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1 INTRODUCTION 

Incomplete information in relational databases has been studied by many re­

searchers since the introduction of the relational model [9]. The different kinds of 

incomplete information that have been studied include null values [5], [6], [7], [10], 

[11], [17], [23], [24], [41], [46], [50], partial values [18,19], indefinite/disjunctive in­

formation [16,22,40], and maybe information [29,38]. In this thesis, we focus our 

attention on the indefinite and maybe kinds of incomplete information. 

In [40], the model-theoretic and the proof-theoretic approaches to relational 

databases have been discussed. The model-theoretic approach views a relational 

database as a unique model for a first-order theory. On the other hand, the proof-

theoretic approach views a relational database as a set of well formed formulas consti­

tuting a first-order theory. For example, the usual suppliers-parts relational database 

in Figure 1.1 represents definite facts that correspond to the following logical formulas: 

SP 

si pi 

s2 p3 

s3 p5 

P 

pi blue 

p2 green 

P3 red 

p4 red 

Figure 1.1: Suppliers-Parts Database 
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1. SP{sl,pl), SP{s2,p3), SP(s3,p5), and 

2. P(pl,blue), P(p2,ffreen), P(p3,red), P(p4,Ted). 

Suppose we want to add the following disjunctive facts to the database: 

1. Supplier s4 supplies part p3 or part p4, 

2. Supplier s5 supplies part pi or part p5, and 

3. Part p5 or part p6 is red. 

The proof-theoretic approach allows us to mtroduce the disjunctive facts as the fol­

lowing logical formulas: 

1. SP(s4,p3)\/ SP(s4,p4), 

2. SP(s5,pl)\/ SP{s5,p5), and 

3. P{p5,red)\/ P(pQ,Ted) 

into the database. However, it is difficult to represent disjunctive facts using the 

model-theoretic approach. 

Suppose at a later time, we are interested in adding the definite fact: Supplier s5 

supplies part p5. In the proof-theoretic approach, the formula SP(s5,p5) is added to 

the first-order theory. The fact that SP{s5,p5) subsumes the already present formula 

SP(s5,pl) V SP(s5,p5) removes the disjunctive fact SP{s5,pl) V 5P(s5,p5) from 

the database. In the process, the information 5P(35,pl) , about the possibility of 

supplier s5 supplying part pi is lost. However, it is still useful to keep this kind of 

maybe information. In addition, the user may want to add maybe information of his 

own, such as part p7 is possibly black. 
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Now consider the query: Find all the suppliers who supply red parts, in the above 

described database. Since supplier s2 supplies part p3 which is red, s2 qualifies as a 

definite answer. Since supplier s4 supplies either part p3 or part p4 and since both 

the parts are red, s4 also qualifies as a definite answer. Supplier s3 supplies part p5, 

however, we are not sure about the color of part p5. There is a possibility that it is 

red. So, s3 qualifies as a maybe answer. Finally, since supplier s5 supplies part p5 

and the color of part p5 may be red, s5 qualifies as a maybe answer. 

In the above example, three kinds of information were discussed: definite, dis­

junctive/indefinite, and maybe. This paper addresses the problem of representing and 

manipulating these kinds of information in a relational database viewed through the 

model-theoretic approach. 

The relational model, as illustrated above, is incapable of handling indefinite and 

maybe information. All the facts represented in a relational database are definite. 

A tuple, f, in a relation, r, can be viewed as a definite statement R{t), where R is 

the predicate symbol associated with the relation r. The relation, in turn, can be 

viewed as  a  conjunct ion of  def ini te  s ta tements  R(i i  )  A •  •  •  A  R(tn) i  where t j , . . .  , tn  

are the tuples of r. Finally, a relational database can be viewed as a conjunction of 

conjunctions, one for each relation in the database, of definite statements. In order to 

be able to represent indefinite and maybe information, we need to extend the notion 

of a relation. 

In Chapter 3, we define a data structure, called an I - tabîc ,  which is capable of 

representing definite, indefinite, and maybe information. An I-table, T, consists of 

three components, one for each of the three kinds of information it represents. The 

definite component consists of definite tuples, the indefinite component consists of 
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indefinite tuple sets, and the maybe component consists of maybe tuples. A definite 

tuple, t, can be viewed as a definite statement R{t), where R is the predicate symbol 

associated with the I-table T. An indefinite tuple set, can be viewed 

as an indefinite statement R{ii ) V • • • V R{i]ç,). With only the definite and indefinite 

components under consideration, an I-table can be viewed as a conjunction of definite 

and indefinite statements and a database, which consists of I-tables, can be viewed as a 

conjunction of conjunctions, one for each I-table, of definite and indefinite statements. 

The model-theoretic approach to relational databases now views the database as a 

set of minimal models [36], instead of a unique model, of the underlying first-order 

theory. 

A maybe tuple, t, corresponds to the statement R{t). However, this statement 

is not necessarily true. Due to the nature of maybe tuples, we treat them differently 

from the definite and indefinite kinds of information. There are two sources for the 

maybe tuples. First, the user may want to represent tuples that may belong to the 

relation. Second, the maybe component may consist of tuples that have appeared in 

the past in tuple sets, and therefore there is more reason to expect them to be in the 

relation than tuples that have not been mentioned anywhere. 

The information content of an I-table is defined, by a mapping REP, to be a 

set of definite relations that correspond to the minimal models [36] of the underlying 

first-order theory and a set of maybe tuples. Redundancy in I-tables is discussed 

and an operator to remove the redundancy is defined. The database in Figure 1.1 

augmented with the disjunctive and maybe information, discussed earUer, is shown 

as I-tables in Figure 1.2. 
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SP 

si pi 

s2 P3 
s3 p5 

s5 p5 

s4 p3 
s4 p4 

s5 pi 

P 

pi blue 

p3 red 

p4 red 

p5 red 
p6 red 

PT black 

Figure 1.2: Supplier-Parts Database as I-tables 

We extend the relational algebra to operate on I-tables. However, before we ex­

tend the relational algebra, we present the correctness criterion that must be satisfied 

by the extended relational algebra. The correctness criterion is shown to be satisfied 

by each of the extended algebraic operators. Queries can be expressed in the extended 

relational algebra and the user may now expect definite, indefinite, and maybe an­

swers. To maintain a smooth flow throughout the paper, we present the proofs to 

some of the theorems in the Appendix. Some of the results are presented in [31,32,33]. 

Deductive databases [13,14,15,16] have developed from the application of ideas 

from first-order logic and relational databases. The term deductive denotes the capa­

bility of these systems to deduce new facts from known facts and rules while answer­

ing user queries. Deductive databases can be viewed as generalizations of relational 

databases. They not only contain elementary facts but also general rules defining 

additional facts. Most of the research in deductive databases has focussed on definite 

deductive databases in which only Horn clauses are allowed. Recursive Horn clauses 

have been extensively studied in [3,8,21,35,37,45,48]. Indefinite deductive databases. 
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which allow for non-Horn clauses to be present, have been studied with respect to 

negation in [36,49]. Reiter [40] shows that the proof-theoretic approach to relational 

databases can be very general and can incorporate indefinite information easily. 

One of the approaches to realize the deductive component of a definite deduc­

tive database is to use the relational algebra to implement the deductive component 

[25,42]. Imielinski [22] uses the algebraic approach for more general logic databases. 

The algebraic approach has many advantages as efficient features of existing relational 

database systems such as search algorithms, file organizations, etc. can be effectively 

used. 

In Chapter 4, we show how the extended relational algebra can be used to re­

alize the deductive component of a subclass of indefinite deductive databases, which 

consists of non-Horn clauses whose positive literals involve the same predicate symbol. 

We consider a subclass of indefinite deductive databases. The non-Horn rules 

are restricted to have positive literals involving the same predicate symbol. Since the 

non-Horn rules consist of more than one positive literals, we can no longer use the 

projection operator to evaluate the rule. We extend the projection operator further 

to handle this situation. Such an operator will be referred to as project-union. The 

selection operator for I-tables does not satisfy the following property which is true for 

regular relations: 

To avoid problems stemming from this, we generalize the non-Horn clauses to consist 

of disjunction of literals instead of just literals on the right hand side. The generalized 

non-Horn clauses will be referred to as I-rules. Recursive I-rules are evaluated by 

repeated application of the algebraic expressions. Some of the results related to the 
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application of the extended relational algebra to deductive databases are presented in 

[30]. 

In Chapter 5, we generalize the concept of I-tables to represent more general 

disjunctive information. A general data structure, called M-tables, is defined. M-

tables are capable of representing disjunctive information such as V* • •  VPn(<n),  

where P^-s could be different predicate symbols. The relational algebra is suitably-

generalized to operate on M-tables. In addition to the algebraic operators, we define 

two new operators, R-projection and merge, which are used in answering queries. 
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2 BACKGROUND MATERIAL 

In this chapter, we present some background material. First, we discuss the 

strong relationship between first-order logic and relational databases. The two logical 

views of a relational database: the model-theoretic and the proof-theoretic views, 

are presented. An important generalization of the proof-theoretic view: deductive 

database, is discussed. The problem of negative information, recursive axioms, and 

incomplete information are briefly discussed. 

2.1 First-Order Logic and Relational Databases 

Here, we discuss two logical views of a relational database as described in [40]. 

We also define definite and indefinite deductive databases, and for each we present 

an operational definition. We shall use the relational database in Figure 2.1 as an 

example. 

TEACHER COURSE 

Â CSlOO 

B CS200 

C P200 

STUDENT COURSE 

a CSlOO 

b CSlOO 

c CS200 

d P200 

Figure 2.1: A Relational Database 



2.1.1 Syntax of a first-order language 

A first-order language is specified by a pair (j 4, W ) ,  where A is an alphabet of 

1. zero or more variable symbols, 

2. zero or more constant symbols, 

3. one or more predicate symbols, 

4. punctuation symbols ( and ), and 

5. logical constants -^,^,A,V,3, and V, 

and W is a set of well-formed formulas defined as follows: 

1. An atomic formula is a well-formed formula, 

2. If Wj and W 2  are well-formed formulas then so are W j  A W 2 ,  ^ W2, VTj —> 

W2, and 

3. If I is a variable symbol and W is a well-formed formula then so are (3a:)(IV) 

and (Va;)(W), and 

4. All the well-formed formulas are obtained from 1, 2, and 3, 

and an atomic formula is of the form f ..., zn ) where P is a n-ary predicate 

symbol and xi,...,xn are constant or variable symbols. If the arguments of the 

predicate symbol are all constant symbols then the atomic formula is referred to as a 

ground atomic formula. 

A relational language is a first-order language (^, W) such that A has the following 

properties: 
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1. There are finitely many constants in A (at least one). 

2. There are finitely many predicate symbols in A. 

3. There is a special predicate symbol, =. 

4. Among the predicate symbols of A, there is a distinguished subset, possibly 

empty, of unary predicates, called simple types. 

2.1.2 Semantics of a first-order language 

An interpretation, I, for a first-order language F = [A, W) is a triple (Z?, K , E ) ,  where 

1. Z) is a non-empty set, called the domain of I, 

2. K is a mapping from the constant symbols of A into D, and 

3. E is a mapping from the n-ary predicate symbols of A into tuples of elements 

ofD, E(P)CD". 

An interpretation I  =  { D , K , E )  for a relational language R = (>1, W) is a relational 

interpretation if and only if 

1. A' is a one-one and onto mapping, and 

2. E{ = ) ='{{d,d)\d Ç: D}. 

Example 2.1.1 Let R = {A, W) be a relational language, where A  contains the follow­

ing constant and predicate symbols: 

Constants A, B, C, a, b, c, d, CSlOO, CS200, P200. 
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Predicates T E A C H E B } ,  C O U R S E ' ^ ,  S T U D E N T ' ^ ,  T E A C H ' ^ ,  E N R O L L E D ' ^ ,  

Simple Types T E A C H E R ^ ,  C O U R S E ^ ,  S T U D E N T ' ^ .  

A relational interpretation for R  is [ D ,  K ,  E ) ,  where 

D = { A, B, C, a, b, c, d, CSlOO, CS200, P200 }, 

K maps the constant symbols into the corresponding domain elements, and 

E is shown in Figure 2.2. 

TEACHER COURSE STUDENT TEACH ENROLLED = 

A CSlOO a A CSlOO a CSlOO A A 
B CS200 b B CS200 b CSlOO B B 

C P200 c C P200 c CS200 C C 
d d P200 CSlOO CSlOO 

Figure 2.2; E { P )  

Given an interpretation, I  =  { D , K , E ) ,  let /), called an environment, be a map­

ping from the variables of A into D. Then, the mapping ||.||j is defined as follows: 

llcjlj = A'(c), for each constant symbol c in A 

for each variable symbol i in A 

The truth value of a well-formed formula in an interpretation I and environment 

p is defined as follows: 

1. P ( i i , . .. ,<n) is true in < J,p > if and only if < HtjUj,..., l|in||j >€ E { P ) .  

2. W-  ̂ A W2 is true if and only if both W-  ̂ and W 2  are true in <  I , p  > .  
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3. V W2 is true if and only if one of or W2 is true in  < I ,p  >.  

4. -^Wi is true in < J,/> > if and only if Wj is not true in < I ,p  >.  

5. Wj —> W2 is true in < J,p > if and only if -^W-  ̂ V W 2  is true in <  I , p  > .  

6. (Va:)(W) is true in < /,/t) > if and only if for all d Ç. D,  W is  true in < /,p' >, 

where p '  is  exact ly  the same as  p with one except ion,  p '  now maps x to  d.  

7. (3a:)(M^) is true in < I ,p  > if and only if -'(Va;)(-iW) is true in  < I ,p  >.  

Finally, a well-formed formula, W, is true in / if and only if W is true in  < I ,  p > for 

al l  possible  ps.  

2.1.3 Model-theoretic view of a relational database 

In the model-theoretic view, a relational database is defined as a triple DB = 

(iî,/,JC), where 

1. iZ is a relational language, 

2. / is a relational interpretation, and 

3. IC is a set of well-formed formulas, called integrity constraints. 

For each predicate symbol, P, distinct from =, IC must contain 

(Vsi).--(Vin)(-P(a:i,...,®n) ̂  ) A • • • A Tn{xn)) 

where Tj,..., 2^ are simple types and are referred to as the domains of P. The 

integri ty  constraints  are  said to  be sat isf ied i f  and only i f  they are  t rue in  I ,  

E{P), for a predicate symbol P other than =, corresponds to a relation. 

A query, Q, for R is of the form 



13 

{< > |ri(xi) A---Arn(®n) AT^(a:i,...,Sn)}, 

where is a well-formed formula and the only free variables in W are ij,..., Xn 

and Ti,... ,Tn are simple types. 

A tuple < cj,..., Cjj. > is an answer to a query Q with respect to a database DB = 

{R,I,IC) if and only if 

1. is true in /, 1 < i < k, and 

2. W(cj,... ,Cjj.) is true in J. 

2.1.4 Proof-theoretic view of a relational database 

Instead of viewing the relational interpretation 7 as a set of tables, we can think 

of it as a set of ground atomic formulas. The proof-theoretic view consists of these 

ground atomic formulas along with others. 

A relational theory of a relational language R = (A,W) is a first-order theory 

T QW such that T contains the following axioms: 

1 .  Domain Closure Axiom (Vx)(= (XjCj) V  • • • V  = (x,cn)), where c i , . . . , c 7 7  are 

the constant symbols in A, 

2. Unique Name Axioms = (Cj-,Cj), \ <i<n,\<j<n, i<j. 

3. Equality Axioms: 

• (Va;)(= (®,œ)), 

• (Vx){V2/)(= (i,y)->= (y,x)), 

• (Vx)(Vi/)(Vz)(= (x,y)A = {y,z) -^= (x,c)), and 
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• Principle of substitution: 
(Vxi)---(Va:n) ... ,a:n)A = A • • • A = {xn,yn) 

P{y\ > • • • > Vn))' 

4. Ground Atomic Formulas, A Ç W, such that none of them contains the equality 

predicate symbol. 

Define Cp = {< cj,..., cn > |P(ci,... ,cn) G A}. 

5. Completion Axioms: Let Cp = {< c|,...,c^ >,•••,< >}. For 

each m-ary predicate symbol P, 

-> (= (x,c|) A • • • A = (®m,Crh)) V---V 

(= (®1'C][) A ••• A = (a:m,cî^))), 

Example 2.1.2 For the example relational database of Figure 2.1, T contains: 

1. (Vi)(= (x, >1) V • • • V = (x, P200)). 

2. -I = ( A , B ) ,  —  

3. Equality axioms. 

4. TEACHERiA),..., ENROLLED{d, P200). 

5. {Vx)iTEACHER{x) ->= (x, A)y = (x, B)V = (x, C)),.... 

In the proof-theoretic view, a relational database is defined to be a triple DB = 

(i2, T,IC), where i2 is a relational language, T is a relational theory, and IC is a set 

of integrity constraints. IC is said to be satisfied in the database DB if and only if 

T 1= IC. A query, Q, for R is of the form 

{< X J , . . ,,Xji. > |ri( x i )  A ••• A Tnixn)  A  . . .  , X ti)}, 
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where W is a well-formed formula and the only free variables in W are ® j,..., xn 

and Ti,...,Tn are simple types. 

A tuple < cj,..., Cj^ > is said to be an answer to a query Q with respect to DB = • 

{R,T,IC) if and only if 

1 .  T  \ =  1  < i  < k ,  and 

2. T 1= 

The following theorem [40] shows that the two views, as defined, are equivalent: 

Theorem 2.1.1 (REITER) Suppose R = {A,W) is a relational language. Then, 

1 .  I f T  i s  a  r e l a t i o n a l  t h e o r y  f o r  R ,  t h e n  T  h a s  a  u n i q u e  m o d e l  w h i c h  i s  a  r e l a t i o n a l  

interpretation for R. 

2. If I is a relational interpretation for R, then there is a relational theory, T, such 

that I is the only model for T. 

The proof-theoretic view can be generalized by adding axioms to it. It is easy 

to incorporate incomplete information, information about events, hierarchies, and 

inheritance of properties and aggregations into the proof-theoretic view of a relational 

database [40]. 

2.1.5 Deductive databases 

A deductive database is one of the more important generalizations of the proof-

theoretic view in which we add deductive laws to the set of axioms that constitute the 

relational theory. New facts may be derived from facts that were explicitly introduced 
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and from deductive laws. The general form of clauses that will represent both facts 

and deductive laws is: 

P-^,..., P f ,  < ,..., 

where P^-s and Q^s are atomic formulas. The P^s will be referred to as left hand side 

of the clause and the Q^s will be referred to as right hand side of the clause. We shall 

refer to atomic formulas and their negations as literals. The clause is equivalent to 

P-̂  V • • • V Pĵ  V "iÇj V • • • V 

All the variable symbols in the clause are universally quantified and the quantifiers 

will be omitted for notational convenience. The P^s will be referred to as positive 

literals and the Ç^-s will be referred to as negative literals. If A: = 1 then the clauses 

wiU be referred to as Horn clauses and if fc > 1 then the clauses will be referred to 

as non-Horn clauses. An empty left hand side in a clause is an abbreviation for false 

and an empty right hand side in a clause is an abbreviation for true. The different 

types of clauses and examples are presented below: 

Type 16 = 1 and Z = 0 {Definite Facts). 

TEACH{A,CS\m)^ 

Type 2 6 = 0 and Z = 1 {Negative Facts). 

^  TEACH{A,P100) 

Type 3 6 = 0 and Z > 1 {Integrity Constraint). 

PATHER{x,y) ,  MOTHER{x,y)  
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Type 4 6 = 1 and / > 1 {Definite Deductive Law/Integrity Constraint). 

G R A N D M O T H E R { x , y )  ̂  M O T H E R { x ,  z ) , M O T H E R { z , y )  

Type 5 fc > 1 and I = 0 {Indefinite Facts). 

BG(Tom,A),BG{Tom,B) ^ 

Type 6 t > 1 and / > 1 {Indefinite Deductive Law/Integrity Constraint). 

B G { x , y ) , B G { x , z )  ̂  F A T H E R { x , u ) , B G { u , y ) , M O T H E R { x , v ) , B G { v , z )  

Definite Deductive Databases (DDDBs): We obtain a definite deductive database 

when we add deductive laws of Type 4 to the set of axioms of the relational theory. 

The completion axioms are now modified as the following example illustrates: 

Example 2.1.3 Let P have the following assertions in T: 

1. P{a,  b)  and 

2. P { c ,  d )  

Also let 

P { x , z )  ̂  Q { x , y ) , R { y , z )  

and 

P { x , y )  S { x , y )  

be all the clauses in T that imply P. Then the completion axiom for P is: 
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(V®)(Vj/)(Vz)(P(a;, y) ->• ((= (x, a)A = (z, 6))V 

( (=  =  (z , ( f ) )V 

i Q { x , y ) A R { y , z ) ) \ /  

{ S { x , y ) ) ) .  

Operational Definition of DDDB: From an operational point of view, a DDDB 

consists of elementary definite facts, definite deductive laws, a set of integrity con­

straints, and a metarule: negation as finite failure to be discussed later. We can avoid 

the domain closure axioms by restricting to clauses in which all variable symbols in 

the left hand side are also found somewhere on the right hand side. Such clauses are 

sometimes referred to as range-restricted clauses. The unique-name and completion 

clauses may be removed if negation is interpreted as finite failure. The equality axioms 

are no longer needed as we have done away with the domain-closure, unique-name, 

and completion axioms. 

Indefinite Deductive Databases (IDDBs): We obtain an indefinite deductive 

database when we add facts of Type 5 and deductive laws of Type 6 to the set of 

axioms of a relational theory. 

Operational Definition of an IDDB: From an operational point of view, an 

IDDB consists of elementary definite as well as indefinite facts, definite as well as 

indefinite deductive laws, a set of definite as well as indefinite integrity constraints, 

and a metarule: generalized negation as failure, to be discussed later. 

