
INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the upper
left-hand comer and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" X 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

UMI
Accessing the World's Information since 1938

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

Order Number 8825957

Indefinite and maybe information in deductive relational
databases

Sunderraman, Rajshekhar, Ph.D.

Iowa State University, 1988

U M I
300N.ZeebRd.
Ann Arbor, MI 48106

Indefinite and maybe information in deductive relational

databases

by

Rajshekhar Sunderraman

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Approved:

In Charge of Major Work

For the Major Depart t

aduate College

Members of Committee:

Iowa State University

Ames Iowa

1988

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

ii

TABLE OF CONTENTS

1 INTRODUCTION 1

2 BACKGROUND MATERIAL 8

2.1 First-Order Logic and Relational Databases 8

2.1.1 Syntax of a first-order language 9

2.1.2 Semantics of a first-order language 10

2.1.3 Model-theoretic view of a relational database 12

2.1.4 Proof-theoretic view of a relational database 13

2.1.5 Deductive databases 15

2.2 Negation 19

2.2.1 Negation in relational databases 19

2.2.2 Negation in deductive databases 19

2.3 Recursive Axioms in Definite Deductive Databases 21

2.3.1 Singular rules 22

2.3.2 Non-singular rules 25

2.4 Incomplete Information in Databases 27

3 EXTENDED RELATIONAL MODEL 28

3.1 Indefinite/Maybe Information , 28

iii

3.1.1 I-tables and their information content 29

3.1.2 Redundancy in I-tables 33

3.1.3 Some properties 36

3.1.4 Time complexity of the REDUCE operator 40

3.2 Extended Relational Algebra 43

3.2.1 Notion of correctness of extended relational algebra 43

3.2.2 Selection 44

3.2.3 Projection 47

3.2.4 Cartesian product 50

3.2.5 Union 54

3.2.6 Difference 57

3.2.7 Intersection 61

3.3 Queries 65

3.4 Non-query Operations 68

4 INDEFINITE DEDUCTIVE DATABASES 70

4.1 Project-Union 70

4.2 I-rules 75

4.3 Algebraic Expressions for I-rules 78

4.4 Non-Recursive Indefinite Deductive Databases 80

4.5 Recursive Indefinite Deductive Databases 81

4.6 Example of a Query 85

4.7 Correctness of Algebraic Approach 88

5 GENERALIZED RELATIONAL MODEL 93

iv

5.1 M-Tables 93

5.2 Redundancy in M-tables 96

5.3 Generalized Relational Algebra 98

5.3.1 Selection 98

5.3.2 Projection 99

5.3.3 Cartesian Product 101

5.3.4 Union 104

5.3.5 Difference 104

5.3.6 R-projection 106

5.3.7 Merge 108

5.4 Queries 110

6 SUMMARY AND CONCLUSION 115

7 BIBLIOGRAPHY 118

8 ACKNOWLEDGEMENTS 123

9 APPENDIX 124

1

1 INTRODUCTION

Incomplete information in relational databases has been studied by many re­

searchers since the introduction of the relational model [9]. The different kinds of

incomplete information that have been studied include null values [5], [6], [7], [10],

[11], [17], [23], [24], [41], [46], [50], partial values [18,19], indefinite/disjunctive in­

formation [16,22,40], and maybe information [29,38]. In this thesis, we focus our

attention on the indefinite and maybe kinds of incomplete information.

In [40], the model-theoretic and the proof-theoretic approaches to relational

databases have been discussed. The model-theoretic approach views a relational

database as a unique model for a first-order theory. On the other hand, the proof-

theoretic approach views a relational database as a set of well formed formulas consti­

tuting a first-order theory. For example, the usual suppliers-parts relational database

in Figure 1.1 represents definite facts that correspond to the following logical formulas:

SP

si pi

s2 p3

s3 p5

P

pi blue

p2 green

P3 red

p4 red

Figure 1.1: Suppliers-Parts Database

2

1. SP{sl,pl), SP{s2,p3), SP(s3,p5), and

2. P(pl,blue), P(p2,ffreen), P(p3,red), P(p4,Ted).

Suppose we want to add the following disjunctive facts to the database:

1. Supplier s4 supplies part p3 or part p4,

2. Supplier s5 supplies part pi or part p5, and

3. Part p5 or part p6 is red.

The proof-theoretic approach allows us to mtroduce the disjunctive facts as the fol­

lowing logical formulas:

1. SP(s4,p3)\/ SP(s4,p4),

2. SP(s5,pl)\/ SP{s5,p5), and

3. P{p5,red)\/ P(pQ,Ted)

into the database. However, it is difficult to represent disjunctive facts using the

model-theoretic approach.

Suppose at a later time, we are interested in adding the definite fact: Supplier s5

supplies part p5. In the proof-theoretic approach, the formula SP(s5,p5) is added to

the first-order theory. The fact that SP{s5,p5) subsumes the already present formula

SP(s5,pl) V SP(s5,p5) removes the disjunctive fact SP{s5,pl) V 5P(s5,p5) from

the database. In the process, the information 5P(35,pl) , about the possibility of

supplier s5 supplying part pi is lost. However, it is still useful to keep this kind of

maybe information. In addition, the user may want to add maybe information of his

own, such as part p7 is possibly black.

3

Now consider the query: Find all the suppliers who supply red parts, in the above

described database. Since supplier s2 supplies part p3 which is red, s2 qualifies as a

definite answer. Since supplier s4 supplies either part p3 or part p4 and since both

the parts are red, s4 also qualifies as a definite answer. Supplier s3 supplies part p5,

however, we are not sure about the color of part p5. There is a possibility that it is

red. So, s3 qualifies as a maybe answer. Finally, since supplier s5 supplies part p5

and the color of part p5 may be red, s5 qualifies as a maybe answer.

In the above example, three kinds of information were discussed: definite, dis­

junctive/indefinite, and maybe. This paper addresses the problem of representing and

manipulating these kinds of information in a relational database viewed through the

model-theoretic approach.

The relational model, as illustrated above, is incapable of handling indefinite and

maybe information. All the facts represented in a relational database are definite.

A tuple, f, in a relation, r, can be viewed as a definite statement R{t), where R is

the predicate symbol associated with the relation r. The relation, in turn, can be

viewed as a conjunct ion of def ini te s ta tements R(i i) A • • • A R(tn) i where t j , . . . , tn

are the tuples of r. Finally, a relational database can be viewed as a conjunction of

conjunctions, one for each relation in the database, of definite statements. In order to

be able to represent indefinite and maybe information, we need to extend the notion

of a relation.

In Chapter 3, we define a data structure, called an I - tabîc , which is capable of

representing definite, indefinite, and maybe information. An I-table, T, consists of

three components, one for each of the three kinds of information it represents. The

definite component consists of definite tuples, the indefinite component consists of

4

indefinite tuple sets, and the maybe component consists of maybe tuples. A definite

tuple, t, can be viewed as a definite statement R{t), where R is the predicate symbol

associated with the I-table T. An indefinite tuple set, can be viewed

as an indefinite statement R{ii) V • • • V R{i]ç,). With only the definite and indefinite

components under consideration, an I-table can be viewed as a conjunction of definite

and indefinite statements and a database, which consists of I-tables, can be viewed as a

conjunction of conjunctions, one for each I-table, of definite and indefinite statements.

The model-theoretic approach to relational databases now views the database as a

set of minimal models [36], instead of a unique model, of the underlying first-order

theory.

A maybe tuple, t, corresponds to the statement R{t). However, this statement

is not necessarily true. Due to the nature of maybe tuples, we treat them differently

from the definite and indefinite kinds of information. There are two sources for the

maybe tuples. First, the user may want to represent tuples that may belong to the

relation. Second, the maybe component may consist of tuples that have appeared in

the past in tuple sets, and therefore there is more reason to expect them to be in the

relation than tuples that have not been mentioned anywhere.

The information content of an I-table is defined, by a mapping REP, to be a

set of definite relations that correspond to the minimal models [36] of the underlying

first-order theory and a set of maybe tuples. Redundancy in I-tables is discussed

and an operator to remove the redundancy is defined. The database in Figure 1.1

augmented with the disjunctive and maybe information, discussed earUer, is shown

as I-tables in Figure 1.2.

5

SP

si pi

s2 P3
s3 p5

s5 p5

s4 p3
s4 p4

s5 pi

P

pi blue

p3 red

p4 red

p5 red
p6 red

PT black

Figure 1.2: Supplier-Parts Database as I-tables

We extend the relational algebra to operate on I-tables. However, before we ex­

tend the relational algebra, we present the correctness criterion that must be satisfied

by the extended relational algebra. The correctness criterion is shown to be satisfied

by each of the extended algebraic operators. Queries can be expressed in the extended

relational algebra and the user may now expect definite, indefinite, and maybe an­

swers. To maintain a smooth flow throughout the paper, we present the proofs to

some of the theorems in the Appendix. Some of the results are presented in [31,32,33].

Deductive databases [13,14,15,16] have developed from the application of ideas

from first-order logic and relational databases. The term deductive denotes the capa­

bility of these systems to deduce new facts from known facts and rules while answer­

ing user queries. Deductive databases can be viewed as generalizations of relational

databases. They not only contain elementary facts but also general rules defining

additional facts. Most of the research in deductive databases has focussed on definite

deductive databases in which only Horn clauses are allowed. Recursive Horn clauses

have been extensively studied in [3,8,21,35,37,45,48]. Indefinite deductive databases.

6

which allow for non-Horn clauses to be present, have been studied with respect to

negation in [36,49]. Reiter [40] shows that the proof-theoretic approach to relational

databases can be very general and can incorporate indefinite information easily.

One of the approaches to realize the deductive component of a definite deduc­

tive database is to use the relational algebra to implement the deductive component

[25,42]. Imielinski [22] uses the algebraic approach for more general logic databases.

The algebraic approach has many advantages as efficient features of existing relational

database systems such as search algorithms, file organizations, etc. can be effectively

used.

In Chapter 4, we show how the extended relational algebra can be used to re­

alize the deductive component of a subclass of indefinite deductive databases, which

consists of non-Horn clauses whose positive literals involve the same predicate symbol.

We consider a subclass of indefinite deductive databases. The non-Horn rules

are restricted to have positive literals involving the same predicate symbol. Since the

non-Horn rules consist of more than one positive literals, we can no longer use the

projection operator to evaluate the rule. We extend the projection operator further

to handle this situation. Such an operator will be referred to as project-union. The

selection operator for I-tables does not satisfy the following property which is true for

regular relations:

To avoid problems stemming from this, we generalize the non-Horn clauses to consist

of disjunction of literals instead of just literals on the right hand side. The generalized

non-Horn clauses will be referred to as I-rules. Recursive I-rules are evaluated by

repeated application of the algebraic expressions. Some of the results related to the

7

application of the extended relational algebra to deductive databases are presented in

[30].

In Chapter 5, we generalize the concept of I-tables to represent more general

disjunctive information. A general data structure, called M-tables, is defined. M-

tables are capable of representing disjunctive information such as V* • • VPn(<n),

where P^-s could be different predicate symbols. The relational algebra is suitably-

generalized to operate on M-tables. In addition to the algebraic operators, we define

two new operators, R-projection and merge, which are used in answering queries.

8

2 BACKGROUND MATERIAL

In this chapter, we present some background material. First, we discuss the

strong relationship between first-order logic and relational databases. The two logical

views of a relational database: the model-theoretic and the proof-theoretic views,

are presented. An important generalization of the proof-theoretic view: deductive

database, is discussed. The problem of negative information, recursive axioms, and

incomplete information are briefly discussed.

2.1 First-Order Logic and Relational Databases

Here, we discuss two logical views of a relational database as described in [40].

We also define definite and indefinite deductive databases, and for each we present

an operational definition. We shall use the relational database in Figure 2.1 as an

example.

TEACHER COURSE

Â CSlOO

B CS200

C P200

STUDENT COURSE

a CSlOO

b CSlOO

c CS200

d P200

Figure 2.1: A Relational Database

2.1.1 Syntax of a first-order language

A first-order language is specified by a pair (j 4, W) , where A is an alphabet of

1. zero or more variable symbols,

2. zero or more constant symbols,

3. one or more predicate symbols,

4. punctuation symbols (and), and

5. logical constants -^,^,A,V,3, and V,

and W is a set of well-formed formulas defined as follows:

1. An atomic formula is a well-formed formula,

2. If Wj and W 2 are well-formed formulas then so are W j A W 2 , ^ W2, VTj —>

W2, and

3. If I is a variable symbol and W is a well-formed formula then so are (3a:)(IV)

and (Va;)(W), and

4. All the well-formed formulas are obtained from 1, 2, and 3,

and an atomic formula is of the form f ..., zn) where P is a n-ary predicate

symbol and xi,...,xn are constant or variable symbols. If the arguments of the

predicate symbol are all constant symbols then the atomic formula is referred to as a

ground atomic formula.

A relational language is a first-order language (^, W) such that A has the following

properties:

10

1. There are finitely many constants in A (at least one).

2. There are finitely many predicate symbols in A.

3. There is a special predicate symbol, =.

4. Among the predicate symbols of A, there is a distinguished subset, possibly

empty, of unary predicates, called simple types.

2.1.2 Semantics of a first-order language

An interpretation, I, for a first-order language F = [A, W) is a triple (Z?, K , E) , where

1. Z) is a non-empty set, called the domain of I,

2. K is a mapping from the constant symbols of A into D, and

3. E is a mapping from the n-ary predicate symbols of A into tuples of elements

ofD, E(P)CD".

An interpretation I = { D , K , E) for a relational language R = (>1, W) is a relational

interpretation if and only if

1. A' is a one-one and onto mapping, and

2. E{ =) ='{{d,d)\d Ç: D}.

Example 2.1.1 Let R = {A, W) be a relational language, where A contains the follow­

ing constant and predicate symbols:

Constants A, B, C, a, b, c, d, CSlOO, CS200, P200.

11

Predicates T E A C H E B } , C O U R S E ' ^ , S T U D E N T ' ^ , T E A C H ' ^ , E N R O L L E D ' ^ ,

Simple Types T E A C H E R ^ , C O U R S E ^ , S T U D E N T ' ^ .

A relational interpretation for R is [D , K , E) , where

D = { A, B, C, a, b, c, d, CSlOO, CS200, P200 },

K maps the constant symbols into the corresponding domain elements, and

E is shown in Figure 2.2.

TEACHER COURSE STUDENT TEACH ENROLLED =

A CSlOO a A CSlOO a CSlOO A A
B CS200 b B CS200 b CSlOO B B

C P200 c C P200 c CS200 C C
d d P200 CSlOO CSlOO

Figure 2.2; E { P)

Given an interpretation, I = { D , K , E) , let /), called an environment, be a map­

ping from the variables of A into D. Then, the mapping ||.||j is defined as follows:

llcjlj = A'(c), for each constant symbol c in A

for each variable symbol i in A

The truth value of a well-formed formula in an interpretation I and environment

p is defined as follows:

1. P (i i , . .. ,<n) is true in < J,p > if and only if < HtjUj,..., l|in||j >€ E { P) .

2. W- ̂ A W2 is true if and only if both W- ̂ and W 2 are true in < I , p > .

12

3. V W2 is true if and only if one of or W2 is true in < I ,p >.

4. -^Wi is true in < J,/> > if and only if Wj is not true in < I ,p >.

5. Wj —> W2 is true in < J,p > if and only if -^W- ̂ V W 2 is true in < I , p > .

6. (Va:)(W) is true in < /,/t) > if and only if for all d Ç. D, W is true in < /,p' >,

where p ' is exact ly the same as p with one except ion, p ' now maps x to d.

7. (3a:)(M^) is true in < I ,p > if and only if -'(Va;)(-iW) is true in < I ,p >.

Finally, a well-formed formula, W, is true in / if and only if W is true in < I , p > for

al l possible ps.

2.1.3 Model-theoretic view of a relational database

In the model-theoretic view, a relational database is defined as a triple DB =

(iî,/,JC), where

1. iZ is a relational language,

2. / is a relational interpretation, and

3. IC is a set of well-formed formulas, called integrity constraints.

For each predicate symbol, P, distinct from =, IC must contain

(Vsi).--(Vin)(-P(a:i,...,®n) ̂) A • • • A Tn{xn))

where Tj,..., 2^ are simple types and are referred to as the domains of P. The

integri ty constraints are said to be sat isf ied i f and only i f they are t rue in I ,

E{P), for a predicate symbol P other than =, corresponds to a relation.

A query, Q, for R is of the form

13

{< > |ri(xi) A---Arn(®n) AT^(a:i,...,Sn)},

where is a well-formed formula and the only free variables in W are ij,..., Xn

and Ti,... ,Tn are simple types.

A tuple < cj,..., Cjj. > is an answer to a query Q with respect to a database DB =

{R,I,IC) if and only if

1. is true in /, 1 < i < k, and

2. W(cj,... ,Cjj.) is true in J.

2.1.4 Proof-theoretic view of a relational database

Instead of viewing the relational interpretation 7 as a set of tables, we can think

of it as a set of ground atomic formulas. The proof-theoretic view consists of these

ground atomic formulas along with others.

A relational theory of a relational language R = (A,W) is a first-order theory

T QW such that T contains the following axioms:

1 . Domain Closure Axiom (Vx)(= (XjCj) V • • • V = (x,cn)), where c i , . . . , c 7 7 are

the constant symbols in A,

2. Unique Name Axioms = (Cj-,Cj), \ <i<n,\<j<n, i<j.

3. Equality Axioms:

• (Va;)(= (®,œ)),

• (Vx){V2/)(= (i,y)->= (y,x)),

• (Vx)(Vi/)(Vz)(= (x,y)A = {y,z) -^= (x,c)), and

14

• Principle of substitution:
(Vxi)---(Va:n) ... ,a:n)A = A • • • A = {xn,yn)

P{y\ > • • • > Vn))'

4. Ground Atomic Formulas, A Ç W, such that none of them contains the equality

predicate symbol.

Define Cp = {< cj,..., cn > |P(ci,... ,cn) G A}.

5. Completion Axioms: Let Cp = {< c|,...,c^ >,•••,< >}. For

each m-ary predicate symbol P,

-> (= (x,c|) A • • • A = (®m,Crh)) V---V

(= (®1'C][) A ••• A = (a:m,cî^))),

Example 2.1.2 For the example relational database of Figure 2.1, T contains:

1. (Vi)(= (x, >1) V • • • V = (x, P200)).

2. -I = (A , B) , —

3. Equality axioms.

4. TEACHERiA),..., ENROLLED{d, P200).

5. {Vx)iTEACHER{x) ->= (x, A)y = (x, B)V = (x, C)),....

In the proof-theoretic view, a relational database is defined to be a triple DB =

(i2, T,IC), where i2 is a relational language, T is a relational theory, and IC is a set

of integrity constraints. IC is said to be satisfied in the database DB if and only if

T 1= IC. A query, Q, for R is of the form

{< X J , . . ,,Xji. > |ri(x i) A ••• A Tnixn) A . . . , X ti)},

15

where W is a well-formed formula and the only free variables in W are ® j,..., xn

and Ti,...,Tn are simple types.

A tuple < cj,..., Cj^ > is said to be an answer to a query Q with respect to DB = •

{R,T,IC) if and only if

1 . T \ = 1 < i < k , and

2. T 1=

The following theorem [40] shows that the two views, as defined, are equivalent:

Theorem 2.1.1 (REITER) Suppose R = {A,W) is a relational language. Then,

1 . I f T i s a r e l a t i o n a l t h e o r y f o r R , t h e n T h a s a u n i q u e m o d e l w h i c h i s a r e l a t i o n a l

interpretation for R.

2. If I is a relational interpretation for R, then there is a relational theory, T, such

that I is the only model for T.

The proof-theoretic view can be generalized by adding axioms to it. It is easy

to incorporate incomplete information, information about events, hierarchies, and

inheritance of properties and aggregations into the proof-theoretic view of a relational

database [40].

2.1.5 Deductive databases

A deductive database is one of the more important generalizations of the proof-

theoretic view in which we add deductive laws to the set of axioms that constitute the

relational theory. New facts may be derived from facts that were explicitly introduced

16

and from deductive laws. The general form of clauses that will represent both facts

and deductive laws is:

P-^,..., P f , < ,...,

where P^-s and Q^s are atomic formulas. The P^s will be referred to as left hand side

of the clause and the Q^s will be referred to as right hand side of the clause. We shall

refer to atomic formulas and their negations as literals. The clause is equivalent to

P-̂ V • • • V Pĵ V "iÇj V • • • V

All the variable symbols in the clause are universally quantified and the quantifiers

will be omitted for notational convenience. The P^s will be referred to as positive

literals and the Ç^-s will be referred to as negative literals. If A: = 1 then the clauses

wiU be referred to as Horn clauses and if fc > 1 then the clauses will be referred to

as non-Horn clauses. An empty left hand side in a clause is an abbreviation for false

and an empty right hand side in a clause is an abbreviation for true. The different

types of clauses and examples are presented below:

Type 16 = 1 and Z = 0 {Definite Facts).

TEACH{A,CS\m)^

Type 2 6 = 0 and Z = 1 {Negative Facts).

^ TEACH{A,P100)

Type 3 6 = 0 and Z > 1 {Integrity Constraint).

