 (
i , j 51

Na

@Ai ji j g i j i j
DMs1Aji j i g j i j i

DMs2Ai j j i g i j j i
DMs2Ajii j g j i i j

DMs#Oi j ,

^D j uĤsouD l&5Ajl g j l
DMsOj1H Ajl

caca@ga j a l
DMs1gb jb l

DMs#1Ajl
acac@g ia la

DMs1g j b lb
DMs#

2Ajl
caac@ga j l a

DMs1gb j l b
DMs#2Avs

acca@g j aa l
DMs1g j bb l

DMs#
J Oj

1(
i 51

Ne

@Ai jil g i j i l
DMs1Ajili g j i l i

DMs2Ai jli g i j l i
DMs2Ajiil g j i i l

DMs#Oil , ~16!

^D i j uĤsouDkl&5@Ai jkl g i jkl
DMs1Ajilk g j i lk

DMs2Ai jlk g i j lk
DMs

2Ajikl g j ikl
DMs#Oi j .

Note that a factor of 2 appears because of symmetry in sums:

(
i 51

Ne

(
j 51

Ne

→(
i 51

Na

(
j 51

Nc

1(
i 51

Nc

(
j 51

Na

52(
i 51

Na

(
j 51

Nc

.

With a little algebra it can be seen that~Table III!

ga ia j
DMs1gb ib j

DMs54g i j
DMs,

g ia j a
DMs1g ib j b

DMs52g i j
DMs,

~17!

ga i j a
DMs1gb i j b

DMs53g i j
DMs,

g iaa j
DMs1g ibb j

DMs53g i j
DMs.

Thus the expressions for the matrix elements are simplified
to ~usingAi j

caca[0)

^DuĤsouD&5(
i 51

Na

$Aii g i i
DMsOi12~Aii

acac2g i i
DMsOi

2Aii
caac3g i i

DMsOi2Aii
acca3g i i

DMsOi !%

1 (
i , j 51

Na

@Ai ji j g i j i j
DMs1Aji j i g j i j i

DMs2Ai j j i g i j j i
DMs

2Ajii j g j i i j
DMs#Oi j ,

^D j uĤsouD l&5Ajl g j l
DMsOj1Ajl

acac2g j l
DMsOj

2Ajl
caac3g j l

DMsOj2Ajl
acca3g j l

DMsOj

1(
i 51

Ne

@Ai jil g i j i l
DMs1Ajili g j i l i

DMs2Ai jli g i j l i
DMs

2Ajiil g j i i l
DMs#Oil , ~18!

^D i j uĤsouDkl&5@Ai jkl g i jkl
DMs1Ajilk g j i lk

DMs2Ai jlk g i j lk
DMs

2Ajikl g j ikl
DMs#Oi j ,

and finally one arrives at the final formulas

^DuĤsouD&5(
i 51

Na

$Aii g i i
DMsOi12Aii

cag i i
DMsOi%

1 (
i , j 51

Na

@Ai ji j g i j i j
DMs1Aji j i g j i j i

DMs2Ai j j i g i j j i
DMs

2Ajii j g j i i j
DMs#Oi j ,

^D j uĤsouD l&5Ajl g j l
DMsOj1Ajl

cag j l
DMsOj1(

i 51

Ne

@Ai jil g i j i l
DMs

1Ajili g j i l i
DMs2Ai jli g i j l i

DMs2Ajiil g j i l i
DMs#Oil ,

~19!

^D i j uĤsouDkl&5@Ai jkl g i jkl
DMs1Ajilk g j i lk

DMs2Ai jlk g i j lk
DMs

2Ajikl g j ikl
DMs#Oi j ,

whereAi j
ca[2Ai j

acac23Ai j
caac23Ai j

acca.
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Now it can be seen that the core–active two-electron
contribution may be formally expressed in exactly the same
fashion as the one-electron active–active term.

Hact–act
1e 5(

i 51

Na

Aii g i i
DMsOi ,

Hcore–act
2e 52(

i 51

Na

Aii
cag i i

DMsOi , ~20!