Although the proof-theoretic view of relational databases is elegant and expres­

sive, a theorem-prover is needed to perform the deductions. In the case of indefinite 

deductive databases, such a theorem-prover can prove to be drastically inefficient. As 

a result, most of the research has concentrated on enhancing the model-theoretic view 

with the expressiveness of the proof-theoretic view. The deductive components are 
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realized by the traditional algebraic approaches and other techniques that treat the 

relational database as a first-order interpretation. 

2.2 Negation 

Efficient treatment of negative information is an important issue and has been 

addressed by many researchers. Negative information may overwhelm a system. For 

example, in a university environment we may know that certain students take a par­

ticular course. For the remaining students, presumably large in number, we would be 

required to list them as not enrolled in that course. 

2.2.1 Negation in relational databases 

The relational model of data represents positive information only. The assump­

tion here is that the information not explicitly present in the database is not true. A 

tuple represents the existence of a relationship between its elements. From a failure to 

find a certain tuple in the relation, the converse of the relationship may be assumed 

to be true. For example, if no tuple exists to show "supplier si supplies part pi" then 

it is assumed that "supplier si does not supply part pi". 

2.2.2 Negation in deductive databases 

A summary of the relevant results which deals with negation in definite as well 

as indefinite deductive databases is presented next. 

Closed World Assumption (CWA): The closed world assumption [39] states that 

a negative ground literal -^L is assumed to be true if we fail to prove L from the 



20 

existing set of clauses in the database. The CWA is logically equivalent to adding a 

new component DB~' to the database, where 

DB~' = {-P(c)|DB ^ P{c)} 

but without having DB~' stored. When not working under the CWA, we shall say 

that the open world assumption (OWA) is adopted. The following important theorems 

have been proven in [39]: 

Theorem 2.2.1 If DB is Horn and consistent then DB U DB~' is also Horn and 

consistent. 

Theorem 2.2.2 If DB\JDB~' is consistent then the answers to a query under CWA 

is exactly the same as the answers under OWA. 

The semantic version of the CWA is stated below: 

Theorem 2.2.3 A ground negative atomic formula -'P(c) can be assumed to be true 

in a Horn database if and only if P(c) does not belong to the unique minimal model 

of the Horn database. 

Example 2.2.1 Let DB = {P(a),Q(6)}. Then the unique minimal model of DB is: 

{P{a),Q(6)}. 

We may assume -'P{b) and -iQ(a). 

The CWA as defined for definite deductive databases is not applicable to indefi­

nite deductive databases as the following example illustrates: 

Example 2.2.2 Consider a database that consists of the following clauses: 
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CATifel ix)  ^  

B L A C K { x ) ,  W H I T E { x )  ̂  C A T { x )  

Since B L A C K { f e l i x )  cannot be proved, CWA allows us to assume -^BLACK{felix). 

Similarly, we can assume -'WHITE{felix). This results in the following inconsistent 

database: 

^BLACKifel ix)  ^  

- ^ W H I T E i f e l i x )  f -

C A T i f e l i x )  * -

B L A C K { x ) , W H I T E { x )  4 -  C A T ( x )  

Minker [36] extends the CWA to solve the above mentioned problem. Let E be the set 

of all purely positive (possibly empty) clauses not provable. The generalized closed 

world assumption (GCWA) states that we can assume -'P{x) if and only if P(x) V C 

is not provable for any C in E. The semantic version of the GCWA is stated below: 

Theorem 2.2.4 A ground atomic formula P(c)  can be assumed to  be true in  a non-

Horn database i f  P{c)  is  not  present  in  any minimal  model  of  the non-Horn database.  

Example 2.2.3 Let DB = {P(a) V P{b),Q(b)}. The minimal models of D B  are 

{Q{b), P(a)} and {Q{b), P{b)}. Since Q{a) is not in any minimal model, we can 

assume ^Q{a) to be true. 

2.3 Recursive Axioms in Definite Deductive Databases 

The view mechanism offered by most relational systems is actually a special case 

of the deductive laws where the views are restricted to be non-recursive. In this 



22 

section, we present some discussion on the recursion problem in definite deductive 

databases. 

A Horn clause is recursive if it is of the form 

P-  ̂ < ..., > • • •) 

where Pj and P2 both use the same predicate symbol. For example the Horn clause 

ANCESTOR[x,y)  ̂  ANCESTOR(x,  z) ,  ANCESTOR{z,y)  

is recursive. A linear recursive Horn clause is one in which the recursive literal appears 

exactly once on the right hand side of the rule. 

Recursion can be classified into the following two types: 

1. Recursion whose bound does not depend on the database state. The recursive 

clauses which correspond to this type are referred to as singular rules. This kind 

of recursion is easily solved syntactically. 

2. Recursion whose bound depends on the database state. The recursive clauses 

which correspond to this type are referred to as non-singular rules. Examples 

of this type of recursion is the classical transitive closure of a relation. 

2.3.1 Singular rules 

Minker and Nicolas [37] define singular rules as follows: 

Definition 2.3.1 A recursive rule of the form 

P P\i' • • 1 PriiF 

where Pj,..., Pn are literals that use the same predicate symbol as P and P is a 

conjunction of literals using non-recursive predicates, is a singular rule if and only if 
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1. Each variable symbol that occurs in a literal Pj and does not occur in P only 

occurs in P^, and 

2. Each variable in P occurs in the same argument position in any literal P^ where 

it appears, except in at most one literal Pj that contains all of the variables in 

P. 

In the above definition, the first condition rules out explicit transitivity while the 

second condition rules out any underlying transitivity relationship. 

Example 2.3.1 

1. R{x,y,z)  R{x,y,zi) ,R{x,yi ,z)  is singular. 

2. R{x,y,z)  <— R{yi,x,z) ,R{x,y,zi)  is not singular. 

3. R{x, y,  z)  <- R(z,  x ,  y) ,  R{x,  yi ,  z), Q{x, y,  ) is singular. 

Some Useful Definitions: The variables whose values are required in the answer 

are termed output variables and are superscripted with an asterisk. Asubstitution is 

a  set  of pairs of variables,  p = {xj , . . . ,  yn},  where i jS are termed old 

variables and y^s are termed new variables.  The application of p to an expression 

E consists of replacing the variables in E which occur as old variables in p by the 

corresponding new variables. The expression so obtained is denoted by E(p). A 

substitution p is safe if and only if 

1. none of the old variables in p is an output variable, and 

2. all new variables in p are different and none of them occur in E. 
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Given two expressions, E-^ and which are conjunction of literals, E-^ subsumes E2 

if and only if there exists a substitution pj safe with respect to E-^ and a substitution 

P2 safe with respect to £'2 such that each literal in Et^{pi) is identical to some literal 

in E2{P2)-

Halting Condition: A derivation can be stopped while preserving answer com­

pleteness immediately after a generated expression that is subsumed by one of its 

ancestor expressions. 

Example 2.3.2 Consider the singular rule: 

P{z,y)  ̂  P{y,z) ,Q(x,y),  

and the query: <— P{u*,v*).  We obtain the following derivation path by repeated 

backward chaining: 

El: ^P{u*,v*) 

E2: <-

E3: ^ Piu*,v*),Qix,u%Qix,v*) 

Note that E3 is subsumed by El. So the Halting Condition allows us to stop the 

derivation just before generating E3 while still preserving answer completeness. The 

following useful theorem has been proved in [37]: 

Theorem 2.3.1 Any potentially infinite derivation path induced by a singular rule 

can be stopped by means of the Halting Condition.  
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2.3.2 Non-singular rules 

The second type of recursive rules, the non-singular rules, are more interesting 

as no syntactic solution exists. We discuss a solution to evaluate non-singular rules 

which forms the core of most of the solutions proposed. 

Naive Evaluation: We shall present Naive Evaluation through an example. Con­

sider the follow Horn clauses: 

ANCESTOR{x,y) PARENT{x,y) 

ANCESTOR{x,y)  ̂  PARENT{x,z) ,ANCESTOR{z,y) 

QUERY(x) ANCESTOR{x,d) 

and the relation PARENT in Figure 2.3. The method consists of compiling into an 

PARENT 

a b 

a c 

b d 

b e 

c f 
c g 

Figure 2.3: Relation PARENT 

iterative program the rules that derive QUERY{x).  The object program for this 

example is shown below. 

begin 
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ANCESTOR^ := PARENT-,  

ANCESTOR* := PARENT-,  

repeat 

ANCESTOR^^'^ := ni^^{(T2=z{PARENT x ANCESTOR*))-,  

ANCESTOR* := AiVC£;SrOi?* U vliVCESTOiJ^'+l; 

i := i + 1 

until (there are no changes to ANCESTOR*); 

ANCESTOR := ANCESTOR*-,  

QUERY -.= ^/{ANCESTOR)) 

end 

The value of ANCESTOR relation after each iteration and the value of QU ERY 

are shown in Figure 2.4. 

ANCESTOR^ 

a b 

a c 
b d 

b e 

c f 
c g 

ANCESTOR^ 

a d 

a e 

a f 

a g 

ANCESTOR^= 0 
QUERY 

Figure 2.4: Relations ANCESTOR'^,  ANCESTOR^, and QUERY 

Naive evaluation is the most widely described method in the literature. It has 

been presented in many papers under different forms. The inference engine of SNIP 

presented in [35] is in fact an interpreted version of the naive evaluation. The method 
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presented in [8] is a compiled version of the neiive evaluation which works for only 

linear recursive rules. 

2.4 Incomplete Information in Databases 

The notion of incompleteness is inherent in the domain of databases. Many at­

tempts have been made to characterize the different kinds of incompleteness. Null 

values were treated in [10], where a three-valued logic was introduced and a maybe-

algebra was defined. Grant [17] improved on Codd's approach. Lipski [29] charac­

terizes two interpretations of a query in the context of an incomplete database: the 

external interpretation in which the query is referred to the real world modeled, in an 

incomplete way, by the system, and the internal interpretation in which the query is 

referred to the system's knowledge of the real world. The external interpretation of a 

query has two bounds: 

1. the lower bound, which includes all those objects for which we can positively 

conclude, from the information available in the system, that they are in the 

external interpretation of the query, and 

2. the upper bound, which includes all those objects for which we cannot rule out 

the possibility of belonging to the external interpretation of the query. 

Levesque [27] defines a query language which is capable of obtaining the internal 

interpretation of a query. Most of the research in incomplete databases, however, has 

concentrated on the external interpretation of a query. 
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3 EXTENDED RELATIONAL MODEL 

In this chapter, we extend the relational model to represent indefinite and maybe 

information. A data structure, called I-tahles is introduced. The information content 

of an I-table is precisely defined. Redundancy in I-tables is characterized and an 

operator to remove the redundancy is defined. The relational algebraic operators are 

extended, in a semantically correct manner, to operate on I-tables. Then, we show 

how queries can be answered in the extended relational model. The answers to queries 

may now contain indefinite and maybe tuples. Finally, we give the syntax for simple 

update operators like insert, delete, and modify. 

3.1 Indefinite/Maybe Information 

In this section, we introduce I-tables, which are capable of representing definite, 

indefinite, and maybe information. The I-table is merely an extension of the table 

representing a relation in the relational model. We use a mapping REP to characterize 

the information content of an I-table in terms of the various definite relations it 

represents. We also define the notion of redundancy in I-tables and define an operator, 

called REDUCE, to remove these redundancies. Then, we present some properties of 

REP and REDUCE. Finally, we present an approximate time complexity analysis 

of the RE DU CE operator. 
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3.1.1 I-tables and their information content 

A domain is a finite set of values, usually non-empty. The cartesian product 

of domains jDj ,..., Dn is denoted by x • • • x Dn and is the set of all tuples 

< ,..., On > such that for any i 6 € D^. A I-table scheme is an 

ordered list of attribute names, R =< ,..., An >• Associated with each attribute 

name, is a domain Dj^. Then, T =< > is an I-table over the scheme 

i2, where 

Tj) Ç X • • • X Dn, 

Tj Ç 2^1^-^'^"-({0}U{{O1^G.DiX.. .X !>„.}),  and 

I 'm Q X • •  •  X Dn-

Note: We shall use the symbol Ç for improper subset and the symbol C for proper 

subset. 

Tj) is the definite component of the I-table and consists of tuples which we will refer 

to as definite tuples. Tj is the indefinite component of the I-table and consists of 

sets of tuples which we will refer to as indefinite tuple sets. The indefinite tuple sets 

correspond to inclusive disjunctions, i.e., it is possible for more than one tuple within 

a tuple set to be the real world truth. is the maybe component of the I-table and 

consists  of tuples which we will  refer to as maybe tuples.  

NOTATION: We shall use the symbols T, Tj,... for I-tables, <,<2,... for tuples, 

w, ... for tuple sets, r, ,... for relations, c, 6, c,... for domain values, and < 

U,v >,< Ui,vi >,... for elements of Sjj (to be defined later). Also, we shall assume 

An I-table can be viewed as consisting of two kinds of information: sure and 
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maybe. The definite and indefinite components of an I-table represent sure informa­

tion and the maybe component represents maybe information. The sure components 

of an I-table represent various definite relations, at least one of which is the real world 

truth. These definite relations correspond to the various models of the underlying 

first-order theory [36,40]. Some of these definite relations may correspond to non-

minimal models, in the sense that they are subsumed by other definite relations. The 

information content of an I-table consists of two components: the sure component, 

which consists of definite relations that correspond to the minimal models of the un­

derlying first-order theory, and the maybe component, which consists of all the maybe 

tuples obtained from the I-table. Given a scheme R, we define Fjj and as follows: 

Fjj = {r|r : I-table over R }, and 

S22 = {< U,v > \U : set of relations over R ,  v : relation over R }.  

Now, we are ready to present the formal definition of the information content of an 

I-table. The information content of an I-table is defined as a mapping, REP, which is 

the composition of two other mappings, REDUCEREP and < MM, M >, defined 

as follows: 

Definit ion 3.1.1 < MM, M > : ^ Sjj, is a mapping, where 

< MM,M > (T) =< MM{T),MiT) >, 

^ =< >' 

^7 = {^1,... ,WR}, 

MM{T) = {îp U {/j,... ,<n}|(Vi)(l < i < n6 Wj)}» ûnd 

MiT) = Tm-

MM{T) consists of all the definite relations represented by the sure components of 

the I-table and M{T) is simply T^. Note that MM{T) = {0} when T =< 0,0,0 >. 
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An example of the mapping < MM, M > is given in Figure 3.1. 

Definition 3.1,2 REDUCEREP : Sjj Sjg, is a mapping, where 

T 

a 

"b" 

c 

d 

b 

e • 

~d~ 

f 

g 

' a a a a a a a a 
b b b b b b b b 
c c c c d d d 
d f e e f e e 

> d 7 f Î ? Î f 

Figure 3.1: < MM, M > (T) =< U,v > 

REDUCEREP{< U,v >) =< >, 

[/•^ = {r I [r £U J\ -i(37'j)(ri Ç C7 A rj C r)}, and 

f^  I {i  £ V V (Br j ) (3 î ' 2 ) ( r i  S U A r2 £ U A Ti C r2 A t  £ r2 — ri))  A 

-i(3r)(r £ At £ r)}. 

is U with all the definite relations that correspond to non-minimal models of the 

underlying first-order theory removed, and is v along with some tuples from the 

definite relations removed from U. Applying REDUC EREP to < MM, M > (T) of 
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Figure 3.1, we obtain Figure 3.2. 

= < 

a a 
~b" T 

T c 

T 

v^ = 

Figure 3.2: REDUCEREP{< MM, M > (T)) =< > 

The following theorem states that RE DUC ERE P is idempotent: 

Theorem 3.1.1 For any < U,v >£ Sjj, 

REDUCEREP[REDUCEREP[< U,v >)) = REDUCEREP(< U,v >).  

Proof:  Follows from definition. 

The following lemma can easily be observed: 

Lemma 3.1.1 Let < U,v >€ and REDUCEREP{< U,v >) =< Ui,vi  >. 

Then, 

y (r) Uv = (J (r) U vj. 
r£U 

Finally, we define the information content of an I-table as follows: 

Definit ion 3.1.3 REP ^ is a mapping, where 

REP{T) = REDUCEREP(< MM, M > (T)).  

REP{T) for the I-table T of Figure 3.1 is shown in Figure 3.2. 

Since we are dealing with disjunctive information that correspond to the inclusive 

or, we need the following definition; 
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Definit ion 3.1.4 Let U he a. set of relations over the scheme R. Then, 

POSS{U) = {r I (3fc)(l < fc < lf/| A (3rj) • • • (37'j^)(r2 € 17 A • • • A e Î7 A 

r = U " ' U 

Given REP{T) =< U,v >, POSS{U) represents all the different real world possi­

bilities represented by the I-table T, including those that correspond to the possibility 

of more than one relation in U being the real world truth. 

3.1.2 Redundancy in I-tables 

In this section, we first characterize the different kinds of redundant information 

that  could be found in an I-table.  Then, we introduce an operator,  called RE DU CE, 

which removes these redundancies. 

We have identified the following four kinds of redundant information that could 

be present across the components of an I-table,  T =< 2^, >: 

1. f 6 Tjp and w £ Tj  and i  6 w. Here, a definite statement is part of an indefinite 

statement. This redundancy is removed by deleting w from Tj and including in 

Tj^ all the tuples in w — {<}. 

2. wj G Tj and W2 € Tj and ti'j C xi'2- Here, an indefinite statement is part of 

another indefinite statement. This redundancy is removed by deleting u'2 from 

Tj and including in all the tuples in tt'2 — w-^. 

3. < 6 and t E Tjt). Here, a maybe statement is also a definite statement. This 

redundancy is removed by simply deleting t from . 
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4. < G and < G w and w 6 7/. Here, a maybe statement is part of an indefinite 

statement.  This redundancy is  removed by simply deleting t  from Tj^.  

Note that the first two kinds of redundancies correspond to the subsumption of an 

indefinite fact by either a definite or another indefinite fact. The last two kinds of 

redundancies correspond to the appearance of a maybe fact as a definite fact or in an 

indefinite fact. We now define an operator, called REDUCE, which takes in as input 

an I-table and returns the I-table with all the redundancies removed. REDUCE is 

defined as a mapping REDUCE : T—> Tj^ as follows: 

Definit ion 3.1.5 Let T be an I-table. Then, REDUCE[T) = T®, where T® is defined 

as follows: 

Tl = {t  1  i S T p } ,  

Tj={w I {w E Tj  A 6 Tj) At £ w) A )(w2 E Tj  Aw-^ C w)}, and 

I (< E A) A (< 0 Tg) A eTj At e w)}, 

where A is defined as follows: 

A = {t  I (/ e V 

(3fj)(3u')(/2 £ Tf)  Aw Ç. Tj  Ati  e  w At e w — {t i})y 

(Bïoj )(3it>2)(î f i  E Tj  A W2 E Tj  A wi Cw2 A t  e  W2 — «' i)}-

An example of the REDUCE operator is shown in Figure 3.3. 

We shall refer to a non-redundant I-table as a reduced I-table,  The following 

lemma can easily be deduced from the definit ion of REDUCE: 

Lemma 3.1.2 Let T be an I-tahle and let  = REDUCE{T).  Then, 
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a 
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c 

~b 

e 
{_ 

e 
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e 

Y 

REDUCE(T) 

e 

f 

Figure 3.3: REDUCE{T) 
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Tpu u (»)uu u (w)ur^. 

3.1.3 Some properties 

In this section, we present some properties of the REDUCE operator and the 

mapping REP. 

The following theorem states that REDUCE is idempotent: 

Theorem 3.1.2 For any I-table T G Fjg, 

REDUCE{REDUCE{T)) = REDUCE{T).  

Proof: Follows from definition. 

The next theorem establishes the fact that REDUCE neither creates nor destroys 

any information. 

Theorem 3.1.3 For any I-table T eT 

REP(REDUCE(T)) = REP{T).  

Theorem 3.1.3 is illustrated in Figure 3.4. 

Figure 3.5 shows REP{T) and REP{REDUCE{T)) for the I-table T of Figure 

3.3.  However,  REDUCEREP{< MM, M > (T)) MM, M > {REDUCE{T)),  

as Figure 3.6 illustrates. 

The mappings REP and REDUCE induce the following equivalence relations 

over Tji: 

Définit ion 3.1.6 For any two I-tables Tj and T2 in 

Tj T2 if and only if REP{T-^) = REP(T2).  
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r REDUCE 

REP REP 

Figure 3.4: REP{T) = REP{REDUCE{T)) 

a a __ d 
b ~b~ 

< — >  V  =  g 
c c 

h 
e > f 

Figure 3.5: REP{T) = RE P {RE DU CE {T)) =< U,v > 
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a 

~b 

c 
c 
d 

REDUCEiT) 

b 

c 

c 

d 

< MM,M > {T) =< MM,M > {REDUCE{T)) =< UI,V^ > 

U, = uj = 0 

REDUCEREP{< MM,M > (T)) =< U2 ,V2 > 

U2 = 
a 
c 

a 
"b" 
T 

i'2 = 0 

Figure 3.6: REDUCEREPo < MM, M >, < MM, M > oREDUCE 
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Definit ion 3.1.7 For any two I-tables Tj and in Tj^,  

Ti  =REDUCE 2^ if and only ï i  REDUCE{Ti) = REDUCE{T2).  

The following theorem establishes the relationship between the two mappings 

REP and REDUCE: 

Theorem 3.1.4 For any two I-tables and Jig from 

REP{Ti) = REP{T2) if  and only i f  RE DU CE (Ti)  = REDUCE{T2).  