PATHER{x,y) , MOTHER{x,y)

17

Type 4 6 = 1 and / > 1 {Definite Deductive Law/Integrity Constraint).

G R A N D M O T H E R { x , y) ̂ M O T H E R { x , z) , M O T H E R { z , y)

Type 5 fc > 1 and I = 0 {Indefinite Facts).

BG(Tom,A),BG{Tom,B) ^

Type 6 t > 1 and / > 1 {Indefinite Deductive Law/Integrity Constraint).

B G { x , y) , B G { x , z) ̂ F A T H E R { x , u) , B G { u , y) , M O T H E R { x , v) , B G { v , z)

Definite Deductive Databases (DDDBs): We obtain a definite deductive database

when we add deductive laws of Type 4 to the set of axioms of the relational theory.

The completion axioms are now modified as the following example illustrates:

Example 2.1.3 Let P have the following assertions in T:

1. P{a, b) and

2. P { c , d)

Also let

P { x , z) ̂ Q { x , y) , R { y , z)

and

P { x , y) S { x , y)

be all the clauses in T that imply P. Then the completion axiom for P is:

18

(V®)(Vj/)(Vz)(P(a;, y) ->• ((= (x, a)A = (z, 6))V

((= = (z , (f))V

i Q { x , y) A R { y , z)) \ /

{ S { x , y))) .

Operational Definition of DDDB: From an operational point of view, a DDDB

consists of elementary definite facts, definite deductive laws, a set of integrity con­

straints, and a metarule: negation as finite failure to be discussed later. We can avoid

the domain closure axioms by restricting to clauses in which all variable symbols in

the left hand side are also found somewhere on the right hand side. Such clauses are

sometimes referred to as range-restricted clauses. The unique-name and completion

clauses may be removed if negation is interpreted as finite failure. The equality axioms

are no longer needed as we have done away with the domain-closure, unique-name,

and completion axioms.

Indefinite Deductive Databases (IDDBs): We obtain an indefinite deductive

database when we add facts of Type 5 and deductive laws of Type 6 to the set of

axioms of a relational theory.

Operational Definition of an IDDB: From an operational point of view, an

IDDB consists of elementary definite as well as indefinite facts, definite as well as

indefinite deductive laws, a set of definite as well as indefinite integrity constraints,

and a metarule: generalized negation as failure, to be discussed later.

Although the proof-theoretic view of relational databases is elegant and expres­

sive, a theorem-prover is needed to perform the deductions. In the case of indefinite

deductive databases, such a theorem-prover can prove to be drastically inefficient. As

a result, most of the research has concentrated on enhancing the model-theoretic view

with the expressiveness of the proof-theoretic view. The deductive components are

19

realized by the traditional algebraic approaches and other techniques that treat the

relational database as a first-order interpretation.

2.2 Negation

Efficient treatment of negative information is an important issue and has been

addressed by many researchers. Negative information may overwhelm a system. For

example, in a university environment we may know that certain students take a par­

ticular course. For the remaining students, presumably large in number, we would be

required to list them as not enrolled in that course.

2.2.1 Negation in relational databases

The relational model of data represents positive information only. The assump­

tion here is that the information not explicitly present in the database is not true. A

tuple represents the existence of a relationship between its elements. From a failure to

find a certain tuple in the relation, the converse of the relationship may be assumed

to be true. For example, if no tuple exists to show "supplier si supplies part pi" then

it is assumed that "supplier si does not supply part pi".

2.2.2 Negation in deductive databases

A summary of the relevant results which deals with negation in definite as well

as indefinite deductive databases is presented next.

Closed World Assumption (CWA): The closed world assumption [39] states that

a negative ground literal -^L is assumed to be true if we fail to prove L from the

20

existing set of clauses in the database. The CWA is logically equivalent to adding a

new component DB~' to the database, where

DB~' = {-P(c)|DB ^ P{c)}

but without having DB~' stored. When not working under the CWA, we shall say

that the open world assumption (OWA) is adopted. The following important theorems

have been proven in [39]:

Theorem 2.2.1 If DB is Horn and consistent then DB U DB~' is also Horn and

consistent.

Theorem 2.2.2 If DB\JDB~' is consistent then the answers to a query under CWA

is exactly the same as the answers under OWA.

The semantic version of the CWA is stated below:

Theorem 2.2.3 A ground negative atomic formula -'P(c) can be assumed to be true

in a Horn database if and only if P(c) does not belong to the unique minimal model

of the Horn database.

Example 2.2.1 Let DB = {P(a),Q(6)}. Then the unique minimal model of DB is:

{P{a),Q(6)}.

We may assume -'P{b) and -iQ(a).

The CWA as defined for definite deductive databases is not applicable to indefi­

nite deductive databases as the following example illustrates:

Example 2.2.2 Consider a database that consists of the following clauses:

21

CATifel ix) ^

B L A C K { x) , W H I T E { x) ̂ C A T { x)

Since B L A C K { f e l i x) cannot be proved, CWA allows us to assume -^BLACK{felix).

Similarly, we can assume -'WHITE{felix). This results in the following inconsistent

database:

^BLACKifel ix) ^

- ^ W H I T E i f e l i x) f -

C A T i f e l i x) * -

B L A C K { x) , W H I T E { x) 4 - C A T (x)

Minker [36] extends the CWA to solve the above mentioned problem. Let E be the set

of all purely positive (possibly empty) clauses not provable. The generalized closed

world assumption (GCWA) states that we can assume -'P{x) if and only if P(x) V C

is not provable for any C in E. The semantic version of the GCWA is stated below:

Theorem 2.2.4 A ground atomic formula P(c) can be assumed to be true in a non-

Horn database i f P{c) is not present in any minimal model of the non-Horn database.

Example 2.2.3 Let DB = {P(a) V P{b),Q(b)}. The minimal models of D B are

{Q{b), P(a)} and {Q{b), P{b)}. Since Q{a) is not in any minimal model, we can

assume ^Q{a) to be true.

2.3 Recursive Axioms in Definite Deductive Databases

The view mechanism offered by most relational systems is actually a special case

of the deductive laws where the views are restricted to be non-recursive. In this

22

section, we present some discussion on the recursion problem in definite deductive

databases.

A Horn clause is recursive if it is of the form

P- ̂ < ..., > • • •)

where Pj and P2 both use the same predicate symbol. For example the Horn clause

ANCESTOR[x,y) ̂ ANCESTOR(x, z) , ANCESTOR{z,y)

is recursive. A linear recursive Horn clause is one in which the recursive literal appears

exactly once on the right hand side of the rule.

Recursion can be classified into the following two types:

1. Recursion whose bound does not depend on the database state. The recursive

clauses which correspond to this type are referred to as singular rules. This kind

of recursion is easily solved syntactically.

2. Recursion whose bound depends on the database state. The recursive clauses

which correspond to this type are referred to as non-singular rules. Examples

of this type of recursion is the classical transitive closure of a relation.

2.3.1 Singular rules

Minker and Nicolas [37] define singular rules as follows:

Definition 2.3.1 A recursive rule of the form

P P\i' • • 1 PriiF

where Pj,..., Pn are literals that use the same predicate symbol as P and P is a

conjunction of literals using non-recursive predicates, is a singular rule if and only if

23

1. Each variable symbol that occurs in a literal Pj and does not occur in P only

occurs in P^, and

2. Each variable in P occurs in the same argument position in any literal P^ where

it appears, except in at most one literal Pj that contains all of the variables in

P.

In the above definition, the first condition rules out explicit transitivity while the

second condition rules out any underlying transitivity relationship.

Example 2.3.1

1. R{x,y,z) R{x,y,zi) ,R{x,yi ,z) is singular.

2. R{x,y,z) <— R{yi,x,z) ,R{x,y,zi) is not singular.

3. R{x, y, z) <- R(z, x , y) , R{x, yi , z), Q{x, y,) is singular.

Some Useful Definitions: The variables whose values are required in the answer

are termed output variables and are superscripted with an asterisk. Asubstitution is

a set of pairs of variables, p = {xj , . . . , yn}, where i jS are termed old

variables and y^s are termed new variables. The application of p to an expression

E consists of replacing the variables in E which occur as old variables in p by the

corresponding new variables. The expression so obtained is denoted by E(p). A

substitution p is safe if and only if

1. none of the old variables in p is an output variable, and

2. all new variables in p are different and none of them occur in E.

24

Given two expressions, E-^ and which are conjunction of literals, E-^ subsumes E2

if and only if there exists a substitution pj safe with respect to E-^ and a substitution

P2 safe with respect to £'2 such that each literal in Et^{pi) is identical to some literal

in E2{P2)-

Halting Condition: A derivation can be stopped while preserving answer com­

pleteness immediately after a generated expression that is subsumed by one of its

ancestor expressions.

Example 2.3.2 Consider the singular rule:

P{z,y) ̂ P{y,z) ,Q(x,y),

and the query: <— P{u*,v*). We obtain the following derivation path by repeated

backward chaining:

El: ^P{u*,v*)

E2: <-

E3: ^ Piu*,v*),Qix,u%Qix,v*)

Note that E3 is subsumed by El. So the Halting Condition allows us to stop the

derivation just before generating E3 while still preserving answer completeness. The

following useful theorem has been proved in [37]:

Theorem 2.3.1 Any potentially infinite derivation path induced by a singular rule

can be stopped by means of the Halting Condition.

25

2.3.2 Non-singular rules

The second type of recursive rules, the non-singular rules, are more interesting

as no syntactic solution exists. We discuss a solution to evaluate non-singular rules

which forms the core of most of the solutions proposed.

Naive Evaluation: We shall present Naive Evaluation through an example. Con­

sider the follow Horn clauses:

ANCESTOR{x,y) PARENT{x,y)

ANCESTOR{x,y) ̂ PARENT{x,z) ,ANCESTOR{z,y)

QUERY(x) ANCESTOR{x,d)

and the relation PARENT in Figure 2.3. The method consists of compiling into an

PARENT

a b

a c

b d

b e

c f
c g

Figure 2.3: Relation PARENT

iterative program the rules that derive QUERY{x). The object program for this

example is shown below.

begin

26

ANCESTOR^ := PARENT-,

ANCESTOR* := PARENT-,

repeat

ANCESTOR^^'^ := ni^^{(T2=z{PARENT x ANCESTOR*))-,

ANCESTOR* := AiVC£;SrOi?* U vliVCESTOiJ^'+l;

i := i + 1

until (there are no changes to ANCESTOR*);

ANCESTOR := ANCESTOR*-,

QUERY -.= ^/{ANCESTOR))

end

The value of ANCESTOR relation after each iteration and the value of QU ERY

are shown in Figure 2.4.

ANCESTOR^

a b

a c
b d

b e

c f
c g

ANCESTOR^

a d

a e

a f

a g

ANCESTOR^= 0
QUERY

Figure 2.4: Relations ANCESTOR'^, ANCESTOR^, and QUERY

Naive evaluation is the most widely described method in the literature. It has

been presented in many papers under different forms. The inference engine of SNIP

presented in [35] is in fact an interpreted version of the naive evaluation. The method

27

presented in [8] is a compiled version of the neiive evaluation which works for only

linear recursive rules.

2.4 Incomplete Information in Databases

The notion of incompleteness is inherent in the domain of databases. Many at­

tempts have been made to characterize the different kinds of incompleteness. Null

values were treated in [10], where a three-valued logic was introduced and a maybe-

algebra was defined. Grant [17] improved on Codd's approach. Lipski [29] charac­

terizes two interpretations of a query in the context of an incomplete database: the

external interpretation in which the query is referred to the real world modeled, in an

incomplete way, by the system, and the internal interpretation in which the query is

referred to the system's knowledge of the real world. The external interpretation of a

query has two bounds:

1. the lower bound, which includes all those objects for which we can positively

conclude, from the information available in the system, that they are in the

external interpretation of the query, and

2. the upper bound, which includes all those objects for which we cannot rule out

the possibility of belonging to the external interpretation of the query.

Levesque [27] defines a query language which is capable of obtaining the internal

interpretation of a query. Most of the research in incomplete databases, however, has

concentrated on the external interpretation of a query.

28

3 EXTENDED RELATIONAL MODEL

In this chapter, we extend the relational model to represent indefinite and maybe

information. A data structure, called I-tahles is introduced. The information content

of an I-table is precisely defined. Redundancy in I-tables is characterized and an

operator to remove the redundancy is defined. The relational algebraic operators are

extended, in a semantically correct manner, to operate on I-tables. Then, we show

how queries can be answered in the extended relational model. The answers to queries

may now contain indefinite and maybe tuples. Finally, we give the syntax for simple

update operators like insert, delete, and modify.

3.1 Indefinite/Maybe Information

In this section, we introduce I-tables, which are capable of representing definite,

indefinite, and maybe information. The I-table is merely an extension of the table

representing a relation in the relational model. We use a mapping REP to characterize

the information content of an I-table in terms of the various definite relations it

represents. We also define the notion of redundancy in I-tables and define an operator,

called REDUCE, to remove these redundancies. Then, we present some properties of

REP and REDUCE. Finally, we present an approximate time complexity analysis

of the RE DU CE operator.

29

3.1.1 I-tables and their information content

A domain is a finite set of values, usually non-empty. The cartesian product

of domains jDj ,..., Dn is denoted by x • • • x Dn and is the set of all tuples

< ,..., On > such that for any i 6 € D^. A I-table scheme is an

ordered list of attribute names, R =< ,..., An >• Associated with each attribute

name, is a domain Dj^. Then, T =< > is an I-table over the scheme

i2, where

Tj) Ç X • • • X Dn,

Tj Ç 2^1^-^'^"-({0}U{{O1^G.DiX.. .X !>„.}), and

I 'm Q X • • • X Dn-

Note: We shall use the symbol Ç for improper subset and the symbol C for proper

subset.

Tj) is the definite component of the I-table and consists of tuples which we will refer

to as definite tuples. Tj is the indefinite component of the I-table and consists of

sets of tuples which we will refer to as indefinite tuple sets. The indefinite tuple sets

correspond to inclusive disjunctions, i.e., it is possible for more than one tuple within

a tuple set to be the real world truth. is the maybe component of the I-table and

consists of tuples which we will refer to as maybe tuples.

NOTATION: We shall use the symbols T, Tj,... for I-tables, <,<2,... for tuples,

w, ... for tuple sets, r, ,... for relations, c, 6, c,... for domain values, and <

U,v >,< Ui,vi >,... for elements of Sjj (to be defined later). Also, we shall assume

An I-table can be viewed as consisting of two kinds of information: sure and

30

maybe. The definite and indefinite components of an I-table represent sure informa­

tion and the maybe component represents maybe information. The sure components

of an I-table represent various definite relations, at least one of which is the real world

truth. These definite relations correspond to the various models of the underlying

first-order theory [36,40]. Some of these definite relations may correspond to non-

minimal models, in the sense that they are subsumed by other definite relations. The

information content of an I-table consists of two components: the sure component,

which consists of definite relations that correspond to the minimal models of the un­

derlying first-order theory, and the maybe component, which consists of all the maybe

tuples obtained from the I-table. Given a scheme R, we define Fjj and as follows:

Fjj = {r|r : I-table over R }, and

S22 = {< U,v > \U : set of relations over R , v : relation over R }.

Now, we are ready to present the formal definition of the information content of an

I-table. The information content of an I-table is defined as a mapping, REP, which is

the composition of two other mappings, REDUCEREP and < MM, M >, defined

as follows:

Definit ion 3.1.1 < MM, M > : ^ Sjj, is a mapping, where

< MM,M > (T) =< MM{T),MiT) >,

^ =< >'

^7 = {^1,... ,WR},

MM{T) = {îp U {/j,... ,<n}|(Vi)(l < i < n6 Wj)}» ûnd

MiT) = Tm-

MM{T) consists of all the definite relations represented by the sure components of

the I-table and M{T) is simply T^. Note that MM{T) = {0} when T =< 0,0,0 >.

31

An example of the mapping < MM, M > is given in Figure 3.1.

Definition 3.1,2 REDUCEREP : Sjj Sjg, is a mapping, where

T

a

"b"

c

d

b

e •

~d~

f

g

' a a a a a a a a
b b b b b b b b
c c c c d d d
d f e e f e e

> d 7 f Î ? Î f

Figure 3.1: < MM, M > (T) =< U,v >

REDUCEREP{< U,v >) =< >,

[/•^ = {r I [r £U J\ -i(37'j)(ri Ç C7 A rj C r)}, and

f^ I {i £ V V (Br j) (3 î ' 2) (r i S U A r2 £ U A Ti C r2 A t £ r2 — ri)) A

-i(3r)(r £ At £ r)}.

is U with all the definite relations that correspond to non-minimal models of the

underlying first-order theory removed, and is v along with some tuples from the

definite relations removed from U. Applying REDUC EREP to < MM, M > (T) of

32

Figure 3.1, we obtain Figure 3.2.

= <

a a
~b" T

T c

T

v^ =

Figure 3.2: REDUCEREP{< MM, M > (T)) =< >

The following theorem states that RE DUC ERE P is idempotent:

Theorem 3.1.1 For any < U,v >£ Sjj,

REDUCEREP[REDUCEREP[< U,v >)) = REDUCEREP(< U,v >).

Proof: Follows from definition.

The following lemma can easily be observed:

Lemma 3.1.1 Let < U,v >€ and REDUCEREP{< U,v >) =< Ui,vi >.

Then,

y (r) Uv = (J (r) U vj.
r£U

Finally, we define the information content of an I-table as follows:

Definit ion 3.1.3 REP ^ is a mapping, where

REP{T) = REDUCEREP(< MM, M > (T)).

REP{T) for the I-table T of Figure 3.1 is shown in Figure 3.2.

Since we are dealing with disjunctive information that correspond to the inclusive

or, we need the following definition;

33

Definit ion 3.1.4 Let U he a. set of relations over the scheme R. Then,

POSS{U) = {r I (3fc)(l < fc < lf/| A (3rj) • • • (37'j^)(r2 € 17 A • • • A e Î7 A

r = U " ' U

Given REP{T) =< U,v >, POSS{U) represents all the different real world possi­

bilities represented by the I-table T, including those that correspond to the possibility

of more than one relation in U being the real world truth.

3.1.2 Redundancy in I-tables

In this section, we first characterize the different kinds of redundant information

that could be found in an I-table. Then, we introduce an operator, called RE DU CE,

which removes these redundancies.

We have identified the following four kinds of redundant information that could

be present across the components of an I-table, T =< 2^, >:

1. f 6 Tjp and w £ Tj and i 6 w. Here, a definite statement is part of an indefinite

statement. This redundancy is removed by deleting w from Tj and including in

Tj^ all the tuples in w — {<}.

2. wj G Tj and W2 € Tj and ti'j C xi'2- Here, an indefinite statement is part of

another indefinite statement. This redundancy is removed by deleting u'2 from

Tj and including in all the tuples in tt'2 — w-^.

3. < 6 and t E Tjt). Here, a maybe statement is also a definite statement. This

redundancy is removed by simply deleting t from .

34

4. < G and < G w and w 6 7/. Here, a maybe statement is part of an indefinite

statement. This redundancy is removed by simply deleting t from Tj^.

Note that the first two kinds of redundancies correspond to the subsumption of an

indefinite fact by either a definite or another indefinite fact. The last two kinds of

redundancies correspond to the appearance of a maybe fact as a definite fact or in an

indefinite fact. We now define an operator, called REDUCE, which takes in as input

an I-table and returns the I-table with all the redundancies removed. REDUCE is

defined as a mapping REDUCE : T—> Tj^ as follows:

Definit ion 3.1.5 Let T be an I-table. Then, REDUCE[T) = T®, where T® is defined

as follows:

Tl = {t 1 i S T p } ,

Tj={w I {w E Tj A 6 Tj) At £ w) A)(w2 E Tj Aw-^ C w)}, and

I (< E A) A (< 0 Tg) A eTj At e w)},

where A is defined as follows:

A = {t I (/ e V

(3fj)(3u')(/2 £ Tf) Aw Ç. Tj Ati e w At e w — {t i})y

(Bïoj)(3it>2)(î f i E Tj A W2 E Tj A wi Cw2 A t e W2 — «' i)}-

An example of the REDUCE operator is shown in Figure 3.3.

We shall refer to a non-redundant I-table as a reduced I-table, The following

lemma can easily be deduced from the definit ion of REDUCE:

Lemma 3.1.2 Let T be an I-tahle and let = REDUCE{T). Then,

35

a

Y

c

~b

e
{_

e
f

a

c

e

Y

REDUCE(T)

e

f

Figure 3.3: REDUCE{T)

36

Tpu u (»)uu u (w)ur^.

3.1.3 Some properties

In this section, we present some properties of the REDUCE operator and the

mapping REP.

The following theorem states that REDUCE is idempotent:

Theorem 3.1.2 For any I-table T G Fjg,

REDUCE{REDUCE{T)) = REDUCE{T).

Proof: Follows from definition.

The next theorem establishes the fact that REDUCE neither creates nor destroys

any information.

Theorem 3.1.3 For any I-table T eT

REP(REDUCE(T)) = REP{T).

Theorem 3.1.3 is illustrated in Figure 3.4.

Figure 3.5 shows REP{T) and REP{REDUCE{T)) for the I-table T of Figure

3.3. However, REDUCEREP{< MM, M > (T)) MM, M > {REDUCE{T)),

as Figure 3.6 illustrates.