Hact–act
2e 5 (

i , j 51

Na

@Ai ji j g i j i j
DMs1Aji j i g j i j i

DMs2Ai j j i g i j j i
DMs

2Ajii j g j i i j
DMs#Oi j ,

for zero discoincidence and similarly for one and two disco-
incidences.

C. SOC integrals

The atomic integrals are calculated by the integral code
developed by Furlani20 for his form factor method~in the AO
basis!. The code has been slightly modified to allow up to
g-type orbitals in the basis set.

The usage of AO integrals is different between direct
and indirect methods. The indirect method is AO-integral
based, i.e., each integral is multiplied by the density and
added to the matrix element being calculated. The direct
methods store the AO integrals on disk: The one-electron
integrals are stored as a triangular matrix and the nonzero
two-electron integrals are stored as an integral list, with or-
bital labels.

Transformation into the MO basis is accomplished for
active orbitals in the standard way by doing two and four
index transformations.

Ai j [^w i u l̂ DMs

~1! uw j8&5 (
m,n51

NAO

cm i* cn j8 ^x i u l̂ DMs

~1! ux j&,

~21!

Ai jkl 5^w iw j u l̂ DMs

~2! uwk8w l8&

5 (
mnrs

NAO

cm i* cn j* crk8 cs l8 ^x ix j u l̂ DMs

~2! uxkx l&,

wherecm i are LCAO coefficients. The core–active transfor-
mations are reduced from four to two indices by doing the
core summation

Ai j
ca[2Ai j

acac23Ai j
caac23Ai j

acca

52(
c51

Nc

^w iwcu l̂ DMs

~2! uw j8wc&23(
c51

Nc

^wcw i u l̂ DMs

~2! uw j8wc&

23(
c51

Nc

^w iwcu l̂ DMs

~2! uwcw j8&

5 (
c51

Nc

(
mnrs

NAO

$2cm i* cnc* cr j8 csc23cmc* cn i* cr j8 csc

23cm i* cnc* crccs j8 %^xmxnu l̂ DMs

~2! uxrxs&

5 (
mnrs

NAO

$2Dns
c cm i* cr j8 23Dms

c cn i* cr j8 23Dnr
c cm i* cs j8 %Amnrs ,

~22!

where the sum over the core yielded the core density,Dc.

Ai j
ca52(

mr

NAO

Amr
acaccm i* cr j8 23(

nr

NAO

Anr
caaccn i* cr j8

23(
ms

NAO

Ams
accacm i* cs j8 5(

kl

NAO

ck i* Akl
cacl j8 , ~23!

using the following notation:

Amr
acac[(

ns

NAO

Dns
c Amnrs , Anr

caac[(
ms

NAO

Dms
c Amnrs ,

~24!

Ams
acca[(

nr

NAO

Dnr
c Amnrs , Akl

ca[2Akl
acac23Akl

caac23Akl
acca.

Thus three four-index transformations are converted into
three~to contract the core density! plus one~to contract ac-
tive MO coefficients! two-index transformations, a consider-
able savings.

D. Effective core potentials „ECP…

In the effective core potential method, the core inner
shell orbitals are replaced by a potential. The primary con-
tribution to SOC comes from the one-electron part thatdoes
not explicitly include core orbitals, since the core–core and
core–active one-electron contributions to SOC are zero.
However, the shape of the active orbitals in the core region is
lost in most ECP implementations, and this decreases the
calculated spin–orbit coupling by orders of magnitude for
heavier elements if the Pauli–Breit Hamiltonian is used. Sev-
eral approaches have been developed to cope with this prob-
lem:

~a! Ermler et al.21 applied a method wherein the SOC op-
erator itself is changed by utilizing relativistic atomic
calculations to obtain the effective one-electron spin–
orbit coupling operator and, alternatively, a spin–orbit
operator to be used with the pseudo-orbitals is derived
by Kühle et al.22

~b! Model potentials~MP!23 instead of ECPs do retain the
proper shape in the core region.