Corollary 3.1.1 =REP_^REDUCE 

Given a scheme R, we can compare I-tables over R with respect to the information 

contained in them. We present the syntactic and the semantic versions of weaker I-

tables in the following two definitions; 

Definit ion 3.1.8 Let Tj and T2 be two I-tables defined over the scheme R and let 

= REDUCE{T^) and = REDUCE{T2). Then, Tj is weaker than written 

< T2, if and only if 

1. Tl Ç 

2. (Vw)(w G Tj —>• {{St){t  G Tp A < G tf ) V (3u'i £ Tj  A w-^ C w))) ,  and 

3. {\/ t)( t  e - (< G ) v (3«;)(w g r/ a < g v (< g r̂ ))). 

Definit ion 3.1.9 Let Tj and T2 be two I-tables defined over the scheme R and let 

REP{T-^) = < (7^,1)2 > and REP{T2) = < (72*^2 > Then, is weaker than Tg, 

written Tj < iPg, if and only if 

1. (Vr2)(r2 € U2(3ri)(ri G C/j A rj Ç r2)), and 
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2- «1 ^ ( U (r) Ur2). 
reU2 

It can easily be shown that the above two definitions are equivalent. Informally, 

< T2 means that all the information present in Tj can also be deduced from 

Example 3.1.1 In Figure 3.7, < Tjg. Note that the empty I-table < 0,0,0 > is 

weaker than all I-tables. 

Definit ion 3.1.10 Let Tj and T2 be two I-tables defined over the scheme R. Then, 

Ti = T2 if and only if Tj < T2 < T^. 

The following theorem can easily be observed: 

Theorem 3.1.5 ===^^^. 

3.1.4 Time complexity of the REDUCE operator 

In this section, we present an approximate analysis of the time complexity of the 

REDUCE operator. Let T be an I-table and let nj^ be the number of tuples in 

nj the number of tuple sets in Tj, and the number of tuples in Tj^. We shall 

assume that the size of the largest tuple set is k, usually a small integer, a constant. 

For convenience, we shall assume that Tjq consists of singleton sets of tuples instead 

of tuples and shall refer to Tj^ U Tj as Tsure- Note that the maximum number of 

tuples in Tsure is  nj) 4- k nj .  We now present an algorithm for REDUCE. 

Algorithm 2.1 REDUCE 

Input: An I-table Ti 

Output:  T = REDUCE{Ti) 

Method: 

Step 1: Sort as follows: 
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REP{Ti) = <  >  
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REP(T2) =< (72)^'2 > 

VI = 

U2 = 

a a a a " 

b T" ~b" ~h 
< c c c c 

f T g 
h i h i 

V2 = 

Figure 3.7: I-tables and their REP s 
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Step 1.1; First, sort the tuple sets in the increasing order of their sizes (num­

ber of tuples) to obtain k groups of tuple sets, where k is the size of the 

largest tuple set. 

Step 1.2: Next, sort the tuples within the tuple sets. 

Step 2: Traverse using k pointers, one for each group of tuple sets, and in 

the process collect, in Tsurei tuple sets that are not proper subsets of other 

tuple sets. Also collect, in A, any tuples that are present in tuple set u 6 

and not in tuple set  v G such that  v C u.  

Step 3: Sort A U and then delete any tuple in ^ U that is also present 

anywhere in Tsure- This will result in Tj^. 

Let us assume that we employ an 0{nlogn) sorting algorithm. The time taken to 

sort the tuple sets in the increasing order of their sizes (Step 1.1) is of the order of 

(n£) + nj)log{nj^ + nj) and the time taken to sort the tuples within the tuple sets 

(Step 1.2) is of the order of nj, assuming that it takes constant time to sort the 

tuples within each tuple set. The time taken to obtain Tsure and A in Step 2 is 

proportional to n£) -f nj. Finally, the time taken to sort A U Tj^ in Step 3 is of the 

order of {rtj + nj^j)log(nj + and to delete tuples from A U that are not 

present anywhere in Tsure is of the order (njy + nj + n^).  

Using the above estimates, v/e conclude that the time complexity of REDUCE 

is 

0((n£) + nj)log{nj)  + nj)  + [nj + nj^)log{nj + nj^)) .  
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3.2 Extended Relational Algebra 

In this section, we first discuss the notion of correctness of extended relational 

algebraic operations on I-tables. Then, for each algebraic operator, we first present 

the definition on Sjj and then the definition on Fjj that satisfies the correctness 

criterion. We shall use the same symbol to represent the regular relational operator, 

the operator on Sjj, and the operator on TThe operator in question will be 

determined by its operands. 

3.2.1 Notion of correctness of extended relational algebra 

As has been defined earlier, the mapping REP maps an I-table, T, over scheme 

R, to elements of REP{T) consists of two components: Î7, a set of definite 

relations at least one of which represents the real world truth, and u, a set of maybe 

tuples. Now, consider a relational algebraic operator, /. In order to extend / to 

operate on I-tables, we must ensure that the extended operator captures the effect of 

the corresponding regular operator on the various definite relations represented by the 

I-tables. This notion of correctness is captured in Figure 3.8. For each operator, we 

first need to define /g on Sjç and then define /p on Fjj, that satisfies the following 

correctness criterion illustrated by Figure 3.8; 

1. REP{fY{T)) = f-£{REP{T)),  for unary /, and 

2. REP{fj^{Ti,T2)) = f^{REP{Ti),REP{T2)), for binary /. 
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REP 

Figure 3.8: Commutativity of REP and / 

3.2.2 Selection 

First we define selection on elements of as a mapping, ap : 

Definit ion 3.2.1 Let < >G Then, 

>) = REDUCEREP{( t^{< UI,VI >)), where 

^1,^1 >) =< >, 

U = {7'|(3r]^)(r]^ E f 05'5(Z7%) A r = ))}, 

V = (rp(vi) .  

The property: rj Ç ^2 implies cjriri  ) Ç a-p{r2 ) and the definition of REDUCEREP 

allows us to simplify the above definition into the following equivalent definition: 

Definit ion 3.2.2 Let < >6 Then, 

crp{< Ui^vi  >) = REDUCEREP{a-p{< Ui,vi  >)), where 

o'p(< Ui,vi  >) =< U,v >, 

U = {r\{3ri){ri  e  Ui Ar = (Tp{r-^))} and 
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V  =  < T p { v i ) .  

The following theorem shows that the selection on commutes with REDUCEREP: 

Theorem 3.2.1 For any < U,v >G 

o'p{< U,v >) = <Tp{REDUCEREP{< U,v >)).  

Next; we define selection of I-tables. The definite and maybe tuples that satisfy 

the selection condition are included in the respective components of the selection. If 

all tuples within a tuple set satisfy the selection condition then the tuple set is in­

cluded in the selection. Otherwise, only those tuples within the tuple set which satisfy 

the selection condition are included in the maybe component of the selection. Redun­

dancies introduced are removed with the REDUCE operator. Formally, selection of 

I-tables is defined as a mapping, crp : T> F^, as follows: 

Definit ion 3.2.3 Let be an I-table and F be a formula involving operands that are 

constants or attribute numbers, arithmetic comparison operators: <,=,>,<,>,7^, 

and logical operators A, V, and -1. Then, a-jp{Ti) = REDUCE{T), where 

Tj5 = {< I < € 

Tj = {w I w e  Tj  A {yt)(t  e  w -i-  f(<))},  

I G A F{i))  V (3w)(w eTj At ew A F{t))},  

and F{t) is F with attribute number i  replaced by <[i]. 

Remark: Consider the bloodgroup I-table in Figure 3.9 and the query: Find all the 

persons with bloodgroup "A" or "O". The query expressed in the extended relational 

algebra is: 
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BG 

Tom A 
Gary 0 

John A 
John 0 

Tim A 

Figure 3.9: Bloodgroup I-table BG 

and the answer to the query includes "Tom", "Gary", and "John" as definite answers 

and "Tim" as a maybe answer. However, if we express the query as: 

the answer will include "Tom" and "Gary" as definite answers and "Tim" and "John" 

as maybe answers. Note that "John" qualifies as a definite answer in the first case 

and as a maybe answer in the second case. The reason for this discrepancy is that 

the evaluation of one of the sub-conditions, (2="A") or (2="0"), in the second case 

ignores the effect of the other sub-condition if the two were to be evaluated together. 

This observation has been noted by Lipski in [29]. According to [29], a query is inter­

preted in two ways: the external interpretation where the query is referred directly 

to the real world modeled by the system, and the internal interpretation where the 

query is referred to the system's information about the real world. The external in­

terpretation has two bounds: ||Q||* which corresponds to the sure answers and |[Ç||* 

which corresponds to the answers that cannot be ruled out. It has been noted that 

l l C i V C 7 2 l l . # | l C i l U u | | C 2 l U .  

The following theorem shows that the selection of I-tables commutes with RE DUC E: 
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Theorem 3.2.2 For any I-iable T,  

ap{T) = ap{REDUCE{T)).  

The correctness of the selection operator is established in the following theorem: 

Theorem 3.2.3 For any reduced I-table T and formula F,  

REP{ap{T)) = <Tp{REP{T)).  

Corollary 3.2.1 For any I-table T and formula F,  

REPiapiT)) = <Tp(REP{T)).  

Theorem 3.2.3 is illustrated in Figure 3.10. 

3.2.3 Projection 

We first define projection on as a mapping, 11^ : 

Definit ion 3.2.4 Let < U-y^v-^ >G S^. Then, 

n^(< >) = REDUCEREP[-R^^[< >)), where 

n^(< Ui,vi  >) =< U,v >, 

U = {r\{3r-j^){ri  Ç. POSS{Ui) = U.j^{ri)}},  and 

V  =  n ^ ( v i ) .  

The property: rj Ç r2 implies 11^(rj ) Ç n^(r2) and the definition of 

allows us to simplify the above definition into the following equivalent definition: 

Definit ion 3.2.5 Let < >€ S^. Then, 
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U-^ = ' 

al bl 

a2 bl 

a2 b2 

a3 b2 

a3 b3 

a4 b2 

a5 b4 

al bl 
a2 bl 
a3 b2 

<^2="61"V2="&2"(^) 
al bl 

a2 bl 

a2 b2 

aS b2 

a4 b2 

REP{T) =< UI,VI > 

4 

al bl 

a2 bl 
a3 b3 

="62"(^)) 

al bl 

a2 bl 

al bl 

a2 b2 

a3 b2 

'^2="61"\ 

al bl 

a2 b2 

al bl 

a2 b2 

aS b3 

t'j = 
a4 b2 

a5 b4 

i2EP((T2^"5l"V2="62"(^)) = '^2="6l"V2="62"(-^-^-f'(^)) =< > 

Z7 = < — 1.1 H— > V = 
a3 b2 

a4 b2 

Figure 3.10: Selection 
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n^(< >) = REDUCEREP{Jl^(< >)), where 

n V < ^ i ' n  > ) = <  

U — {r|(3ri)(r2 G A r = n^(r2))}, anrf 

V  =  n ^ ( u i ) .  

The next theorem shows that the projection on commutes with REDUCEREP: 

Theorem 3.2.4 For any < U,v >e 

n^(< U,v >) = Tlj^{REDUCEREPi< U,v >)) .  

Next, we define projection of I-tables. The projection of I-tables is quite similar 

to the regular projection. Some tuple sets may become singletons on projection, in 

which case they are moved over to the definite component of the projection. Formally, 

projection is defined as a mapping, 11^ : Tjf as follows: 

Definit ion 3.2.6 Let Tj be an I-table and let ^ be a list of attribute numbers. Then, 

n^(ri) = REDUCEiT), where 

^1) = {^ I (3/i)(<i e A <[A] = V 

(3w)(w eTj A {yti){i i  Gw <[^] = <i[A]))},  

Tj  = {w I (3wi)(wi e Tj A ui = A |iy| > 1)}, antf 

I (3<i)(<i 6 At[A] = 

The following theorem shows that the projection of I-tables commutes with RE DU CE'.  

Theorem 3.2.5 For any I-table T,  

n^(r)  = Jij^[REDUCE(T)) .  
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The correctness of the projection operator is established in the following theorem: 

Theorem 3.2.6 For any reduced I-table T and list  of  attributes A,  

REPilLAiT)} = U^iREPiT)).  

Corollary 3.2.2 For any I-table T and list  of  attributes A,  

I iEF(n^(T))nji(REP(T)).  

Theorem 3.2.6 is illustrated in Figure 3.11. 

3.2.4 Cartesian product 

We first define cartesian product of elements of with elements of 2 as a 

mapping, x : ^ .Ag ' 

Definit ion 3.2.1 Let < >G and < t^2''"2 ^-^2' 

< U^,v-^ > X < U2,V2 >= REDUCEREP{< > x® < C^2'^'2 where 

< > X® < U2,V2 >=< U,v >,  

U = {rKBr^^)(3r2)(Ti G P05S(?7;i) A r2 G P05S(C/2) A r = X r2)}, and 

V  =  (J (r X ^2) U IJ X r) U X V2). 
rÇUi rE[/2 

The property: r-^ Ç r2 implies r x r-^ Ç r  x T2 and the definition of REDUCEREP 

allows us to simplify the above definition into the following equivalent definition: 

Definition 3.2.8 Let < Ui,vi >G ^R^ and < f^2'^2 Then, 

< > X < U2,V2 >= REDUCEREP{< > x® < U2,V2 >), where 

< Ui,vi  > X® < C72'^2 > = < U,v >, 

U = {r|(3r^)(3r2)(r^ Ç. Uj At2 Ç.U2 x r^)},  and 

V = [J (r X ^2) U IJ (vj X r) U X V2). 
r^Ui rG(72 
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al bl 

a2 bl 

a2 b2 

a2 b3 
aS b3 

a4 bl 

a5 bl 

a6 bl 

ni M 
al 

a2 

a4 
a5 

a3 

a6 

REP[T) =< (7^)  ̂ '1  > 

V^ = 

al bl al bl al bl 

a2 bl a2 bl a2 bl 
a2 b3 a2 b3 a3 b3 
a4 bl a5 bl ï a4 bl 

al bl al bl al bl 
a2 b2 a2 b2 a2 b2 
a2 b3 a2 b3 a3 b3 

a4 bl 5 a5 bl 5 a4 bl 

al bl 

a2 bl 
a3 b3 

a5 bl 

al bl 
a2 b2 

a3 b3 

a5 bl 

vj = a6 bl 

REP{Ui{T))  = Il i (REP(T))  =< U,v > 

U = 
al al > al al 

a3 
a2 a2 1  V  —  

a3 
a2 a2 1  V  —  

a6 
a4 a5 

a6 
a4 a5 J 

Figure 3.11: Projection 
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The following theorem shows that the cartesian product of the elements of ^J{-^ with 

the elements of  commutes with RE DU C E RE P: 

Theorem 3.2.7 For any < Ui,vi  >6 and < 

< Ui,vi > X < U2,V2 > = 

REDUCEREP{< Ui,vi  >) x RE DUC EREP{< U2,V2 >)• 

Next, we define the cartesian product of I-tables. Consider the two I-tables 

and Tg Figure 3.12 and let T = Tj x Tjy is obtained by taking the cartesian 

product of and Tp. Tj is obtained in the following manner: The two disjuncts 

in the single tuple set of Tj combined with the two definite tuples in give us the 

following disjunctive logical formula: 

(T(a2,bl) A T(a2,b2)) V (T(a3,bl) A T(a3,b2)) 

Converting this formula into a conjunct of disjuncts, we obtain the following conjunc­

tive formula: 

(T(a2,bl) V T(a3,bl)) A (T(a2,bl) V T(a3,b2)) A 

(T(a2,b2) V T(a3,bl)) A (T(a2,b2) V T(a3,b2)) 

which corresponds to the tuple sets of Tj.  is obtained by taking the cartesian 

product of the following pairs of sets: 

1. and T^, 

2. each tuple set of Tj and 

3. and 
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4. and and 

5. and each tuple set of Tj. 

The cartesian product of and Tg is shown in Figure 3.12. Cartesian product of 

I-tables is formally defined as a mapping, x : , F follows: 

Definition 3.2.9 Let Tj and T2 be two I-tables such that Tj = {wj,... and 

Tf = {uy^,. . . ,w^}. Let 

^ • • >^m}|{Vz)(l < 2 < m-> 6 w|-)}, and 

F  =  { { ^ l , - . - , i r a } | ( V z ) ( l  <  z  <  n G  u > ? ) } .  

Let the elements of E be Ei,.  . . ,Ee and those of F be Fj,. •., fy. Let 

I GT^A<2E]^A< = <2.<2) V 

(3<i)(3<2)(<I e  E f , A i 2 e T l A i  =  t i . t 2 ) y  

( 3 i i ) { 3 t 2 ) i t i  e  E f ^ A i 2 e  F i A i  =  

where l<fc<e, !</</, i = fc if otherwise i  = 0, and j  = I i{ f  ^  0 

otherwise j  = 0. Let A-^,, . .  ,Ag be the distinct Ajjs. Then, 

Tl X r2 = REDUCE{T), where 

=  { ^  1  E  A < 2  E  A <  =  < i . < 2 ) } ,  

TJ = {w I (3<i) • • • (3<^){f. i  6 A • • • A 6 A w = {<1,... and 

~ I (3^l)(3i2)(^l E A <2 E A / = ii2./2) V 

(3w)(3fi )(w = {<2, • • • > E Tj A <2 G T^ A 

( /  =  < 2 . < 1  V  • • •  V <  =  V  

(3/I)(3/2)(<1 E a <2 E A / = <1.^2) ^ 
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(3<i)(3<2)(<1 € A <2 E Tp A < = <1.^2) ^ 

(3<1 )(3w)(<i E A w = {<2,..., ifc} G r| A 

( /  =  < i .<2  v  • • •  v<  =  <i .< j t ) ) } .  

The following theorem shows that the cartesian product of I-tables commutes with 

REDUCE: 

Theorem 3.2.8 For any two I-tables Tj and T2, 

T i x T2 = REDUCEiTi) x REDUCE{T2). 

The correctness of the cartesian product operator is established in the following the­

orem: 

Theorem 3.2.9 For any two reduced I-tables T-^ and T2, 

REP{Ti X T2) = REP{Ti) X REP{T2). 

Corollary 3.2.3 For any two I-tables T\ and Tg, 

REP{Ti X T2) = REP{Ty) X REP{T2). 

Theorem 3.2.9 is illustrated in Figure 3.12. 

3.2.5 Union 

We first define union on Sjj, as a mapping, U : —> Sjj. 

Definition 3.2.10 Let < >G Sjj and < C/2'^'2 Sjj. Then, 
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Ti X T2 

Ti 
al 

a2 

a4 

bl 
b2 

b3 

al bl 
al b2 

a2 bl 
a3 bl 
a2 bl 
a3 b2 
a2 b2 
a3 bl 
a2 b2 
aS b2 

al b3 
a2 b3 
a3 b3 
a4 bl 
a4 b2 
a4 b3 

REP{Ti) =< Î7i,vi > 

I al al 
a2 > a3 1 = a4 

U-

REP{T2) = <  U2,V2 > 

V2 = bS 

REP{Ti X Tz) = REP{Ti) x =< U,v > 

U = 

al bl 
al b2 
a2 bl 
a2 b2 

al bl 
al b2 
a3 bl 
a3 b2 

>  V  =  

al b3 
a2 b3 
a3 b3 
a4 bl 
a4 b2 
a4 b3 

Figure 3.12: Cartesian Product 
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< > U < U21V2 >= REDUCEREP{< > U® < U21V2 >), where 

< Î7l,ui > U® < U2,V2 >=< U,v >, 

U = {T\(3ri){3r2)iri £ POSS(Ui) A r2 G P0SS{U2) Ar = ri U r2)}, and 

V — vj U %'2' 

The property: Ç r2 implies r U rj Ç r U r2 and the definition of REDUCEREP 

allows us to simplify the above definition into the following equivalent definition: 

Definition 3.2.11 Let < >€ and < C^2,V2 >G S^. Then, 

< > U < U2,V2 >= REDUCEREP(< C/jjVj > < f/2>^2 ^)' where 

< > U® < 1^2'^2 >=< U,v >, 

U = {r|(3rj )(3r2)(r2 e C/j A r2 6 t/^2 ^= ̂1 U r2)}, and 

u = vj U «2 • 

The following theorem shows that the union on commutes with REDUCEREP: 

Theorem 3.2.10 For any < >E Sjj and < ?72>^'2 

< Ui,vi > U < f72'^'2 > = 

REDUCEREP{< Ui,vi >)u REDUCEREP{< [^2,^2 >)• 

Next, we define union of I-tables. The union of two I-tables is the union of 

the corresponding components of the two operands. Any redundancies introduced 

is removed by the REDUCE operator. Formally, union is defined as a mapping, 

^ ^R^^R ^R-

Definition 3.2.12 Let Tj and be two domain-compatible I-tables. Then, 

Ti U T2 = REDUCE(T), where 

Td  = {t\t E V f E Tp}, 
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T j  =  {w|w 6 Tj V to Ç T j } ,  a n d  

G V t e T^}-

The following theorem shows that the union of I-tables commutes with REDUCE: 

Theorem 3.2.11 For any two domain-compatible I-tables Tj and 

TiUT2 = REDUCE{Ti)U REDUCE{T2). 

The correctness of the union operator is established in the following theorem: 

Theorem 3.2.12 For any two domain compatible reduced I-tables T-^ and 

REP{Ti UT2) = REP{Ti ) U REP{T2). 

Corollary 3.2.4 For any two domain-compatible I-tables Tj and T2, 

REP{Ti U T2) = REP{Ti ) U REP{T2). 

Theorem 3.2.12 is illustrated in Figure 3.13. 

3.2.6 Difference 

We first define difference on as a mapping, — : —> S^. 