The mappings REP and REDUCE induce the following equivalence relations

over Tji:

Définit ion 3.1.6 For any two I-tables Tj and T2 in

Tj T2 if and only if REP{T-^) = REP(T2).

37

r REDUCE

REP REP

Figure 3.4: REP{T) = REP{REDUCE{T))

a a __ d
b ~b~

< — > V = g
c c

h
e > f

Figure 3.5: REP{T) = RE P {RE DU CE {T)) =< U,v >

38

a

~b

c
c
d

REDUCEiT)

b

c

c

d

< MM,M > {T) =< MM,M > {REDUCE{T)) =< UI,V^ >

U, = uj = 0

REDUCEREP{< MM,M > (T)) =< U2 ,V2 >

U2 =
a
c

a
"b"
T

i'2 = 0

Figure 3.6: REDUCEREPo < MM, M >, < MM, M > oREDUCE

39

Definit ion 3.1.7 For any two I-tables Tj and in Tj^,

Ti =REDUCE 2^ if and only ï i REDUCE{Ti) = REDUCE{T2).

The following theorem establishes the relationship between the two mappings

REP and REDUCE:

Theorem 3.1.4 For any two I-tables and Jig from

REP{Ti) = REP{T2) if and only i f RE DU CE (Ti) = REDUCE{T2).

Corollary 3.1.1 =REP_^REDUCE

Given a scheme R, we can compare I-tables over R with respect to the information

contained in them. We present the syntactic and the semantic versions of weaker I-

tables in the following two definitions;

Definit ion 3.1.8 Let Tj and T2 be two I-tables defined over the scheme R and let

= REDUCE{T^) and = REDUCE{T2). Then, Tj is weaker than written

< T2, if and only if

1. Tl Ç

2. (Vw)(w G Tj —>• {{St){t G Tp A < G tf) V (3u'i £ Tj A w-^ C w))) , and

3. {\/ t)(t e - (< G) v (3«;)(w g r/ a < g v (< g r̂))).

Definit ion 3.1.9 Let Tj and T2 be two I-tables defined over the scheme R and let

REP{T-^) = < (7^,1)2 > and REP{T2) = < (72*^2 > Then, is weaker than Tg,

written Tj < iPg, if and only if

1. (Vr2)(r2 € U2(3ri)(ri G C/j A rj Ç r2)), and

40

2- «1 ^ (U (r) Ur2).
reU2

It can easily be shown that the above two definitions are equivalent. Informally,

< T2 means that all the information present in Tj can also be deduced from

Example 3.1.1 In Figure 3.7, < Tjg. Note that the empty I-table < 0,0,0 > is

weaker than all I-tables.

Definit ion 3.1.10 Let Tj and T2 be two I-tables defined over the scheme R. Then,

Ti = T2 if and only if Tj < T2 < T^.

The following theorem can easily be observed:

Theorem 3.1.5 ===^^^.

3.1.4 Time complexity of the REDUCE operator

In this section, we present an approximate analysis of the time complexity of the

REDUCE operator. Let T be an I-table and let nj^ be the number of tuples in

nj the number of tuple sets in Tj, and the number of tuples in Tj^. We shall

assume that the size of the largest tuple set is k, usually a small integer, a constant.

For convenience, we shall assume that Tjq consists of singleton sets of tuples instead

of tuples and shall refer to Tj^ U Tj as Tsure- Note that the maximum number of

tuples in Tsure is nj) 4- k nj . We now present an algorithm for REDUCE.

Algorithm 2.1 REDUCE

Input: An I-table Ti

Output: T = REDUCE{Ti)

Method:

Step 1: Sort as follows:

41

a

T

c

e

f

J_
Y

i

j

h.
a

"F"

c

T~
g

h

2_
k

u^ =

REP{Ti) = < >

a a a a a a

i
b b b b b b

>

c c c d d d
e f g e f g

REP(T2) =< (72)^'2 >

VI =

U2 =

a a a a "

b T" ~b" ~h
< c c c c

f T g
h i h i

V2 =

Figure 3.7: I-tables and their REP s

42

Step 1.1; First, sort the tuple sets in the increasing order of their sizes (num­

ber of tuples) to obtain k groups of tuple sets, where k is the size of the

largest tuple set.

Step 1.2: Next, sort the tuples within the tuple sets.

Step 2: Traverse using k pointers, one for each group of tuple sets, and in

the process collect, in Tsurei tuple sets that are not proper subsets of other

tuple sets. Also collect, in A, any tuples that are present in tuple set u 6

and not in tuple set v G such that v C u.

Step 3: Sort A U and then delete any tuple in ^ U that is also present

anywhere in Tsure- This will result in Tj^.

Let us assume that we employ an 0{nlogn) sorting algorithm. The time taken to

sort the tuple sets in the increasing order of their sizes (Step 1.1) is of the order of

(n£) + nj)log{nj^ + nj) and the time taken to sort the tuples within the tuple sets

(Step 1.2) is of the order of nj, assuming that it takes constant time to sort the

tuples within each tuple set. The time taken to obtain Tsure and A in Step 2 is

proportional to n£) -f nj. Finally, the time taken to sort A U Tj^ in Step 3 is of the

order of {rtj + nj^j)log(nj + and to delete tuples from A U that are not

present anywhere in Tsure is of the order (njy + nj + n^).

Using the above estimates, v/e conclude that the time complexity of REDUCE

is

0((n£) + nj)log{nj) + nj) + [nj + nj^)log{nj + nj^)) .

43

3.2 Extended Relational Algebra

In this section, we first discuss the notion of correctness of extended relational

algebraic operations on I-tables. Then, for each algebraic operator, we first present

the definition on Sjj and then the definition on Fjj that satisfies the correctness

criterion. We shall use the same symbol to represent the regular relational operator,

the operator on Sjj, and the operator on TThe operator in question will be

determined by its operands.

3.2.1 Notion of correctness of extended relational algebra

As has been defined earlier, the mapping REP maps an I-table, T, over scheme

R, to elements of REP{T) consists of two components: Î7, a set of definite

relations at least one of which represents the real world truth, and u, a set of maybe

tuples. Now, consider a relational algebraic operator, /. In order to extend / to

operate on I-tables, we must ensure that the extended operator captures the effect of

the corresponding regular operator on the various definite relations represented by the

I-tables. This notion of correctness is captured in Figure 3.8. For each operator, we

first need to define /g on Sjç and then define /p on Fjj, that satisfies the following

correctness criterion illustrated by Figure 3.8;

1. REP{fY{T)) = f-£{REP{T)), for unary /, and

2. REP{fj^{Ti,T2)) = f^{REP{Ti),REP{T2)), for binary /.

44

REP

Figure 3.8: Commutativity of REP and /

3.2.2 Selection

First we define selection on elements of as a mapping, ap :

Definit ion 3.2.1 Let < >G Then,

>) = REDUCEREP{(t^{< UI,VI >)), where

^1,^1 >) =< >,

U = {7'|(3r]^)(r]^ E f 05'5(Z7%) A r =))},

V = (rp(vi) .

The property: rj Ç ^2 implies cjriri) Ç a-p{r2) and the definition of REDUCEREP

allows us to simplify the above definition into the following equivalent definition:

Definit ion 3.2.2 Let < >6 Then,

crp{< Ui^vi >) = REDUCEREP{a-p{< Ui,vi >)), where

o'p(< Ui,vi >) =< U,v >,

U = {r\{3ri){ri e Ui Ar = (Tp{r-^))} and

45

V = < T p { v i) .

The following theorem shows that the selection on commutes with REDUCEREP:

Theorem 3.2.1 For any < U,v >G

o'p{< U,v >) = <Tp{REDUCEREP{< U,v >)).

Next; we define selection of I-tables. The definite and maybe tuples that satisfy

the selection condition are included in the respective components of the selection. If

all tuples within a tuple set satisfy the selection condition then the tuple set is in­

cluded in the selection. Otherwise, only those tuples within the tuple set which satisfy

the selection condition are included in the maybe component of the selection. Redun­

dancies introduced are removed with the REDUCE operator. Formally, selection of

I-tables is defined as a mapping, crp : T> F^, as follows:

Definit ion 3.2.3 Let be an I-table and F be a formula involving operands that are

constants or attribute numbers, arithmetic comparison operators: <,=,>,<,>,7^,

and logical operators A, V, and -1. Then, a-jp{Ti) = REDUCE{T), where

Tj5 = {< I < €

Tj = {w I w e Tj A {yt)(t e w -i- f(<))},

I G A F{i)) V (3w)(w eTj At ew A F{t))},

and F{t) is F with attribute number i replaced by <[i].

Remark: Consider the bloodgroup I-table in Figure 3.9 and the query: Find all the

persons with bloodgroup "A" or "O". The query expressed in the extended relational

algebra is:

46

BG

Tom A
Gary 0

John A
John 0

Tim A

Figure 3.9: Bloodgroup I-table BG

and the answer to the query includes "Tom", "Gary", and "John" as definite answers

and "Tim" as a maybe answer. However, if we express the query as:

the answer will include "Tom" and "Gary" as definite answers and "Tim" and "John"

as maybe answers. Note that "John" qualifies as a definite answer in the first case

and as a maybe answer in the second case. The reason for this discrepancy is that

the evaluation of one of the sub-conditions, (2="A") or (2="0"), in the second case

ignores the effect of the other sub-condition if the two were to be evaluated together.

This observation has been noted by Lipski in [29]. According to [29], a query is inter­

preted in two ways: the external interpretation where the query is referred directly

to the real world modeled by the system, and the internal interpretation where the

query is referred to the system's information about the real world. The external in­

terpretation has two bounds: ||Q||* which corresponds to the sure answers and |[Ç||*

which corresponds to the answers that cannot be ruled out. It has been noted that

l l C i V C 7 2 l l . # | l C i l U u | | C 2 l U .

The following theorem shows that the selection of I-tables commutes with RE DUC E:

47

Theorem 3.2.2 For any I-iable T,

ap{T) = ap{REDUCE{T)).

The correctness of the selection operator is established in the following theorem:

Theorem 3.2.3 For any reduced I-table T and formula F,

REP{ap{T)) = <Tp{REP{T)).

Corollary 3.2.1 For any I-table T and formula F,

REPiapiT)) = <Tp(REP{T)).

Theorem 3.2.3 is illustrated in Figure 3.10.

3.2.3 Projection

We first define projection on as a mapping, 11^ :

Definit ion 3.2.4 Let < U-y^v-^ >G S^. Then,

n^(< >) = REDUCEREP[-R^^[< >)), where

n^(< Ui,vi >) =< U,v >,

U = {r\{3r-j^){ri Ç. POSS{Ui) = U.j^{ri)}}, and

V = n ^ (v i) .

The property: rj Ç r2 implies 11^(rj) Ç n^(r2) and the definition of

allows us to simplify the above definition into the following equivalent definition:

Definit ion 3.2.5 Let < >€ S^. Then,

48

U-^ = '

al bl

a2 bl

a2 b2

a3 b2

a3 b3

a4 b2

a5 b4

al bl
a2 bl
a3 b2

<^2="61"V2="&2"(^)
al bl

a2 bl

a2 b2

aS b2

a4 b2

REP{T) =< UI,VI >

4

al bl

a2 bl
a3 b3

="62"(^))

al bl

a2 bl

al bl

a2 b2

a3 b2

'^2="61"\

al bl

a2 b2

al bl

a2 b2

aS b3

t'j =
a4 b2

a5 b4

i2EP((T2^"5l"V2="62"(^)) = '^2="6l"V2="62"(-^-^-f'(^)) =< >

Z7 = < — 1.1 H— > V =
a3 b2

a4 b2

Figure 3.10: Selection

49

n^(< >) = REDUCEREP{Jl^(< >)), where

n V < ^ i ' n >) = <

U — {r|(3ri)(r2 G A r = n^(r2))}, anrf

V = n ^ (u i) .

The next theorem shows that the projection on commutes with REDUCEREP:

Theorem 3.2.4 For any < U,v >e

n^(< U,v >) = Tlj^{REDUCEREPi< U,v >)) .

Next, we define projection of I-tables. The projection of I-tables is quite similar

to the regular projection. Some tuple sets may become singletons on projection, in

which case they are moved over to the definite component of the projection. Formally,

projection is defined as a mapping, 11^ : Tjf as follows:

Definit ion 3.2.6 Let Tj be an I-table and let ^ be a list of attribute numbers. Then,

n^(ri) = REDUCEiT), where

^1) = {^ I (3/i)(<i e A <[A] = V

(3w)(w eTj A {yti){i i Gw <[^] = <i[A]))},

Tj = {w I (3wi)(wi e Tj A ui = A |iy| > 1)}, antf

I (3<i)(<i 6 At[A] =

The following theorem shows that the projection of I-tables commutes with RE DU CE'.

Theorem 3.2.5 For any I-table T,

n^(r) = Jij^[REDUCE(T)) .

50

The correctness of the projection operator is established in the following theorem:

Theorem 3.2.6 For any reduced I-table T and list of attributes A,

REPilLAiT)} = U^iREPiT)).

Corollary 3.2.2 For any I-table T and list of attributes A,

I iEF(n^(T))nji(REP(T)).

Theorem 3.2.6 is illustrated in Figure 3.11.

3.2.4 Cartesian product

We first define cartesian product of elements of with elements of 2 as a

mapping, x : ^ .Ag '

Definit ion 3.2.1 Let < >G and < t^2''"2 ^-^2'

< U^,v-^ > X < U2,V2 >= REDUCEREP{< > x® < C^2'^'2 where

< > X® < U2,V2 >=< U,v >,

U = {rKBr^^)(3r2)(Ti G P05S(?7;i) A r2 G P05S(C/2) A r = X r2)}, and

V = (J (r X ^2) U IJ X r) U X V2).
rÇUi rE[/2

The property: r-^ Ç r2 implies r x r-^ Ç r x T2 and the definition of REDUCEREP

allows us to simplify the above definition into the following equivalent definition:

Definition 3.2.8 Let < Ui,vi >G ^R^ and < f^2'^2 Then,

< > X < U2,V2 >= REDUCEREP{< > x® < U2,V2 >), where

< Ui,vi > X® < C72'^2 > = < U,v >,

U = {r|(3r^)(3r2)(r^ Ç. Uj At2 Ç.U2 x r^)}, and

V = [J (r X ^2) U IJ (vj X r) U X V2).
r^Ui rG(72

51

al bl

a2 bl

a2 b2

a2 b3
aS b3

a4 bl

a5 bl

a6 bl

ni M
al

a2

a4
a5

a3

a6

REP[T) =< (7^) ̂ '1 >

V^ =

al bl al bl al bl

a2 bl a2 bl a2 bl
a2 b3 a2 b3 a3 b3
a4 bl a5 bl ï a4 bl

al bl al bl al bl
a2 b2 a2 b2 a2 b2
a2 b3 a2 b3 a3 b3

a4 bl 5 a5 bl 5 a4 bl

al bl

a2 bl
a3 b3

a5 bl

al bl
a2 b2

a3 b3

a5 bl

vj = a6 bl

REP{Ui{T)) = Il i (REP(T)) =< U,v >

U =
al al > al al

a3
a2 a2 1 V —

a3
a2 a2 1 V —

a6
a4 a5

a6
a4 a5 J

Figure 3.11: Projection

52

The following theorem shows that the cartesian product of the elements of ^J{-^ with

the elements of commutes with RE DU C E RE P:

Theorem 3.2.7 For any < Ui,vi >6 and <

< Ui,vi > X < U2,V2 > =

REDUCEREP{< Ui,vi >) x RE DUC EREP{< U2,V2 >)•

Next, we define the cartesian product of I-tables. Consider the two I-tables

and Tg Figure 3.12 and let T = Tj x Tjy is obtained by taking the cartesian

product of and Tp. Tj is obtained in the following manner: The two disjuncts

in the single tuple set of Tj combined with the two definite tuples in give us the

following disjunctive logical formula:

(T(a2,bl) A T(a2,b2)) V (T(a3,bl) A T(a3,b2))

Converting this formula into a conjunct of disjuncts, we obtain the following conjunc­

tive formula:

(T(a2,bl) V T(a3,bl)) A (T(a2,bl) V T(a3,b2)) A

(T(a2,b2) V T(a3,bl)) A (T(a2,b2) V T(a3,b2))

which corresponds to the tuple sets of Tj. is obtained by taking the cartesian

product of the following pairs of sets:

1. and T^,

2. each tuple set of Tj and

3. and

53

4. and and

5. and each tuple set of Tj.

The cartesian product of and Tg is shown in Figure 3.12. Cartesian product of

I-tables is formally defined as a mapping, x : , F follows:

Definition 3.2.9 Let Tj and T2 be two I-tables such that Tj = {wj,... and

Tf = {uy^,. . . ,w^}. Let

^ • • >^m}|{Vz)(l < 2 < m-> 6 w|-)}, and

F = { { ^ l , - . - , i r a } | (V z) (l < z < n G u > ?) } .

Let the elements of E be Ei,. . . ,Ee and those of F be Fj,. •., fy. Let

I GT^A<2E]^A< = <2.<2) V

(3<i)(3<2)(<I e E f , A i 2 e T l A i = t i . t 2) y

(3 i i) { 3 t 2) i t i e E f ^ A i 2 e F i A i =

where l<fc<e, !</</, i = fc if otherwise i = 0, and j = I i{ f ^ 0

otherwise j = 0. Let A-^,, . . ,Ag be the distinct Ajjs. Then,

Tl X r2 = REDUCE{T), where

= { ^ 1 E A < 2 E A < = < i . < 2) } ,

TJ = {w I (3<i) • • • (3<^){f. i 6 A • • • A 6 A w = {<1,... and

~ I (3^l)(3i2)(^l E A <2 E A / = ii2./2) V

(3w)(3fi)(w = {<2, • • • > E Tj A <2 G T^ A

(/ = < 2 . < 1 V • • • V < = V

(3/I)(3/2)(<1 E a <2 E A / = <1.^2) ^

54

(3<i)(3<2)(<1 € A <2 E Tp A < = <1.^2) ^

(3<1)(3w)(<i E A w = {<2,..., ifc} G r| A

(/ = < i .<2 v • • • v< = <i .< j t)) } .

The following theorem shows that the cartesian product of I-tables commutes with

REDUCE:

Theorem 3.2.8 For any two I-tables Tj and T2,

T i x T2 = REDUCEiTi) x REDUCE{T2).

The correctness of the cartesian product operator is established in the following the­

orem:

Theorem 3.2.9 For any two reduced I-tables T-^ and T2,

REP{Ti X T2) = REP{Ti) X REP{T2).

Corollary 3.2.3 For any two I-tables T\ and Tg,

REP{Ti X T2) = REP{Ty) X REP{T2).

Theorem 3.2.9 is illustrated in Figure 3.12.

3.2.5 Union

We first define union on Sjj, as a mapping, U : —> Sjj.

Definition 3.2.10 Let < >G Sjj and < C/2'^'2 Sjj. Then,

55

Ti X T2

Ti
al

a2

a4

bl
b2

b3

al bl
al b2

a2 bl
a3 bl
a2 bl
a3 b2
a2 b2
a3 bl
a2 b2
aS b2

al b3
a2 b3
a3 b3
a4 bl
a4 b2
a4 b3

REP{Ti) =< Î7i,vi >

I al al
a2 > a3 1 = a4

U-

REP{T2) = < U2,V2 >

V2 = bS

REP{Ti X Tz) = REP{Ti) x =< U,v >

U =

al bl
al b2
a2 bl
a2 b2

al bl
al b2
a3 bl
a3 b2

> V =

al b3
a2 b3
a3 b3
a4 bl
a4 b2
a4 b3

Figure 3.12: Cartesian Product

56

< > U < U21V2 >= REDUCEREP{< > U® < U21V2 >), where

< Î7l,ui > U® < U2,V2 >=< U,v >,

U = {T\(3ri){3r2)iri £ POSS(Ui) A r2 G P0SS{U2) Ar = ri U r2)}, and

V — vj U %'2'

The property: Ç r2 implies r U rj Ç r U r2 and the definition of REDUCEREP

allows us to simplify the above definition into the following equivalent definition:

Definition 3.2.11 Let < >€ and < C^2,V2 >G S^. Then,

< > U < U2,V2 >= REDUCEREP(< C/jjVj > < f/2>^2 ^)' where

< > U® < 1^2'^2 >=< U,v >,

U = {r|(3rj)(3r2)(r2 e C/j A r2 6 t/^2 ^= ̂1 U r2)}, and

u = vj U «2 •

The following theorem shows that the union on commutes with REDUCEREP:

Theorem 3.2.10 For any < >E Sjj and < ?72>^'2

< Ui,vi > U < f72'^'2 > =

REDUCEREP{< Ui,vi >)u REDUCEREP{< [^2,^2 >)•

Next, we define union of I-tables. The union of two I-tables is the union of

the corresponding components of the two operands. Any redundancies introduced

is removed by the REDUCE operator. Formally, union is defined as a mapping,

^ ^R^^R ^R-

Definition 3.2.12 Let Tj and be two domain-compatible I-tables. Then,

Ti U T2 = REDUCE(T), where

Td = {t\t E V f E Tp},

57

T j = {w|w 6 Tj V to Ç T j } , a n d

G V t e T^}-

The following theorem shows that the union of I-tables commutes with REDUCE:

Theorem 3.2.11 For any two domain-compatible I-tables Tj and

TiUT2 = REDUCE{Ti)U REDUCE{T2).