TABLE III. Completegmnrs
0 table.

uaa& uab& uba& ubb&

^aau 3/2 1/2 1 0
^abu 1/2 21/2 0 21
^bau 1 0 1/2 21/2
^bbu 0 21 21/2 23/2

5617J. Chem. Phys., Vol. 112, No. 13, 1 April 2000 Spin–orbit coupling

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:25:56



~c! By using two related basis sets, an all-electron and an
ECP set, the integrals calculated for the all electron
basis set can be back-transformed for the ECP basis
set,24 thus circumventing the core shape problem.

~d! Koseki et al.3 further developed an effective nuclear
charge method, originally developed in Ref. 25
wherein the true nuclear charges appearing in the one-
electron SOC operator are replaced by empirical pa-
rameters.

E. Empirical parameters

There are several reasons why it can be desirable to in-
troduce some empirical parameters into the spin–orbit cou-
pling calculations:

~1! ECP produces nodeless orbitals.
~2! The first-order perturbative treatment and the omission

of other interactions~spin–spin! can be corrected to
some extent.

~3! In cases for which the two-electron contribution is either
fully ~1E! or partially ~P2E! neglected, these approxima-
tions can be partially compensated by the empirical data.
The empirical parameters are optimized using the avail-
able atomic and molecular spectral data. The parameters
for the first through the third rows of the Periodic Table
are available for both ECP and an all-electron basis set,3

to be used with the one-electron method.

F. Thresholds

As pointed out above, thresholds avoid the calculation of
very small contributions to SOC, thus saving computational
time. One parameter controls all thresholds, denoted bye
below. This parameter establishes relative errors in the ma-
trix elements; for example, ife is set to 1024 and the matrix
element is 100 cm21 then the absolute error introduced by
thresholds should be less than 0.01 cm21. This parameter is
used in the following steps:

• CSFs with coefficients smaller thane/NpNa are ignored~
Np is 2 for the 2E method and 1 for the 1E and the P2E
methods!.

• In the loop over CSF pairs the calculation proceeds only if
the product of two CI coefficients is larger thane/NpNa

2.
• In the loop over determinant pairs the calculation proceeds

only if the product of two CI coefficients times the deter-
minant’s coefficients times the overlap,qIqJCKCLO, is
larger thane/NpNa

2No , whereNo is the number of occu-
pied orbitals in the active space@i.e., Ne for FOCI ~first-
order configuration interaction! or SOCI ~second-order
configuration interaction! andNa for CAS or FCI#.

If there are several CI states with a given multiplicity, the
maximum value of the CI coefficient product over these
states is taken.

A benefit of using thresholds is the indirect use of sym-
metry. In many cases, the symmetry used by GUGA has to
be lowered, e.g., in case of non-Abelian groups or when
several states of different symmetry are requested for the
same multiplicity. In such cases the threshold filters out the

CSFs with coefficients equal to zero by symmetry~along
with the ones allowed by symmetry but simply small in mag-
nitude!. The effect of introducing these thresholds can be
seen below in the numerical examples.

It is cumbersome to calculate the matrix elements be-
tween two CSFs directly, and determinants provide a simpler
alternative. The number of CSFs, however, is usually much
smaller than the number of determinants so that the use of
thresholds as shown above provides a means for substantial
savings. And, the smaller size of the Pauli–Breit Hamil-
tonian matrix in CSF basis can be advantageous; for ex-
ample, for contraction of the matrix elements in the CSF
basis with CI coefficients.

G. Computational algorithm in detail

The current algorithm is shown in schematic form in Fig.
1. In order to to reduce the memory demand, drags and
passes are introduced. If sufficient memory is available, there
is only one pass and only one drag. If the amount of memory
is insufficient to store all integrals at once, at first the code
tries to break the 2e SOC l̂ x , l̂ y , l̂ z integrals not forbidden
by symmetry into passes. Passes are used to divide the work
for the components ofl̂ and drags divide the work for each
component ofl̂ . The following decision is made in the order
of decreasing memory available:

one pass: all of symmetry allowedl̂ x , l̂ y , l̂ z

two passes: pass 1:l̂ x , l̂ y ; pass 2:l̂ z

three passes: eachl̂ i individually in the orderx, y, z.
~Note that ‘‘forbidden by symmetry’’ as applied to integrals
here refers not to integrals themselves, but to CI states. The
meaning is that none of the CI state pairs requested will
require these particularl̂ integrals.!