Definition 3.2.13 Let < >€ 2^ and < [^2;^'2 ^R- Then, 

< > — < U21V2 >= REDUCEREP{< ^ < U2,V2 >), where 

< Ui,vi > —® < U2,V2 >=< U,v >, 

U = {r\{3ri){3r2){ri £ POSS^U-^) Ar2 E POSS{U2) A t  = {r^ — r2) — V2)}') and 

V = ( U (r)Uvi)- f| (r). 
r£Ui reU2 
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II 
al 

a3 

a4 

a5 

a6 

âs" 

Zk 

âs 

a6 

%7 

al 

a3 

ai 
a6 

a4 

a7 

aS 

al al al al al al 
a3 a3 a3 a4 a4 a4 
a5 > a6 5 a7 » a5 > a6 ! a7 

REP{T2) =< C^2'^'2 > 

a3 a3 
aS î a6 

U Tg) = i2£P(ri ) U REP{T2) =< U,V > 

al al a4 
a3 a3 > V = a7 
a5 î a6 aS 

Figure 3.13: Union 
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The property: Ç r2 implies r — r2 Ç r — rj and the definition of RE DU CE REP 

allows us to simplify the above definition into the following equivalent definition: 

Definition 3.2.14 Let < >6 Sjj and < U21V2 >6 Sjij. Then, 

< > — < t^2'^2 REDUCEREP{< U-^,v\ > —® < U2,V2 >), where 

< ® < U2,V2 >=< U,v >, 

U  =  {r|(37-i)(ri e f/j Ar = 7-i-( |J { r 2 )  U  V 2 ) ) } ,  a n d  

V  =  (  U  ( r ) U r i ) -  f l  ( r ) .  
rÇ.Ui 

The next theorem shows that the difference on commutes with RE DU CE REP: 

Theorem 3.2.13 For any < U^yV^ >6 and < (72,^'2 Sjj, 

< > - < U2,V2 >= 

REDUCEREP{< Ui,vi >) - REDUCEREP{< U2,V2 >)• 

Next, we define difference of I-tables. Consider two domain-compatible I-tables, 

and T2 and let T = T-^ — T2. 

Case 1: t  £ T^: If t  is not in and not in any tuple set of and is not in 

then include t  in Tjy. Otherwise, include t  in only if < 0 T^. 

Case 2: w € : If no tuple of is in w and no tuple set of Tj has any common 

elements with w and no tuple of is in w, then include w in Tj. Otherwise, 

include all the tuples in w — in 

Case 3: <6 If i  does not belong to Tp, then include t  in T^. 
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Finally, remove any redundancies introduced with the REDUCE operator. Formally, 

difference is defined as a mapping, — : > Fjj. 

Definition 3.2.15 Let Tj and T2 be two domain-compatible I-tables. Then, 

T-^ — T2 = REDUCE{T), where 

Tj^ = {i I  {teT}))A{ t ^ T ]))A-^{3w) { w e T f  Atew)A{ t ^ T l f ) } ,  

Tj = {w I { • w e T j )A 

—'(3f E A f E w) A 

)(wj G rp A n iwj 0) A 

-i(3<)(/ 6 A / G w)}, and 

(3u')(t 6 A to G r| A t e w) V 

(< € Tp A < 6 r|^) V 

(3u»)(3<]^)(iw G Tj Ai - i  €  Tp Af^GwAfGwjV 

(3wi)(3t«2)(^'^l E Tj Aw2 £ A 

t w j  n  i t ) 2  7 ^ 0 A i e t D j ) V  

(3w)(3<2 )(w G Tj A <2 G A G w A < G w)) A 

(' g r|,)}. 

NOTE T — T T^< 0,0,0 >, for any I-table T. A simple example to illustrate this is 

an I-table T with Tp = 0, 2^ = 0, and Tj^ = {a}. 

The following theorem shows that the difference of I-tables commutes with REDUCE: 

Theorem 3.2.14 For any two domain-compatible 1-tables Tj and T2, 

Tj -  T2 = REDUCE{Ti)- REDUCE(T2). 
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The correctness of the difference operator is established in the following theorem: 

Theorem 3.2.15 For any two domain-compatible reduced I-tables Tj and 

REPiTi -  T2) = REP{Ti)- REP{T2). 

Corollary 3.2.5 For any two domain-compatible I-tables and T2, 

REP{Ti -  T2) = REP[Ti ) -  REP{T2). 

Theorem 3.2.15 is illustrated in Figure 3.14. 

3.2.7 Intersection 

First, we define the intersection on Sjej, as a mapping fl : Sjj —)• Sjj. 

Definition 3.2.16 Let < >G and < f/2'^2 ^iZ' Then, 

< Ui,vi > n < U21V2 >= REDUCEREP{< > n® < U2,V2 >), where 

< Ui,vi > n® < U2,V2 >=< U,v >, 

U = {r\{3ri)(3r2){ri E POSS(Ui) Ar2 £ POSS(U2) r]r2)}, and 

=  (  U  ( r ) U r i ) n (  U  ( r ) U r 2 ) .  
rel/j rÇ:U2 

The property: rj Ç r2 implies r D rj Ç r n 7-2 and the definition of RE DUC ERE P 

allows us to simplify the above definition into the following equivalent definition: 

Definition 3.2.17 Let < >E and < t/2'^2 ^R' Then, 

< > n < U2,V2 >= REDUCEREP{< > fi® < U21V2 > ) ,  w h e r e  

< î/l ,vi > < U21V2 > = < U,v >, 

U = {r|(3r;j^)(3r2)(T"i € Î7i A r2 € t/2 ^ ̂  — ^1^2)}' 

V  =  (  U  ( r ) U v i ) n (  U  ( r ) U t ' 2 ) .  
reUi reU2 
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al 2 

alO 

all 

alO 
all 

REP{Ti)=< Ui,vi > 

Ul = 

al al al al 

a2 a2 a2 a2 
< a3 a3 a3 a3 

a6 a6 a7 a7 

, a8 î a9 aS î a9 

^1 = 
alO 

ail 

REP{T2) = <  U2,V2 >  

Uo = * 

al a2 
a2 a4 
a6 a6 

alO 1 alO 

V2 = 
a5 

al 2 

REP{Ti -  T2) = REP(Ti)- REP{T2) =< U,v > 

U = aS a3 

aS î a9 
V  =  

al 

a< 

ail 

Figure 3.14: Difference 
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The next theorem shows that the intersection on commutes with RE DU CEREP: 

Theorem 3.2.16 For any < Ui,vi >E Sjj < &2'U2 2^, 

<  U i j V J  >  ( 1  <  U 2 , V 2  >  =  

REDUCEREP{< Ui,vi >) n REDUCEREPi< U2,V2 >). 

Next, we define intersection of I-tables. Consider two domain-compatible I-tables 

Tj and Tjg let T — D T2- Tuples common to the and Tp constitute the 

tuples of Tp. Tuple sets that belong to Tj, or Tj, and which are subsets of or 

constitute the tuple sets of Tj. Tuples which are common to the following pairs 

of sets constitute Tj^: 

1. l£) and 

2. a tuple set of T j  and 

3. and 

4- and Tp, 

5. and a tuple set of Tp, 

6. Tg and a tuple set of Tj, 

7. a tuple set of Tj and and 

8. a tuple set of Tj and a tuple set of Tj. 

Formally, the intersection of I-tables is defined as a mapping n : Fjg —» F^. 

Definition 3,2.18 Let and be two domain-compatible I-tables. Then, 
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Tj n r2 = REDUCE{T), where 

~ I ^ ^ ^ ^ ^ 

Tj = {w I  {w E  2 j A  w Ç r^) V {w G Tj Aw Ç T^)}, and 

I E Tp A (3tu)(w e Tj A < 6 w) V 

(< e r|) A < e r|^) V 

( 3 w ) ( w  E T }  A t  e T ^  A i  E w )  y  

(3ii'i)(3îi72)('U'i E Tj A W2 E Tj A t E wi A t E W2) V 

( 3 u ' ) ( w  E T }  A t  e T ^ j  A t  E w ) V  

{ t E T l j  A t E T ^ ) V  

{ t E T j ^  A  ( 3 w ) ( w  E T f  A t  E w ) y  

(< G rj^ A r|^)}. 

Remark: As Figure 3.15 shows, the definitions of difference and intersection are 

not consistent with the following relationship that holds between the corresponding 

regular algebraic operators: 

Ti n T2 = Ti - (Ti - T2).  

The next theorem shows that the intersection of I-tables commutes with REDUCE: 

Theorem 3.2.17 For any two domain-compatible I-tables T-^ and 

Tl n r2 = REDUCE(Ti)r\ REDUCE{T2). 

The correctness of the intersection operator is established in the following theorem: 

Theorem 3.2.18 For any two domain-compatible reduced I-tables, 



65 

Ti T2 
a c 
b d 

c a 
d b 

Ti DTg 

a 

c 

d 

T^ -  To 
T i - m - r g )  

c 

d 

Figure 3.15: Ti H T2 ^ T-]^ — (2\ — T2) 

REPiTi n ̂ 2) = REPiTi ) n REP{T2).  

Corollary 3.2.6 For any two domain-compatible I-tables 3^ and 

REP{Ti n T2) = REP{T^)n REP{T2).  

Theorem 3.2.18 is illustrated in Figure 3.16. 

NOTE: An I-table reduces to a relation if its indefinite and maybe components 

are empty. All the extended relational algebraic operators also reduce to the cor­

responding regular relational algebraic operators when their operands contain empty 

indefinite and maybe components. So, the extended relational model and algebra pre­

serve all the features of the conventional relational model and algebra and are merely 

extensions. 

3.3 Queries 

Queries can be expressed in terms of the various extended relational algebraic 

operators defined in Section 3. The I-table accurately models the two bounds on 

the external interpretation, the interpretation under which the query is referred to 
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ai 

E E F ( T 2 ) = <  U 2 , v i  >  

U-i = ' 

al al 
a2 a2 
a3 a3 
a4 1 a5 

uj = a7 

REP{Ti) = <  U2,V2 > 

Un = < 

al al 
a2 a4 
a4 a5 
a5 1 a6 

^2 
a7 

a8 

REP(Ti n Tg) = REP(Ti)n REP{T2) =< U,v > 

-
al al 

1 V  =  

a2 

i a4 1  a5 1 V  =  a7 

Figure 3.16: Intersection 
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the real world modeled in an incomplete way by the system, of a query [29]. The 

definite and the indefinite components of an I-table correspond to one of the bounds 

which is the set of objects for which we can positively say that they belong to the 

external interpretation of query. The maybe component of an I-table corresponds 

to the other bound which is the set of objects for which we cannot rule out the 

possibility of belonging to the external interpretation of the query. We shall use the 

usual suppliers-parts database for the following two examples. 

Example 3.3.1 Consider the I-tables SP and P in Figure 3.17 and the query: Find all 

the supplier numbers of suppliers who supply "red" parts. The query in the extended 

relational algebra is 

Evaluating this expression against the I-database we obtain the answer in Figure 3.17. 

The answer is interpreted in the following manner: s2 and s4 supply "red" parts and 

s3 and s5 may supply "red" parts. Example 3.3.2 Consider another instance of the 

SP 

si pi 
s2 p3 

s3 p5 

s4 p3 
s4 p4 

s5 p3 

pi blue 

p2 green 

p3 red 

p4 red 

p5 red 
p6 red 

p7 black 

ANSWER 

s4 

s3 

s5 

Figure 3.17: I-tables SP, P, ANSWER 

supplier-parts database in Figure 3.18 and the query: Find all the supplier numbers of 
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suppliers who do not supply part "p2". The query in the extended relational algebra 

is 

n i ( S )  -  n j ( ( r 2 = » p 2 " ( ' ^ ^ ) ) '  

Evaluating this expression against the I-database, we obtain the answer in Figure 

3.18. The answer is interpreted in the following manner: s3 does not supply part 

"p2" and there is a possibility that s7, s8, s9, slO all do not supply part "p2". As 

SP 

si nl 

s3 n3 

s4 n4 
s5 n4 
s6 n6 

s7 n6 

s8 n8 
s9 nS 

slO nlO 

si p2 

s4 p2 

s5 p2 

s6 p2 
s7 p3 

s8 p2 
slO p2 

s2 p2 
s9 p2 

sll p2 

ANSWER 

s3 

s7 

s8 

s9 

slO 

Figure 3.18: I-tables 5, SP, ANSWER 

the above two examples illustrate, queries are posed in the same way as for conven­

tional relational databases. Since we have established the correctness of the extended 

relational algebraic operators, all possible answers are extracted. 

3.4 Non-query Operations 

In this section, we present non-query operations on I-tables. We define the insert, 

delete, and modify operations. These operations allow the user to insert tuples into, 
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delete tuples from, and modify tuples of I-tables. 

Definition 3.J[.1 The insert operator is specified as: ins{C, i ,  T), where C E {D, I,  M}, 

Hs a tuple if C G {D, M} and is a tuple set if C = J, and T is an I-table. The effect 

of the ins operation is to update the I-table T into T' as follows: 

T' = REDUCE{< >), where 

Tq  = Tq  U {f} and = Tj^ for X G {D,I,M} — {C}. 

Definition 3.4-2 The delete operation is specified as: del{C, t ,  T), where C  6 { D ,  / ,  M} ,  

t is a. tuple if C 6 {D, M} and is a tuple set if C = /, and T is an I-table. The effect 

of the del operation is to update the I-table T into as follows: 

r'=< >, where 

T ^  = T c -  {<} and T]^ = Tx for X e {D,I,M} -  {C}. 

Definition 3.4.3 The modify operation is specified as: mod{C,i,t ' ,T), where C 6 

{£),/, M}, t and t' are tuples if C E {D^M} and are tuple sets if C = /, and T is 

an I-table. The effect of the modify operator is to update the I-table T into T' as 

follows: 

T' = REDUCE{< >), where 

=  { T q  -  { t } )  U {<'} and = T x  for X  E {£>,/, M} - {C}. 

The mod operation is simply a del followed by an ins. 
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4 indefinite deductive databases 

In this chapter, we show how the extended relational algebra can be used to 

implement indefinite deductive databases. First, we present an additional algebraic 

operator, called project-union, which will be used to evaluate non-Horn rules. The 

project-union operator is actually an extension to the projection operator which could 

only be used to evaluate Horn rules. Then, we define I-rules, which are generalizations 

of non-Horn rules and describe a method to obtain extended relational algebraic ex­

pressions for I-rules. Non-recursive and recursive I-rules are discussed and procedures 

to evaluate them are described. Finally, we show how to evaluate queries using the 

extended relational algebra. 

4.1 Project-Union 

First, we establish the need for an additional operator to evaluate non-Horn rules. 

Consider the Horn rule: 

P{x,y) ^  Q{z,x,y). 

The algebraic expression to evaluate the relation corresponding to the predicate sym­

bol P is: 

02,3(9) 
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where Q is the relation that corresponds to the predicate symbol with the same name. 

Now consider the non-Horn rule: 

P{x,y),P{x,z) ^  Q(x,y,z).  

We cannot use the projection operator to evaluate this rule. To solve this problem, 

we need to define an extension to the projection operator that can compute the I-

table corresponding to the predicate symbol P. The input to such an operator is 

the I-table Q and two lists of projection attributes, one for each positive literals in 

the non-Horn rule. The I-table P for the predicate symbol P can be evaluated by 

applying the extended projection operator, which we shall refer to as project-union 

and shall represent by the symbol H, as follows: 

^<<1,2>,<1,3>>(Q)' 

We need the following definitions: 

Definition ^.1.1 A projection attribute list is defined to be a list of attribute numbers 

or constant symbols. For example < > is a projection attribute list, 

where 1 and 3 are attribute numbers and Math is a constant symbol. 

Definition ^.1.2 Let >1^,... ,An be n projection attribute lists, where 

j4j =< a^l) • • • 5 ^im^ >, 1 < î < n. 

Then, Aj,. . . ,  An are domain-compatible if and only if 

1. = • • • = mn = m, and 

2. for each z, 1 < i < n, the domains associated with the attributes a^j, 1 < j < m, 

are all the same. 
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Now we define project-union on Sjg. 

Definition 4-1-S Let < U,v >6 Sjij and be n domain-compatible projec­

tion attribute lists. Then, 

U<^1 A„>(< V,v >) = REDUCEREPiTl%^^ V,v >)), where 

>1 =< f'l'"! >• 

reU 

^ — {^15 • • • » ^TTl}; 

I'l = {<|(3/i)(/i E v A t e  {n^j( < i ) , - . . , n ^ ^ ( < i ) } ) } ,  

f _ I , if a£ is an attribute number j < • < j;. 
* I a% , if is a constant symbol ' ~ ~ 

The next theorem shows that project-union commutes with RE DU CE REP: 

Theorem 4.1.1 For any < U,t> >G and domain-compatible projection attribute 

l i s t s  A i , A n ,  

We now define project-union on I-tables. 

Definition 4•1-4 Let T-^ be an I-table and ... ,An be n domain-compatible projec­

tion attribute lists. Then, 

= REDUCE{T), where 

T^ = {t I  ( 3 / i ) « i  6 T ] , A { < }  =  { n ^j( / l ) , . . . , n ^ ^ ( < l ) } ) V  

(3w)(w G rj A {<} = U n^ (^))}. 
i=i ' 
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Tj = {w I (3<)(<Gr|,Aw = {n^^(<),...,n^^(/)}A|w| >i)v 

1 " 
(3wi)(wi eTj- Aw = (J n^.(wi) A |w| > 1)}, 

i=i ' 

I (3<i)(<i e A/e ),...,n^^(<i)})}, 

nyi(w) = {n^(f)|(3<)(< e w)}, 

J <[a,-] , if a: is an attribute number , ^ ^ , 
1 . r  .  ,  ,  ,  1  , ! < * < & .  

' \ <!{ ,11 IS a constant symbol 
The following theorem shows that project-union commutes with RE DU CE: 

Theorem 4.1.2 For any I-tahle T and domain-compatible projection attribute lists 

-4^ ) • • • 7 -^71 • 

The correctness of the project-union operator is established in the following theorem: 

Theorem 4.1.3 For any reduced I-table T and domain-compatible projection attribute 

lists A2,.. . ,  Aji,  

Corollary 4.1.1 For any I-table T and domain-compatible projection attribute lists 

"^1 Ï • • " 9 -^71} 

AT,>(n). 

Theorem 4.1.3 is illustrated in Figure 4.1. 

NOTE The project-union operator is an extension of the extended projection operator 

and it reduces to the extended projection operator when 
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T 

al c2 c2 

al bl cl 

a2 b2 c2 

a2 b2 c3 

a3 b3 c3 

al c2 

al bl 

al cl 

a2 b2 

a2 c2 

a2 c3 

a3 b3 

a3 c3 

REP{T) =< U,v > 

U = 
al c2 c2 
al bl cl 

a2 b2 c2 

al c2 c2 

al bl cl 

a2 b2 c3 

V  —  a3 b3 c3 

2>,<1,3>>(^)) = II<<1,2>,<1,3>>(^^^(^)) =< > 

U. = 
al c2 

al bl 

a2 b2 

al c2 
al bl 
a2 c2 

al c2 
al cl 

a2 b2 

al c2 

al cl 

a2 c2 

VI 
a3 b3 

a3 c3 

al c2 

al bl 

a2 c3 

al c2 

al cl 

a2 c3 

Figure 4.1: Project-Union 
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1. n = 1, and 

2. the projection attribute list consists of only attribute numbers. 

4.2 I-rules 

Here, we introduce I-rules which are generalizations of non-Horn clauses. The 

need for I-rules is discussed now. Consider the two Horn clauses: 

1. DEPT{x,' 'Math' ') 4- TEACHES(x,' '2Z\"), and 

2. DEPT{x,"Maih")  ̂  TE AC H ES(x,"331"). 

and let 

TEACHESi" John","231") V TEACHES{" John","331") 

be true in the database. This disjunction actually corresponds to a tuple set in the 

I-table corresponding to the predicate symbol TEACHES. It can easily be observed 

that DEPT{"John","Math") is a consequence of the database. However, if we 

consider the algebraic expression to evaluate DEPT: 

^l('^2="231" H ES)) U H^ (cr2_"33^" {T EAC H ES)), 

we would obtain DEPT{" John","Math") as a maybe tuple. To avoid such problems, 

we combine the two Horn clauses into the rule: 

DEPT[x,"Math") TEACHES{x,"231"),TEACHES{x,"331") > 

which is equivalent to the logical formula: 

DEPT{x,"Math") V ^{TEACHES(x,"23r)\/TEACHES{x,"33r)). 
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Such a rule will be referred to as 1-rules. We now formally define I-rules and certain 

restrictions on them. 

A conjunct is a disjunction of positive literals involving the same predicate sym­

bol: 

F(A'i) V...vP(An), 

called a positive conjunct, or its negation: 

- ( P ( . Y i ) V . . . V P ( A - n ) ) ,  

called a negative conjunct. A ground conjunct is a conjunct with no variable symbols. 

We shall surround the literals in a conjunct with angular brackets and separate the 

literals with commas to be consistent with the syntax of non-Horn clauses. For exam­

ple < P(x, y), P{x, z) > is a positive conjunct and -> < P{x, y), P{x, z) > is a negative 

conjunct. We shall omit the angular brackets if there is only one literal inside it. 

