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Early NDE research primarily focused on the ability to develop 

techniques which could~ flaws in structures. Eddy currents, induced 
by exciting coil probes placed over a structure, were found to be a 

valuable tool in detecting flaws in conducting materials. In recent 
years, efforts have been expanded from the detection of defects to a more 

quantitative characterization of flaws. In metallic structures, the 
important flaw characteristics consist of the flaw's depth, position, 
size, shape, and material properties (flaw electrical conductivity, 
magnetic permeability etc.). This paper continues our efforts of the past 

two years to recover flaw characteristics from eddy current data. 

The change in impedance due to an inclusion, surface breaking or 
buried, within a conducting halfspace is taken as the eddy current data. 
The inclusion is assumed to differ slightly in conductivity from the host 
material. Last year, a multi-frequency inverse method to obtain the flaw 

electrical conductivity was developed for the case of a uniform magnetic 
field applied on the surface [1,2]. The inversion kernel was found to be 

described by an inverse Laplace transform. Numerical codes, based on the 
singular value decomposition technique, were developed to invert the 
Laplace transform and thus the eddy current data. The uniformity in the 

applied field however restricts the amount of information that can be 
extracted about the flaw; namely, one can only determine its conductivity 
as a function of depth. To recover the conductivity variation in the 

other directions, a spatially non-uniform field needs to be applied on 

the metal surface. 

In this paper, we describe a multi-frequency method to recover the 

entire 3-D conductivity profile of the flaw (for small conductivity 

variations) . A time-harmonic spatially periodic current sheet is placed 
over the metal surface and the resulting impedance changes due to the 

flaw are taken to be the data. For practical purposes, field 
distributions of this nature may be generated by a set of meander coils 

lying on the metal surface. The proximity of two adjacent current 
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carrying wires will determine the applied spatial frequency. Periodic 
variations are chosen since they allow us to analyze an arbitrary current 
coil distribution in terms of its spatial Fourier components. 
Consequently, inversion methods for various coil configurations can be 
synthesized from the results presented in the paper. 

This paper is structured in the following manner. We start with the 
volume integral form of expression for the impedance change due to an 
inclusion, differing in conductivity alone, within a metallic halfspace 
[3,4]. The linearized form of this expression is taken to derive the 
impedance change for a spatially periodic current sheet placed over the 
metal's surface. The impedance change is seen to be a function of both 
the spatial and harmonic frequencies through a coupled Fourier-Laplace 
transform. It is not clear how this coupled transform can be inverted in 
the harmonic frequency domain. The time domain version of the impedance 
change is then derived. It is seen that the transform variables decouple. 
Hence, an explicit inversion algorithm can be written down. Finally, we 
describe this inversion procedure and the steps required to extract the 
3D conductivity variation within the halfspace. 

IMPEDANCE CHANGE FOR A SPATIALLY PERIODIC CURRENT SHEET - FREQUENCY 
DOMAIN 

Consider a 3D inclusion in a conducting halfspace, with a conductivity 
slightly different from the host. A spatially periodic current sheet of 
either cosine or sinusoidal spatial dependence is placed over the 
conductor, perpendicular to the direction of spatial variation. See 
Figure 1. The applied spatial frequency is denoted by q. For such an 
example, the impedance change due to the inclusion is given in [4] as 

liz = - ; l &1 (li.E') dV . 
I vbop 

__ _..,_~X 

y 

Fig. 1. Inclusion in a metallic halfspace under an applied spatially 
periodic current sheet 
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For a "weakly conductive inclusion", we linearize the above equation 
(the Born approximation). The electric field, E.', is therefore 
approximated by E., the electric field in the absence of the flaw. E. can 
be computed by solving Maxwell's laws for a spatially periodic current 
sheet over a homogeneous conducting halfspace and is given by 

where 

2 2 1/2 2 . 
k = (k0 - q ) ; k0 = Iro)l0cr0 ; Im (k) > 0. 

(2a) 

(2b) 

These results are computed in the quasistatic approximation and details 
can be found in Stoll [5]. Substituting Eqs. 2(a) and (b) in (1), we have 
the impedance change for a cosine and sinusoidal applied field given by 

I i(2 k~ e-2qb I 2ik 2 oz cos qx = -22---2 dV 00(~) e Y cos qx dV 
I cr0 (q-ik) v..., 

(3a) 

-2 4 ~,... 