If insufficient memory is available for 2e integrals at the
maximum number of passes~three or less if all CI states do
not require some integrals!, the minimum number of passes
is used, and to reduce the amount of memory the integrals
themselves are divided into chunks. During each drag, a frac-
tion of 2e MO integrals is kept in memory and zeros are
substituted via an index array in place of integrals not in
memory!.

VI. COMPARISON OF THE INDIRECT METHODS

A. General comments

The one-electron method is the least resource consum-
ing. The partial two-electron method in practice requires
little more resources than the one-electron method. This is
true for several reasons:

~1! The number of determinant pairs to be considered is the
same as for the one-electron method~at most one disco-
incidence allowed!.

~2! The four-index integral transformation can be done with
the expense of a two-index transformation.

~3! There is no need to store four-index two-electron inte-
grals in the MO basisin memory.
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Additional expenses include having to calculate two-
electron integrals in the AO basis. They can be stored on
disk while being calculated and read while doing the four-
index transformation. This does not require a noticeable
amount of memory, although if available, larger buffers can
be used to speed up the calculation. These expenses~inte-
grals and transformation! are usually insignificant, especially
when compared to the expenses of the further matrix element
calculation for a large CI.

On the other hand, the full two-electron method requires
treating many more determinant pairs as the number of dis-
coincidences can be two, the four-index transformation is not
trivial and most importantly the two-electron integrals are to
be kept in memory~for an efficient program! and their num-
ber isNa

4/4 for orthogonal andNa
4 for biorthogonal orbitals.

When comparing the methods numerically it is worth
remembering that the first-order perturbative SOC treatment
and neglect of other interactions~spin–spin etc.! can intro-
duce errors comparable in magnitude to the error of the par-
tial relative to the full two-electron method even for the first
row of the Periodic Table.

The partial two-electron method developed here can be
compared to the mean-field method.26 The mean-field
method is more general in the treatment of the active-active
two-electron contribution. In the partial two-electron
method, only the CAS core orbitals~spin-orbital occupation
of 1! are included in the two-electron contribution. In the
mean-field method, all active orbitals are assigned fixed oc-
cupation numbers~between 0 and 1!. In both methods, the

two-electron part is then summed over the coincident orbitals
with these occupation numbers as weight factors. Both meth-
ods neglect contributions due to active–active discoinci-
dences. The mean-field method introduces an approximation
to the integrals as well~namely, only one-center integrals are
computed and the rest are discarded; this is justified as the
SOC operator is short-ranged!. In the present partial two-
electron method, no such approximation is made. The extra
degree of freedom of the mean-field method~the freedom to
choose occupation numbers! may be useful.

In the numerical examples below no empirical param-
eters are used~true nuclear charges!. For the notation in the
tables in this section, consult Table IV. The results are ob-
tained with 0.1% relative error threshold.

B. Introductory numerical examples

1. XH2 , XÄC, Si , Ge, Sn , Pb

Spin–orbit coupling between1A1 and 3B1 states has
been studied for a series of XH2 molecules. The geometries
are for the minimum energy potential surface crossing, as
found in the previous ECP-based study.27 The active space
used here is@6/6#, i.e., 6 electrons in 6 active orbitals.
CASSCF~complete active space self-consistent field! spin–
orbit coupling calculations have been performed using bior-
thogonal orbitals with the core optimized for the singlet. The
second order CI~SOCI! SOC calculations were performed
with singlet orbitals. Two basis sets have been used. The first
~Table IV! is the MINI basis set developed by Huzinaga

FIG. 1. SOC algorithm.
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TABLE IV. ‘‘Mini’’ basis set CAS XH2 (X5C, Si, Ge, Sn, Pb) results.