The correctness of the union operator is established in the following theorem:

Theorem 3.2.12 For any two domain compatible reduced I-tables T-^ and

REP{Ti UT2) = REP{Ti) U REP{T2).

Corollary 3.2.4 For any two domain-compatible I-tables Tj and T2,

REP{Ti U T2) = REP{Ti) U REP{T2).

Theorem 3.2.12 is illustrated in Figure 3.13.

3.2.6 Difference

We first define difference on as a mapping, — : —> S^.

Definition 3.2.13 Let < >€ 2^ and < [^2;^'2 ^R- Then,

< > — < U21V2 >= REDUCEREP{< ^ < U2,V2 >), where

< Ui,vi > —® < U2,V2 >=< U,v >,

U = {r\{3ri){3r2){ri £ POSS^U-^) Ar2 E POSS{U2) A t = {r^ — r2) — V2)}') and

V = (U (r)Uvi)- f| (r).
r£Ui reU2

58

II
al

a3

a4

a5

a6

âs"

Zk

âs

a6

%7

al

a3

ai
a6

a4

a7

aS

al al al al al al
a3 a3 a3 a4 a4 a4
a5 > a6 5 a7 » a5 > a6 ! a7

REP{T2) =< C^2'^'2 >

a3 a3
aS î a6

U Tg) = i2£P(ri) U REP{T2) =< U,V >

al al a4
a3 a3 > V = a7
a5 î a6 aS

Figure 3.13: Union

59

The property: Ç r2 implies r — r2 Ç r — rj and the definition of RE DU CE REP

allows us to simplify the above definition into the following equivalent definition:

Definition 3.2.14 Let < >6 Sjj and < U21V2 >6 Sjij. Then,

< > — < t^2'^2 REDUCEREP{< U-^,v\ > —® < U2,V2 >), where

< ® < U2,V2 >=< U,v >,

U = {r|(37-i)(ri e f/j Ar = 7-i-(|J { r 2) U V 2)) } , a n d

V = (U (r) U r i) - f l (r) .
rÇ.Ui

The next theorem shows that the difference on commutes with RE DU CE REP:

Theorem 3.2.13 For any < U^yV^ >6 and < (72,^'2 Sjj,

< > - < U2,V2 >=

REDUCEREP{< Ui,vi >) - REDUCEREP{< U2,V2 >)•

Next, we define difference of I-tables. Consider two domain-compatible I-tables,

and T2 and let T = T-^ — T2.

Case 1: t £ T^: If t is not in and not in any tuple set of and is not in

then include t in Tjy. Otherwise, include t in only if < 0 T^.

Case 2: w € : If no tuple of is in w and no tuple set of Tj has any common

elements with w and no tuple of is in w, then include w in Tj. Otherwise,

include all the tuples in w — in

Case 3: <6 If i does not belong to Tp, then include t in T^.

60

Finally, remove any redundancies introduced with the REDUCE operator. Formally,

difference is defined as a mapping, — : > Fjj.

Definition 3.2.15 Let Tj and T2 be two domain-compatible I-tables. Then,

T-^ — T2 = REDUCE{T), where

Tj^ = {i I {teT}))A{ t ^ T]))A-^{3w) { w e T f Atew)A{ t ^ T l f) } ,

Tj = {w I { • w e T j)A

—'(3f E A f E w) A

)(wj G rp A n iwj 0) A

-i(3<)(/ 6 A / G w)}, and

(3u')(t 6 A to G r| A t e w) V

(< € Tp A < 6 r|^) V

(3u»)(3<]^)(iw G Tj Ai - i € Tp Af^GwAfGwjV

(3wi)(3t«2)(^'^l E Tj Aw2 £ A

t w j n i t) 2 7 ^ 0 A i e t D j) V

(3w)(3<2)(w G Tj A <2 G A G w A < G w)) A

(' g r|,)}.

NOTE T — T T^< 0,0,0 >, for any I-table T. A simple example to illustrate this is

an I-table T with Tp = 0, 2^ = 0, and Tj^ = {a}.

The following theorem shows that the difference of I-tables commutes with REDUCE:

Theorem 3.2.14 For any two domain-compatible 1-tables Tj and T2,

Tj - T2 = REDUCE{Ti)- REDUCE(T2).

61

The correctness of the difference operator is established in the following theorem:

Theorem 3.2.15 For any two domain-compatible reduced I-tables Tj and

REPiTi - T2) = REP{Ti)- REP{T2).

Corollary 3.2.5 For any two domain-compatible I-tables and T2,

REP{Ti - T2) = REP[Ti) - REP{T2).

Theorem 3.2.15 is illustrated in Figure 3.14.

3.2.7 Intersection

First, we define the intersection on Sjej, as a mapping fl : Sjj —)• Sjj.

Definition 3.2.16 Let < >G and < f/2'^2 ^iZ' Then,

< Ui,vi > n < U21V2 >= REDUCEREP{< > n® < U2,V2 >), where

< Ui,vi > n® < U2,V2 >=< U,v >,

U = {r\{3ri)(3r2){ri E POSS(Ui) Ar2 £ POSS(U2) r]r2)}, and

= (U (r) U r i) n (U (r) U r 2) .
rel/j rÇ:U2

The property: rj Ç r2 implies r D rj Ç r n 7-2 and the definition of RE DUC ERE P

allows us to simplify the above definition into the following equivalent definition:

Definition 3.2.17 Let < >E and < t/2'^2 ^R' Then,

< > n < U2,V2 >= REDUCEREP{< > fi® < U21V2 >) , w h e r e

< î/l ,vi > < U21V2 > = < U,v >,

U = {r|(3r;j^)(3r2)(T"i € Î7i A r2 € t/2 ^ ̂ — ^1^2)}'

V = (U (r) U v i) n (U (r) U t ' 2) .
reUi reU2

62

al 2

alO

all

alO
all

REP{Ti)=< Ui,vi >

Ul =

al al al al

a2 a2 a2 a2
< a3 a3 a3 a3

a6 a6 a7 a7

, a8 î a9 aS î a9

^1 =
alO

ail

REP{T2) = < U2,V2 >

Uo = *

al a2
a2 a4
a6 a6

alO 1 alO

V2 =
a5

al 2

REP{Ti - T2) = REP(Ti)- REP{T2) =< U,v >

U = aS a3

aS î a9
V =

al

a<

ail

Figure 3.14: Difference

63

The next theorem shows that the intersection on commutes with RE DU CEREP:

Theorem 3.2.16 For any < Ui,vi >E Sjj < &2'U2 2^,

< U i j V J > (1 < U 2 , V 2 > =

REDUCEREP{< Ui,vi >) n REDUCEREPi< U2,V2 >).

Next, we define intersection of I-tables. Consider two domain-compatible I-tables

Tj and Tjg let T — D T2- Tuples common to the and Tp constitute the

tuples of Tp. Tuple sets that belong to Tj, or Tj, and which are subsets of or

constitute the tuple sets of Tj. Tuples which are common to the following pairs

of sets constitute Tj^:

1. l£) and

2. a tuple set of T j and

3. and

4- and Tp,

5. and a tuple set of Tp,

6. Tg and a tuple set of Tj,

7. a tuple set of Tj and and

8. a tuple set of Tj and a tuple set of Tj.

Formally, the intersection of I-tables is defined as a mapping n : Fjg —» F^.

Definition 3,2.18 Let and be two domain-compatible I-tables. Then,

64

Tj n r2 = REDUCE{T), where

~ I ^ ^ ^ ^ ^

Tj = {w I {w E 2 j A w Ç r^) V {w G Tj Aw Ç T^)}, and

I E Tp A (3tu)(w e Tj A < 6 w) V

(< e r|) A < e r|^) V

(3 w) (w E T } A t e T ^ A i E w) y

(3ii'i)(3îi72)('U'i E Tj A W2 E Tj A t E wi A t E W2) V

(3 u ') (w E T } A t e T ^ j A t E w) V

{ t E T l j A t E T ^) V

{ t E T j ^ A (3 w) (w E T f A t E w) y

(< G rj^ A r|^)}.

Remark: As Figure 3.15 shows, the definitions of difference and intersection are

not consistent with the following relationship that holds between the corresponding

regular algebraic operators:

Ti n T2 = Ti - (Ti - T2).

The next theorem shows that the intersection of I-tables commutes with REDUCE:

Theorem 3.2.17 For any two domain-compatible I-tables T-^ and

Tl n r2 = REDUCE(Ti)r\ REDUCE{T2).

The correctness of the intersection operator is established in the following theorem:

Theorem 3.2.18 For any two domain-compatible reduced I-tables,

65

Ti T2
a c
b d

c a
d b

Ti DTg

a

c

d

T^ - To
T i - m - r g)

c

d

Figure 3.15: Ti H T2 ^ T-]^ — (2\ — T2)

REPiTi n ̂ 2) = REPiTi) n REP{T2).

Corollary 3.2.6 For any two domain-compatible I-tables 3^ and

REP{Ti n T2) = REP{T^)n REP{T2).

Theorem 3.2.18 is illustrated in Figure 3.16.

NOTE: An I-table reduces to a relation if its indefinite and maybe components

are empty. All the extended relational algebraic operators also reduce to the cor­

responding regular relational algebraic operators when their operands contain empty

indefinite and maybe components. So, the extended relational model and algebra pre­

serve all the features of the conventional relational model and algebra and are merely

extensions.

3.3 Queries

Queries can be expressed in terms of the various extended relational algebraic

operators defined in Section 3. The I-table accurately models the two bounds on

the external interpretation, the interpretation under which the query is referred to

66

ai

E E F (T 2) = < U 2 , v i >

U-i = '

al al
a2 a2
a3 a3
a4 1 a5

uj = a7

REP{Ti) = < U2,V2 >

Un = <

al al
a2 a4
a4 a5
a5 1 a6

^2
a7

a8

REP(Ti n Tg) = REP(Ti)n REP{T2) =< U,v >

-
al al

1 V =

a2

i a4 1 a5 1 V = a7

Figure 3.16: Intersection

67

the real world modeled in an incomplete way by the system, of a query [29]. The

definite and the indefinite components of an I-table correspond to one of the bounds

which is the set of objects for which we can positively say that they belong to the

external interpretation of query. The maybe component of an I-table corresponds

to the other bound which is the set of objects for which we cannot rule out the

possibility of belonging to the external interpretation of the query. We shall use the

usual suppliers-parts database for the following two examples.

Example 3.3.1 Consider the I-tables SP and P in Figure 3.17 and the query: Find all

the supplier numbers of suppliers who supply "red" parts. The query in the extended

relational algebra is

Evaluating this expression against the I-database we obtain the answer in Figure 3.17.

The answer is interpreted in the following manner: s2 and s4 supply "red" parts and

s3 and s5 may supply "red" parts. Example 3.3.2 Consider another instance of the

SP

si pi
s2 p3

s3 p5

s4 p3
s4 p4

s5 p3

pi blue

p2 green

p3 red

p4 red

p5 red
p6 red

p7 black

ANSWER

s4

s3

s5

Figure 3.17: I-tables SP, P, ANSWER

supplier-parts database in Figure 3.18 and the query: Find all the supplier numbers of

68

suppliers who do not supply part "p2". The query in the extended relational algebra

is

n i (S) - n j ((r 2 = » p 2 " (' ^ ^)) '

Evaluating this expression against the I-database, we obtain the answer in Figure

3.18. The answer is interpreted in the following manner: s3 does not supply part

"p2" and there is a possibility that s7, s8, s9, slO all do not supply part "p2". As

SP

si nl

s3 n3

s4 n4
s5 n4
s6 n6

s7 n6

s8 n8
s9 nS

slO nlO

si p2

s4 p2

s5 p2

s6 p2
s7 p3

s8 p2
slO p2

s2 p2
s9 p2

sll p2

ANSWER

s3

s7

s8

s9

slO

Figure 3.18: I-tables 5, SP, ANSWER

the above two examples illustrate, queries are posed in the same way as for conven­

tional relational databases. Since we have established the correctness of the extended

relational algebraic operators, all possible answers are extracted.

3.4 Non-query Operations

In this section, we present non-query operations on I-tables. We define the insert,

delete, and modify operations. These operations allow the user to insert tuples into,

69

delete tuples from, and modify tuples of I-tables.

Definition 3.J[.1 The insert operator is specified as: ins{C, i , T), where C E {D, I, M},

Hs a tuple if C G {D, M} and is a tuple set if C = J, and T is an I-table. The effect

of the ins operation is to update the I-table T into T' as follows:

T' = REDUCE{< >), where

Tq = Tq U {f} and = Tj^ for X G {D,I,M} — {C}.

Definition 3.4-2 The delete operation is specified as: del{C, t , T), where C 6 { D , / , M} ,

t is a. tuple if C 6 {D, M} and is a tuple set if C = /, and T is an I-table. The effect

of the del operation is to update the I-table T into as follows:

r'=< >, where

T ^ = T c - {<} and T]^ = Tx for X e {D,I,M} - {C}.

Definition 3.4.3 The modify operation is specified as: mod{C,i,t ' ,T), where C 6

{£),/, M}, t and t' are tuples if C E {D^M} and are tuple sets if C = /, and T is

an I-table. The effect of the modify operator is to update the I-table T into T' as

follows:

T' = REDUCE{< >), where

= { T q - { t }) U {<'} and = T x for X E {£>,/, M} - {C}.

The mod operation is simply a del followed by an ins.

70

4 indefinite deductive databases

In this chapter, we show how the extended relational algebra can be used to

implement indefinite deductive databases. First, we present an additional algebraic

operator, called project-union, which will be used to evaluate non-Horn rules. The

project-union operator is actually an extension to the projection operator which could

only be used to evaluate Horn rules. Then, we define I-rules, which are generalizations

of non-Horn rules and describe a method to obtain extended relational algebraic ex­

pressions for I-rules. Non-recursive and recursive I-rules are discussed and procedures

to evaluate them are described. Finally, we show how to evaluate queries using the

extended relational algebra.

4.1 Project-Union

First, we establish the need for an additional operator to evaluate non-Horn rules.

Consider the Horn rule:

P{x,y) ^ Q{z,x,y).

The algebraic expression to evaluate the relation corresponding to the predicate sym­

bol P is:

02,3(9)

71

where Q is the relation that corresponds to the predicate symbol with the same name.

Now consider the non-Horn rule:

P{x,y),P{x,z) ^ Q(x,y,z).

We cannot use the projection operator to evaluate this rule. To solve this problem,

we need to define an extension to the projection operator that can compute the I-

table corresponding to the predicate symbol P. The input to such an operator is

the I-table Q and two lists of projection attributes, one for each positive literals in

the non-Horn rule. The I-table P for the predicate symbol P can be evaluated by

applying the extended projection operator, which we shall refer to as project-union

and shall represent by the symbol H, as follows:

^<<1,2>,<1,3>>(Q)'

We need the following definitions:

Definition ^.1.1 A projection attribute list is defined to be a list of attribute numbers

or constant symbols. For example < > is a projection attribute list,

where 1 and 3 are attribute numbers and Math is a constant symbol.

Definition ^.1.2 Let >1^,... ,An be n projection attribute lists, where

j4j =< a^l) • • • 5 ^im^ >, 1 < î < n.

Then, Aj,. . . , An are domain-compatible if and only if

1. = • • • = mn = m, and

2. for each z, 1 < i < n, the domains associated with the attributes a^j, 1 < j < m,

are all the same.

72

Now we define project-union on Sjg.

Definition 4-1-S Let < U,v >6 Sjij and be n domain-compatible projec­

tion attribute lists. Then,

U<^1 A„>(< V,v >) = REDUCEREPiTl%^^ V,v >)), where

>1 =< f'l'"! >•

reU

^ — {^15 • • • » ^TTl};

I'l = {<|(3/i)(/i E v A t e {n^j(< i) , - . . , n ^ ^ (< i) }) } ,

f _ I , if a£ is an attribute number j < • < j;.
* I a% , if is a constant symbol ' ~ ~

The next theorem shows that project-union commutes with RE DU CE REP:

Theorem 4.1.1 For any < U,t> >G and domain-compatible projection attribute

l i s t s A i , A n ,

We now define project-union on I-tables.

Definition 4•1-4 Let T-^ be an I-table and ... ,An be n domain-compatible projec­

tion attribute lists. Then,

= REDUCE{T), where

T^ = {t I (3 / i) « i 6 T] , A { < } = { n ^j(/ l) , . . . , n ^ ^ (< l) }) V

(3w)(w G rj A {<} = U n^ (^))}.
i=i '

73

Tj = {w I (3<)(<Gr|,Aw = {n^^(<),...,n^^(/)}A|w| >i)v

1 "
(3wi)(wi eTj- Aw = (J n^.(wi) A |w| > 1)},

i=i '

I (3<i)(<i e A/e),...,n^^(<i)})},

nyi(w) = {n^(f)|(3<)(< e w)},

J <[a,-] , if a: is an attribute number , ^ ^ ,
1 . r . , , , 1 , ! < * < & .

' \ <!{ ,11 IS a constant symbol
The following theorem shows that project-union commutes with RE DU CE:

Theorem 4.1.2 For any I-tahle T and domain-compatible projection attribute lists

-4^) • • • 7 -^71 •

The correctness of the project-union operator is established in the following theorem:

Theorem 4.1.3 For any reduced I-table T and domain-compatible projection attribute

lists A2,.. . , Aji,

Corollary 4.1.1 For any I-table T and domain-compatible projection attribute lists

"^1 Ï • • " 9 -^71}

AT,>(n).

Theorem 4.1.3 is illustrated in Figure 4.1.

NOTE The project-union operator is an extension of the extended projection operator

and it reduces to the extended projection operator when

74

T

al c2 c2

al bl cl

a2 b2 c2

a2 b2 c3

a3 b3 c3

al c2

al bl

al cl

a2 b2

a2 c2

a2 c3

a3 b3

a3 c3

REP{T) =< U,v >

U =
al c2 c2
al bl cl

a2 b2 c2

al c2 c2

al bl cl

a2 b2 c3

V — a3 b3 c3

2>,<1,3>>(^)) = II<<1,2>,<1,3>>(^^^(^)) =< >

U. =
al c2

al bl

a2 b2

al c2
al bl
a2 c2

al c2
al cl

a2 b2

al c2

al cl

a2 c2

VI
a3 b3

a3 c3

al c2

al bl

a2 c3

al c2

al cl

a2 c3

Figure 4.1: Project-Union

75

1. n = 1, and

2. the projection attribute list consists of only attribute numbers.

4.2 I-rules

Here, we introduce I-rules which are generalizations of non-Horn clauses. The

need for I-rules is discussed now. Consider the two Horn clauses:

1. DEPT{x,' 'Math' ') 4- TEACHES(x,' '2Z\"), and

2. DEPT{x,"Maih") ̂ TE AC H ES(x,"331").

and let

TEACHESi" John","231") V TEACHES{" John","331")

be true in the database. This disjunction actually corresponds to a tuple set in the

I-table corresponding to the predicate symbol TEACHES. It can easily be observed

that DEPT{"John","Math") is a consequence of the database. However, if we

consider the algebraic expression to evaluate DEPT:

^l('^2="231" H ES)) U H^ (cr2_"33^" {T EAC H ES)),

we would obtain DEPT{" John","Math") as a maybe tuple. To avoid such problems,

we combine the two Horn clauses into the rule:

DEPT[x,"Math") TEACHES{x,"231"),TEACHES{x,"331") >

which is equivalent to the logical formula:

DEPT{x,"Math") V ^{TEACHES(x,"23r)\/TEACHES{x,"33r)).

76

Such a rule will be referred to as 1-rules. We now formally define I-rules and certain

restrictions on them.

A conjunct is a disjunction of positive literals involving the same predicate sym­

bol:

F(A'i) V...vP(An),

called a positive conjunct, or its negation:

- (P (. Y i) V . . . V P (A - n)) ,

called a negative conjunct. A ground conjunct is a conjunct with no variable symbols.

We shall surround the literals in a conjunct with angular brackets and separate the

literals with commas to be consistent with the syntax of non-Horn clauses. For exam­

ple < P(x, y), P{x, z) > is a positive conjunct and -> < P{x, y), P{x, z) > is a negative

conjunct. We shall omit the angular brackets if there is only one literal inside it.

An I-rule is a disjunction of conjuncts with at most one positive conjunct. A

ground I-rule is an I-rule with no variable symbols. We shall omit the angular brackets

around the positive conjunct of an I-rule. Two examples of I-rules are:

1. P(x,y),P{x,z) Q{x,u),Q(x,v) >,R{u,y,v,z), and

2. A{y) ^ S{x,y),< SP(x,"pl"),SP(a;,"p2") >•

The I-rule

P]^,...,P^. <—< Qii 1 • • • 5 Qi t j j Ql\i • • ' iQln^ ^

can be viewed as representing the following collection of non-Horn clauses:

77

We shall impose the following two restrictions on I-rules:

1. Range-restriction: The I-rule is said to be range-restricted, if each of the non-

Horn rules it represents is range-restricted. A non-Horn rule is said to be range-

restricted if all the variable symbols appearing in the positive literals, also

appear among the negative literals, Q^s. The I-rule:

P(x,y),P{x,w) — Q{x,z),< R{z,y),R{w,y) >,S{z,w)

is range-restricted because the variables r, y, and w appear on the right hand

side of both the non-Horn rules represented by the I-rule, and the I-rule:

4- Q{x,w),< R{y,z),R{x,z) >,S(z,w)

is not range restricted because the variable y does not appear in the following

non-Horn rule represented by the I-rule:

P (x , y) , P (x , 2) ^ Q(x,w), R{x, z), S{z,w).