. 1 K kO e -~ I 2iky . 2 oz sin qx = -2 2 ---2 dV oo(~) e sm qx dV. 
I cr0 (q-ik) v..., 

(3b) 

Define Ozlc-s as the difference in impedance changes between a cosine and 

sinusoidal applied field at a fixed spatial frequency i.e. 

OZ I c-s "' OZ I cos qx - OZ I sin qx • 

Using results from Eq. 3(a) and (b), we have 

[ ]

-1 
i(2 ik 2 -2qb I dV oo(~ e2iky cos 2qx = - oz I c-s 2 (q + ) 2 e 

v..., I cr0 

Generally, the impedance change can be measured for various spatial (q) 
and harmonic (ro) frequencies. Our problem is to recover oo(z) from the 
impedance Ozlc-s· Eq. (5) shows that such a recovery is possible if we 

can invert the coupled Fourier-Laplace transform. The coupling arises 
from the fact that k is a complex function of both q and ro. 

Consider the inversion of this coupled Fourier-Laplace transform. 
Assume that the impedance changes are given for all real spatial and 
harmonic frequencies. The inversion over k is described by a complex 
Laplace transform. For a fixed q, varying ro implies tracing hyperbolas 
described by 

[Im (k)l 2 - [Rc (k)]2 = q2 

where 

(4) 

(5) 

(6) 
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2 Re (k) lm (k) = COJ.lo<Jo. (7) 

Data given for all real values of co and q imply that data is known along 
these hyperbolas in the complex k plane, as shown in Figure 2. At q = 0, 
the hyperbola takes the form of a 45° line through the origin. This 
arises when the applied field is uniform over the surface. 

The recovery of 5o(x) therefore consists of inverting the complex 
Laplace transform over k when data is known only along these hyperbolas 
in the complex k-plane. Generally, methods to invert complex Laplace 
transforms require the knowledge of data over the entire complex plane. 
Recently, the authors have developed a technique to invert complex 
Laplace transforms when the data is known along any straight line through 
the origin in the complex plane [6]. This can be used to invert the data 
for the q=O case. But for arbitrary q's, when the data is known along the 
above-described hyperbolas, it is unclear how the complex Laplace 
transform can be inverted. It therefore appears that the spatial and 
harmonic frequency terms must somehow be decoupled, if an explicit 
inversion algorithm to recover the conductivity characteristic function 
ocr(x) from the impedance oz is to be written down. 

lm k(ro) 

q 

---- Increasing m 

Fig. 2. Hyperbolic curves in the complex k-plane along which impedance 
data are typically known. 

IMPEDANCE CHANGE FOR A SPATIALLY PERIODIC CURRENT SHEET - TIME DOMAIN 

It was seen in the previous section that the impedance change in the 
frequency domain is given by a coupled Fourier-Laplace transform of the 
conductivity characteristic function Oa(x). This coupling poses a problem 
in inverting the transforms to extract Oa(x). In developing an inversion 
method for a uniformly applied field [2], it was seen that the inversion 
kernel is complex in the frequency-domain whereas it is real in the time
domain. This proved to be extremely useful in numerically implementing 
the inverse expression in the time-domain. 

Similarly, we shall study the behavior of the impedance change in the 
time-domain for an applied spatially periodic current sheet. This is 
obtained by taking inverse Fourier transforms of Eq. 5 with respect to 
the harmonic frequency, co, i.e. 
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[ oz 1 ] i<? -2qb [ r . ] ¥""' ~ 2 = --T-r-- ¥""1 J, dV oo(~ e2'ky cos 2qx . 
(q+Ik) r cro v..,. 

(8) 

k is the only variable which depends on ro in the integrand on the right

hand side of the equation. The inverse Fourier transform of e 21kY 
therefore needs to be evaluated. Making a transformation of variables 

from ro to k 2 , we have 

(9) 

The integration contour in the k 2 plane is described in Figure 3. 