C1e
a cm21 CP2e

a cm21 C2e
a cm21 EP2e %b M 1e

c cm21 M P2e
c cm21 M2e

c cm21

CH2 26.78 14.89 13.25 12.4 18.937 8.406 9.565
SiH2 96.38 74.57 73.73 1.1 68.15 15.42 16.01
GeH2 539.9 481.1 480.4 0.2 381.74 41.53 42.09
SnH2 1226 1137 1136 0.05 867.26 63.45 63.86
PbH2 2149 2046 2046 0.02 1519.40 72.50 72.79

aC1e , CP2e , C2e denote SOCC for 1E, P2E, and 2E SOC correspondingly.
bEP2e denotes relative error inC~CP2e relative toC2e!.
cM1e , M P2e , M2e denote absolute values of 1E, P2E, and 2E matrix elements. The 1e and 2e matrix elements
are always opposite in sign.

TABLE V. WTBS basis set CAS XH2 (X5C, Si, Ge, Sn, Pb) results.

C1e cm21 CP2e cm21 C2e cm21 EP2e % M1e cm21 M P2e cm21 M 2e cm21

CH2 24.34 14.12 12.27 14.6 17.213 7.232 8.540
SiH2 74.25 57.93 57.11 1.4 52.50 11.54 12.12
GeH2 367.7 328.10 327.3 0.2 260.03 28.03 28.57
SnH2 813.8 757.0 756.5 0.06 575.47 40.18 40.56
PbH2 2092 1999 1999 0.02 1479.22 65.60 65.92

TABLE VI. WTBS basis set SOCI XH2 (X5C, Si, Ge, Sn, Pb) results.

C1e cm21 CP2e cm21 C2e cm21 EP2e % M1e cm21 M P2e cm21 M 2e cm21

CH2 23.54 13.66 11.92 15.1 16.645 6.989 8.218
SiH2 72.31 56.42 55.64 1.4 51.13 11.24 11.79
GeH2 374.2 333.4 332.7 0.2 264.58 28.80 29.32
SnH2 850.2 789.6 789.1 0.07 601.18 42.85 43.23
PbH2 2242 2140 2140 0.02 1585.69 72.06 72.39

TABLE VII. X2
1 (X5O, S, Se, Te) CASSCF/split basis results.

RX–X8 ,Å
C1e

cm21
CP2e

cm21
C2e

cm21 EP2e % M 1e cm21
M P2e

cm21 M2e cm21

2P3/2–
2P1/2,

a

cm21

O2
1 1.267 177.8 117.0 110.2 6.1 125.70 42.98 47.76 155.9

S2
1 1.869 416.1 338.7 336.2 0.74 294.22 54.74 56.51 475.4

Se2
1 2.150 1470 1317 1315 0.15 1039.36 107.85 109.24 1860

Te2
1 2.585 2643 2452 2451 0.05 1869.04 135.16 136.05 3466

a2P3/2–
2P1/2 splitting obtained with the full two-electron SOC.

TABLE VIII. BH 2 CAS/FOCI/SOCI SOC results.

CI Orba

2B2–2A1

cm21 c C1e cm21 CP2e cm21 C2e cm21 M 1e cm21 M P2e cm21 M2e cm21

CAS 2A1c b 300.6 6.85 3.39 3.01 4.8409 2.4446 2.7157
CAS 2B2c c 2544.6 6.86 3.42 3.02 4.8495 2.4341 2.7137
CAS 2A1 7578.5 7.00 3.47 3.05 4.9494 2.4927 2.7920
CAS 2B2 23852.7 7.16 3.56 3.14 5.0642 2.5456 2.8410
CAS 2A112B2

d 21058.1 7.02 3.48 3.07 4.9621 2.5046 2.7944
FOCI 2A1 578.5 6.68 3.32 2.92 4.7255 2.3801 2.6607
FOCI 2B2 22962.9 6.75 3.37 2.98 4.7756 2.3940 2.6707
FOCI 2A112B2 22599.8 6.76 3.35 2.97 4.7800 2.4111 2.6804
SOCI 2A1 701.9 6.79 3.37 3.00 4.7994 2.4176 2.6795
SOCI 2B2 21499.7 6.81 3.40 3.02 4.8147 2.4120 2.6797
SOCI 2A112B2 21160.9 6.78 3.37 3.00 4.7966 2.4168 2.6770