An I-rule is a disjunction of conjuncts with at most one positive conjunct. A 

ground I-rule is an I-rule with no variable symbols. We shall omit the angular brackets 

around the positive conjunct of an I-rule. Two examples of I-rules are: 

1. P(x,y),P{x,z) Q{x,u),Q(x,v) >,R{u,y,v,z),  and 

2. A{y) ^  S{x,y),< SP(x,"pl"),SP(a;,"p2") >• 

The I-rule 

P]^,...,P^. <—< Qii 1  •  •  •  5  Qi t j j  Ql\i • • '  iQln^ ^ 

can be viewed as representing the following collection of non-Horn clauses: 
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We shall impose the following two restrictions on I-rules: 

1. Range-restriction: The I-rule is said to be range-restricted, if each of the non-

Horn rules it represents is range-restricted. A non-Horn rule is said to be range-

restricted if all the variable symbols appearing in the positive literals, also 

appear among the negative literals, Q^s. The I-rule: 

P(x,y),P{x,w) — Q{x,z),< R{z,y),R{w,y) >,S{z,w) 

is range-restricted because the variables r, y, and w appear on the right hand 

side of both the non-Horn rules represented by the I-rule, and the I-rule: 

4- Q{x,w),< R{y,z),R{x,z) >,S(z,w) 

is not range restricted because the variable y does not appear in the following 

non-Horn rule represented by the I-rule: 

P ( x , y ) , P ( x , 2 )  ^  Q(x,w), R{x, z),  S{z,w). 

We shall restrict all the I-rules to be range-restricted. 

2. Projection-consistency. An I-rule is projection-consistent if for each positive 

literal P^, 1 < i < k, the variable symbols of Pj^ occur in the same "positions" 

on the right hand side of the symbol of all non-Horn rules represented by the 

I-rule. The I-rule: 

-P(a:,2/),f(z,w) Q{x,z),< R{z,y),R{w,y) >,S[z,w) 
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is projection-consistent because the variables x and y appear in positions 1 and 

4 respectively in both the non-Horn rules represented by the I-rule and the 

variables x and w appear in positions 1 and 6 respectively in both the non-Horn 

rules represented by the I-rule and the I-rule: 

P{!^,y),P{x,w) Q(x,z),< R{z,y),R{y,w) >,S{z,w) 

is not projection consistent because the variables x and y appear in positions 1 

and 4 respectively in one of the non-Horn rules represented by the I-rule and in 

positions 1 and 3 in the other non-Horn rule represented by the I-rule. We shall 

restrict all the I-rules to be projection-consistent, 

A query is an I-rule with exactly one positive literal. An example of a query is: 

A N S W E R { x )  ̂  S ( x , t / ) , <  5 P ( x , " p l " ) , 5 P ( x , " p 2 " )  > .  

Queries are also subjected to the range-restriction and projection-consistency restric­

tions. 

4.3 Algebraic Expressions for I-rules 

In this section, we present a method to obtain extended relational algebraic 

expressions for I-rules. Consider the I-rule: 

<—< Q\\i • • • >•>••••>< 9/1 ) '  '  '  ) ^  

Let Lj,... ,Lm be the non-Horn clauses represented by the I-rule and let be 
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where are either constant symbols or variable symbols. 

We first obtain a selection condition, for each of the non-Horn clauses 1 < i < 

m. Cj is obtained as follows: 

Step 1 For all the t^s that are constant symbols obtain the following condition: 

r — 1  
( YL + u = tu' 

a=l 

Step 2 For all the /^^s and that are variable symbols such that u\ ^ U2i 

t'l # î'2> ^ obtain the following condition: 

u j  — 1  '  V2 — 1 
( + •"! = ( H "̂ a) + "2-
a=l a=l 

Step 3 is the conjunction of all the conditions obtained in Step 1 and Step 2. 

Let Cj,..., Cm be the selection conditions obtained. 

Next, we obtain a projection attribute list for each of the positive literals f ..., irij^ )• 

Let be equal to tj, where tj is a variable symbol. Then aj, the position of ty, is 

defined as follows: 

v—1 
Oj = ( X! 

p=l 

The projection attribute list for P(<j,..., ) is < ,..., bn^ >, where 

, J Ce, <e is a variable symbol 
® e  =  s  .  1  ̂  e  <  n - .  

I te, <e IS a constant symbol, 

Let Aj,..., A}^ be the projection attribute lists for the positive literals Pi,... ,Pf^ 

respectively. 
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Note: Range-restricted I-rules ensure the existence of on the right hand side of the 

symbol of the non-Horn clause and projection-consistent I-rules ensure a unique 

projection attribute list for each positive literal. 

Then, the algebraic expression for the I-rule is: 

where Qj,..., are the I-tables corresponding to the predicate symbols with the 

same names. 

Example ^.3.1 Consider the I-rule: 

Q{x,z),< R{z,y),R{w,y) >,S{z,w). 

The extended algebraic expression for the I-rule is: 

P = ^<<1,4>,<1,6>>{'^C(Ç X ^ X 

where C = ((2 = 3) A (3 = 5)) V ((2 = 5) A (3 = 6)). 

Example ^.3.2 Consider the I-rule: 

Answer{y) <- S{x,y),< SP{x,"pl"), SP{x,^^p2") >, 

which is actually a query. The extended algebraic expression for the query is: 

ANSWER = U<<2>>(<^((i=3)A(4="pl"))V((l=3)A(4="p2"))('^ ^ 

4.4 Non-Recursive Indefinite Deductive Databases 

The I-table defined by a non-recursive I-rule is computed by the extended rela­

tional algebraic expression corresponding to the I-rule. 

Example 4-4-^ Consider the non-recursive I-rule: 
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DEPT{x, Math), Dept{x, CS) <—< Teaches{x, 231), Teaches{x, 331) >, 

which states that if x teaches the courses numbered 231 or 331, then x belongs to the 

Math or the CS department. The extended relational algebraic expression for this 

I-rule is: 

1Mat ft  "  > ,< 1C 5" > > ( ®'( 2=" 231 " ) V ( 2=" 331 " ) ( ̂  ) 

Evaluating this expression on the I-table TEACHES of Figure 4.2, we obtain the 

I-table DEPT in Figure 4.3. 

TEACHES 

John 311 

Tom 231 

Gary 331 

David 231 
Kevin 231 

Craig 231 
Craig 331 

Joe 231 

Figure 4.2: I-table TEACHES 

4.5 Recursive Indefinite Deductive Databases 

Recursion is handled by repeated application of the extended relational alge­

braic expression associated with a recursive I-rule until no new tuples or tuple sets 

are generated. This process is guaranteed to terminate as all the databases under 

consideration are finite. Consider the I-rule: 
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DEPT 

Tom Math 

Tom CS 

Gary Math 

Gary CS 

Craig Math 
Craig CS 

David Math 
David CS 

Kevin Math 
Kevin CS 

Joe Math 

Joe CS 

Figure 4.3: I-table DEPT 
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P-^, . . . ,  Pf,  < <  , . . . ,  Q\fi^  >j  •  •  •  5 < Qq i  •  •  •  )  Qln^ 

where at least one of the conjuncts on the right hand side of the symbol <— involves 

the predicate symbol present in the positive literals. Let P be the I-table defined by 

this I-rule and let ... ,Qi be the I-tables corresponding to the predicate symbols 

of the conjuncts on the right hand side of the ^ symbol. P is computed by the 

algorithm shown below: 

begin 

i := 0; 

:= P/iv/r; 

P* := Pjjyrjr;  

repeat 

pi+l :=/(P*,Qi,...,<3;); 

P* := P* uP^+1; 

i := i + 1 

until (there are no changes to P*)\  

P := P* 

end 

where f (P*,  Q^, . . .  ,Qi)  is  the extended relational algebraic expression for the I-rule, 

and Pjjifjj' is the initial instance of the I-table P. Pj^jj' may be present in the 

database or may be generated by using another I-rule, possibly non-recursive. 

Example 4-5.1 Consider the recursive I-rule: 

BG{x,y) ,BG{x,z)  *-  F{x,u) ,  BG(u,  y) ,  M[x,v) ,  BG{v,  z) ,  
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where BG{x,y)  stands for "the blood group of x is y", F{x,y)  stands for "y is the 

father of x", and M{x,y) stands for "y is the mother of x". The extended relational 

algebraic expression for this I-rule is: 

^<<1,4>,<1,8>>(<^{1=5)a(2=3)a(6=7)(-^ X  BG x M x BG)).  

BG^ 

John David 

David Steve 

Mary Craig 

Tom Doug 

Steve A 

Pam B 

Craig A 

Liz 0 

Doug 0 

Lucy A 

M 

John Mary 

David Pam 
Mary Liz 

Tom Lucy 

Figure 4.4: A Database Instance 

Repeatedly applying the extended relational algebraic expression to the database of 

Figure 4.4, we obtain I-tables BG^ and J5G^ in Figure 4.5. BG^ and contain 

new tuples and tuple sets generated in iterations 1 and 2 respectively. Iteration 3 

does not generate any new tuples or tuple sets. 

Example 4-5.2 Consider the recursive I-rule: 

PARTLOC{x,y) ,PARTLOC{x,z)  ^  

SP{u,x) ,  5(xi, y), SUBPART{x,  v) ,PARTLOC{v,z) ,  

where SUBPART{x,  y)  stands for "x is a subpart of y", SP{x,  y)  stands for "supplier 

X supplies part  y",  5(x,  y) stands for  "supplier  x  is  located in y",  and P ART LOG {x ,y)  
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BG^ 

David A 

David B 

Mary A 
Mary 0 

Tom A 

Tom 0 

BG' 

John 
John 
John 

A 
B 
O 

Figure 4.5: I-tables BG^ and J5G^ 

stands for "part x can be found in location y". The extended algebraic expression for 

the I-rule is: 

^<<2,4>,<2,8>>('''(1=3)a(2=5)a(6=7)('^-^ X  5 X  SUBPART x PARTLÔC)).  

Repeatedly applying the extended algebraic expression against the database in 

Figure 4.6, we obtain the I-tables PARTLOC^ and PARTLOC"^ in Figure 4.7. 

PARTLOC^ corresponds to the tuples and tuple sets generated in the first iter­

ation and PARTLOC"^ corresponds to the tuples and tuple sets generated in the 

second iteration. The third iteration does not produce any new tuples or tuple sets. 

4.6 Example of a Query 

Consider the database in Figure 4.8 and the query: Find all the supplier names 

of suppliers who supply either part "pi" or part "p2". The query as an I-rule is: 

ANSWER{x)  ̂  S{x,y) ,< 5P(a;,"pi"), SP(x,"p2") >. 
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SP 

si pi 

si p2 

s2 p3 

s2 p4 
s3 p5 

s3 p6 

s3 p7 

si Paris 

s2 London 

s3 Rome 

SUBPART 

p2 pi 

P3 pi 

p4 p2 

p5 p2 

p6 p3 

P7 p3 

PARTLOC^ 

pi London 

Figure 4.6: A Database 

PARTLOC^ 

PARTLOC'^ 

p3 London 

p2 

p2 

Paris 

London 

p4 London 

p4 Paris 

p5 Rome 
p5 Paris 
p5 London 
p6 Rome 
p6 London 

p7 Rome 
p7 London 

Figure 4.7: I-tables PARTLOC'^ and PARTLOC^ 
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The extended relational algebraic expression for the I-rule is: 

n2(<^(( l=3)A(4="pl"))v( ( l=3)A(4="p2"))^^  ^  

Evaluating this expression against the database, we obtain the I-table in Figure 4.9. 

S SP 

si Jones 

s3 Coady 

s2 

s2 

Smith 

Blake 

si pi 

s2 p2 

s3 

s3 
pi 
p2 

Figure 4.8: Database 

Jones 

Coady 

Smith 
Blake 

Figure 4.9: Answer to Query 

The answer is interpreted as: Jones and Coady supply either of the two parts 

"pi" or "p2" and Smith or Blake supply either of the two parts "pi" or "p2". 
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4.7 Correctness of Algebraic Approach 

Consider the I-rule: 

Pj,..., Pfg <—< Qjj,..., Çjtjj Î • • • ^ 

Let m = TZj X  . . .  X  n^, and let P be the predicate symbol present in the positive 

literals Pj,... This I-rule can be easily shown to be equivalent to the following 

three I-rules: 

(1) A(a: J,..., I ' " ' ) ) 

(2) a^TTj,^ ) * ^(3^2 1 ' ' ' 1 ); ^ ) • • • > ^Tfl 

(3)  Pj , . . . ,  Pj j j  5 (X2 , . . . ,  )  

where A and B are unique predicate symbols, Qj is the predicate symbol present in 

the conjunct < Qht • • iQin^ >, and Q is the conjunction of the following literals 

involving the equality predicate symbol: 

1. = {xu,xv) ,  for variable symbols xu and xy such that u ^  v and Xu = xv on 

the right hand side of the ith non-Horn rule represented by the I-rule. 

2. = (ia> o), for each constant symbol a on the right hand side of the ith non-Horn 

rule represented by the I-rule such that xa is the variable symbol in I-rule (1) 

in the position of the constant symbol a. 

The I-table corresponding to the predicate symbol A can be computed by the cartesian 

product of the I-tables corresponding to the predicate symbols Qj,...,Q^. Since 

the extended cartesian product is shown to be correct in Theorem 3.2.9, we obtain 
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exactly all the instances of the predicate symbol A defined in rule (1). The I-table 

corresponding to the predicate symbol B can be computed by the selection operator 

with the selection condition corresponding to the conditions Cj,..., Cm- The input 

to the select ion operator  is  the I- table corresponding to the predicate symbol A. 

Again, since the selection operator has been proven to be correct in Theorem 3.2.3, we 

obtain exactly all the instances of the predicate symbol B defined in rule (2). Finally, 

the I-table corresponding to the predicate symbol P is computed by the project-

union operator with the projection attribute lists corresponding to the arguments of 

Pj,... ,P^,. The input to the project-union operator is the I-table corresponding to 

the predicate symbol B. Again, since the project-union operator has been proven 

to be correct in Theorem 4.1.3, we obtain exactly all the instances of the predicate 

symbol P defined in rule (3), which is actually the instances of the predicate symbol 

P defined in the original I-rule. Finally, since the union operator has been shown to 

be correct in Theorem 3.2.12, we can use the union operator to obtain exactly all the 

instances of the predicate symbol P defined by more than one I-rule. 

Example ^.7.i The I-rule: 

BG{x,u) ,BG(x,v)  F{x,y) ,BG(y,u) ,M{x,  z) ,BG(z,v)  

is equivalent to the three rules: 

1. A(xi,X2,x;^,x^,x^,XQ,xj,xg) — F{xi,X2),BG(x^,x^),M{x^,XQ),BG{x'j,xg) 

2. B{xi,X2,x:i,x^,x^,XQ,xj,x^) <- A{xi,X2,X2,x^,x^,XQ,X'j,xg),= (3:1,15),= 

(®2'®3)'= (®6'®7) 

3. BG{xi,x^),BG{xi,xg) 
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The extended relational algebraic expressions to evaluate the I-tables corresponding 

to the predicate symbols A, B, and BG are: 

1. A = F X BG X M X BG, 

2.  B = o-(I=5)A(2=3)A(6=7)(^)' 

3. BG = II<<1,4>,<1,8>>(-®) 

respectively. 

Example 4-7.2 The I-rule: 

Fix) 4- 5(x,t/),< 5P(y,"pl"),5P(y,"p2") > 

is equivalent to the three rules: 

2. 5(xi,i2)a^3'®4) >®2'®3'=^4)'<= (®2'®3)^ = (14,"?!"),= (z2,r3)A = 

(14,"p2") >, and 

3. F{xi) ̂  B{xi,x2,x2,x4). 

The extended relational algebraic expressions to evaluate the I-tables corresponding 

to the predicate symbols A, B, and F are 

1. A = S X  SF, 

2.  B = o'((2=3)A(4="pl"))v((2=3)A(4="p2"))(^)' 

3. P = II<<i>>(B) = ni(5) 
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respectively. 

Example Jf .1.3 The I-rule: 

DEPT{x,  "Maih") ,  DEPT{x,  "CS") ^ 

< TEACHES{x, ' '2^\"") ,TEACHES{x,"Z31") > 

is equivalent to the three rules: 

1. A{xi,x2) TEACHES{xi,x2), 

2. B{xi,x2) <— >1(1^,2:2)5 <= (3=2,"231"), = (x2)"331") >, and 

3. DEPT(xi,''Maih''),DEPT{xi,''CS") - B(xi,x2). 

The extended relational algebraic expressions to evaluate the I-tables corresponding 

to the predicate symbols A, B, and DEPT are: 

1. A = TEACHES, 

2.  B = o-(2="231")V(2="331")(^)' 

3. DEPT = U<<i,"Ma</i">,<l ,"CS">>(-B) 

respectively. 

We now justify the correctness of the algorithm to evaluate recursive I-rules. 

Recall the definition of weaker I-tables. We define a monotonie extended relational 

algebraic expression as follows: 

Defini t ion ^.7. J An extended relational algebraic expression, /, is said to be monotonie 

if and only if 

(^1 <r2)->(/(ri)</(r2)), 
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for any I-tables Tj and Tg. 

Consider an equation of the form: 

T = f{T) 

where f{T) is an extended relational algebraic expression with operand T; perhaps 

among other  operands;  such that  the ari ty of  T and f (T)  are the same.  A least  f ixed 

point of the equation, denoted LFP{T = /(T)), is an I-table T* such that 

1. r* = /(r*), and 

2. if T is any I-table such that T = f{T),  then T* < T.  

Tarski [43] assures that a unique least fixed point exists if / is monotonie. If / is 

monotonie, then by induction on i, we can show that 

P-^T) < f (T) 

where p is / applied i  times. If all the argument I-tables are finite, then since no 

new component values are introduced by the extended relational algebraic operators, 

we know that there is some finite T for which each /^(T) is a subset. Therefore, there 

must be some ng such that 

T < f{T) < /2(r)  < • •  •  < /"o(r)  = ro+i(r) .  

It is easy to check that /"0(T) is the least fixed point, LFP{T = f{T)) .  We now state 

the following theorem, which is also true for regular relational algebraic expressions: 

Theorem 4.7.1 Any extended relat ional  algebraic expression involving cartesian 

product ,  union,  select ion,  and project-union is  monotonie.  
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5 generalized relational model 

In Chapter 3, we defined I-tables to represent disjunctive information of the 

form P(ti) v ••• v P(tfi), where all the disjuncts in this formula involve the same 

predicate symbol. In this Chapter, we define a general data structure, called M-table, 

which is capable of representing more general forms of disjunctive information such 

as v • • • v Pn(in), where the P^s could be different predicates. The relational 

algebra is suitably generalized to operate on M-tables. In addition to the generalized 

relat ional  algebraic operators ,  we define two new operators ,  R-project ion and merge,  

which are used in answering queries. 

5.1 M-Tables 

In this section, we introduce a data structure, called an M-table,  which is capable 

of representing general kinds of disjunctive and maybe information. Then, we present 

the notion of redundancy in M-tables and define an operator, called REDUCE, to 

remove the redundancy. 

A relat ion scheme,  R, is a finite list of attribute names, < A-^, . . . ,An >,n > 1. 

R is  said to have arity  n.  With each at tr ibute is  associated a  domain.  An M-table 

scheme, MR, is a finite list of relation schemes, < iîj,..., Rf, >,k > 1. MR is said 

to be of  order k .  
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Defini t ion 5.1.1 An M-table,  T, over the M-table scheme, MR =< Jîj, . . . ,  Jljj. >, 

consists of the two components, T =< TsureiT^^^yi^ >, where 

T^sure Ç > I (Vi)(l 

(3i)(l <i<k/\u^^ 0)}, and 

^mayie ^ > I (V:)(l < % < k € 2^% x -xD-

where D^,. . . , a r e  t h e  d o m a i n s  a s s o c i a t e d  w i t h  t h e  a t t r i b u t e s  o f  i 2 j , l  < i  < k.  

Elements of Tsure are sometimes referred to as mixed tuple sets. If a mixed tuple set 

has exactly one tuple in al l  of  i ts  components  then i t  wil l  be referred to as a  defini te  

tuple. The tuples in the sure components will sometimes be referred to as sure tuples. 

For notat ional  convenience,  we say that  the mixed tuple set  u =< u^, . . .  ,Uf^ > is  a 

subset of another mixed tuple set v =< v^,... ,Vf. >, written u Ç v, if and only if 

(Vz)(l < i < k u^ Ç v^) and wis a proper subset of v, written it C r, if and only if 

{u Ç V A (3i)( l  <i<kAu^C %%)).  

An M-database scheme is a collection of M-table schemes. We shall restrict a 

relation scheme to be present in exactly one M-table scheme of the M-database scheme. 

An M-database is a collection of M-tables defined over the M-database scheme. 

Example 5.1.1 Consider the scheme 

MR=« UNCLE,PERSON >,< AUNT,PERSON » .  

Let us assume that the domain of all persons is associated with each of the attributes 

UNCLE, AUNT, and PERSON. Figure 5.1 shows an M-table, UNAUN, defined 

over MR. UNAUNsure in Figure 5.1 corresponds to the following ground formulas: 

1. UN(Tom,Gary) 
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UNAUN 

UNCLE PERSON AUNT PERSON 

Tom Gary 

Craig John 
Craig Don 

Mary Tom 

Liz John 

Liz Don 

Sam John Sam John 

Chris Tom Chris Tom 
Chris Gary Chris Gary 

Jeff Jake Pam Bob 

Figure 5.1: M-table UNAUN 

2. UN(Craig,John) V UN(Craig,Don) 

3. AUN(Mary,Tom) 

4. AUN(Liz,John) V AUN(Liz,Don) 

5. UN(Sam,John) V AUN(Sam,John) 

6. UN(Chris,Tom) V UN(Chris,Gary) V AUN(Chris,Tom) V AUN(Chris,Gary) 

UNAUN^^y^^ in Figure 5.1 corresponds to the following ground atomic formulas: 

1. UN(Jeff,Jake) 

2. AUN(Pam,Bob) 

However, these formulas may or may not be true. 
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5.2 Redundancy in M-tables 

It is quite possible for redundant information to be present in an M-table. We 

have identified the following two kinds of redundant information and for each we 

suggest an action to remove the redundancy. Let T =< > be an 

M-table defined over the scheme MR =< Ri,..., Rj^ >. 