Since the integrand is multivalued, the branch of k in e 21 kY needs to be 
specified. However, we have restricted Im (k) > 0 (in Eqs. 2 (a) and (b), 
the fields are assumed to vanish at infinity) . Further, we assume that 
the time-domain impedance is causal. This implies that the impedance at 
negative frequencies is given by the complex conjugate of the impedance 
at positive frequencies, 

oz (- lrol ) = oz '( lrol ). (10) 

The above two conditions determine the choice of the branch for k and the 

appropriate branchcut is given by the positive real axis of the k 2 plane. 
See Figure 3. Using Eq. 10, Eq. 9 can be reduced to an integration in the 

upper-half k 2 plane given by 

I- . . q2t I-<j2 +ioo . k2t 
1 2iky -trot 1 -- 2iky -- 2 

-2 e e dro = --e fluOo Im 2 e e fluOo d(k ). 
1t - 1tl·4Po -<J 

Note that k (-lrol) = -k* ( lrol). The integration contour is now represented 
by r 1 in Figure 4. Since the integrand is analytic everywhere in the 

quadrant Im (k2 ) > 0, Re (k2 ) < 0, we have from Cauchy's theorem 

-cf! 

(11) 

(12) 

Fig. 3. Integration contour for the inverse Fourier transform described 

by Eq. (9). 
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Fig. 4. Integration contour in the upper-half k 2 plane described by 
Eq. (11) 

Consider the integrals over each of these contours individually. 

2 O+iR2 2 l 2ik kt 2 :J 2iky kt 2 1. e Ye-J.IoOo d(k)= lim e e-llo<To d(k). 
r_ R2 -q2+iR2 . 

This can be rewritten as 

2 2 2 r 2iky kt 2 1-q 2. kt 
2. J

1 
e e- J.loOo d(k ) = e iky e- lltPo d(k2) • 

ro 0 

The argument of k on r 0 is equal to 'lt/2. Eq. (16) can be written as 

03) 

(14) 

(15) 

(16) 

(17) 

Since the integrand is purely real and the values of k 2 are real, we see 
that the result will also be purely real. However, as seen from Eq. (11), 
we are only interested in the imaginary part of the above integral. The 
integral along ro has no contribution to this imaginary part. 
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Consequently, we now have 

Along r 2 , q = 0 and the integral is identical to that evaluated for a 

uniform field [1] . The spatial periodicity seems to be in effect 

(18) 

attenuating the time-domain impedance response by the factor e-q2t 1~o0o.The 
integral in Eq. (18) can be evaluated and is given as 

Using this result in Eq. (11) and then resubstituting in Eq. (B), we have 

the time-domain impedance response given by 

2 
q t 1/2 2 

-I [ oz I <>-s ] :K.Ze-2qh e- llo"o ( J.l~Po) l -Y llo"o 
F --.-2 =-~----:vl -- dVOO'(x)ye , cos2qx. 

(q+ik) I OQ t 1t v..., 

If we make the substitution c 2 =(J.locro/2), s 

rewrite this as 

2c 2 /t, and u 

(20) 

y 2, we can 

(21) 

Making use of the causality of the impedance response in the time-domain, 

as demonstrated by Eq. (10) and noting that the direction of spatial 

variation is arbitrary in the XZ plane, Eq. (21) can be rewritten as 

The time-domain impedance response (or alternately, the inverse 

Fourier transform of the impedance in the frequency domain) is now 
obtained by real Laplace and Fourier transforms of the conductivity 

characteristic function. The transform variables are also decoupled in 

this domain. Hence, an explicit inversion procedure can be written down 

to recover the conductivity characteristic function. 

The inversion procedure, based on Eq. (22), will then consist of the 

following steps: 
1. Compute the inverse frequency-domain Fourier transform of the 

impedance to convert to the time-domain. 
2. Evaluate the inverse cosine transform over g. This will give us the x 

and z variations of the conductivity characteristic function. 

(22) 
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3. Evaluate the inverse Laplace transform over s for each value of x and 
z. Numerical codes for these were developed last year to invert the 
impedance when a uniform field was applied on the surface. This 
inversion will give us the complete 3D variation of the conductivity 
characteristic function. 

CONCLUSION 

In summary, an eddy current inverse method to detect small 
conductivity variations in a metallic halfspace has been developed. The 
method is based on a spatially periodic field being applied on the 
surface. The inversion kernel is seen to be governed by a coupled 
Fourier-Laplace transform in the frequency domain; the coupling occurring 
between the spatial and harmonic frequency. One way to decouple these 
transforms is to go into the time-domain. An inversion procedure, based 
on a time-domain representation of the impedance, is descibed. Numerical 
implementation of the inversion is currently in progress. 
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