aOrb stands for the sets of molecular orbitals.
b2A1c: two separate MO sets, fully optimized for2A1 and2B2 optimized with2A1 core.
c2B2c: two separate MO sets,2B2 fully optimized and2A1 with 2B2 core.
dAll other rows represent single MO, set2A112B2 being two state averaged (50%150%) orbital set.
e2B2–2A1 refers to adiabatic splitting between the two levels.
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et al.28 The second is the WTBS minimal basis set forX and
cc-ptvz forH, developed by Huzinagaet al.29 with two s and
two p functions on each heavy atom uncontracted; in addi-
tion, oned on Ge, Sn, and Pb and onef on Pb are uncon-
tracted. It is possible to study SOC at both CAS and SOCI
levels for the second basis set since this is not a minimal
basis set. The results obtained using the larger basis are
given in Table V and Table VI. A study of relativistic effects
without separating scalar and vector contributions for similar
species was conducted by Dyall.30

Note that for both basis sets and at both levels of theory
~CAS, SOCI!, the agreement between P2E and 2E methods
is quite reasonable for all Group IV A elements, and the rela-
tive error decreases with increasing mass. The use of SOCI
has only a small effect relative to the CASSCF results.

2. X2
¿ , XÄO, S, Se, Te

For these species, spin–orbit coupling is studied at the
CAS level. The basis set is 6-21G31 (X5O) or 3-21G31

(X5S,Se,Te). The geometry has been optimized at the CAS
level. The experimental value for the2P3/22

2P1/2 splitting
in O2

1 is32 200.2 cm21 and with a better basis set the theo-
retical prediction is32 195.1 cm21. The results are presented
in Table VII.

As for the XH2 species, the partial two-electron method
is seen to provide reasonable accuracy relative to the full 2E
method. The first row of the Periodic Table may require full
two-electron treatment if high accuracy is sought after.

C. Effect of orbitals and CI level on SOC

Next, consider the recently studied van der Waals struc-
tures of BH2

33 and AlH2.
34 Spin–orbit coupling plays an

important role in the chemistry of many high energy species,
because it is very important for such materials to exhibit
sufficiently high barriers to ensure stability. Such barriers
can be greatly lowered due to potential-energy curve cross-
ing caused by diabatic interactions such as spin–orbit cou-
pling. The geometries used represent the minimum energy
crossing of the2A1 and2B2 surfaces at the multireference CI
~MRCI! level of theory. The effect of orbitals and CI level on
both the splitting between2A1 and 2B2 surfaces and spin–
orbit coupling with both full and partial two-electron meth-
ods has been studied. All valence electrons are included in
the active space~@5/6#!. The basis set for BH2 is
aug-cc-pVTZ35 on both B and H, for AlH2 it is cc-pVTZ36 on
Al and aug-cc-pVTZ on H. The results are summarized in
Table VIII and Table IX, for BH2 and AlH2, respectively.

The results for these molecules demonstrate the general
trend that the choice of orbitals and CI level can have a
dramatic impact on the splitting between the two adiabatic
levels. Because two similar numbers are subtracted, high ac-
curacy in both is required for an accurate difference. At the
same time the spin–orbit coupling is not a property obtained
as a difference and thus a much smaller effect of both orbit-
als and CI level is observed. Nonetheless, the SOC constants

TABLE IX. AlH 2 CAS/FOCI/SOCI SOC results.

CI Orba,d

2B2–2A1

cm21 e C1e cm21 CP2e cm21 C2e cm21 M1e cm21 M P2e cm21 M2e cm21

CAS 2A1c b 337.5 23.77 17.90 17.66 16.8093 4.1529 4.3231
CAS 2B2c c 177.9 23.12 17.38 17.14 16.3516 4.0595 4.2296
CAS 2A1 8373.7 30.99 23.36 23.05 21.9145 5.3947 5.6152
CAS 2B2 25805.3 29.79 22.31 21.99 21.0682 5.2916 5.5197
CAS 2A112B2 387.6 31.28 23.56 23.24 22.1195 5.4618 5.6839
FOCI 2A1 1322.2 26.31 19.68 19.38 18.6018 4.6854 4.8971
FOCI 2B2 21282.0 26.97 20.18 19.89 19.0731 4.8031 5.0093
FOCI 2A112B2 1357.9 28.05 21.04 20.74 19.8357 4.9595 5.1679
SOCI 2A1 579.6 27.01 20.22 19.93 19.1014 4.8056 5.0060
SOCI 2B2 2411.7 26.45 19.76 19.48 18.7052 4.7330 4.9330
SOCI 2A112B2 38.2 27.62 20.69 20.41 19.5293 4.8971 5.0971