We shall restrict all the I-rules to be range-restricted.

2. Projection-consistency. An I-rule is projection-consistent if for each positive

literal P^, 1 < i < k, the variable symbols of Pj^ occur in the same "positions"

on the right hand side of the symbol of all non-Horn rules represented by the

I-rule. The I-rule:

-P(a:,2/),f(z,w) Q{x,z),< R{z,y),R{w,y) >,S[z,w)

78

is projection-consistent because the variables x and y appear in positions 1 and

4 respectively in both the non-Horn rules represented by the I-rule and the

variables x and w appear in positions 1 and 6 respectively in both the non-Horn

rules represented by the I-rule and the I-rule:

P{!^,y),P{x,w) Q(x,z),< R{z,y),R{y,w) >,S{z,w)

is not projection consistent because the variables x and y appear in positions 1

and 4 respectively in one of the non-Horn rules represented by the I-rule and in

positions 1 and 3 in the other non-Horn rule represented by the I-rule. We shall

restrict all the I-rules to be projection-consistent,

A query is an I-rule with exactly one positive literal. An example of a query is:

A N S W E R { x) ̂ S (x , t /) , < 5 P (x , " p l ") , 5 P (x , " p 2 ") > .

Queries are also subjected to the range-restriction and projection-consistency restric­

tions.

4.3 Algebraic Expressions for I-rules

In this section, we present a method to obtain extended relational algebraic

expressions for I-rules. Consider the I-rule:

<—< Q\\i • • • >•>••••>< 9/1) ' ' ') ^

Let Lj,... ,Lm be the non-Horn clauses represented by the I-rule and let be

79

where are either constant symbols or variable symbols.

We first obtain a selection condition, for each of the non-Horn clauses 1 < i <

m. Cj is obtained as follows:

Step 1 For all the t^s that are constant symbols obtain the following condition:

r — 1
(YL + u = tu'

a=l

Step 2 For all the /^^s and that are variable symbols such that u\ ^ U2i

t'l # î'2> ^ obtain the following condition:

u j — 1 ' V2 — 1
(+ •"! = (H "̂ a) + "2-
a=l a=l

Step 3 is the conjunction of all the conditions obtained in Step 1 and Step 2.

Let Cj,..., Cm be the selection conditions obtained.

Next, we obtain a projection attribute list for each of the positive literals f ..., irij^)•

Let be equal to tj, where tj is a variable symbol. Then aj, the position of ty, is

defined as follows:

v—1
Oj = (X!

p=l

The projection attribute list for P(<j,...,) is < ,..., bn^ >, where

, J Ce, <e is a variable symbol
® e = s . 1 ̂ e < n - .

I te, <e IS a constant symbol,

Let Aj,..., A}^ be the projection attribute lists for the positive literals Pi,... ,Pf^

respectively.

80

Note: Range-restricted I-rules ensure the existence of on the right hand side of the

symbol of the non-Horn clause and projection-consistent I-rules ensure a unique

projection attribute list for each positive literal.

Then, the algebraic expression for the I-rule is:

where Qj,..., are the I-tables corresponding to the predicate symbols with the

same names.

Example ^.3.1 Consider the I-rule:

Q{x,z),< R{z,y),R{w,y) >,S{z,w).

The extended algebraic expression for the I-rule is:

P = ^<<1,4>,<1,6>>{'^C(Ç X ^ X

where C = ((2 = 3) A (3 = 5)) V ((2 = 5) A (3 = 6)).

Example ^.3.2 Consider the I-rule:

Answer{y) <- S{x,y),< SP{x,"pl"), SP{x,^^p2") >,

which is actually a query. The extended algebraic expression for the query is:

ANSWER = U<<2>>(<^((i=3)A(4="pl"))V((l=3)A(4="p2"))('^ ^

4.4 Non-Recursive Indefinite Deductive Databases

The I-table defined by a non-recursive I-rule is computed by the extended rela­

tional algebraic expression corresponding to the I-rule.

Example 4-4-^ Consider the non-recursive I-rule:

81

DEPT{x, Math), Dept{x, CS) <—< Teaches{x, 231), Teaches{x, 331) >,

which states that if x teaches the courses numbered 231 or 331, then x belongs to the

Math or the CS department. The extended relational algebraic expression for this

I-rule is:

1Mat ft " > ,< 1C 5" > > (®'(2=" 231 ") V (2=" 331 ") (̂)

Evaluating this expression on the I-table TEACHES of Figure 4.2, we obtain the

I-table DEPT in Figure 4.3.

TEACHES

John 311

Tom 231

Gary 331

David 231
Kevin 231

Craig 231
Craig 331

Joe 231

Figure 4.2: I-table TEACHES

4.5 Recursive Indefinite Deductive Databases

Recursion is handled by repeated application of the extended relational alge­

braic expression associated with a recursive I-rule until no new tuples or tuple sets

are generated. This process is guaranteed to terminate as all the databases under

consideration are finite. Consider the I-rule:

82

DEPT

Tom Math

Tom CS

Gary Math

Gary CS

Craig Math
Craig CS

David Math
David CS

Kevin Math
Kevin CS

Joe Math

Joe CS

Figure 4.3: I-table DEPT

83

P-^, . . . , Pf, < < , . . . , Q\fi^ >j • • • 5 < Qq i • • •) Qln^

where at least one of the conjuncts on the right hand side of the symbol <— involves

the predicate symbol present in the positive literals. Let P be the I-table defined by

this I-rule and let ... ,Qi be the I-tables corresponding to the predicate symbols

of the conjuncts on the right hand side of the ^ symbol. P is computed by the

algorithm shown below:

begin

i := 0;

:= P/iv/r;

P* := Pjjyrjr;

repeat

pi+l :=/(P*,Qi,...,<3;);

P* := P* uP^+1;

i := i + 1

until (there are no changes to P*)\

P := P*

end

where f (P*, Q^, . . . ,Qi) is the extended relational algebraic expression for the I-rule,

and Pjjifjj' is the initial instance of the I-table P. Pj^jj' may be present in the

database or may be generated by using another I-rule, possibly non-recursive.

Example 4-5.1 Consider the recursive I-rule:

BG{x,y) ,BG{x,z) *- F{x,u) , BG(u, y) , M[x,v) , BG{v, z) ,

84

where BG{x,y) stands for "the blood group of x is y", F{x,y) stands for "y is the

father of x", and M{x,y) stands for "y is the mother of x". The extended relational

algebraic expression for this I-rule is:

^<<1,4>,<1,8>>(<^{1=5)a(2=3)a(6=7)(-^ X BG x M x BG)).

BG^

John David

David Steve

Mary Craig

Tom Doug

Steve A

Pam B

Craig A

Liz 0

Doug 0

Lucy A

M

John Mary

David Pam
Mary Liz

Tom Lucy

Figure 4.4: A Database Instance

Repeatedly applying the extended relational algebraic expression to the database of

Figure 4.4, we obtain I-tables BG^ and J5G^ in Figure 4.5. BG^ and contain

new tuples and tuple sets generated in iterations 1 and 2 respectively. Iteration 3

does not generate any new tuples or tuple sets.

Example 4-5.2 Consider the recursive I-rule:

PARTLOC{x,y) ,PARTLOC{x,z) ^

SP{u,x) , 5(xi, y), SUBPART{x, v) ,PARTLOC{v,z) ,

where SUBPART{x, y) stands for "x is a subpart of y", SP{x, y) stands for "supplier

X supplies part y", 5(x, y) stands for "supplier x is located in y", and P ART LOG {x ,y)

85

BG^

David A

David B

Mary A
Mary 0

Tom A

Tom 0

BG'

John
John
John

A
B
O

Figure 4.5: I-tables BG^ and J5G^

stands for "part x can be found in location y". The extended algebraic expression for

the I-rule is:

^<<2,4>,<2,8>>('''(1=3)a(2=5)a(6=7)('^-^ X 5 X SUBPART x PARTLÔC)).

Repeatedly applying the extended algebraic expression against the database in

Figure 4.6, we obtain the I-tables PARTLOC^ and PARTLOC"^ in Figure 4.7.

PARTLOC^ corresponds to the tuples and tuple sets generated in the first iter­

ation and PARTLOC"^ corresponds to the tuples and tuple sets generated in the

second iteration. The third iteration does not produce any new tuples or tuple sets.

4.6 Example of a Query

Consider the database in Figure 4.8 and the query: Find all the supplier names

of suppliers who supply either part "pi" or part "p2". The query as an I-rule is:

ANSWER{x) ̂ S{x,y) ,< 5P(a;,"pi"), SP(x,"p2") >.

86

SP

si pi

si p2

s2 p3

s2 p4
s3 p5

s3 p6

s3 p7

si Paris

s2 London

s3 Rome

SUBPART

p2 pi

P3 pi

p4 p2

p5 p2

p6 p3

P7 p3

PARTLOC^

pi London

Figure 4.6: A Database

PARTLOC^

PARTLOC'^

p3 London

p2

p2

Paris

London

p4 London

p4 Paris

p5 Rome
p5 Paris
p5 London
p6 Rome
p6 London

p7 Rome
p7 London

Figure 4.7: I-tables PARTLOC'^ and PARTLOC^

87

The extended relational algebraic expression for the I-rule is:

n2(<^((l=3)A(4="pl"))v((l=3)A(4="p2"))^^ ^

Evaluating this expression against the database, we obtain the I-table in Figure 4.9.

S SP

si Jones

s3 Coady

s2

s2

Smith

Blake

si pi

s2 p2

s3

s3
pi
p2

Figure 4.8: Database

Jones

Coady

Smith
Blake

Figure 4.9: Answer to Query

The answer is interpreted as: Jones and Coady supply either of the two parts

"pi" or "p2" and Smith or Blake supply either of the two parts "pi" or "p2".

88

4.7 Correctness of Algebraic Approach

Consider the I-rule:

Pj,..., Pfg <—< Qjj,..., Çjtjj Î • • • ^

Let m = TZj X . . . X n^, and let P be the predicate symbol present in the positive

literals Pj,... This I-rule can be easily shown to be equivalent to the following

three I-rules:

(1) A(a: J,..., I ' " '))

(2) a^TTj,^) * ^(3^2 1 ' ' ' 1); ^) • • • > ^Tfl

(3) Pj , . . . , Pj j j 5 (X2 , . . . ,)

where A and B are unique predicate symbols, Qj is the predicate symbol present in

the conjunct < Qht • • iQin^ >, and Q is the conjunction of the following literals

involving the equality predicate symbol:

1. = {xu,xv) , for variable symbols xu and xy such that u ^ v and Xu = xv on

the right hand side of the ith non-Horn rule represented by the I-rule.

2. = (ia> o), for each constant symbol a on the right hand side of the ith non-Horn

rule represented by the I-rule such that xa is the variable symbol in I-rule (1)

in the position of the constant symbol a.

The I-table corresponding to the predicate symbol A can be computed by the cartesian

product of the I-tables corresponding to the predicate symbols Qj,...,Q^. Since

the extended cartesian product is shown to be correct in Theorem 3.2.9, we obtain

89

exactly all the instances of the predicate symbol A defined in rule (1). The I-table

corresponding to the predicate symbol B can be computed by the selection operator

with the selection condition corresponding to the conditions Cj,..., Cm- The input

to the select ion operator is the I- table corresponding to the predicate symbol A.

Again, since the selection operator has been proven to be correct in Theorem 3.2.3, we

obtain exactly all the instances of the predicate symbol B defined in rule (2). Finally,

the I-table corresponding to the predicate symbol P is computed by the project-

union operator with the projection attribute lists corresponding to the arguments of

Pj,... ,P^,. The input to the project-union operator is the I-table corresponding to

the predicate symbol B. Again, since the project-union operator has been proven

to be correct in Theorem 4.1.3, we obtain exactly all the instances of the predicate

symbol P defined in rule (3), which is actually the instances of the predicate symbol

P defined in the original I-rule. Finally, since the union operator has been shown to

be correct in Theorem 3.2.12, we can use the union operator to obtain exactly all the

instances of the predicate symbol P defined by more than one I-rule.

Example ^.7.i The I-rule:

BG{x,u) ,BG(x,v) F{x,y) ,BG(y,u) ,M{x, z) ,BG(z,v)

is equivalent to the three rules:

1. A(xi,X2,x;^,x^,x^,XQ,xj,xg) — F{xi,X2),BG(x^,x^),M{x^,XQ),BG{x'j,xg)

2. B{xi,X2,x:i,x^,x^,XQ,xj,x^) <- A{xi,X2,X2,x^,x^,XQ,X'j,xg),= (3:1,15),=

(®2'®3)'= (®6'®7)

3. BG{xi,x^),BG{xi,xg)

90

The extended relational algebraic expressions to evaluate the I-tables corresponding

to the predicate symbols A, B, and BG are:

1. A = F X BG X M X BG,

2. B = o-(I=5)A(2=3)A(6=7)(^)'

3. BG = II<<1,4>,<1,8>>(-®)

respectively.

Example 4-7.2 The I-rule:

Fix) 4- 5(x,t/),< 5P(y,"pl"),5P(y,"p2") >

is equivalent to the three rules:

2. 5(xi,i2)a^3'®4) >®2'®3'=^4)'<= (®2'®3)^ = (14,"?!"),= (z2,r3)A =

(14,"p2") >, and

3. F{xi) ̂ B{xi,x2,x2,x4).

The extended relational algebraic expressions to evaluate the I-tables corresponding

to the predicate symbols A, B, and F are

1. A = S X SF,

2. B = o'((2=3)A(4="pl"))v((2=3)A(4="p2"))(^)'

3. P = II<<i>>(B) = ni(5)

91

respectively.

Example Jf .1.3 The I-rule:

DEPT{x, "Maih") , DEPT{x, "CS") ^

< TEACHES{x, ' '2^\"") ,TEACHES{x,"Z31") >

is equivalent to the three rules:

1. A{xi,x2) TEACHES{xi,x2),

2. B{xi,x2) <— >1(1^,2:2)5 <= (3=2,"231"), = (x2)"331") >, and

3. DEPT(xi,''Maih''),DEPT{xi,''CS") - B(xi,x2).

The extended relational algebraic expressions to evaluate the I-tables corresponding

to the predicate symbols A, B, and DEPT are:

1. A = TEACHES,

2. B = o-(2="231")V(2="331")(^)'

3. DEPT = U<<i,"Ma</i">,<l ,"CS">>(-B)

respectively.

We now justify the correctness of the algorithm to evaluate recursive I-rules.

Recall the definition of weaker I-tables. We define a monotonie extended relational

algebraic expression as follows:

Defini t ion ^.7. J An extended relational algebraic expression, /, is said to be monotonie

if and only if

(^1 <r2)->(/(ri)</(r2)),

92

for any I-tables Tj and Tg.

Consider an equation of the form:

T = f{T)

where f{T) is an extended relational algebraic expression with operand T; perhaps

among other operands; such that the ari ty of T and f (T) are the same. A least f ixed

point of the equation, denoted LFP{T = /(T)), is an I-table T* such that

1. r* = /(r*), and

2. if T is any I-table such that T = f{T), then T* < T.

Tarski [43] assures that a unique least fixed point exists if / is monotonie. If / is

monotonie, then by induction on i, we can show that

P-^T) < f (T)

where p is / applied i times. If all the argument I-tables are finite, then since no

new component values are introduced by the extended relational algebraic operators,

we know that there is some finite T for which each /^(T) is a subset. Therefore, there

must be some ng such that

T < f{T) < /2(r) < • • • < /"o(r) = ro+i(r) .

It is easy to check that /"0(T) is the least fixed point, LFP{T = f{T)) . We now state

the following theorem, which is also true for regular relational algebraic expressions:

Theorem 4.7.1 Any extended relat ional algebraic expression involving cartesian

product , union, select ion, and project-union is monotonie.

93

5 generalized relational model

In Chapter 3, we defined I-tables to represent disjunctive information of the

form P(ti) v ••• v P(tfi), where all the disjuncts in this formula involve the same

predicate symbol. In this Chapter, we define a general data structure, called M-table,

which is capable of representing more general forms of disjunctive information such

as v • • • v Pn(in), where the P^s could be different predicates. The relational

algebra is suitably generalized to operate on M-tables. In addition to the generalized

relat ional algebraic operators , we define two new operators , R-project ion and merge,

which are used in answering queries.

5.1 M-Tables

In this section, we introduce a data structure, called an M-table, which is capable

of representing general kinds of disjunctive and maybe information. Then, we present

the notion of redundancy in M-tables and define an operator, called REDUCE, to

remove the redundancy.

A relat ion scheme, R, is a finite list of attribute names, < A-^, . . . ,An >,n > 1.

R is said to have arity n. With each at tr ibute is associated a domain. An M-table

scheme, MR, is a finite list of relation schemes, < iîj,..., Rf, >,k > 1. MR is said

to be of order k .

94

Defini t ion 5.1.1 An M-table, T, over the M-table scheme, MR =< Jîj, . . . , Jljj. >,

consists of the two components, T =< TsureiT^^^yi^ >, where

T^sure Ç > I (Vi)(l

(3i)(l <i<k/\u^^ 0)}, and

^mayie ^ > I (V:)(l < % < k € 2^% x -xD-

where D^,. . . , a r e t h e d o m a i n s a s s o c i a t e d w i t h t h e a t t r i b u t e s o f i 2 j , l < i < k.

Elements of Tsure are sometimes referred to as mixed tuple sets. If a mixed tuple set

has exactly one tuple in al l of i ts components then i t wil l be referred to as a defini te

tuple. The tuples in the sure components will sometimes be referred to as sure tuples.

For notat ional convenience, we say that the mixed tuple set u =< u^, . . . ,Uf^ > is a

subset of another mixed tuple set v =< v^,... ,Vf. >, written u Ç v, if and only if

(Vz)(l < i < k u^ Ç v^) and wis a proper subset of v, written it C r, if and only if

{u Ç V A (3i)(l <i<kAu^C %%)).

An M-database scheme is a collection of M-table schemes. We shall restrict a

relation scheme to be present in exactly one M-table scheme of the M-database scheme.

An M-database is a collection of M-tables defined over the M-database scheme.

Example 5.1.1 Consider the scheme

MR=« UNCLE,PERSON >,< AUNT,PERSON » .

Let us assume that the domain of all persons is associated with each of the attributes

UNCLE, AUNT, and PERSON. Figure 5.1 shows an M-table, UNAUN, defined

over MR. UNAUNsure in Figure 5.1 corresponds to the following ground formulas:

1. UN(Tom,Gary)

95

UNAUN

UNCLE PERSON AUNT PERSON

Tom Gary

Craig John
Craig Don

Mary Tom

Liz John

Liz Don

Sam John Sam John

Chris Tom Chris Tom
Chris Gary Chris Gary

Jeff Jake Pam Bob

Figure 5.1: M-table UNAUN

2. UN(Craig,John) V UN(Craig,Don)

3. AUN(Mary,Tom)

4. AUN(Liz,John) V AUN(Liz,Don)

5. UN(Sam,John) V AUN(Sam,John)

6. UN(Chris,Tom) V UN(Chris,Gary) V AUN(Chris,Tom) V AUN(Chris,Gary)

UNAUN^^y^^ in Figure 5.1 corresponds to the following ground atomic formulas:

1. UN(Jeff,Jake)

2. AUN(Pam,Bob)

However, these formulas may or may not be true.

96

5.2 Redundancy in M-tables

It is quite possible for redundant information to be present in an M-table. We

have identified the following two kinds of redundant information and for each we

suggest an action to remove the redundancy. Let T =< > be an

M-table defined over the scheme MR =< Ri,..., Rj^ >.

1. u =< >€ Tsure,v —< >€ TsureiU C r, and =<

> Here, v is considered redundant and is removed from Tsure- In

the process, all the tuples in are included in r^.

2. =< ri,... ,r}, >, t e r^, < >6 Tsure, and t 6 for some

i,! <i <k. Here, t is considered redundant and is simply removed from r^.

We now present an operator, called RE DU CE, which removes the above men­

tioned redundancies from M-tables.

Defini t ion 5.2.1 Let Tj =< > be an M-table over the scheme AIR =<

Rl, . . . ,Rj^ >, where =< >. Then, REDUCE{Ti) = T, where

Tsure = G -'(3u)(v G A v C u)},

'^maybe

^j = 0 I e 7- j V (3u)(3t ;) (« =< ï i i , . >G

V =< >6 C V At e { v j - u j))) a

wi,...,w}^ >6 Tsure E Wj)},l <j< k.

Example 5.2.1 Figure 5.2 shows an M-table T and REDUCE(T).