1. u =< >€ Tsure,v —< >€ TsureiU C r, and =< 

> Here, v is considered redundant and is removed from Tsure- In 

the process, all the tuples in are included in r^. 

2. =< ri,... ,r}, >, t e r^, < >6 Tsure, and t 6 for some 

i,! <i <k. Here, t is considered redundant and is simply removed from r^. 

We now present an operator, called RE DU CE, which removes the above men­

tioned redundancies from M-tables. 

Defini t ion 5.2.1 Let Tj =< > be an M-table over the scheme AIR =< 

Rl, . . . ,Rj^ >, where =< >. Then, REDUCE{Ti)  = T,  where 

Tsure = G -'(3u)(v G A v C u)}, 

'^maybe 

^j  =  0  I e  7- j  V (3u)(3t ; ) («  =< ï i i , .  >G 

V  =< >6 C V  At e  { v j  -  u j ) ) )  a 

wi,...,w}^ >6 Tsure E Wj)},l <j< k. 

Example 5.2.1 Figure 5.2 shows an M-table T and REDUCE(T).  
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T 

UNCLE PERSON AUNT PERSON 

John Tom 

John 

John 

Tom 
Gary 

Pat Gary 

Pat Craig Pat Gary 

Chris Dan Chris Dan 

Don Hugh Sam Jill 

Tim Ron Bob Ned 

REDUCE{T) 

UNCLE PERSON AUNT PERSON 

John Tom 

Pat Gary 

Chris Dan Chris Dan 

Don Hugh Sam Jill 

Tim Ron Bob Ned 

John Gary 

Pat Craig 

Figure 5.2: REDUCE{T) 
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5.3 Generalized Relational Algebra 

In this section, we generalize the relational algebra to operate on M-tables. We 

also present an operator, called R-projection, which projects an M-table onto some of 

its relation schemes and an operator, called merge, which merges various components 

of a mixed tuple set into one. The REDUCE operator is part of each of these 

operators to ensure that no redundant information is introduced. 

5.3.1 Selection 

The selection operator takes in as input an M-table, T", of order k and k selection 

formulas , . . . ,  ̂ .  A mixed tuple set ,  < >,  is  selected if  for  every i ,  

1 < i < fc, all tuples in satisfy the selection formula F^. If not all tuples satisfy the 

respective selection formula then only those tuples which satisfy the selection formula 

are included in the respective maybe component of the selection. 

Defini t ion 5.3.1 Let be an M-table over the scheme MR =< iî|,... >, where 

=< ^1? - - - Also, let Fj,... ,Ff^ be selection formula, where the selec­

tion formula Fj involves 

1. attribute numbers of 

2. arithmetic comparison connectives <,£,>,>,=,7^, and 

3. logical connectives A, V, and 

Then, = REDUCE{T),  where 

Tsi i re  — I ' ^sure  ^  

(Vz)(i <i<k-^ {yt){t eui^ Fiit)))}, 
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^mayhe ^ 

0 
r j  =  { <  I  { t € r j  A  Fj{i))  V 

> €  T j u r e  ̂ t £ u j  A  Fj { t ) ) } ,  a n d  

Fj(<) is with attribute j replaced by <[j]. 

Example 5.3.1 An example of the selection operator is shown in Figure 5.3. 

.4 -42 5i B2 

John A John 100 
John B John 200 

Craig C Pat 100 
Craig D 

Tom A Tom 600 
Gary A John 500 

Robin D Robin 200 

Don A Don 100 
Don C 

^1 ^2 ^2 
John A John 100 
John B John 200 

Tom A Tom 600 

Gary A John 500 

Don A 

Fi = ((2 = 'M") V (2 = "5")) and F2 = ((1 = ' 'John' ' )  V (2 > "600")) 

Figure 5.3: Selection 

5.3.2 Projection 

The projection operator takes in as input an M-table, T", of order k and k lists of 

projection attributes Aj,..., j4j^. The ith component of a mixed tuple set of Tsure is 
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projected onto Aj^ and the ith component of is projected onto for each i. 

Defini t ion 5.3.2 Let be an M-table over the scheme MR =< R^, . . .  ,Rj^ > where 

Tmayhe —< ^1 ' • • • > > • Also let ylj,,,., be lists of projection attributes, where 

Aj involves attributes of iZj. Then, = REDUCE{T), where T is 

defined as follows: 

î swre  =  {< > I (3 t? i ) - - - (3r j t ) (<  >e  r j -^re  ^  

(Vz)(l<z = n^.(rj))} 

^maybe (^1 - - - ; ^ • 

Example 5.3.2 An example of the projection operator is shown in Figure 5.4. 

^1 ^2 ^3 B2 

John A 100 John A 
John A 200 

Tom A 200 Tom A 
Tom B 200 Tom B 
Gary C 300 Gary C 
Gary D 100 Gary E 
Craig A 100 Brad A 
Don A 100 

Jones A 100 Bill C 

Bob D 

n <<1,2> ,<1>>(^)  

^1 ^2 
John A John 

Tom A Tom 

Tom B 

Gary C Gary 

Gary D 
Craig A Brad 
Don A 

Jones A Bill 

Bob 

Figure 5.4; Projection 
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5.3.3 Cartesian Product 

Consider the two M-tables, Tj and Tjg, in Figure 5.5 and let Tj be defined over 

the scheme < P,  Q > and T2 be defined over the scheme < R,S >,  Also let  T = 

Tj X T2- The sure component of T is computed as follows: 

The two mixed tuple sets of Tj together with the single mixed tuple set of Tjg 

gives us the following disjunctive formula: 

(PRia,  e)  A PR{c,  e) )  V  (PS{aJ) A P5(c, / ) )V  

{PR{a, e) A QR(d, e)) V (PS{aJ) A QS{d,f))V 

{QR{b,  e)  A PR(c,  e))  V (QS{b,  f )  A PS(c , / ) )V  

(QR{b,  e)  A QR{d,  e))  V (Q5(6,  / )  A QS{d,  / ))  

Converting this expression into the conjunctive normal form and simplifying, we ob-

téi in the four mixed tuple sets  of  Tsure-

The maybe component of T is computed by taking the cross product of sure 

tuples of Ti with maybe tuples of Tjg, maybe tuples of Tj with sure tuples of T2, and 

maybe tuples of Tj with maybe tuples of T2-

Using the above methodology, we obtain the cartesian product in Figure 5.5. The 

above discussion is formalized into the following definition: 

Defini t ion 5.3.3 Let Tj be an M-table defined over the scheme MiZj =< iZj,..., Rj^ > 

and T2 be an M-table defined over the scheme Mi?2 =< . . .  ,Si  >. Then,  Tj  x  T2 

is an M-table defined over the scheme 

MR =< R-^.S^, . . . ,  . . . ,  . . . ,  Rij-Si  >,  

where Ri-Sj  is the concatenation of the schemes Rj and Sj.  Let 

'^sure ^11 ' • • • 5^Ifc • 5 ^ml' • • • ' ̂ mk ' 
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'^sure ~ {"^ ^1 !'••*'^Ijb ^ ^nl' • • * ) and 

Also let 

E = {< ui , . . .  ,ui^  > I (3rf i )(3i i)---(3d77î)(3<rji)(  

(Vi)(l < i  < m {1 < < k Ail  e  %^))  ̂  

^— coîîdic (*C[ / 2 , ' ' « ; ̂ 771 ^ 5 (^2 ? ' • • Î ^77% ^ ))}î 

F = {< Ui, . . .  ,ui  > i  (3di)(3<i)  •••(3dn)(3<n)(  

(V2)(l <i<n^{l<di<lAi^E Vid^)) A 

< it  J , . . .  >= collate^ (< .  , tn >,< d^, . . .  ,drj  >))}•  

Let \E\  = e and |i^| = / and let ... ,Ee and F^, . . . ,F^ be the elements of E and 

F respectively, ordered in any manner. Let 

^^ij,ab = i* I (3<l)(3^2)(-^2 =< > Af) =< > A 

t l  e  Ua At2 e  vj^ At  =  ̂ 1.^2)}) 

and 1 < 6 < /. There exists a one-one mapping, /, 

from the set of pairs < i,j > of positive integers onto consecutive positive integers. We 

shall use this mapping to rename the EF^-^js as EFj^^ ^js. Let c = k x I and 

let g be the number of distinct EF^jS for a fixed j. Then, Tj x T2 = REDUCE(T),  

where 

Tsure = {<ui, . . . ,uc > |  {3di){3t i)  • •  •  (3dg)(3ig)(  

(Vi)(l <i<g-^{l<di<cAtie EFid-)) A 

< %(^, . . . ,wc >= collate^{< >,< di , . . . ,dg >))},  
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"^maybe ^11' • ' - '^1/' • • • 

= I (3<i) (3<2)(^ l  G A(3?^i ) . . . (3 iz^)(  

m 
*C. 1^2 ) ' " " ) ^SltTG ^ ^2 ^ ^ ^ — ^1 '^2 ) ^ 

(3<i)(3<2)({3«I)--*(3U;^)(< ui, . . . ,Uf;  >e Tj^re ^  

<1 E tij-) A <2 £ -Sj A / = t2./2) V 

(3i i)(3<2)(<l e  Ai2 € Sj  At  = fi- fg)} ,!  <  ̂  <  ̂ ,1  < J <  ̂  

collate^ {< ... ,<n >, < d-^, . . . ,dn >) is a function that returns a mixed tuple set 

< u;^,... ,Ujr. > by placing in , 1 < i < n. 

Example 5.3.3 An example of the cartesian product is shown in Figure 5.5. 

T 1 X T 2  

^1 
p Q 

a b 

c d 

g h 

i 

T2 
R S 

e { 

j k 

P R P S Q R Q S 

a e a f b e b f 

a e c f b e d f 
c e a f d e b f 
c e c f d e d f 

a j a k b j b k 
c j c k d j d k 

g j g k h j h k 

i j i k h e h k 

g e g f 
i e i f 

Figure 5.5: Cartesian Product 
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5.3.4 Union 

The union of two domain compatible M-tables is simply the union of the respec­

tive sure and maybe components. REDUCE is applied to the resulting M-table to 

remove any redundant information. 

Defini t ion 5.3.4 Let  T-^ =< ^sure^^^dyi)^  ^  T2 =< ^  

M-tables defined over the scheme MR =< R^,..Rj^ >. Then, 

Ti U T2 = REDUCE(T),  where 

Tsure — ^ ' ^3urei  

T I = .  IJ t2  
maybe maybe maybe'  

Example 5.3.4 An example of the union operator is shown in Figure 5.6. 

5.3.5 Difference 

The difference of two domain-compatible M-tables Tj and T2 is computed as 

follows: 

1. If a mixed tuple set, u, of Ij has no common tuples with any mixed tuple set 

of T2 or with any maybe tuple of Tgi then it is included in the sure component 

of the difference. Otherwise, all the tuples in u that do not appear as a def­

inite tuple in T2 are included in the corresponding maybe components of the 

difference. 

2. A maybe tuple of Tj that does not appear as a definite tuple in Tg is included 

in the corresponding maybe components of the difference. 

The above discussion is formahzed in the following definition: 

Defini t ion 5.3.5 Let Tj and T2 be two M-tables defined over the scheme 
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^1 
R\ R2 

a 

b 

c 

d 

e 

f 

g 

h 

i 
j 

k 1 

m n 
o P 

q r 

T2 

^1 i?2 

c 

s 

t 

u 

g 

V 

m n 

w X 

y z 

e 1 

TiUTg 

^1 i?2 

a 

b 

c 

s 

t 

u 

e 

f 

S 
h 

i 
j 

k 1 

m n 
w X 

y z 

q r 

o P 
d V 

Figure 5.6: Union 
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MR =< >, 

^maybe =< ̂  ^laybe =< ̂ 1 ' 'A >'  

Then, Tj - T2 = REDUCE{T),  where 

TSUTC — ) "  •  •  5 ^  I ^1 > •  •  •  5 ' ^s t ive ^  

^(3n)- - - (3vj t ) (3 i ) ( (<  vi , . . . ,V}^ >e T^ure ^  

1 < 2 < A Tij- n I'j- ^ 0 ) A 

- ' (3 i ) ( l  < i < k A u^U Sj ^ 0)},  

^maybe ^1 ' • • • ' ''' 

^j  =  0  I (3 'u i ) - - - (3uj t ) (<  « i , . . . ,« j t  >e  î iuree  "j )  V< €  r^-)  A 

- i (3v i )  • • • (3u j^ ) (<  r i , . . . ,  >e  tsure^v j  =  {0  

{Vi)( l  < i<kAi:^ j—r Vj  =  0))} .  

Example 5.3.5 An example of the difference operator is shown in Figure 5.7. 

5.3.6 R-projection 

The R-projection operator takes in as input an M-table, T, of order k and n 

relation schemes R^,..., Rn which are among the relation schemes of T. It returns 

an M-table over the scheme < Rj,..., Rn >• If a mixed tuple set in Tsure has 

empty sets in all the components which do not correspond to any of the R^s then the 

mixed tuple set is included in the sure component of the R-projection. Otherwise, 

all the tuples from the components that correspond to the R^s are included in the 

respective maybe components of the R-projection. is also projected onto 
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Figure 5.7: Difference 
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< Rjg > to contribute tuples to the maybe component of the R-projection. 

Defini t ion 5.3.6 Let Tj be an M-table defined over the scheme Mi? =< iZj,...,Rj^ > 

where =< r-^,... ,rf^ >. Also let R^^,..., R^^ be relation schemes such that 

1. n < k,  

2. Rj^^ G {-^1) • • • 5-Rife}) 1 < j < n, and 

3. Rj^ = Rj^ if and only if jl = j2.  
J 1 

Then, >(î\) = REDUCE{T),  where T is an M-table over the scheme 

< ,..., > and is defined as follows: 

Tsure = {< ui,...,un > |  (3vi ) • • • (3r;^)(< rj ,..., vj;. >G Tjure A 

(Vj)(l < j < n U j  =  V I .  )  A 

(Vj)((l < j <kAj ^ Vj = 0))}, 

'^mayhe ~ > • • • > ^ > and 

= {t  I  (<  G ) V 

(3tii) • • • (3îtj^, )(< lij,... >6 Tg'fi'pç A 

(3/)(l < I <k Al ^  {*!,... ,in} A f 0) 

A t  e  U i j ) } A  <  j  < n .  

Example 5.3.6 An example of the R-projection operator is shown in Figure 5.8. 

5.3.7 Merge 

The merge operator is defined on M-tables which are defined over the scheme 

< ,..., i2j^ > where the relation schemes iîj,..., Rj^ are all domain-compatible. 
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Figure 5.8: R-projection 
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It returns an M-table over the scheme < >. The k components of a mixed tuple 

set are all merged into one component and the k sets of maybe tuples are also merged 

into one. The formal definition of merge is presented below: 

Defini t ion 5.3.1 Let Tj be an M-table defined over the scheme 

il/JÎ =<< J,. ..,"^jfel ' • • • '' ^kn 

such that the domains associated with the attributes A^, ... for a fixed i ,  are 

all the same. Also let 

^mayie = <^l'---'^it >• 

Then, Tnerge{Ti)  — REDUCE{T),  where T =< > is an M-table 

defined over the scheme << ..., >> and is defined as follows: 

Tsure = {< u > KBttj) • • •(3u^)(< uj,.. >€ A = uj U • • • U 

'^maybe =<n >. 

Example 5.3.7 An example of the merge operator is shown in Figure 5.9. 

5.4 Queries 

Queries can be expressed as a combination of the various generalized relational 

algebraic operators defined earlier. The M-table accurately models the two bounds 

on the external interpretation of a query (the interpretation in which the query is 

referred to the real world modeled in an incomplete way by the system [29]). The 

sure component of an M-table corresponds to one of the bounds which is the set of 

objects for which we can positively say that they belong to the external interpretation 

of the query. The maybe component of an M-table corresponds to the other bound 

which is the set of objects for which we cannot rule out the possibility of belonging 
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to the external interpretation of the query. We now present two examples of queries 

in the generalized relational model. 

Example 5.4.1 Consider the database in Figure 5.10 which consists of the two M-

tables: SP defined over the scheme << SUPPLIER,PART >> and P defined over 

the scheme << PART, COLOR >>. Also consider the query: Find all the suppliers 

SP 

SUPPLIER PART 

si pi 
s2 p3 
s3 p5 

s4 p3 

s4 p4 

s5 p3 

PART COLOR 

pi blue 

p2 green 

p3 red 

p4 red 

p5 red 
p6 red 

Figure 5.10: A Database 

who supply "red" parts. The query represented in the generalized relational algebra 

is: 

ANSWER = n^^2>>(<T<-2=3>('5-P x 

Evaluating this expression against the database in Figure 5.10, we obtain the answer 

in Figure 5.11. The answer can be interpreted in the following manner: s2 and s4 

supply "red" parts and s3 and s5 may supply "red" parts. 

Example 5.4.2 Consider the database, in Figure 5.12 which consists of two M-tables: 

1. SIB defined over the scheme << PERSON, SIBLING >>, and 
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ANSWER 

SUPPLIER 

s2 

s4 

s3 

s5 ~ 

Figure 5.11: Answer to Query 

2. MAFA defined over the scheme 

<< M -  ANCESTOR,  PERSON >,< F -  ANCESTOR,  PERSON >>.  

The M-table SIB represents the sibling relationship and the M-table MAF A repre­

sents the mixed relationships male-ancestor and female-ancestor. Consider the query: 

Find all the siblings of the ancestors, male or female, of "Tom". In the generalized 

relational algebra, this query is translated as: 

ANSWER = merge{U^^ i^^^ iy^ ( (T^p^  j r^^{SIB  x MAFA)) ) ,  

where F^ is (2 = 3) A (4 = "Tom"). Evaluating this expression against the database 

of Figure 5.12, we obtain the answer in Figure 5.13. The answer can be interpreted in 

the following manner: Pam, Gary, and Liz are siblings of ancestors of Tom, at least-

one of Craig or Don are siblings of the ancestors of Tom, and Bill may be a sibling of 

an ancestor of Tom. 

As the above two examples illustrate, the query is posed in the same way as for 

conventional relational databases. 
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SIB 

PERSON SIBLING 

Gary Chris 

Pam Mark 

Liz Pat 

Craig Mark 

Don Mark 

Bill Bob 

MAFA 

M - ANCESTOR PERSON F -  ANCESTOR PERSON 

Mark Tom 

Pat Tom 

Chris Tom Chris Tom 

Bob Tom 

Figure 5.12: A Database 

ANSWER 

PERSON 

Pam 

Gary 

Liz 

Craig 

Don 

iïîï 

Figure 5.13: Answer to Query 
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6 summary and conclusion 

We have presented a extended relational model to represent indefinite and maybe 

kinds of incomplete information. The relational algebra has been extended, in a 

semantically correct way, to manipulate these kinds of information. 

The disjunctive information represented in the indefinite component of I-tables 

and M-tables corresponds to the inclusive or variety, i.e., more than one tuple within 

a tuple set may be in the relation. To handle the exclusive or variety of disjunctions, 

we will have to modify some of the operators defined in this paper. 

Query optimization is an issue which needs to be studied in great detail. Some 

of the techniques used in the conventional relational model may be applied to our 

extended model too. Combining selections and cartesian products to obtain joins can 

drastically reduce the size of intermediate I-tables and M-tables. Transforming the 

extended relational algebraic expressions, as explained in [34,44], can improve running 

times of queries. 

Enforcement of integrity constraints in an I-database is another issue for further 

study. Let D be a set of integrity constraints. We define SAT{D) as follows: 

SAT{D) =:{<U,v> I < f/,v >€ a {Vr)(r eU ^ SATISFIES(r,D)) a 

(Vr)(r Cv^ (VriKrj SATISFIESir^Jr-^^D)))}, 

where SATISFIES{r,D) means that the relation r satisfies all the constraints in D. 
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Given an I-table, T, and a set of integrity constraints D, we now define the information 

content of T as REP{T) n SAT{D) instead of just REP{T). In order to enforce the 

integrity constraints D on I-table T, we must define an operator, subj{T,D), which 

returns an I-table and which satisfies the following condition: 

REP{subj(T, D)) = REP{T) n SAT{T, D). 

A similar definition can be made for M-tables. The definition of subj{T, D), for any 

D, is a topic for future research and is under investigation. 

Updates to I-tables and M-tables is another topic for future research. Updates to 

incompletely specified databases have been studied in [1,2,4,12,26]. The insert, delete, 

and modify operations need to be defined in such a way as to maintain all the integrity 

constraints on the database. The REDUCE operator needs to be invoked on an 

insert or a modify to maintain a reduced database. The effect of data dependencies 

on relational databases with null values has been studied in [23,28,47]. A similar 

analysis needs to be done for I-tables and M-tables. 

With the growing interest in deductive databases [16], definite as well as indefi­

nite, we feel that one needs to consider new models to handle indefinite information. 

The proof-theoretic approach to indefinite deductive databases is impractical as it is 

very inefficient to employ theorem provers, especially in the context of large indefinite 

databases. The conventional relational algebra can be used effectively to implement 

definite deductive databases. However, it cannot be used in the context of indefinite 

deductive databases. Our extended relational model has been shown to implement a 

subclass of indefinite deductive databases in [30]. 

Another area where the extended relational model can be applied is uncer­

tain/fuzzy databases. By assigning numerical values to tuples in an I-tables and 
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M-tables, we could enhance the quality of information being modeled. 

Finally, we discuss some previous research that is closely related to our work. 