aOrb stands for the sets of molecular orbitals.
b2A1c: two separate MO sets, fully optimized for2A1 and2B2 optimized with2A1 core.
c2B2c: two separate MO sets,2B2 fully optimized and2A1 with 2B2 core.
dAll other rows represent single MO set,2A112B2 being two state averaged (50%150%) orbital set.
e2B2–2A1 refers to adiabatic splitting between the two levels.

TABLE X. Threshold effect on SOC, AlH2 at CAS level.

«
# 2A1

CSFs
# 2B2

CSFs
C1e

cm21
CP2e

cm21
C2e

cm21 M 1e cm21
M P2e

cm21 M2e cm21
P2E
timea

2E
timea

1022 56 55 31.29 23.51 23.25 22.1289 5.4522 5.6865 0.95 1.00
1023 59 56 31.28 23.55 23.24 22.1194 5.4606 5.6839 0.94 1.01
1024 59 56 31.28 23.56 23.24 22.1195 5.4618 5.6839 0.94 1.00
1025 59 56 31.28 23.56 23.24 22.1195 5.4617 5.6839 0.94 1.01
1026 59 56 31.28 23.56 23.24 22.1195 5.4617 5.6839 0.94 1.00

aArbitrary units.
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predicted by the P2E method are in good agreement with the
much more resource consuming full 2E method.

D. Effect of thresholds on SOC

AlH2 as described above is chosen as a test of the influ-
ence of the threshold value upon SOC.2A112B2 orbitals are
used throughout. Timings for SOC calculations represent the
wall-clock time. The timing for the default value of the
threshold (1024) and 2E method is set to one. At the CAS
level, there are 592A1 and 562B2 CSFs~in C2v). In this
case the calculation of two-electron SOC integrals gives the
dominant contribution to the timings. At the SOCI level,
there are 130 4112A1 and 130 3142B2 CSFs~in C2v). The
results are represented in Table X10 and Table XI, respec-
tively.

At the 1024 threshold, the preceding CI takes 0.32 and
the 1E method 0.23 in the units of the 2E method. Thus, the
P2E method takes comparable time with the 1E method
~0.26 vs 0.23!, the difference coming from two-electron in-
tegrals and four-index transformation.

The results obtained in this subsection demonstrate that
the threshold values are set properly, that is, the relative error
in SOC is not greater than the threshold value used. Some
feeling for the increase in computational expense~time! as a
function of the threshold value is gained as well. It can be
seen that the timings for the P2E method is far less depen-
dent upon threshold as compared to the 2E method, at the
SOCI level of theory.

E. Comparison with the mean-field method

The PdCl system was investigated with the mean-field
method in Ref. 26. The relative error of the mean-field
method relative to the full two-electron result (E2e ,%) is
0.02. In Table XII the results obtained with the methods
described in this work, using the MINI basis set and full
valence active space@17/10# are given. The geometry has
been optimized for the term of interest,2D.

As expected, the mean-field method works better than
P2E, as it has an extra degree of freedom and treats active–

active contributions rather than omit them as the partial
method does. The neglect of some two-electron integrals in
the mean-field method did cancel the error introduced by
neglecting the two discoincidence case. The partial two-
electron method appears to provide sufficient accuracy, al-
though for Ni the full two-electron approach may be desired
for highly accurate calculations. A very interesting observa-
tion is made here: The two-electron contribution for transi-
tion metals~at least for the molecules considered in this sub-
section! is much larger than that for the main group elements
in the analogous rows in the periodic table.