97

T

UNCLE PERSON AUNT PERSON

John Tom

John

John

Tom
Gary

Pat Gary

Pat Craig Pat Gary

Chris Dan Chris Dan

Don Hugh Sam Jill

Tim Ron Bob Ned

REDUCE{T)

UNCLE PERSON AUNT PERSON

John Tom

Pat Gary

Chris Dan Chris Dan

Don Hugh Sam Jill

Tim Ron Bob Ned

John Gary

Pat Craig

Figure 5.2: REDUCE{T)

98

5.3 Generalized Relational Algebra

In this section, we generalize the relational algebra to operate on M-tables. We

also present an operator, called R-projection, which projects an M-table onto some of

its relation schemes and an operator, called merge, which merges various components

of a mixed tuple set into one. The REDUCE operator is part of each of these

operators to ensure that no redundant information is introduced.

5.3.1 Selection

The selection operator takes in as input an M-table, T", of order k and k selection

formulas , . . . , ̂ . A mixed tuple set , < >, is selected if for every i ,

1 < i < fc, all tuples in satisfy the selection formula F^. If not all tuples satisfy the

respective selection formula then only those tuples which satisfy the selection formula

are included in the respective maybe component of the selection.

Defini t ion 5.3.1 Let be an M-table over the scheme MR =< iî|,... >, where

=< ^1? - - - Also, let Fj,... ,Ff^ be selection formula, where the selec­

tion formula Fj involves

1. attribute numbers of

2. arithmetic comparison connectives <,£,>,>,=,7^, and

3. logical connectives A, V, and

Then, = REDUCE{T), where

Tsi i re — I ' ^sure ^

(Vz)(i <i<k-^ {yt){t eui^ Fiit)))},

99

^mayhe ^

0
r j = { < I { t € r j A Fj{i)) V

> € T j u r e ̂ t £ u j A Fj { t)) } , a n d

Fj(<) is with attribute j replaced by <[j].

Example 5.3.1 An example of the selection operator is shown in Figure 5.3.

.4 -42 5i B2

John A John 100
John B John 200

Craig C Pat 100
Craig D

Tom A Tom 600
Gary A John 500

Robin D Robin 200

Don A Don 100
Don C

^1 ^2 ^2
John A John 100
John B John 200

Tom A Tom 600

Gary A John 500

Don A

Fi = ((2 = 'M") V (2 = "5")) and F2 = ((1 = ' 'John' ') V (2 > "600"))

Figure 5.3: Selection

5.3.2 Projection

The projection operator takes in as input an M-table, T", of order k and k lists of

projection attributes Aj,..., j4j^. The ith component of a mixed tuple set of Tsure is

100

projected onto Aj^ and the ith component of is projected onto for each i.

Defini t ion 5.3.2 Let be an M-table over the scheme MR =< R^, . . . ,Rj^ > where

Tmayhe —< ^1 ' • • • > > • Also let ylj,,,., be lists of projection attributes, where

Aj involves attributes of iZj. Then, = REDUCE{T), where T is

defined as follows:

î swre = {< > I (3 t? i) - - - (3r j t) (< >e r j -^re ^

(Vz)(l<z = n^.(rj))}

^maybe (^1 - - - ; ^ •

Example 5.3.2 An example of the projection operator is shown in Figure 5.4.

^1 ^2 ^3 B2

John A 100 John A
John A 200

Tom A 200 Tom A
Tom B 200 Tom B
Gary C 300 Gary C
Gary D 100 Gary E
Craig A 100 Brad A
Don A 100

Jones A 100 Bill C

Bob D

n <<1,2> ,<1>>(^)

^1 ^2
John A John

Tom A Tom

Tom B

Gary C Gary

Gary D
Craig A Brad
Don A

Jones A Bill

Bob

Figure 5.4; Projection

101

5.3.3 Cartesian Product

Consider the two M-tables, Tj and Tjg, in Figure 5.5 and let Tj be defined over

the scheme < P, Q > and T2 be defined over the scheme < R,S >, Also let T =

Tj X T2- The sure component of T is computed as follows:

The two mixed tuple sets of Tj together with the single mixed tuple set of Tjg

gives us the following disjunctive formula:

(PRia, e) A PR{c, e)) V (PS{aJ) A P5(c, /))V

{PR{a, e) A QR(d, e)) V (PS{aJ) A QS{d,f))V

{QR{b, e) A PR(c, e)) V (QS{b, f) A PS(c , /))V

(QR{b, e) A QR{d, e)) V (Q5(6, /) A QS{d, /))

Converting this expression into the conjunctive normal form and simplifying, we ob-

téi in the four mixed tuple sets of Tsure-

The maybe component of T is computed by taking the cross product of sure

tuples of Ti with maybe tuples of Tjg, maybe tuples of Tj with sure tuples of T2, and

maybe tuples of Tj with maybe tuples of T2-

Using the above methodology, we obtain the cartesian product in Figure 5.5. The

above discussion is formalized into the following definition:

Defini t ion 5.3.3 Let Tj be an M-table defined over the scheme MiZj =< iZj,..., Rj^ >

and T2 be an M-table defined over the scheme Mi?2 =< . . . ,Si >. Then, Tj x T2

is an M-table defined over the scheme

MR =< R-^.S^, . . . , . . . , . . . , Rij-Si >,

where Ri-Sj is the concatenation of the schemes Rj and Sj. Let

'^sure ^11 ' • • • 5^Ifc • 5 ^ml' • • • ' ̂ mk '

102

'^sure ~ {"^ ^1 !'••*'^Ijb ^ ^nl' • • *) and

Also let

E = {< ui , . . . ,ui^ > I (3rf i)(3i i)---(3d77î)(3<rji)(

(Vi)(l < i < m {1 < < k Ail e %^)) ̂

^— coîîdic (*C[/ 2 , ' ' « ; ̂ 771 ^ 5 (^2 ? ' • • Î ^77% ^))}î

F = {< Ui, . . . ,ui > i (3di)(3<i) •••(3dn)(3<n)(

(V2)(l <i<n^{l<di<lAi^E Vid^)) A

< it J , . . . >= collate^ (< . , tn >,< d^, . . . ,drj >))}•

Let \E\ = e and |i^| = / and let ... ,Ee and F^, . . . ,F^ be the elements of E and

F respectively, ordered in any manner. Let

^^ij,ab = i* I (3<l)(3^2)(-^2 =< > Af) =< > A

t l e Ua At2 e vj^ At = ̂ 1.^2)})

and 1 < 6 < /. There exists a one-one mapping, /,

from the set of pairs < i,j > of positive integers onto consecutive positive integers. We

shall use this mapping to rename the EF^-^js as EFj^^ ^js. Let c = k x I and

let g be the number of distinct EF^jS for a fixed j. Then, Tj x T2 = REDUCE(T),

where

Tsure = {<ui, . . . ,uc > | {3di){3t i) • • • (3dg)(3ig)(

(Vi)(l <i<g-^{l<di<cAtie EFid-)) A

< %(^, . . . ,wc >= collate^{< >,< di , . . . ,dg >))},

103

"^maybe ^11' • ' - '^1/' • • •

= I (3<i) (3<2)(^ l G A(3?^i) . . . (3 iz^)(

m
*C. 1^2) ' " ") ^SltTG ^ ^2 ^ ^ ^ — ^1 '^2) ^

(3<i)(3<2)({3«I)--*(3U;^)(< ui, . . . ,Uf; >e Tj^re ^

<1 E tij-) A <2 £ -Sj A / = t2./2) V

(3i i)(3<2)(<l e Ai2 € Sj At = fi- fg)} ,! < ̂ < ̂ ,1 < J < ̂

collate^ {< ... ,<n >, < d-^, . . . ,dn >) is a function that returns a mixed tuple set

< u;^,... ,Ujr. > by placing in , 1 < i < n.

Example 5.3.3 An example of the cartesian product is shown in Figure 5.5.

T 1 X T 2

^1
p Q

a b

c d

g h

i

T2
R S

e {

j k

P R P S Q R Q S

a e a f b e b f

a e c f b e d f
c e a f d e b f
c e c f d e d f

a j a k b j b k
c j c k d j d k

g j g k h j h k

i j i k h e h k

g e g f
i e i f

Figure 5.5: Cartesian Product

104

5.3.4 Union

The union of two domain compatible M-tables is simply the union of the respec­

tive sure and maybe components. REDUCE is applied to the resulting M-table to

remove any redundant information.

Defini t ion 5.3.4 Let T-^ =< ^sure^^^dyi)^ ^ T2 =< ^

M-tables defined over the scheme MR =< R^,..Rj^ >. Then,

Ti U T2 = REDUCE(T), where

Tsure — ^ ' ^3urei

T I = . IJ t2
maybe maybe maybe'

Example 5.3.4 An example of the union operator is shown in Figure 5.6.

5.3.5 Difference

The difference of two domain-compatible M-tables Tj and T2 is computed as

follows:

1. If a mixed tuple set, u, of Ij has no common tuples with any mixed tuple set

of T2 or with any maybe tuple of Tgi then it is included in the sure component

of the difference. Otherwise, all the tuples in u that do not appear as a def­

inite tuple in T2 are included in the corresponding maybe components of the

difference.

2. A maybe tuple of Tj that does not appear as a definite tuple in Tg is included

in the corresponding maybe components of the difference.

The above discussion is formahzed in the following definition:

Defini t ion 5.3.5 Let Tj and T2 be two M-tables defined over the scheme

105

^1
R\ R2

a

b

c

d

e

f

g

h

i
j

k 1

m n
o P

q r

T2

^1 i?2

c

s

t

u

g

V

m n

w X

y z

e 1

TiUTg

^1 i?2

a

b

c

s

t

u

e

f

S
h

i
j

k 1

m n
w X

y z

q r

o P
d V

Figure 5.6: Union

106

MR =< >,

^maybe =< ̂ ^laybe =< ̂ 1 ' 'A >'

Then, Tj - T2 = REDUCE{T), where

TSUTC —) " • • 5 ^ I ^1 > • • • 5 ' ^s t ive ^

^(3n)- - - (3vj t) (3 i) ((< vi , . . . ,V}^ >e T^ure ^

1 < 2 < A Tij- n I'j- ^ 0) A

- ' (3 i) (l < i < k A u^U Sj ^ 0)},

^maybe ^1 ' • • • ' '''

^j = 0 I (3 'u i) - - - (3uj t) (< « i , . . . ,« j t >e î iuree "j) V< € r^-) A

- i (3v i) • • • (3u j^) (< r i , . . . , >e tsure^v j = {0

{Vi)(l < i<kAi:^ j—r Vj = 0))} .

Example 5.3.5 An example of the difference operator is shown in Figure 5.7.

5.3.6 R-projection

The R-projection operator takes in as input an M-table, T, of order k and n

relation schemes R^,..., Rn which are among the relation schemes of T. It returns

an M-table over the scheme < Rj,..., Rn >• If a mixed tuple set in Tsure has

empty sets in all the components which do not correspond to any of the R^s then the

mixed tuple set is included in the sure component of the R-projection. Otherwise,

all the tuples from the components that correspond to the R^s are included in the

respective maybe components of the R-projection. is also projected onto

107

Ti

^1 R2

a

b

c

d

e

f

g
h

i j

k 1
m

n 0
P

q s

r t

T2

^1 R2

b

q
g

0
P

u e

k I

V w

T1-T2

1—
1 R2

a

c

d

f

i j

k e

m g

n h

1

Figure 5.7: Difference

108

< Rjg > to contribute tuples to the maybe component of the R-projection.

Defini t ion 5.3.6 Let Tj be an M-table defined over the scheme Mi? =< iZj,...,Rj^ >

where =< r-^,... ,rf^ >. Also let R^^,..., R^^ be relation schemes such that

1. n < k,

2. Rj^^ G {-^1) • • • 5-Rife}) 1 < j < n, and

3. Rj^ = Rj^ if and only if jl = j2.
J 1

Then, >(î\) = REDUCE{T), where T is an M-table over the scheme

< ,..., > and is defined as follows:

Tsure = {< ui,...,un > | (3vi) • • • (3r;^)(< rj ,..., vj;. >G Tjure A

(Vj)(l < j < n U j = V I .) A

(Vj)((l < j <kAj ^ Vj = 0))},

'^mayhe ~ > • • • > ^ > and

= {t I (< G) V

(3tii) • • • (3îtj^,)(< lij,... >6 Tg'fi'pç A

(3/)(l < I <k Al ^ {*!,... ,in} A f 0)

A t e U i j) } A < j < n .

Example 5.3.6 An example of the R-projection operator is shown in Figure 5.8.

5.3.7 Merge

The merge operator is defined on M-tables which are defined over the scheme

< ,..., i2j^ > where the relation schemes iîj,..., Rj^ are all domain-compatible.

109

T

^1 ^2
a

b
c

d

e

f

g

h i

j 1

k

m o

n

R2

d

f
g

1

Figure 5.8: R-projection

110

It returns an M-table over the scheme < >. The k components of a mixed tuple

set are all merged into one component and the k sets of maybe tuples are also merged

into one. The formal definition of merge is presented below:

Defini t ion 5.3.1 Let Tj be an M-table defined over the scheme

il/JÎ =<< J,. ..,"^jfel ' • • • '' ^kn

such that the domains associated with the attributes A^, ... for a fixed i , are

all the same. Also let

^mayie = <^l'---'^it >•

Then, Tnerge{Ti) — REDUCE{T), where T =< > is an M-table

defined over the scheme << ..., >> and is defined as follows:

Tsure = {< u > KBttj) • • •(3u^)(< uj,.. >€ A = uj U • • • U

'^maybe =<n >.

Example 5.3.7 An example of the merge operator is shown in Figure 5.9.

5.4 Queries

Queries can be expressed as a combination of the various generalized relational

algebraic operators defined earlier. The M-table accurately models the two bounds

on the external interpretation of a query (the interpretation in which the query is

referred to the real world modeled in an incomplete way by the system [29]). The

sure component of an M-table corresponds to one of the bounds which is the set of

objects for which we can positively say that they belong to the external interpretation

of the query. The maybe component of an M-table corresponds to the other bound

which is the set of objects for which we cannot rule out the possibility of belonging

I l l

T

^2 B2

John A John A

Tom A Tom A

Tom B Tom B
Gary C Gary C
Gary D Gary E

Craig A Brad A
Don A

Jones A Bill C

Bob D

merge{T)

^1 ^2
John A

Tom A
Tom B

Gary C

Gary D
Gary E

Craig A
Don A

Brad A

Jones A

Bill C

Bob D

Figure 5.9: Merge

112

to the external interpretation of the query. We now present two examples of queries

in the generalized relational model.

Example 5.4.1 Consider the database in Figure 5.10 which consists of the two M-

tables: SP defined over the scheme << SUPPLIER,PART >> and P defined over

the scheme << PART, COLOR >>. Also consider the query: Find all the suppliers

SP

SUPPLIER PART

si pi
s2 p3
s3 p5

s4 p3

s4 p4

s5 p3

PART COLOR

pi blue

p2 green

p3 red

p4 red

p5 red
p6 red

Figure 5.10: A Database

who supply "red" parts. The query represented in the generalized relational algebra

is:

ANSWER = n^^2>>(<T<-2=3>('5-P x

Evaluating this expression against the database in Figure 5.10, we obtain the answer

in Figure 5.11. The answer can be interpreted in the following manner: s2 and s4

supply "red" parts and s3 and s5 may supply "red" parts.

Example 5.4.2 Consider the database, in Figure 5.12 which consists of two M-tables:

1. SIB defined over the scheme << PERSON, SIBLING >>, and

113

ANSWER

SUPPLIER

s2

s4

s3

s5 ~

Figure 5.11: Answer to Query

2. MAFA defined over the scheme

<< M - ANCESTOR, PERSON >,< F - ANCESTOR, PERSON >>.

The M-table SIB represents the sibling relationship and the M-table MAF A repre­

sents the mixed relationships male-ancestor and female-ancestor. Consider the query:

Find all the siblings of the ancestors, male or female, of "Tom". In the generalized

relational algebra, this query is translated as:

ANSWER = merge{U^^ i^^^ iy^ ((T^p^ j r^^{SIB x MAFA))) ,

where F^ is (2 = 3) A (4 = "Tom"). Evaluating this expression against the database

of Figure 5.12, we obtain the answer in Figure 5.13. The answer can be interpreted in

the following manner: Pam, Gary, and Liz are siblings of ancestors of Tom, at least-

one of Craig or Don are siblings of the ancestors of Tom, and Bill may be a sibling of

an ancestor of Tom.

As the above two examples illustrate, the query is posed in the same way as for

conventional relational databases.

114

SIB

PERSON SIBLING

Gary Chris

Pam Mark

Liz Pat

Craig Mark

Don Mark

Bill Bob

MAFA

M - ANCESTOR PERSON F - ANCESTOR PERSON

Mark Tom

Pat Tom

Chris Tom Chris Tom

Bob Tom

Figure 5.12: A Database

ANSWER

PERSON

Pam

Gary

Liz

Craig

Don

iïîï

Figure 5.13: Answer to Query

115

6 summary and conclusion

We have presented a extended relational model to represent indefinite and maybe

kinds of incomplete information. The relational algebra has been extended, in a

semantically correct way, to manipulate these kinds of information.

The disjunctive information represented in the indefinite component of I-tables

and M-tables corresponds to the inclusive or variety, i.e., more than one tuple within

a tuple set may be in the relation. To handle the exclusive or variety of disjunctions,

we will have to modify some of the operators defined in this paper.

Query optimization is an issue which needs to be studied in great detail. Some

of the techniques used in the conventional relational model may be applied to our

extended model too. Combining selections and cartesian products to obtain joins can

drastically reduce the size of intermediate I-tables and M-tables. Transforming the

extended relational algebraic expressions, as explained in [34,44], can improve running

times of queries.

Enforcement of integrity constraints in an I-database is another issue for further

study. Let D be a set of integrity constraints. We define SAT{D) as follows:

SAT{D) =:{<U,v> I < f/,v >€ a {Vr)(r eU ^ SATISFIES(r,D)) a

(Vr)(r Cv^ (VriKrj SATISFIESir^Jr-^^D)))},

where SATISFIES{r,D) means that the relation r satisfies all the constraints in D.

116

Given an I-table, T, and a set of integrity constraints D, we now define the information

content of T as REP{T) n SAT{D) instead of just REP{T). In order to enforce the

integrity constraints D on I-table T, we must define an operator, subj{T,D), which

returns an I-table and which satisfies the following condition:

REP{subj(T, D)) = REP{T) n SAT{T, D).

A similar definition can be made for M-tables. The definition of subj{T, D), for any

D, is a topic for future research and is under investigation.

Updates to I-tables and M-tables is another topic for future research. Updates to

incompletely specified databases have been studied in [1,2,4,12,26]. The insert, delete,

and modify operations need to be defined in such a way as to maintain all the integrity

constraints on the database. The REDUCE operator needs to be invoked on an

insert or a modify to maintain a reduced database. The effect of data dependencies

on relational databases with null values has been studied in [23,28,47]. A similar

analysis needs to be done for I-tables and M-tables.

With the growing interest in deductive databases [16], definite as well as indefi­

nite, we feel that one needs to consider new models to handle indefinite information.

The proof-theoretic approach to indefinite deductive databases is impractical as it is

very inefficient to employ theorem provers, especially in the context of large indefinite

databases. The conventional relational algebra can be used effectively to implement

definite deductive databases. However, it cannot be used in the context of indefinite

deductive databases. Our extended relational model has been shown to implement a

subclass of indefinite deductive databases in [30].

Another area where the extended relational model can be applied is uncer­

tain/fuzzy databases. By assigning numerical values to tuples in an I-tables and

117

M-tables, we could enhance the quality of information being modeled.

Finally, we discuss some previous research that is closely related to our work.

Lipski presents a general theory of incomplete information databases in [29]. He

distinguishes between the internal interpretation of a query which is based on the

information present in the database and the external interpretation which is based

on the real world truth. Our work is related to answering queries in the external

interpretation. Imielinski [22] represents incomplete information in V-tables and C-

tables. Null values are treated as variables in V-tables. The relational algebraic

operators cartesian product, projection, and positive selection on V-tables are the

same as for relations. C-tables are generalizations of V-tables, where each row contains

a condition. C-tables are capable of representing more general kinds of incomplete

information, including disjunctions. The relational algebra is extended to operate

on C-tables. This yields another approach to answering queries in the context of

indefinite databases. Grant and Minker [20] work within the framework of database

theories which contain the domain closure axiom, the unique name axiom, and the

equality axioms. Queries are formulas in first-order logic. An algorithm to check if a

candidate answer is indeed an answer is presented. An algorithm to find all minimal

answers to queries is also presented. This is yet another approach to answering queries

in indefinite databases.

118

7 bibliography

Abiteboul, S. and Grahne, G. "Update semantics for incomplete information".
Proceedings of the 11th International Conference on Very Large Data Bases,
Stockholm, 1985, 1-12.

Abiteboul, S. and Vianu, V. "Transactions in relational databases". Proceedings
of the 10th International Conference on Very Large Data Bases, Singapore, 1984,
46-56.

Bancilhon, F. and Ramakrishnan, R. "An amateur's introduction to recursive
query processing strategies". Proceedings of ACM SIGMOD International Con­
ference on Management of Data, Washington, DC, May 1986, 16-52.

Bancilhon, F. and Spyratos, N. "Update semantics of relational views". ACM
Transactions on Database Systems 6(1981):557-575.

Biskup, J. "A formal approach to null values in database relations". In Advances
in Database Theory, Vl, ed. H. Gallaire, J. Minker, and J. Nicolas, 299-341, New
York and London: Plenum Press, 1981.