Lipski presents a general theory of incomplete information databases in [29]. He 

distinguishes between the internal interpretation of a query which is based on the 

information present in the database and the external interpretation which is based 

on the real world truth. Our work is related to answering queries in the external 

interpretation. Imielinski [22] represents incomplete information in V-tables and C-

tables. Null values are treated as variables in V-tables. The relational algebraic 

operators cartesian product, projection, and positive selection on V-tables are the 

same as for relations. C-tables are generalizations of V-tables, where each row contains 

a condition. C-tables are capable of representing more general kinds of incomplete 

information, including disjunctions. The relational algebra is extended to operate 

on C-tables. This yields another approach to answering queries in the context of 

indefinite databases. Grant and Minker [20] work within the framework of database 

theories which contain the domain closure axiom, the unique name axiom, and the 

equality axioms. Queries are formulas in first-order logic. An algorithm to check if a 

candidate answer is indeed an answer is presented. An algorithm to find all minimal 

answers to queries is also presented. This is yet another approach to answering queries 

in indefinite databases. 



118 

7 bibliography 

Abiteboul, S. and Grahne, G. "Update semantics for incomplete information". 
Proceedings of the 11th International Conference on Very Large Data Bases, 
Stockholm, 1985, 1-12. 

Abiteboul, S. and Vianu, V. "Transactions in relational databases". Proceedings 
of the 10th International Conference on Very Large Data Bases, Singapore, 1984, 
46-56. 

Bancilhon, F. and Ramakrishnan, R. "An amateur's introduction to recursive 
query processing strategies".  Proceedings of ACM SIGMOD International Con­
ference on Management of Data, Washington, DC, May 1986, 16-52. 

Bancilhon, F. and Spyratos, N. "Update semantics of relational views". ACM 
Transactions on Database Systems 6(1981 ):557-575. 

Biskup, J. "A formal approach to null values in database relations". In Advances 
in Database Theory, Vl, ed. H. Gallaire, J. Minker, and J. Nicolas, 299-341, New 
York and London: Plenum Press, 1981. 

Biskup, J. "A foundation of Codd's relational maybe-operations". ACM Trans­
actions on Database Systems 8(1983):608-636. 

Biskup, J. "Extending the relational algebra for relations with maybe tuples and 
existential and universal null values". Fundamenta Informaticae 7(1984):129-
150. 

Chang, C.L. "On the evaluation of queries containing derived relations in re­
lational databases". In Advances of Data Base Theory, Vl, ed. H. Gallaire, J. 
Minker, and J. Nicolas, 235-260, New York: Plenum Press, 1981. 

Codd, E.F. "A relational model for large shared data banks". Communications 
of the A CM 13(1970):377-387. 

Codd, E.F. "Understanding relations". Installment #7, FDT Bulletin of ACM 
Record 7(1975):23-28. 



119 

[11] Codd, E.F. "Extending the database relational model to capture more meaning". 
ACM Transactions of Database Systems 4(1979):397-434. 

[12] Fagin, R., Ullman, J.D. and Vardi, M. "On the semantics of updates in 
databases".  Proceedings of the ACM SIGACT-SIGMOD Symposium on Prin­
ciples of Database Systems, Atlanta, GA, 1983. 352-365. 

[13] Gallaire, H. and Minker, J. Logic and Data Bases. New York: Plenum Press, 
1978. 

[14] Gallaire, H., Minker, J. and Nicolas, J.M. Advances in Data Base Theory. Vol­
ume 1. New York: Plenum Press, 1981. 

[15] Gallaire, H., Minker, J. and Nicolas, J.M. Advances in Data Base Theory. Vol­
ume 2. New York: Plenum Press, 1984. 

[16] Gallaire, H., Minker, J. and Nicolas, J.M. "Logic and databases; A deductive 
approach". ACM Computing Surveys 16(1984):151-184. 

[17] Grant, J. "Null values in a relational database". Information Processing Letters 
6(1977):156-157. 

[18] Grant, J. "Partial values in a tabular database model". Information Processing 
Letters 9{1979):97-99. 

[19] Grant, J. "Incomplete information in a relational database". Fundamenta Infor-
maticae 3(1980):363-378. 

[20] Grant, J., and J. Minker. "Answering queries in indefinite databases and the null 
value problem". In Advances in Computing Research, Volume 5:JAI Press Inc., 
1986. 247-267. 

[21] Henschen, L. and Naqvi, S. "On compiling queries in recursive first-order data 
bases". Journal of the 31(1984):47-85. 

[22] Imielinski, T. "On algebraic query processing in logical databases". In Advances 
in Database Theory, Vol. 2. Ed. H. Gallaire, J. Minker, and J. M. Nicolas, 285-
318, New York and London: Plenum Press, 1984. 

[23] Imielinski, T. and Lipski, W. "Incomplete information and dependencies in rela­
tional databases".  Proceedings of the ACM SIGMOD Conference on Data Man­
agement, San Jose, CA, May 1983, 178-184. 



120 

[24] Imielinski, T. and Lipski, W. "Incomplete information in relational databases". 
Journal of the vlCM 31(1984):761-791. 

[25] loannidis, Y.E. and Wong, E. "An algebraic approach to recursive inference". 
Proceedings of the First International Conference on Expert Database Systems, 
Charleston, South Carolina, 1986, 209-223. 

[26] Kuper, G.M. and Ullman, J.D. and Vardi, M, "On the equivalence of logical 
databases".  Proceedings of the ACM SIGACT-SIGMOD Symposium on Princi­
ples of Database Systems, Waterloo, Ontario, 1984, 221-228. 

[27] Levesque, H.J. "The interaction with incomplete knowledge bases: A formal 
treatment".  Proceedings of the 7th International Joint Conference on Artif icial 
Intelligence, Vancouver, B.C., August 1981, 240-245. 

[28] Lien, E. "Multivalued dependencies with null values in relational databases". 
Proceedings of the 5th International Conference on Very Large Data Bases, 1979, 
61-66. 

[29] Lipski, W. "On semantic issues connected with incomplete information systems". 
ACM Transactions on Database Systems 4(1979):262-296. 

[30] Liu, K.C. and Sunderraman, R. "Applying an extended relational model to in­
definite deductive databases".  Proceedings of the 2nd International Symposium 
on Methodologies for Intelligent Systems, Charlotte, NC, New York: Elsevier 
Press, 1987, 175-184. 

[31] Liu, K.C. and Sunderraman, R. "An extension to the relational model for in­
definite databases".  Proceedings of the ACM-IEEE Computer Society Fall Joint 
Computer Conference, Dallas, TX, October 1987, 428-435. 

[32] Liu, K.C. and Sunderraman, R. "Indefinite and maybe information in relational 
databases". January 1988. Submitted to ACM Transactions on Database Sys­
tems. 

[33] Liu, K.C. and Sunderraman, R. "On representing indefinite and maybe informa­
tion in relational databases".  Proceedings of the Fourth International Conference 
on Data Engineering, Los Angeles, California, 1988, 250-257. 

[34] Maier, D. The Theory of Relational Databases. Rockville, Maryland: Computer 
Science Press, 1983. 



121 

[35] McKay, D. and Shapiro, S. "Using active connection graphs for reasoning with 
recursive rules".  Proceedings of the 7th International Joint Conference on Arti­
ficial Intelligence, 1981, 368-374. 

[36] Minker, J. "On indefinite databases and the closed world assumption". In Lec­
ture Notes in Computer Science, N138, 292-308, New YorkiSpringer-Verlag, 
1982. 

[37] Minker, J. and Nicolas, J.M. "On recursive axioms in deductive databases". 
Information Systems 8(1982):1-13. 

[38] Minker, J. and Perlis, D. "Applications of protected circumscription". Proceed­
ings of the Conference of Automated Deduction, Napa, CA, May 1984. New York: 
Springer-Verlag 1984, 414-425. 

[39] Reiter, R. "On closed world databases". In Logic and Databases, ed. H. Gallaire, 
and J. Minker, 56-76, New York: Plenum Press, 1978. 

[40] Reiter, R. "Towards a logical reconstruction of relational database theory". In 
On Conceptual Modeling , ed. M. Brodie, J. Mylopoulos, and J. Schmidt, 191-
238, New York: Springer-Verlag, 1984. 

[41] Reiter, R. "A sound and sometimes complete query evaluation algorithm for 
relational databases with null values". Journal of the -4CM 33(1986):349-370. 

[42] Schwind, C.B. "Embedding deductive capabilities in relational database 
systems". International Journal of Computer and Information Sciences 
13(1984):327-338. 

[43] Tarski, A. "A lattice-theoretical fixpoint theorem and its applications". Pacific 
J. Mathematics 5(1955):285-309. 

[44] Ullman, 3.D. Principles of Database Systems. 2nd ed., Potomac, Maryland: 
Computer Science Press, 1982. 

[45] Ullman, J.D. "Implementation of logical query languages for databases". ACM 
Transactions on Database Systems 10(1985):289-321. 

[46] Vassiliou, Y. "Null values in data base management - a denotational semantics 
approach". Proceedings of the ACM-SIGMOD International Conference on the 
Management of Data, Boston, May-June 1979, 162-169. 



122 

[47] Vassiliou, Y. "Functional dependencies and incomplete information". Proceed­
ings of the 6th International Conference on Very Large Data Bases, 1981, 260-
269. 

[48] Vielle, L. "Recursive axioms in deductive databases : The query/subquery ap­
proach". Proceedings of the First International Conference on Expert Database 
Systems, Charleston, SC, 1986. 

[49] Yahya, A. and Henschen, L. "Deduction in non-Horn databases". Journal of 
Automated Reasoning 1(1985):141-160. 

[50] Zaniolo, C. "Database relations with null values". Journal of Computer and 
System Sciences 28(1984):142-166. 



123 

8 acknowledgements 

I would like to express my deepest gratitude to Dr. Ken-Chih Liu for all the 

guidance he has provided throughout my stay at Iowa State. The countless discussions 

we had over the past five years or so have enriched my understanding of logic and 

databases. 

I would also express my appreciation towards Dr. Oldehoeft, Dr. Schmidt, Dr. 

Stewart, and Dr. Pohm for serving on my POS committee. Special thanks goes to Dr. 

Schmidt for the numerous suggestions to improve Chapter 2 and for traveling between 

Manhattan, Kansas and Ames, Iowa for my preliminary and final examinations. 

I would like to thank Mrs. LaDena Bishop for her suggestions to improve the 

presentation of thesis. 

Finally, I must thank my parents for their constant support and encouragement 

without which I would have found it difficult to achieve my goals. 



124 

9 appendix 

Here, we present proofs for all the theorems stated in the paper. For convenience, 

we shall assume that the definite component of an I-table is made of singleton sets 

of tuples instead of tuples. Consequently, we shall refer to the definite and indefinite 

components as one component called the sure component. This assumption is made 

only for some of the proofs that follow. We shall assume T =< Tsure? 2^7nay6e ^ 8,nd 

Ti = <  '^aure^T^aybe 

Theorem 3,1.3 REP{T) = REP{REDUCE{T)) for any I-table T € Tjj. 

Proof: Let Tsure = . .., wn} such that 

(1) (Vz)(fc + 1 < i < n -> {3j)(l <  j  <  k  A  W j  C Wj)), and 

(2) (Vz)(l <i < k ^  j <k a  Wj C tUj)). 

Also let Tj = REDUCE{T). Then, by definition of Jî£?£)f7C£J, 

Let < MM, M > {REDUCE{T)) =< C/j.t'i >, < MM, M > {T) =< U2,V2 >, 

REP{REDUCE(T)) =< U[,v[ >, and REP{T) =< >. 

Claim 1: U[ = U'^. 

i) Consider rj = {<2, • •. ,<&} € where 1 < i  < k.  Since (1), there 

exists T2 = {<1,... ... ,/n} E U2, where E Wj, 1 <i <n and 

t j  6 {/j,. . .  k + 1 < j < n. Therefore, r2 = rj and hence rj G U2, 

i.e., U-^ Ç [^2" 
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ii) Consider ... ,tn} 6 C^2 ~ ^li where <j 6 1 < 

i  < n. Since, rj G U2 — U-^, there exists j, fc + 1 < j < n, such that 

ij 0 {^i> • • • ,<&}. Note that r2 = {/j,... ,<&} E (7% and from i) r2 E (72-

Clearly, 7-2 C t-j. Therefore, for every E U2 — there exists 7-2 6 U2 

such that T2 C r%. 

Therefore, from i) and ii) and definition of REDUCEREP, we conclude that 

u[ = v^. 

Claim 2: 

Let Ui = {ri,...,ra} and U2 = {ï"!)• • • 7^'a,J'a+l'• • •such that 

(1) (Vi)(o + l<z<a + fe—> (3j)(l < j < a A rj  C r^}),  and 

(2) (Vz)(l < i < a -+ - '(3j)(l < j < aArj C r-)).  

Then, by the definition of RE DU CEREP i  G if and only if 

(3) {(t  6 ^'2) /\ -i(3r)(r Ç l UI^AI Ç l t ) )  or 

(4) (3i)(3j)(a + 1 < I < a + 6 A 1 < j < a Arj C A t  E — rj)  A -i(3r)(r' G 

Ul^At Ç: r). 

Case 1 • { t  1^2) A -i(3r)(r E U!^ A t  Ç. r)  

iff (i 6 ^maybe) ^ -^(3w)(w G {loj,..., A i e w) (By definition of 

< MM, M >) 

iff {t G ~'(3iu)(u' G At e w) (By definition of REDUCE) 

iff (< G vj) A -i(3r)(r G U!^ At £ r) (By definition of < MM, M >) 

iif (< G vj) (By definition of REDUCEREP). 

Case 2 : (3z)(3j)(a + 1 < i < a + 6 A 1 < j < a At j  C At E —  r j )A 

- ' (3r)(r  E U2 At Ç: r)  
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iff (3i)(3j)(l <  i  <  k  A  k  +  1  <  j  <  n  A w j ^  C  W j  A i  W j  —  i O j )A 

-i(3w)(w €  A t  Ç  w )  (By definition of < MM, M >) 

iff {t 6 ^ ~'(3tr)(tr 6 ^ w) (By definition of REDUCE) 

iff (< 6 vi) A -i(3r)(r E A f E r) (By definition of < MM, M >) 

iff (< 6 Vj) (By definition of REDUCE REP). 

Therefore, from Case 1 and Case 2, we conclude that 

Therefore, < U[,v[ >=< >, i.e., REP[T) = REP[REDUCE{T)) for any 

I-table T. 

Theorem 3.1.4 For any I-tables Tj 6 and Tg G T 

REP[Ti) = REP{T2) if and only if REDUCE{Ti ) = REDUCE[T2). 

Proof: 

(if) Let REDUCE[Ti) = REDUCE{T2). 

Then, REP{REDUCE{Ti)) = REP[REDUCE{T2)).  

By Theorem 3.1.3, REP[T-^ ) = REP[T2). 

(only if) Let REDUCEiT^) # REDUCE(T2) and let 

REPiREDUCE{Ti)) =< Ui,vi > and REP(REDUCE(T2)) =< U2,V2 >. 

Case 1: REDUCE{Ti)j) # REDUCE{T2)d. 

Clearly, in this case, nC^2 = ® and at least one of U-^ or U2 is non-empty. 

Therefore, REPiREDUCE(Ti)) # REP{REDUCE(T2)).  

Case 2: REDUCE{Ti)j  ^  REDUCE{T2)j.  

Without loss of generality, it can be observed that there exists € U-^ 

such that rj 0 U2- Consequently, 

REP{REDUCE(Ti))  ̂  REP(REDUCE{T2)).  
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Case 3: REDUCE{Ti)m 9^ REDUCE{T2)m-

Without loss of generality, there must exist t  6 REDUCE{Ti)j^ such 

that t  0 REDUCE{T2)m '  

Since t  E REDUCE{Ti)j^,  t  £ vj .  

Since t  0 REDUCE{T2)m^ < ^ ̂ 2-

Therefore, rj ̂  V2 and hence 

REP{REDUCE{Ti))  ̂  REP{REDUCE{T2)).  

Therefore, from Case 1, Case 2, Case 3, and Theorem 3.1.3, we conclude that 

REP(Ti)^ REP{T2). 

Theorem 3.2.1 crp{< U,v >) = crp{REDUCEREP{< U,v >)), for any < U,v >6 

^R-

Proof: Let U = Ua U and Ua H = 0 such that 

(1) (Vri)(ri (3^2)(^2 E A r2 C rj)), and 

(2) (Vrj )(ri eUa -'(3r2)(^2 6 A ^2 C )). 

Also let crp{< U,v^ >) =< >, REDUCEREP{< U,v >) =< U',v'  >. and 

ap(REDUCEREP(< U,v >) =< [^2,^2 ^ Consider E U^. By (1), there exists 

E Ua such that rj C r^. Clearly, crjrirj) Ç <Tp(r^), and hence by the definition of 

REDUCEREP, U-^ = U2. Also, 

t  E ((Tp{ri) — (rp{rj)) V t  E (Tp{v) if and only if < E cTp{v').  

Therefore, by the definition of REDUCEREP, I'j = ̂ 2* 

Theorem 3.2.2 (rp{T) = (rp(REDUCE{T)) for any I-table T and selection formula 

F. 

Proof: Let T be an I-table such that Tsure = To U n Tg = 0, 
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(1) (Vwj)(t(;i E Tg —{3w2)iw2 E Ta /\ ^2 C wj)), and 

(2) (Vw2)(w2 G Ta -'(3w2)(^2 € 7a A tU2 C w^)). 

Let Tj = (TplT) and Tg = crp{REDUCE{T)).  

i) Consider Wj 6 Tg, such that all the tuples in wj satisfy F and let C wj for 

some E Ta- Surely, all tuples in also satisfy F. Therefore, by definition 

of REDUCE Wj 0 Tsure hence = T^ure-

ii) Recall that F(t) is F with attribute number i  replaced by i[i]. t  E if and 

only if 

1) ((< G T^aybe)^ A -'(3iy)(u' G Tj^re A i G w)) or 

2) ((3w)(w G Tsure A < G w A F{t) A - '{3w)(w G A f G w))).  

Case 1 : {t  E T^aybe)  ̂  '''(3w)(w G Tjure A i G w) 

iff (i  E REDUCE(T)^^yfj^) A F(t) (By definition of REDUCE) 

iff (< G T^aybe^ (By definition o{ <Tp).  

Case 2 : (3w)(w G Tsure A < G w A F{i) A -i(3u>)(-u' G A < G w)) 

iff (3w)(w G REDUCE{T)sure G w f\F{t)/\-->(3ui)(w G Af G «')) 

(By definition of REDUCE) 

iff (/. G T^aybe) definition of (xp). 

From Case 1 and Case 2, we conclude that T^^y^^ = T^^^y^^. 

From, i) and ii), we conclude that (Tp{T) = crjp{REDUCE(T)).  

Theorem 3.2.3 crp{REP{T)) = REP{ap>(T)),  for any reduced I-table T. 

Proof: Let T be a reduced I-table such that Tsure  = Ta U Tg, Ta n = 0, 
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(1) All tuples in E Ta satisfy F, and 

(2) Not all tuples in 6 satisfy F. 

Let (r^(< MM, M > {T)) =< > and < MM, M > (<7p(T)) =< >• 

Since (1) and (2), U2 Ç U-^ and for every G Uj — U2, there exists rj £ U2 such that 

Tj C Also, t 6 (r^ — rj) 6 vj if and only if < 6 t'2- Therefore, by the definition 

of REDUCEREP, 

REDUCEREP{< Ui,vi >) = REDUCEREP{< >), 

i.e., REDUCEREP{a^{< MM, M > (T))) 

= REDUCEREP(< MM, M >  { < 7 p(T))),  

i.e., <7p{< MM,M > {T)) = REP{(Tp{T)).  

Therefore, by Theorem 3.2.1, 

< T p{REDUCEREP{< MM, M > (T))) = REP { ( T p(T)),  

i.e., <Tp{REP{T)) = REP{crp{T)).  

Corollary 3.2.1 crp[REP{T)) = REP{<Tp{T)),  for any I-table T. 

Proof: Let T be any I-table and let = REDUCE{T). Then, by Theorem 3.2.3, 

cTp{REP{T-^)) = REP{ap{T'^)),  

i.e., (Tp[REP{REDUCE[T))) = REP{apiREDUCE{T))).  

By Theorem 3.1.3, 

(7p{REP{T)) = REP(<rp{REDUCE(T))) 

and by Theorem 3.2.2, 

( T p{REP{T)) = REP { < T p{T)).  
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Theorem 3.2.4 n^(< U,v  >)  =  Ej^{REDUCEREP{< U,v  >)), for any < 

U,v >6 Sjg. 

Proof; Let U = Ua U and Ua H Î7^ = 0 such that 

(1) (Vri)(ri eU^-^ (3r-2)(r'2 G ?7a A r2 C rj)), and 

(2) (Vri)(7-i eVa-* -•(3r2){7'2 G Î/q A r2 C rj)). 

Also let.n̂ (< U^v >) =< >, REDUCEREP{< U,v  >)  =< ,v '  > ,  and 

ï i j ^ {REDUCEREP[< U,v  >)) =< U2,V2 >•  Consider, £ UBy (1) ,  there 

exists rj E Ua and rj C r-. Clearly, ) C n^(rj ). Therefore, by the definition 

of REDUCEREP,  Ui  = [Tg. Also, 

t  G (n^(rj  -  n^(ry)) y i  ev-ymt ev2. 

Therefore, by the definition of REDUCEREP^ v-^  =  V2* 

Theorem 3.2.5 = Ilj:^{REDUCE{T)) for any I-table T and attribute list 

A.  

Proof: Let T be an I-table such that Tsure  = Îq U Tg, Ta n Tg = 0, 

(a) 6 —> {3w2){w2 € Ta A W2 C w^)), and 

(b) (\/wi){wi G Ta —> -'(3u'2)(^'2 G Ta A ^2 C 

Le t  T j  =  n^ ( r )  and  T^  =  Uj^{REDUCE(T)) .  