F. Magnitude of SOC

The question of whether the spin–orbit coupling interac-
tion can be expected to be large or small can be addressed in
general. The expressions for the SOC@Eqs. ~9! and ~19!#
suggest that the magnitude of the spin–orbit coupling inter-
action can be traced to the magnitude of spin–orbit coupling
integrals in the molecular orbital basis. These integrals~or
their atomic orbital counterparts! are undoubtedly dependent
upon the local nature of the spin–orbit coupling operator that
has a built inr 23 dependence. Therefore, it can be seen that
one-center integrals are the major contributors to the interac-
tion. Thus, the SOC integrals in the MO basis are expected to
be in general larger for bra and ket MOs localized on the
same atom. This leads to a suggestion of using localized
orbitals for the approximations of neglecting multicenter in-
tegrals.

Second, it can be expected that for atoms the magnitude
of SOC is expected to be larger in general than for mol-
ecules. Interestingly, some molecules are known to exhibit a
SOC interaction virtually identical to that of a single atom.26

Still, as the atomic weight increases, the inner shell core
orbitals become less and less changed by chemical bonding,
hence it is the core orbitals on these heavy elements that
provide the major contribution to the SOC regardless of
chemically active valence orbitals. It is expected that mo-
lecular complexes involving the interaction of atoms in the
middle of the periodic table with light element molecules

TABLE XI. Threshold influence on SOC, AlH2 at the SOCI level.

«
# 2A1

CSFs
# 2B2

CSFs
C1e

cm21
CP2e

cm21
C2e

cm21 M1e cm21
M P2e

cm21 M2e cm21
P2E
timea

2E
timea

1022 37055 39826 27.56 20.64 20.37 19.4859 4.8821 5.0854 0.04 0.13
1023 90586 93769 27.61 20.68 20.40 19.5220 4.8938 5.0951 0.13 0.42
1024 122268 123589 27.62 20.69 20.41 19.5293 4.8971 5.0971 0.26 1.
1025 129483 129651 27.62 20.69 20.41 19.5306 4.8976 5.0975 0.33 1.84
1026 130317 130251 27.62 20.69 20.41 19.5308 4.8977 5.0975 0.37 2.75

aArbitrary units.

TABLE XII. SOC in transition metal systems XCl, where X5Ni, Pd, Pt for the2D term.

RX–C, Å C1e CP2e C2e EP2e % M 1e M P2e M 2e

NiCl 2.119 1236.0 729.9 677.2 7.8 874.049 357.959 395.21
PdCl 2.491 2496.0 1792.0 1780.0 0.7 1764.839 497.506 506.147
PtCl 2.523 7018.0 5764.0 5755.0 0.1 4962.263 886.487 892.539
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retain to a large extent their atomic spin–orbit coupling in-
teractions. The magnitude of these spin–orbit couplings is
expected to be larger in general than those in molecules
where the middle-sized atoms form bonds and lose their
atomic character.

Certainly, symmetry plays an important role in determin-
ing the magnitude of SOC because large contributions can
occur with opposite phases and the value of SOC is then
determined by smaller contributions. The effect of orbital
shape upon the magnitude of SOC has also been studied.37

VII. DISCUSSION AND SUMMARY

It is found that the two-electron contribution to the spin–
orbit coupling grows roughly as a linear function of the
nuclear charge. The one-electron part exhibits a more com-
plicated dependence upon the nuclear charge in the range
between linear and square. As expected, the partial two-
electron method systematically underestimates the two-
electron matrix elements, with the relative error systemati-
cally decreasing down the Periodic Table. It can be seen that
already for the second period the error introduced by the
partial two-electron method becomes negligible or at least
comparable to other approximations~nonrelativistic unper-
turbed wave function, first order perturbative treatment, etc.!.
With a set of reoptimized empirical parameters, a semiempir-
ical partial two-electron method may offer much better per-
formance~for heavier elements! than the one-electron semi-
empirical method, for the first row of the periodic table. For
the second row, theab initio partial two-electron method is
expected to deliver sufficient accuracy. There does not seem
to be any real necessity to include two-electron terms for the
last row.

Various aspects of the dependence of spin–orbit cou-
pling upon various factors are discussed in the above subsec-
tions with appropriate numerical examples.
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