Biskup, J. "A foundation of Codd's relational maybe-operations". ACM Trans­
actions on Database Systems 8(1983):608-636.

Biskup, J. "Extending the relational algebra for relations with maybe tuples and
existential and universal null values". Fundamenta Informaticae 7(1984):129-
150.

Chang, C.L. "On the evaluation of queries containing derived relations in re­
lational databases". In Advances of Data Base Theory, Vl, ed. H. Gallaire, J.
Minker, and J. Nicolas, 235-260, New York: Plenum Press, 1981.

Codd, E.F. "A relational model for large shared data banks". Communications
of the A CM 13(1970):377-387.

Codd, E.F. "Understanding relations". Installment #7, FDT Bulletin of ACM
Record 7(1975):23-28.

119

[11] Codd, E.F. "Extending the database relational model to capture more meaning".
ACM Transactions of Database Systems 4(1979):397-434.

[12] Fagin, R., Ullman, J.D. and Vardi, M. "On the semantics of updates in
databases". Proceedings of the ACM SIGACT-SIGMOD Symposium on Prin­
ciples of Database Systems, Atlanta, GA, 1983. 352-365.

[13] Gallaire, H. and Minker, J. Logic and Data Bases. New York: Plenum Press,
1978.

[14] Gallaire, H., Minker, J. and Nicolas, J.M. Advances in Data Base Theory. Vol­
ume 1. New York: Plenum Press, 1981.

[15] Gallaire, H., Minker, J. and Nicolas, J.M. Advances in Data Base Theory. Vol­
ume 2. New York: Plenum Press, 1984.

[16] Gallaire, H., Minker, J. and Nicolas, J.M. "Logic and databases; A deductive
approach". ACM Computing Surveys 16(1984):151-184.

[17] Grant, J. "Null values in a relational database". Information Processing Letters
6(1977):156-157.

[18] Grant, J. "Partial values in a tabular database model". Information Processing
Letters 9{1979):97-99.

[19] Grant, J. "Incomplete information in a relational database". Fundamenta Infor-
maticae 3(1980):363-378.

[20] Grant, J., and J. Minker. "Answering queries in indefinite databases and the null
value problem". In Advances in Computing Research, Volume 5:JAI Press Inc.,
1986. 247-267.

[21] Henschen, L. and Naqvi, S. "On compiling queries in recursive first-order data
bases". Journal of the 31(1984):47-85.

[22] Imielinski, T. "On algebraic query processing in logical databases". In Advances
in Database Theory, Vol. 2. Ed. H. Gallaire, J. Minker, and J. M. Nicolas, 285-
318, New York and London: Plenum Press, 1984.

[23] Imielinski, T. and Lipski, W. "Incomplete information and dependencies in rela­
tional databases". Proceedings of the ACM SIGMOD Conference on Data Man­
agement, San Jose, CA, May 1983, 178-184.

120

[24] Imielinski, T. and Lipski, W. "Incomplete information in relational databases".
Journal of the vlCM 31(1984):761-791.

[25] loannidis, Y.E. and Wong, E. "An algebraic approach to recursive inference".
Proceedings of the First International Conference on Expert Database Systems,
Charleston, South Carolina, 1986, 209-223.

[26] Kuper, G.M. and Ullman, J.D. and Vardi, M, "On the equivalence of logical
databases". Proceedings of the ACM SIGACT-SIGMOD Symposium on Princi­
ples of Database Systems, Waterloo, Ontario, 1984, 221-228.

[27] Levesque, H.J. "The interaction with incomplete knowledge bases: A formal
treatment". Proceedings of the 7th International Joint Conference on Artif icial
Intelligence, Vancouver, B.C., August 1981, 240-245.

[28] Lien, E. "Multivalued dependencies with null values in relational databases".
Proceedings of the 5th International Conference on Very Large Data Bases, 1979,
61-66.

[29] Lipski, W. "On semantic issues connected with incomplete information systems".
ACM Transactions on Database Systems 4(1979):262-296.

[30] Liu, K.C. and Sunderraman, R. "Applying an extended relational model to in­
definite deductive databases". Proceedings of the 2nd International Symposium
on Methodologies for Intelligent Systems, Charlotte, NC, New York: Elsevier
Press, 1987, 175-184.

[31] Liu, K.C. and Sunderraman, R. "An extension to the relational model for in­
definite databases". Proceedings of the ACM-IEEE Computer Society Fall Joint
Computer Conference, Dallas, TX, October 1987, 428-435.

[32] Liu, K.C. and Sunderraman, R. "Indefinite and maybe information in relational
databases". January 1988. Submitted to ACM Transactions on Database Sys­
tems.

[33] Liu, K.C. and Sunderraman, R. "On representing indefinite and maybe informa­
tion in relational databases". Proceedings of the Fourth International Conference
on Data Engineering, Los Angeles, California, 1988, 250-257.

[34] Maier, D. The Theory of Relational Databases. Rockville, Maryland: Computer
Science Press, 1983.

121

[35] McKay, D. and Shapiro, S. "Using active connection graphs for reasoning with
recursive rules". Proceedings of the 7th International Joint Conference on Arti­
ficial Intelligence, 1981, 368-374.

[36] Minker, J. "On indefinite databases and the closed world assumption". In Lec­
ture Notes in Computer Science, N138, 292-308, New YorkiSpringer-Verlag,
1982.

[37] Minker, J. and Nicolas, J.M. "On recursive axioms in deductive databases".
Information Systems 8(1982):1-13.

[38] Minker, J. and Perlis, D. "Applications of protected circumscription". Proceed­
ings of the Conference of Automated Deduction, Napa, CA, May 1984. New York:
Springer-Verlag 1984, 414-425.

[39] Reiter, R. "On closed world databases". In Logic and Databases, ed. H. Gallaire,
and J. Minker, 56-76, New York: Plenum Press, 1978.

[40] Reiter, R. "Towards a logical reconstruction of relational database theory". In
On Conceptual Modeling , ed. M. Brodie, J. Mylopoulos, and J. Schmidt, 191-
238, New York: Springer-Verlag, 1984.

[41] Reiter, R. "A sound and sometimes complete query evaluation algorithm for
relational databases with null values". Journal of the -4CM 33(1986):349-370.

[42] Schwind, C.B. "Embedding deductive capabilities in relational database
systems". International Journal of Computer and Information Sciences
13(1984):327-338.

[43] Tarski, A. "A lattice-theoretical fixpoint theorem and its applications". Pacific
J. Mathematics 5(1955):285-309.

[44] Ullman, 3.D. Principles of Database Systems. 2nd ed., Potomac, Maryland:
Computer Science Press, 1982.

[45] Ullman, J.D. "Implementation of logical query languages for databases". ACM
Transactions on Database Systems 10(1985):289-321.

[46] Vassiliou, Y. "Null values in data base management - a denotational semantics
approach". Proceedings of the ACM-SIGMOD International Conference on the
Management of Data, Boston, May-June 1979, 162-169.

122

[47] Vassiliou, Y. "Functional dependencies and incomplete information". Proceed­
ings of the 6th International Conference on Very Large Data Bases, 1981, 260-
269.

[48] Vielle, L. "Recursive axioms in deductive databases : The query/subquery ap­
proach". Proceedings of the First International Conference on Expert Database
Systems, Charleston, SC, 1986.

[49] Yahya, A. and Henschen, L. "Deduction in non-Horn databases". Journal of
Automated Reasoning 1(1985):141-160.

[50] Zaniolo, C. "Database relations with null values". Journal of Computer and
System Sciences 28(1984):142-166.

123

8 acknowledgements

I would like to express my deepest gratitude to Dr. Ken-Chih Liu for all the

guidance he has provided throughout my stay at Iowa State. The countless discussions

we had over the past five years or so have enriched my understanding of logic and

databases.

I would also express my appreciation towards Dr. Oldehoeft, Dr. Schmidt, Dr.

Stewart, and Dr. Pohm for serving on my POS committee. Special thanks goes to Dr.

Schmidt for the numerous suggestions to improve Chapter 2 and for traveling between

Manhattan, Kansas and Ames, Iowa for my preliminary and final examinations.

I would like to thank Mrs. LaDena Bishop for her suggestions to improve the

presentation of thesis.

Finally, I must thank my parents for their constant support and encouragement

without which I would have found it difficult to achieve my goals.

124

9 appendix

Here, we present proofs for all the theorems stated in the paper. For convenience,

we shall assume that the definite component of an I-table is made of singleton sets

of tuples instead of tuples. Consequently, we shall refer to the definite and indefinite

components as one component called the sure component. This assumption is made

only for some of the proofs that follow. We shall assume T =< Tsure? 2^7nay6e ^ 8,nd

Ti = < '^aure^T^aybe

Theorem 3,1.3 REP{T) = REP{REDUCE{T)) for any I-table T € Tjj.

Proof: Let Tsure = . .., wn} such that

(1) (Vz)(fc + 1 < i < n -> {3j)(l < j < k A W j C Wj)), and

(2) (Vz)(l <i < k ^ j <k a Wj C tUj)).

Also let Tj = REDUCE{T). Then, by definition of Jî£?£)f7C£J,

Let < MM, M > {REDUCE{T)) =< C/j.t'i >, < MM, M > {T) =< U2,V2 >,

REP{REDUCE(T)) =< U[,v[>, and REP{T) =< >.

Claim 1: U[= U'^.

i) Consider rj = {<2, • •. ,<&} € where 1 < i < k. Since (1), there

exists T2 = {<1,... ... ,/n} E U2, where E Wj, 1 <i <n and

t j 6 {/j,. . . k + 1 < j < n. Therefore, r2 = rj and hence rj G U2,

i.e., U-^ Ç [^2"

125

ii) Consider ... ,tn} 6 C^2 ~ ^li where <j 6 1 <

i < n. Since, rj G U2 — U-^, there exists j, fc + 1 < j < n, such that

ij 0 {^i> • • • ,<&}. Note that r2 = {/j,... ,<&} E (7% and from i) r2 E (72-

Clearly, 7-2 C t-j. Therefore, for every E U2 — there exists 7-2 6 U2

such that T2 C r%.

Therefore, from i) and ii) and definition of REDUCEREP, we conclude that

u[= v^.

Claim 2:

Let Ui = {ri,...,ra} and U2 = {ï"!)• • • 7^'a,J'a+l'• • •such that

(1) (Vi)(o + l<z<a + fe—> (3j)(l < j < a A rj C r^}), and

(2) (Vz)(l < i < a -+ - '(3j)(l < j < aArj C r-)).

Then, by the definition of RE DU CEREP i G if and only if

(3) {(t 6 ^'2) /\ -i(3r)(r Ç l UI^AI Ç l t)) or

(4) (3i)(3j)(a + 1 < I < a + 6 A 1 < j < a Arj C A t E — rj) A -i(3r)(r' G

Ul^At Ç: r).

Case 1 • { t 1^2) A -i(3r)(r E U!^ A t Ç. r)

iff (i 6 ^maybe) ^ -^(3w)(w G {loj,..., A i e w) (By definition of

< MM, M >)

iff {t G ~'(3iu)(u' G At e w) (By definition of REDUCE)

iff (< G vj) A -i(3r)(r G U!^ At £ r) (By definition of < MM, M >)

iif (< G vj) (By definition of REDUCEREP).

Case 2 : (3z)(3j)(a + 1 < i < a + 6 A 1 < j < a At j C At E — r j)A

- ' (3r)(r E U2 At Ç: r)

126

iff (3i)(3j)(l < i < k A k + 1 < j < n A w j ^ C W j A i W j — i O j)A

-i(3w)(w € A t Ç w) (By definition of < MM, M >)

iff {t 6 ^ ~'(3tr)(tr 6 ^ w) (By definition of REDUCE)

iff (< 6 vi) A -i(3r)(r E A f E r) (By definition of < MM, M >)

iff (< 6 Vj) (By definition of REDUCE REP).

Therefore, from Case 1 and Case 2, we conclude that

Therefore, < U[,v[>=< >, i.e., REP[T) = REP[REDUCE{T)) for any

I-table T.

Theorem 3.1.4 For any I-tables Tj 6 and Tg G T

REP[Ti) = REP{T2) if and only if REDUCE{Ti) = REDUCE[T2).

Proof:

(if) Let REDUCE[Ti) = REDUCE{T2).

Then, REP{REDUCE{Ti)) = REP[REDUCE{T2)).

By Theorem 3.1.3, REP[T-^) = REP[T2).

(only if) Let REDUCEiT^) # REDUCE(T2) and let

REPiREDUCE{Ti)) =< Ui,vi > and REP(REDUCE(T2)) =< U2,V2 >.

Case 1: REDUCE{Ti)j) # REDUCE{T2)d.

Clearly, in this case, nC^2 = ® and at least one of U-^ or U2 is non-empty.

Therefore, REPiREDUCE(Ti)) # REP{REDUCE(T2)).

Case 2: REDUCE{Ti)j ^ REDUCE{T2)j.

Without loss of generality, it can be observed that there exists € U-^

such that rj 0 U2- Consequently,

REP{REDUCE(Ti)) ̂ REP(REDUCE{T2)).

127

Case 3: REDUCE{Ti)m 9^ REDUCE{T2)m-

Without loss of generality, there must exist t 6 REDUCE{Ti)j^ such

that t 0 REDUCE{T2)m '

Since t E REDUCE{Ti)j^, t £ vj .

Since t 0 REDUCE{T2)m^ < ^ ̂ 2-

Therefore, rj ̂ V2 and hence

REP{REDUCE{Ti)) ̂ REP{REDUCE{T2)).

Therefore, from Case 1, Case 2, Case 3, and Theorem 3.1.3, we conclude that

REP(Ti)^ REP{T2).

Theorem 3.2.1 crp{< U,v >) = crp{REDUCEREP{< U,v >)), for any < U,v >6

^R-

Proof: Let U = Ua U and Ua H = 0 such that

(1) (Vri)(ri (3^2)(^2 E A r2 C rj)), and

(2) (Vrj)(ri eUa -'(3r2)(^2 6 A ^2 C)).

Also let crp{< U,v^ >) =< >, REDUCEREP{< U,v >) =< U',v' >. and

ap(REDUCEREP(< U,v >) =< [^2,^2 ^ Consider E U^. By (1), there exists

E Ua such that rj C r^. Clearly, crjrirj) Ç <Tp(r^), and hence by the definition of

REDUCEREP, U-^ = U2. Also,

t E ((Tp{ri) — (rp{rj)) V t E (Tp{v) if and only if < E cTp{v').

Therefore, by the definition of REDUCEREP, I'j = ̂ 2*

Theorem 3.2.2 (rp{T) = (rp(REDUCE{T)) for any I-table T and selection formula

F.

Proof: Let T be an I-table such that Tsure = To U n Tg = 0,

128

(1) (Vwj)(t(;i E Tg —{3w2)iw2 E Ta /\ ^2 C wj)), and

(2) (Vw2)(w2 G Ta -'(3w2)(^2 € 7a A tU2 C w^)).

Let Tj = (TplT) and Tg = crp{REDUCE{T)).

i) Consider Wj 6 Tg, such that all the tuples in wj satisfy F and let C wj for

some E Ta- Surely, all tuples in also satisfy F. Therefore, by definition

of REDUCE Wj 0 Tsure hence = T^ure-

ii) Recall that F(t) is F with attribute number i replaced by i[i]. t E if and

only if

1) ((< G T^aybe)^ A -'(3iy)(u' G Tj^re A i G w)) or

2) ((3w)(w G Tsure A < G w A F{t) A - '{3w)(w G A f G w))).

Case 1 : {t E T^aybe) ̂ '''(3w)(w G Tjure A i G w)

iff (i E REDUCE(T)^^yfj^) A F(t) (By definition of REDUCE)

iff (< G T^aybe^ (By definition o{ <Tp).

Case 2 : (3w)(w G Tsure A < G w A F{i) A -i(3u>)(-u' G A < G w))

iff (3w)(w G REDUCE{T)sure G w f\F{t)/\-->(3ui)(w G Af G «'))

(By definition of REDUCE)

iff (/. G T^aybe) definition of (xp).

From Case 1 and Case 2, we conclude that T^^y^^ = T^^^y^^.

From, i) and ii), we conclude that (Tp{T) = crjp{REDUCE(T)).

Theorem 3.2.3 crp{REP{T)) = REP{ap>(T)), for any reduced I-table T.

Proof: Let T be a reduced I-table such that Tsure = Ta U Tg, Ta n = 0,

129

(1) All tuples in E Ta satisfy F, and

(2) Not all tuples in 6 satisfy F.

Let (r^(< MM, M > {T)) =< > and < MM, M > (<7p(T)) =< >•

Since (1) and (2), U2 Ç U-^ and for every G Uj — U2, there exists rj £ U2 such that

Tj C Also, t 6 (r^ — rj) 6 vj if and only if < 6 t'2- Therefore, by the definition

of REDUCEREP,

REDUCEREP{< Ui,vi >) = REDUCEREP{< >),

i.e., REDUCEREP{a^{< MM, M > (T)))

= REDUCEREP(< MM, M > { < 7 p(T))),

i.e., <7p{< MM,M > {T)) = REP{(Tp{T)).

Therefore, by Theorem 3.2.1,

< T p{REDUCEREP{< MM, M > (T))) = REP { (T p(T)),

i.e., <Tp{REP{T)) = REP{crp{T)).

Corollary 3.2.1 crp[REP{T)) = REP{<Tp{T)), for any I-table T.

Proof: Let T be any I-table and let = REDUCE{T). Then, by Theorem 3.2.3,

cTp{REP{T-^)) = REP{ap{T'^)),

i.e., (Tp[REP{REDUCE[T))) = REP{apiREDUCE{T))).

By Theorem 3.1.3,

(7p{REP{T)) = REP(<rp{REDUCE(T)))

and by Theorem 3.2.2,

(T p{REP{T)) = REP { < T p{T)).

130

Theorem 3.2.4 n^(< U,v >) = Ej^{REDUCEREP{< U,v >)), for any <

U,v >6 Sjg.

Proof; Let U = Ua U and Ua H Î7^ = 0 such that

(1) (Vri)(ri eU^-^ (3r-2)(r'2 G ?7a A r2 C rj)), and

(2) (Vri)(7-i eVa-* -•(3r2){7'2 G Î/q A r2 C rj)).

Also let.n̂ (< U^v >) =< >, REDUCEREP{< U,v >) =< ,v ' > , and

ï i j ^ {REDUCEREP[< U,v >)) =< U2,V2 >• Consider, £ UBy (1) , there

exists rj E Ua and rj C r-. Clearly,) C n^(rj). Therefore, by the definition

of REDUCEREP, Ui = [Tg. Also,

t G (n^(rj - n^(ry)) y i ev-ymt ev2.

Therefore, by the definition of REDUCEREP^ v-^ = V2*

Theorem 3.2.5 = Ilj:^{REDUCE{T)) for any I-table T and attribute list

A.

Proof: Let T be an I-table such that Tsure = Îq U Tg, Ta n Tg = 0,

(a) 6 —> {3w2){w2 € Ta A W2 C w^)), and

(b) (\/wi){wi G Ta —> -'(3u'2)(^'2 G Ta A ^2 C

Le t T j = n^ (r) and T^ = Uj^{REDUCE(T)) .

(1) Consider G Tjg and let C Wj for some G Ta. Clearly, 11^ C 11

Therefore, by the definition of REDUCE = '^sure-

(») ' e

iff(3<i)(<i G Tj^aybe^^ = n^(<l)A-^(3u')(w G TsureG w)) (By definition

ofn^)

131

iff (3<i)(<i € REDUCE{T)^^y i , ^ A t = n^(ti)) (By definition of REDUCE)

iff t € T^aybe definition of H^)

Therefore, = T^^ybe'

Therefore, from (i) and (ii) we conclude that 11^(7) = T[j^{REDUCE{T)) .

Theorem 3 .2 .6 J l j ^{REP{T)) = REP{I l j ^^ (T)) , fo r any reduced I - t ab le T.

Proof; Let T be a reduced I-table and let Tsure = îa U and Ta H = 0 such

that

(1) {Vwi)(wi e -i- {3w2){w2 g Ta An^(tii2) Ç))), and

(2) {ywi){wi E Ta -T - I (3u '2) (« '2 ^ A n^ (u '2) Ç n^(u» i))) .

Let < MM,M > (T) =< U\v' >, n^(< MM,M > (T)) =< Ui,vi >, and <

MM, M > (n^(r)) =< U2,V2 >. Since (1) and (2), U' = (7 ̂U and n = 0

such that

(3) (Vri)(ri (3r2)(T'2 € U'̂ An^(r2) C and

(4) (Vt-j)(ri eU'a^ -^{3r2)(r2 E (7a A n^(r2) C n^(r-i))).

Also,

(5) (Vri)(ri e Î72 -> (3r2)(r2 6 = ^^(^2))), and

(6) (Vrj)(ri e U'a (3r2)(7'2 E U2 A 7*2 = n^(ri))).

From (3), for any e there exists r j e and 11 ̂ (r^) c r^. Also

t e n^(r^) — n^(rj-) v f e t'l if and only if f e ^2-

Therefore, by the definition of REDUCEREP,

REDUCEREP{< Ui,vi >) = REDUCEREP(< U2,V2 >),

132

i.e., REDUCEREP[< n^(< MM,M > (T))) = REDUCEREP{< MM,M >

(n̂ (r))),

i.e., n^(< MM,M > (r)) = REP{Uj^{T)) .

Therefore, by Theorem 3.2.4,

U^{REDUCEREP{< MM,M > (T))) = REP{Tl j^{T)) ,

i.e., Uj^{REP(T)) = REP{J l j ^{T)) .

Corollary 3.2.2 Tl^{REP{T)) = REP{Tl j^{T)) , for any I-table T.

Proof: Let T be any I-table and let Tj = REDUCE{T) . Then, by Theorem 3.2.6,

n^(i?£P(ri)) = i?£P(n^(Ti)),

i.e. , ^J!^{REP{REDUCE{T))) = REP{Uj^{REDUCE{T))). By Theorem 3.1.3,

J i j ^{REP{T)) = REP{l l j ^{REDUCE{T)))

and by Theorem 3.2.5,

Yi j^{REP{T)) = REP{J i^{T)) .

Theorem 3.2.7 For any < >6 and < (72;^2

< U-^ ,v i > X <U2,V2>= REDUCEREP{< >) X REDUCEREP{<

U2,V2 >

Proof; Let < Ui ,v i > x < (72,^2 >=< ^i>^'i > and REDUCEREP(< Ui ,v i >

) X REDUCEREP{< ^2)^2 >) = < ^2*^2 let U-^ — U and

Ua n = 0 such that

(1) (Vri)(ri (3r2)(r2 6 A r2 C rj)), and

(2) (V7'i)(ri e (7I ^ -.(3r2)(r2 6 17^ A r2 C rj)),

and U2 = U and fl = 0 such that

133

(3) (VrjXri G (3r2)(T'2 G A 7-2 C rj)), and

(4) (Vri)(ri G Î7a ^(3^2)(^2 G A r2 C rj)).

Now consider rj G By (1), there exists r^ G U\ such that r^ C rj. Therefore,

T-j X Te C rj X re for any rg G î/2- Similarly, consider rj G Î/J. By (3), there exists

ri G î7q such that r^ C rj. Therefore, r^ x rg C rj x rg for any rg G Hence,

Uj = U^. Using Lemma 3.1.1, we can conclude that Vj = v^.

Theorem 3.2.8 3% x Tg = REDUCE{Ti) x REDUCE{T2) , for any two I-tables

Tj and

Proof: Let Tj and he two I-tables. Then,

REP{Ti XT2)

= REP{Ti) X REP{T2) , by Theorem 3.2.9.

= REP{REDUCE{Ti)) x REP{REDUCE(T2)) , by Theorem 3.1.3

= REP{REDUCE{Ti) x REDUCE(T2)), by Theorem 3.2.9.

Therefore, by Theorem 3.1.4, we conclude that

Ti X 7̂ 2 = REDUCE[Ty) X REDUCE{T2) .

Theorem 3.2.9 REP{Ti) x REP{T2) = REP(T-^ x T2), for any two reduced I- "

tables Tj and l2-

Proof; Follows from the definition of Tj x

Corollary 3.2.3 REP{T\) x REP{T2) = REP{Ti x T2), for any two I-tables

and T2.

Proof: Let Tj and T2 be any two I-tables and let = REDUCE[T-^) and

= REDUCE{T2). Then, by Theorem3.2.9, REP{T^) x REP(T§) = REP(Tf x

T^), i.e., REP{REDUCEiTi)) x REP{REDUCE{T2)) = REP{REDUCE{Ti) x

REDUCE{T2)) . By Theorem 3.1 .3 , REPiT^) x REP{T2) = REP{REDUCE{Ti)

X REDUCE{T2)) and by Theorem 3.2.8, REP{Ti) x REP[T2) = REP{Ti x 72).

134

Theorem 3.2.10 < Ui,v i > U < U2,V2 >= REDUCEREP{< U-^^v i >) U

REDUCEREP{< t^2'^2 any < >€ Sjj and < t^2'^2 Sjj.

Proof: Let (7^ = U (7^ and Z7^ n Z7 ̂ = 0 such that

(1) (Vri)(7'i e C/^ ^ (37'2)(7'2 € ?7q A7'2 C rj)), and

(2) (Vrj)(ri 6 -i(3r2)(r2 G «7^ A r2 C rj)).

and let ?72 = U t/J and DU^ = Ç) such that

(3) (Vri)(ri (3r2)(''2 ^l))'

(4) (Vri)(ri -n(3r2)(r2 E (7^ A 7-2 C rj)).

Consider € U^. By (1), there exists r j E (7^ and C r^ . Therefore, for any

Te € Î72, Tj U Te C rj U re. Similarly, consider € U^. By (3), there exists

rj G Ua and rj C r^. Therefore, for any re G Ui rjUre C U rg. Therefore,

by definition of REDUCEREP and Lemma 3.1.1, < Ui,vi > U < U2,V2 ̂ ~

REDUCEREP{< [/ j .v i >) U REDUCEREP{< U2,V2 >) .

Theorem 3.2.11 Tj U r2 = REDUCE{T-^) U REDUCE{T2) , for any two domain-

compatible I-tables îj and

Proof; Since the extended union operator has REDUCE built into it, we can easily

observe tha t U ^2 = REDUCE{Ti) U REDUCE{T2) .

Theorem 3.2.12 REP(Ti) U REP{T2) = REP{Ti U Z2), for any two domain-

compatible reduced I-tables îj and

Proof: Let Tj and Tjg be two domain-compatible reduced I-tables. Also, let =

Tq U Tg, T^nT^ = 0, T^ure = U Tg, and n tJ = 0 such that

(1) (VwiXwi G -> (3w2)(w2 G A •u>2 C wj)),

(2) (iwi){wi G -> -<(3uj2)(Î«2 S 2a A ^2 C u>i)),

135

(3) (Vwi)(wi e (3w2){w2 E A ^2 C wi)), and

(4) (Vwi)(ii)i G r| -> -'(3w2)(^2 G A u)2 C w^)).

Let < MM,M > (7i)U^ < MM,M > (T^) =< Ui,v i >, and < MM,M >

{Tj UT2) =< U2,V2 >. By (1), (2), (3), and (4), U2 G Ui and for each E Ui — U2,

there exists rj G U2 and rj C r^. Also, by Lemma 3.1.2,

t 6 (r^ — r j) y t E v i if and only if < E t'2.

Therefore, by definition of REDUCEREP,

REDUCEREP{< Ui ,v i >) = REDUCEREP(< &2,V2 >),

i.e., REDUCEREP{< MM,M > {Ti)U^ < MM,M > {T2)) = REDUCEREP(<

MM, M > U2^)) ,

i.e., < MM,M > (ri)U < MM,M > (Z^) = AEfU ̂ 2).

Therefore, by Theorem 3.2.10,

REDUCEREP(< MM,M > (T i)) U REDUCEREP{< MM,M > (72)) =

REP(T^UT2),

i.e., REP{Ti) U REP[T2) = REP{Ti U T2).

Corollary 3.2.4 REP{T-^) U REP(T2) = REP{T^ U Tg), for any two domain-

compatible I-tables Ti and T2.

Proof; Let Tj and T2 be any two domain-compatible I-tables and let T® =

REDUCE{Ti) and T§ = REDUCE{T2). Then, by Theorem 3.2.12, REP[T^) U

REP{T^) = REP{T^ U T^), i .e. , REP(REDUCE{Ti)) U REP{REDLWE(T2)) =

REP{REDUCE{T-^)liREDUCE{T2)). By Theorem 3.1.3, REP{Ti)^ REP{T2) =

REP{REDUCE[T i)^REDUCE{T2)) and by Theorem 3.2.11, REP{Ti)liREP{T2)

= REP{TiVJT2).

136

Theorem 3.2.13 < > — < £^2'^2 >= REDUCEREP{< Ui ,v i >) -

REDUCEREP{< U2,V2 >, for any < >6 and < U2,V2 >6

Proof: Let f/j = U and OU^ = $ such that

(1) (Vri)(ri (3r2)(r2 G U^, A r2 C rj)), and

(2) (Vrj){ri G -i(3r2)(r2 £ A r2 C)).

Also let

REDUCEREP(< Ui ,v i >) =< ,v^ >,

REDUCEREPi< U2,V2 >) =< U^, i '§ >,

< Ui,vi > — < U2,V2 > = < U,v >, and < >=< U^,v^ >. By

Lemma 3.1.1,

U (r) U ^2 = U (^)Uv2-

^^^2 tEU^

Let TYha = U (r)Ur2. Consider r^- G U^. By (1), there exists r j G r j C r j .
tÇ:U2

Clearly, [v j — Ç [r^ — Therefore, by the definition of RE DUC REP,

U = U^. Since Q (r) = Q (r), by definition ofand i2£'Z)C^C7£'iZ£'P, v =

^et^2 reU^

Theorem 3.2.14 T-̂ — T2 = REDUCE{Ty) — REDUCE{T2), for any two domain-

compatible I-tables Ti and

Proof: Let and T2 be two domain-compatible I-tables such that

and T^DT^ = 0 such that

(1) (Vwi)(w2 G Tg (3w2)(w2 £ A W2 C u'l)), and

(2) (vw2)(wi g ta -'(3w2)(^2 ^ ^ wj)).

137

(i) Consider Wj € and let C wj for some Ç T^. Let wj not have any

common elements with any tuple set of T^ure with Since, C ivj ,

also does not have any common elements with any tuple set of T^nre or with

^maybe' Therefore, wj 0 (Tj — T2)sut€' Using Lemma 3.1.2, we conclude that

(3\ — T2)sure — {REDUCE{T-^) — RE DU CE {T2)) sure-

(ii) Since = (7ZED[/CE(T2))2), by Lemma 3.1.2 we conclude that T2)mai/6e

= [REDUCEiT-^)- REDUCE[T2))mayhe-

Therefore, by (i) and (ii), we conclude that Tg = REDUCE{Ti)—REDUCE(T2)-

Theorem 3.2.15 REP{Ti) — REP(T2) = REPiT^ — T2), for any two domain-

compatible reduced I-tables Tj and

Proof: Let and Tjg t)e two domain-compatible reduced I-tables, T = — %2)

< M M , M > { T i - T 2) = < U , v > , < M M , M > (T j) = < U i , v i > , < M M , M >

{T2) =< U2,V2 >, and < MM, M > (T^)-® < MM, M > {T2) =< V',v' >. Also

let rJuT-e = {wJ,... ... ,wn} such that

(1) W { , 1 < i ̂ k , does not have any common tuples with any component of T2, and

(2) ti'j, k + 1 < (< n, has common elements with or with a tuple set of Tj or

with r|^.

Therefore, by the definition of difference of I-tables, Tsure = {w^,..., w;;.}. By (1)

and (2), U-^ = U and (7^ H = 0 such that

(3) r E such that the tuples selected from W j , k + 1 < i < n , are the ones that

are common with some component of 7*2, and

(4) r E such that the tuples selected from W j , k + 1 < i < n , are the ones that

are not common with any component of Tg.

138

Therefore, by the definition of — U where

= {r|(3n)(ri E A r = - ((J (r2) U ^2))}, and

Ug = {r\{3ri)(r-^ E Ul A r = ri - { [J (7-2) UV2))} .

T2eU2
Clearly, all the relations in are subsumed by some relations in C/^- It can also be

observed, from (3) and the definition of difference of I-tables that U = (7^. Also,

t € V i{ and only if {i E v') V (3rj)(3r2)(r2 E A r2 E U[^ A r2 C rj A < G rj — r^).

Therefore, by the definition of REDUCEREP,

REDUCEREP{< U' ,v ' >) = REDUCEREP{< U,v >) ,

i.e., REDUCEREP{< MM, M > {Tj) -^ < MM, M > (3^)) = REDUCEREP{<

MM, M > (7^ -T2)) ,

i.e., < MM, M > (Ti)- < MM, M > (T2) = REP{Ti - T2).

Therefore, by Theorem 3.2.13

REDUCEREP{< MM,M > (Ti)) - REDUCEREP{< MM,M > (Î2)) =

REP{T^-T2),

i.e., REP{Ti) - REP{T2) = REP{Ti - Tg).

Corollary 3.2.5 REP[T-^) — REP{T2) = REP{Ti — T2), for any two domain-

compatible I-tables Tj and

Proof: Let Tj and Tg be any two domain-compatible I-tables and let T® =

REDUCE{Ti) and = REDUCE{T2). Then, by Theorem 3.2.15, REPiXf) -

REP{T^) = REP{Tf - T^), i .e. , REP{REDUCE(Ti)) - REP(REDUCE{T2)) =

REP{REDUCE{Ti)-REDUCE{T2)). By Theorem 3.1.3, REP {T i)-REP {T2) =

REP(REDUCE{Ti)-REDUCEiT2)) and by Theorem3.2.14, REP{Ti)-REP{T2)

= REP{Ti - T2).

139

Theorem 3.2.16 < Ui^v-^ > D < U2,V2 >= REDUCEREP{< >) n

REDUCEREP{< (72,^2 for any < Ui^v-^ >G and < U2,V2 >G Sjg.

Proof: Let ?7j = u and n C/^ = 0 such that

(1) (Vri)(ri eU'^-^ (3r2)(T-2 E ^2 ^l))'

(2) (Vri)(ri G ^ r2 C rj)),

and let U2 = U Î/J and Î7^ PI C/^ = 0 such that

(3) (Vri)(ri G -> (3r2)(r2 G A 7*2 C rj)), and

(4) (Vri)(ri e t/J -> -'(3r2)(r2 € [To A r2 C t-J)).

Consider E U^. By (1), there exists rj G Î7^ and C t^. Clearly, rj Dre C Hrg

for any rg G t/'2* Similarly, consider G U"^. By (3), there exists rj G and

rj C Tj. Clearly, rg H rj C rg D for any rg G (7%. Therefore, by the definition of

REDUCEREP and Lemma 3.1 .1 , < Ui,v i > D < #2)^2 REDUCEREP(<

^I '^ l ^ REDUCEREP(< U2,V2 >) .

Theorem 3.2.17 2^(122 = REDUCE{Ti) n REDUCE(T2) , for any two domain-

compatible I-tables Tj and Tg.

Proof: Let T-^ and T2 be two domain-compatible I-tables such that T^^g = T^UT^

and T^OT^ = 0 such that

(1) (Vwi)(wi G — (3%'2)(W2 G 7^ A W2 C u'l)), and

(2) (Vwi)(wi G — -'(3w2)(^2 E ^ «'2 C li'i)),

and let T^ure = 2^ U Tg and n = 0 such that

(3) (Vwi)(wi G ->• (3w2)(w2 G 2^ A W2 C w^)), and

(4) (Vw2)(wi G rj ̂ -'(3w2)(w2 G A W2 C tfi)).

140

(i) Consider wj E 2^ and let C wj for some £ T^. Let wj Ç T^. Therefore,

Wi Q Tp and hence Wj 0 (Tj D T2)sure- Similarly, wj 0 n T2)sure, for

Wj 6 7^ . Therefore , (T j r \T2)sure — (REDUCE{T-^) D I tEDUCE{T2))sure•

{i\) From (i) and Lemma 3.1.2, we can easily conclude that

iT i r^T2)maybe = {REDUCE{T-^) n REDUCE{T2))maybe-

Therefore, from (i) and (ii), we conclude that

TinT2 = REDUCE{Ti) n REDUCE{T2) .

Theorem 3.2.18 REP{Ti) fl REP{T2) = REP{Ti n T2), for any two domain-

compatible reduced I-tables Tj and Tg.

Proof; Let Tj and T2 be two reduced domain-compatible I-tables such that

Tjure = where

(1) (Vi)(l < 2 < & ^ Ç and

(2) (Vi) (fc -M<i<n^u>J g r |)) ,

and T^ure = where

(3) (Vi)(l <i<l^wfc and

(4) (Vi)(/ -i-1 < i < m -> wf g T^).

Also let < MM, M > (T^ D T2) =< U',v' >, < MM, M > (Tj) =< Ui,vi >,

< MM, M > {T2) =< U2,V2 >, and < > D® < U21V2 > — < >• Let

6 U' . Since (1), (2), (3), and (4), we have

G Ui, where

141

(Vi)(fc +1 < z < n -> /J e r2)

and { t i , . . . , t f . . . , t m } E U 2 where

(Vz)(l

{yi){l + l<i<m—i-<?6

Therefore, {<J,... ... ,f^} E C^, and hence Ç U. Also, because of (1), (2),

(3), and (4), for any r-^ £ U — there exists T2 € V' such that r2 C and for any

i G r j — r2 , < 6 v ' . Therefore , by the def in i t ion of REDUCEREP,

REDUCEREP(< U,v >) = REDUCEREP{< U' ,v ' >) ,

i.e., REDUCEREP{< MM, M > {Ti)r f i < MM, M > (7^)) = REDUCEREP{<

MM, M > (Ti nTg)) ,

i.e., < M M , M > { T i) n < M M , M > (T 2) = R E P { T i n 2^).

Therefore, by Theorem 3.2.16,

REDUCEREP{< MM,M > (Ti)) D REDUCEREP{< MM,M > (Î2)) =

REP{T^r\T2),

i.e., REP{Ti) n REP{T2) = REP(Ti

Corollary 3.2.6 REP{Ti) n REP{T2) = REP{Ti n T2), for any two domain-

compatible I-tables Ti and

Proof: Let Tj and T2 be any two domain-compatible I-tables and let Tj' =

REDUCE{T-^) and T® = REDUCE{T2)- Then, by Theorem 3.2.18,

REP{T^} n REP{T^) = REP{T^ n T^),

i.e., REPiREDUCEiTi)) n REP{REDUCE{T2))

= REP{REDUCE{Ti)f)REDUCE{T2)).

By Theorem 3.1.3,

142

REP{Ti) n REP{T2) = REP{REDUCE{Ti) n REDUCE{T2))

and by Theorem 3.2.17,

REP{Ti) n REP{T2) = REP{Ti n T2).

Theorem 4.1.1 >) =

U,v >)), for any < U,v >E and domain-compatible projection attribute lists

J4.2 , . • . , Aji>

Proof: Let U •= U q,^U^ such that n = 0,

(1) (Vri)(r]_ (3r2)(T-2 6 Ua A r2 C r^)), and

(2) (V7-i)(ri e U a ̂ "'(3^2)(''2 A r 2 C rj)).

Consider rj G U^. By (1), there exists ^2 € Ua such that r2 C . Let

rg 6 Since, r2 C r^, by definition of 11, there exists 6

^<Aiy..,An>^^2) such that C rg. Also,

f e 7-3 -7-4 if and only if (3<i)(ii 6 rj - r2 A < G {n^^(<i),... ,n^^(/i)}.

Therefore, by the definition of REDUCEREP,

^<Ai,...,A„>i< V,v >) = ^^^{REDUCEREP{< U,v »).

Theorem 4.1.2 ^^5.(fl££)r/C£(r)), for any I-table

T and domain-compatible projection attribute lists A i , . , A n -

Proof; Let Tgure = îa U Tg such that n = 0,

(1) (B«'2)(«'2 € la A W2 C ^i)), and

(2) € l a —> - ' (3w2) (^ '2 G Za A W2 C w^)).

143

Consider wi G T^. By (1), there exists W2 E Ta such that W2 C Clearly,

G U<^i,...,^„>{«'l)- Also,

< G - II<Ai,...,An>(^'2) if ^nd only if

(3ii)(ii e wj -1^2 Af e),...,n^^(ti)}).

Therefore, by the definition of REDUCEREP,

Theorem 4.1.3 = REP{]l^J^^ _ J^^^(T)), for any re­

duced I-table T and domain-compatible projection attribute lists Aj,..., An •

Proof: Let T be a reduced I-table, where Tsure = {w%, . . . , wg} and l e t T j be

w i t h o u t t h e R E D U C E o p e r a t o r . L e t < M M , M > (T) = <

Ui,vi > and < MM,M > (Tj) =< U2,V2 >. Consider any r E Ui, where

r = where G w^, 1 < i < e. Let U C U2 such that U con­

sists of relations that are related to the tuples By the definition of <

M M , M > and it can be observed that ~

Therefore, by the definition of REDUCEREP and Theorem 3.1.3, we conclude that

An>(n) .

Corollary 4.1.1 for any I-

table T and domain-compatible projection attribute lists i • • • 1 •

Proof: Let T be an I-table and let Tj = REDUCE(T) . Then, by Theorem 4.1.3,

This is equivalent to:

^ < A i , . . . , A n>(' imREDUCE{Tm =

Therefore, by Theorem 3.1,3 and Theorem 4.1.2,

144

yl^>(r)).

Theorem 4.7.1 Any extended relational algebraic expression involving cartesian

product, union, selection, and project-union is monotonie.

Proof; The semantic definition of weaker I-tables, the commutativity of the ex­

tended relational algebraic operators with REP, and the monotonicity of the regular

algebraic operators allow us to conclude:

1. {Ti < T2) ->• {ap{Ti) < crjr(Ï2)),

2. (Ti < Tg)

3. (ti < T2) a (ta < T4) ^ (RI X tg) < (T2 X T^)

4. (ti < r2) a (tg < t4) (ti u t3) < (r2 u r4)

A simple induction on the number of operators in the extended relational algebraic

expression allows us to conclude the theorem.