(1) Consider G Tjg and let C Wj for some G Ta. Clearly, 11^ C 11 

Therefore, by the definition of REDUCE = '^sure-

(») ' e 

iff(3<i)(<i G Tj^aybe^^  = n^(<l)A-^(3u')(w G TsureG w))  (By definition 

ofn^)  
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iff (3<i)(<i € REDUCE{T)^^y i , ^  A t  =  n^(ti)) (By definition of REDUCE)  

iff t € T^aybe definition of H^) 

Therefore, = T^^ybe' 

Therefore, from (i) and (ii) we conclude that 11^(7) = T[ j^{REDUCE{T)) .  

Theorem 3 .2 .6  J l j ^{REP{T))  = REP{I l j ^^ (T) ) ,  fo r  any  reduced  I - t ab le  T.  

Proof; Let T be a reduced I-table and let Tsure  = îa U and Ta H = 0 such 

that 

(1) {Vwi)(wi e -i- {3w2){w2 g Ta An^(tii2) Ç ))), and 

(2 )  {ywi ){wi  E  Ta  -T  - I (3u '2 ) (« '2  ^  A n^ (u '2 )  Ç  n^(u» i ) ) ) .  

Let < MM,M > (T) =< U\v'  >, n^(< MM,M > (T)) =< Ui,vi >, and < 

MM, M > (n^(r)) =< U2,V2 >. Since (1) and (2), U' = (7  ̂U and n = 0 

such that 

(3) (Vri)(ri (3r2)(T'2 € U'̂  An^(r2) C and 

(4) (Vt-j )(ri eU'a^ -^{3r2)(r2 E (7a A n^(r2) C n^(r-i ))). 

Also, 

(5) (Vri)(ri e Î72 -> (3r2)(r2 6 = ^^(^2))), and 

(6) (Vrj )(ri e U'a (3r2)(7'2 E U2 A 7*2 = n^(ri ))). 

From (3), for any e there exists r j  e and 11 ̂ (r^) c r^. Also 

t e n^(r^) — n^(rj-) v f e t'l if and only if f e ^2-

Therefore, by the definition of REDUCEREP, 

REDUCEREP{< Ui,vi >) = REDUCEREP(< U2,V2 >), 
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i.e., REDUCEREP[< n^(< MM,M > (T))) = REDUCEREP{< MM,M > 

(n̂ (r))), 

i.e., n^(< MM,M > (r)) = REP{Uj^{T) ) .  

Therefore, by Theorem 3.2.4, 

U^{REDUCEREP{< MM,M > (T) ) )  =  REP{Tl j^{T) ) ,  

i.e., Uj^{REP(T))  =  REP{J l j ^{T) ) .  

Corollary 3.2.2 Tl^{REP{T))  =  REP{Tl j^{T) ) ,  for any I-table T.  

Proof: Let T be any I-table and let Tj = REDUCE{T) .  Then, by Theorem 3.2.6, 

n^(i?£P(ri)) = i?£P(n^(Ti)), 

i.e. ,  ^J!^{REP{REDUCE{T))) = REP{Uj^{REDUCE{T))). By Theorem 3.1.3, 

J i j ^{REP{T))  =  REP{l l j ^{REDUCE{T)) )  

and by Theorem 3.2.5, 

Yi j^{REP{T))  =  REP{J i^{T) ) .  

Theorem 3.2.7 For any < >6 and < (72;^2 

< U-^ ,v i  >  X <U2,V2>= REDUCEREP{< >) X REDUCEREP{< 

U2,V2 > 

Proof; Let < Ui ,v i  > x < (72,^2 >=< ^i>^'i > and REDUCEREP(< Ui ,v i  >  

) X REDUCEREP{< ^2)^2 >) = < ^2*^2 let U-^ — U and 

Ua n = 0 such that 

(1) (Vri)(ri (3r2)(r2 6 A r2 C rj)), and 

(2) (V7'i)(ri e (7I ^ -.(3r2)(r2 6 17^ A r2 C rj)), 

and U2 = U and fl = 0 such that 
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(3) (VrjXri G (3r2)(T'2 G A 7-2 C rj)), and 

(4) (Vri)(ri G Î7a ^(3^2)(^2 G A r2 C rj)). 

Now consider rj G By (1), there exists r^ G U\ such that r^ C rj.  Therefore, 

T-j X Te C rj X re for any rg G î/2- Similarly, consider rj G Î/J. By (3), there exists 

ri G î7q such that r^ C rj. Therefore, r^ x rg C rj x rg for any rg G Hence, 

Uj = U^. Using Lemma 3.1.1, we can conclude that Vj = v^. 

Theorem 3.2.8 3% x Tg = REDUCE{Ti)  x REDUCE{T2) ,  for any two I-tables 

Tj and 

Proof: Let Tj and he two I-tables. Then, 

REP{Ti  XT2)  

=  REP{Ti)  X REP{T2) ,  by Theorem 3.2.9. 

= REP{REDUCE{Ti) )  x REP{REDUCE(T2)) ,  by Theorem 3.1.3 

= REP{REDUCE{Ti) x REDUCE(T2)), by Theorem 3.2.9. 

Therefore, by Theorem 3.1.4, we conclude that 

Ti X 7̂ 2 = REDUCE[Ty)  X REDUCE{T2) .  

Theorem 3.2.9 REP{Ti)  x REP{T2)  =  REP(T-^  x T2), for any two reduced I- " 

tables Tj and l2-

Proof; Follows from the definition of Tj x 

Corollary 3.2.3 REP{T\)  x REP{T2)  = REP{Ti  x T2), for any two I-tables 

and T2. 

Proof: Let Tj and T2 be any two I-tables and let = REDUCE[T-^)  and 

= REDUCE{T2). Then, by Theorem3.2.9, REP{T^) x REP(T§) = REP(Tf x 

T^), i.e., REP{REDUCEiTi)) x REP{REDUCE{T2)) = REP{REDUCE{Ti) x 

REDUCE{T2)) .  By Theorem 3.1 .3 ,  REPiT^)  x REP{T2)  = REP{REDUCE{Ti)  

X REDUCE{T2)) and by Theorem 3.2.8, REP{Ti) x REP[T2) = REP{Ti x 72). 
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Theorem 3.2.10 < Ui,v i  > U < U2,V2 >= REDUCEREP{< U-^^v i  >)  U 

REDUCEREP{< t^2'^2 any < >€ Sjj and < t^2'^2 Sjj. 

Proof: Let (7^ = U (7^ and Z7^ n Z7  ̂ = 0 such that 

(1) (Vri)(7'i e C/^ ^ (37'2)(7'2 € ?7q A7'2 C rj)), and 

(2) (Vrj )(ri 6 -i(3r2 )(r2 G «7^ A r2 C rj )). 

and let ?72 = U t/J and DU^ = Ç) such that 

(3) (Vri)(ri (3r2)(''2 ^l))' 

(4) (Vri)(ri -n(3r2)(r2 E (7^ A 7-2 C rj)). 

Consider € U^.  By (1), there exists r j  E (7^ and C r^ .  Therefore, for any 

Te € Î72, Tj U Te C rj U re. Similarly, consider € U^. By (3), there exists 

rj G Ua and rj C r^. Therefore, for any re G Ui rjUre C U rg. Therefore, 

by definition of REDUCEREP and Lemma 3.1.1, < Ui,vi > U < U2,V2  ̂ ~ 

REDUCEREP{< [ / j .v i  > )  U REDUCEREP{< U2,V2 >) .  

Theorem 3.2.11 Tj U r2 = REDUCE{T-^ ) U REDUCE{T2) ,  for any two domain-

compatible I-tables îj and 

Proof; Since the extended union operator has REDUCE built into it, we can easily 

observe  tha t  U ^2  =  REDUCE{Ti  )  U REDUCE{T2) .  

Theorem 3.2.12 REP(Ti) U REP{T2) = REP{Ti U Z2), for any two domain-

compatible reduced I-tables îj and 

Proof: Let Tj and Tjg be two domain-compatible reduced I-tables. Also, let = 

Tq U Tg, T^nT^ = 0, T^ure = U Tg, and n tJ = 0 such that 

(1) (VwiXwi G -> (3w2)(w2 G A •u>2 C wj)), 

(2) (iwi){wi G -> -<(3uj2)(Î«2 S 2a A ^2 C u>i)), 
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(3) (Vwi)(wi e (3w2){w2 E A ^2 C wi)), and 

(4) (Vwi)(ii)i G r| -> -'(3w2)(^2 G A u)2 C w^)). 

Let < MM,M > (7i)U^ < MM,M > (T^) =< Ui,v i  >, and < MM,M > 

{Tj UT2) =< U2,V2 >. By (1), (2), (3), and (4), U2 G Ui and for each E Ui — U2, 

there exists rj G U2 and rj C r^. Also, by Lemma 3.1.2, 

t  6 (r^ —  r j )  y  t  E  v i  if and only if < E t'2. 

Therefore, by definition of REDUCEREP,  

REDUCEREP{< Ui ,v i  >)  = REDUCEREP(< &2,V2 >),  

i.e., REDUCEREP{< MM,M > {Ti )U^ < MM,M > {T2))  =  REDUCEREP(< 

MM, M > U2^)) ,  

i.e., < MM,M > (ri)U < MM,M > (Z^) = AEfU ̂ 2). 

Therefore, by Theorem 3.2.10, 

REDUCEREP(< MM,M > (T i ) )  U REDUCEREP{< MM,M > (72)) = 

REP(T^UT2), 

i.e., REP{Ti)  U REP[T2)  = REP{Ti  U T2). 

Corollary 3.2.4 REP{T-^)  U REP(T2)  = REP{T^ U Tg), for any two domain-

compatible I-tables Ti and T2. 

Proof; Let Tj and T2 be any two domain-compatible I-tables and let T® = 

REDUCE{Ti) and T§ = REDUCE{T2). Then, by Theorem 3.2.12, REP[T^) U 

REP{T^) = REP{T^ U T^), i .e. ,  REP(REDUCE{Ti)) U REP{REDLWE(T2)) = 

REP{REDUCE{T-^)liREDUCE{T2)). By Theorem 3.1.3, REP{Ti)^ REP{T2) = 

REP{REDUCE[T i)^REDUCE{T2)) and by Theorem 3.2.11, REP{Ti)liREP{T2) 

= REP{TiVJT2). 
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Theorem 3.2.13 < > — < £^2'^2 >= REDUCEREP{< Ui ,v i  >)  -

REDUCEREP{< U2,V2 >, for any < >6 and < U2,V2 >6 

Proof: Let f/j = U and OU^ = $ such that 

(1) (Vri)(ri (3r2)(r2 G U^, A r2 C rj)), and 

(2) (Vrj ){ri  G -i(3r2)(r2 £ A r2 C )). 

Also let 

REDUCEREP(< Ui ,v i  >)  =< ,v^  >,  

REDUCEREPi< U2,V2 >) =< U^, i '§ >, 

< Ui,vi > — < U2,V2 > = < U,v >, and < >=< U^,v^ >. By 

Lemma 3.1.1, 

U  ( r )  U ^2  =  U (^ )Uv2-

^^^2 tEU^ 

Let TYha = U (r)Ur2. Consider r^- G U^.  By (1), there exists r j  G r j  C r j .  
tÇ:U2 

Clearly, [v j  — Ç [r^  — Therefore, by the definition of RE DUC REP,  

U = U^.  Since Q (r) = Q (r), by definition ofand i2£'Z)C^C7£'iZ£'P, v = 

^et^2 reU^ 

Theorem 3.2.14 T-̂  — T2 = REDUCE{Ty  )  — REDUCE{T2 ), for any two domain-

compatible I-tables Ti and 

Proof: Let and T2 be two domain-compatible I-tables such that 

and T^DT^ = 0 such that 

(1) (Vwi)(w2 G Tg (3w2)(w2 £ A W2 C u'l)), and 

(2) (vw2)(wi g ta -'(3w2)(^2 ^ ^ wj)). 
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(i) Consider Wj € and let C wj for some Ç T^. Let wj not have any 

common elements with any tuple set of T^ure with Since, C ivj ,  

also does not have any common elements with any tuple set of T^nre or with 

^maybe' Therefore, wj 0 (Tj — T2)sut€' Using Lemma 3.1.2, we conclude that 

(3\ — T2)sure — {REDUCE{T-^) — RE DU CE {T2)) sure-

(ii) Since = (7ZED[/CE(T2))2), by Lemma 3.1.2 we conclude that T2)mai/6e 

= [REDUCEiT-^)- REDUCE[T2))mayhe-

Therefore, by (i) and (ii), we conclude that Tg = REDUCE{Ti)—REDUCE(T2)-

Theorem 3.2.15 REP{Ti) — REP(T2) = REPiT^ — T2), for any two domain-

compatible reduced I-tables Tj and 

Proof: Let and Tjg t)e two domain-compatible reduced I-tables, T = — %2) 

<  M M ,  M  >  { T i  -  T 2 )  = <  U , v  > ,  <  M M ,  M  >  ( T j )  = <  U i , v i  > ,  <  M M ,  M  >  

{T2) =< U2,V2 >, and < MM, M > (T^)-® < MM, M > {T2) =< V',v' >. Also 

let rJuT-e = {wJ,... ... ,wn} such that 

(1) W { ,  1  <  i  ̂  k ,  does not have any common tuples with any component of T2, and 

(2) ti'j, k + 1 < ( < n, has common elements with or with a tuple set of Tj or 

with r|^. 

Therefore, by the definition of difference of I-tables, Tsure  = {w^,..., w;;.}. By (1) 

and (2), U-^ = U and (7^ H = 0 such that 

(3) r  E such that the tuples selected from W j ,  k  +  1  <  i  <  n ,  are the ones that 

are common with some component of 7*2, and 

(4) r E such that the tuples selected from W j ,  k  +  1  <  i  <  n ,  are the ones that 

are not common with any component of Tg. 
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Therefore, by the definition of — U where 

= {r|(3n )(ri E A r = - ( (J (r2) U ^2))}, and 

Ug = {r\{3ri)(r-^ E Ul  A r  = ri  -  { [J (7-2) UV2))} .  

T2eU2 
Clearly, all the relations in are subsumed by some relations in C/^- It can also be 

observed, from (3) and the definition of difference of I-tables that U = (7^. Also, 

t  € V i{ and only if {i E v') V (3rj )(3r2)(r2 E A r2 E U[^ A r2 C rj A < G rj — r^). 

Therefore, by the definition of REDUCEREP,  

REDUCEREP{< U' ,v '  >)  = REDUCEREP{< U,v  >) ,  

i.e., REDUCEREP{< MM, M > {Tj ) -^  < MM, M > (3^)) = REDUCEREP{< 

MM, M > (7^  -T2)) ,  

i.e., < MM, M > (Ti)- < MM, M > (T2) = REP{Ti  - T2). 

Therefore, by Theorem 3.2.13 

REDUCEREP{< MM,M > (Ti)) - REDUCEREP{< MM,M > ( Î2) )  = 

REP{T^-T2), 

i.e., REP{Ti)  -  REP{T2)  =  REP{Ti  -  Tg). 

Corollary 3.2.5 REP[T-^)  — REP{T2)  = REP{Ti  — T2), for any two domain-

compatible I-tables Tj and 

Proof: Let Tj and Tg be any two domain-compatible I-tables and let T® = 

REDUCE{Ti) and = REDUCE{T2). Then, by Theorem 3.2.15, REPiXf) -

REP{T^) = REP{Tf -  T^),  i .e. ,  REP{REDUCE(Ti)) -  REP(REDUCE{T2)) = 

REP{REDUCE{Ti)-REDUCE{T2)).  By Theorem 3.1.3,  REP {T i)-REP {T2) = 

REP(REDUCE{Ti)-REDUCEiT2)) and by Theorem3.2.14, REP{Ti)-REP{T2) 

= REP{Ti -  T2). 
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Theorem 3.2.16 < Ui^v-^  > D < U2,V2 >= REDUCEREP{< >)  n 

REDUCEREP{< (72,^2 for any < Ui^v-^  >G and < U2,V2 >G Sjg. 

Proof: Let ?7j = u  and n  C/^ = 0 such that 

(1) (Vri)(ri eU'^-^ (3r2)(T-2 E ^2 ^l))' 

(2) (Vri)(ri G ^ r2 C rj)), 

and let U2 = U Î/J and Î7^ PI C/^ = 0 such that 

(3) (Vri)(ri G -> (3r2)(r2 G A 7*2 C rj)), and 

(4) (Vri)(ri e t/J -> -'(3r2)(r2 € [To A r2 C t-J)). 

Consider E U^. By (1), there exists rj  G Î7^ and C t^. Clearly, rj  Dre C Hrg 

for any rg G t/'2* Similarly, consider G U"^. By (3), there exists rj G and 

rj C Tj. Clearly, rg H rj C rg D for any rg G (7%. Therefore, by the definition of 

REDUCEREP and Lemma 3.1 .1 ,  <  Ui,v i  > D < #2)^2  REDUCEREP(< 

^I '^ l  ^  REDUCEREP(< U2,V2 >) .  

Theorem 3.2.17 2^(122 = REDUCE{Ti  )  n REDUCE(T2) ,  for any two domain-

compatible I-tables Tj and Tg. 

Proof: Let T-^ and T2 be two domain-compatible I-tables such that T^^g = T^UT^ 

and T^OT^ = 0 such that 

(1) (Vwi)(wi G — (3%'2)(W2 G 7^ A W2 C u'l)), and 

(2) (Vwi)(wi G — -'(3w2)(^2 E ^ «'2 C li'i)), 

and let T^ure = 2^ U Tg and n = 0 such that 

(3) (Vwi)(wi G ->• (3w2)(w2 G 2^ A W2 C w^)), and 

(4) (Vw2)(wi G rj ̂  -'(3w2)(w2 G A W2 C tfi)). 
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(i) Consider wj E 2^ and let C wj for some £ T^. Let wj Ç T^. Therefore, 

Wi Q Tp and hence Wj 0 (Tj D T2)sure- Similarly, wj 0 n T2)sure, for 

Wj  6  7^ .  Therefore ,  (T j  r \T2)sure  — (REDUCE{T-^)  D I tEDUCE{T2))sure•  

{i\) From (i) and Lemma 3.1.2, we can easily conclude that 

iT i r^T2)maybe  =  {REDUCE{T-^)  n  REDUCE{T2))maybe-

Therefore, from (i) and (ii), we conclude that 

TinT2 = REDUCE{Ti  )  n REDUCE{T2) .  

Theorem 3.2.18 REP{Ti) fl REP{T2) = REP{Ti n T2), for any two domain-

compatible reduced I-tables Tj and Tg. 

Proof; Let Tj and T2 be two reduced domain-compatible I-tables such that 

Tjure = where 

(1) (Vi)(l < 2 < & ^ Ç and 

(2 )  (Vi ) ( fc -M<i<n^u>J  g r | ) ) ,  

and T^ure = where 

(3) (Vi)(l <i<l^wfc and 

(4) (Vi)(/ -i-1 < i < m -> wf g T^). 

Also let < MM, M > (T^ D T2) =< U',v'  >, < MM, M > (Tj) =< Ui,vi >, 

< MM, M > {T2) =< U2,V2 >, and < > D® < U21V2 > — < >• Let 

6 U' . Since (1), (2), (3), and (4), we have 

G Ui, where 
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(Vi)(fc +1 < z < n -> /J e r2 ) 

and { t i , . . .  , t f  . . .  , t m }  E U 2  where 

(Vz)(l 

{yi){l + l<i<m—i-<?6 

Therefore, {<J,... ... ,f^} E C^, and hence Ç U. Also, because of (1), (2), 

(3), and (4), for any r-^ £ U — there exists T2 € V' such that r2 C and for any 

i  G r j  — r2 ,  < 6 v ' .  Therefore ,  by  the  def in i t ion  of  REDUCEREP,  

REDUCEREP(< U,v  >)  = REDUCEREP{< U' ,v '  >) ,  

i.e., REDUCEREP{< MM, M > {Ti )r f i  <  MM, M > (7^)) = REDUCEREP{< 

MM, M > (Ti  nTg)) ,  

i.e., < M M ,  M  >  { T i ) n  <  M M ,  M  >  ( T 2 )  =  R E P { T i  n 2^). 

Therefore, by Theorem 3.2.16, 

REDUCEREP{< MM,M > (Ti ) )  D REDUCEREP{< MM,M > ( Î2) )  =  

REP{T^r\T2),  

i.e., REP{Ti ) n REP{T2) = REP(Ti 

Corollary 3.2.6 REP{Ti) n REP{T2) = REP{Ti n T2), for any two domain-

compatible I-tables Ti and 

Proof: Let Tj and T2 be any two domain-compatible I-tables and let Tj' = 

REDUCE{T-^) and T® = REDUCE{T2)- Then, by Theorem 3.2.18, 

REP{T^}  n REP{T^)  =  REP{T^  n T^), 

i.e., REPiREDUCEiTi)) n REP{REDUCE{T2)) 

= REP{REDUCE{Ti)f)REDUCE{T2)).  

By Theorem 3.1.3, 
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REP{Ti)  n REP{T2)  =  REP{REDUCE{Ti)  n REDUCE{T2))  

and by Theorem 3.2.17, 

REP{Ti)  n REP{T2)  = REP{Ti  n T2). 

Theorem 4.1.1 >) = 

U,v >)), for any < U,v >E and domain-compatible projection attribute lists 

J4.2 , .  • . ,  Aji> 

Proof: Let U •= U q,^U^ such that n = 0, 

(1) (Vri)(r]_ (3r2)(T-2 6 Ua A r2 C r^)), and 

(2) (V7-i)(ri e U a  ̂  "'(3^2)(''2 A r 2  C  rj)). 

Consider rj G U^. By (1), there exists ^2 € Ua such that r2 C . Let 

rg 6 Since, r2 C r^, by definition of 11, there exists 6 

^<Aiy..,An>^^2) such that C rg. Also, 

f e 7-3 -7-4 if and only if (3<i)(ii 6 rj - r2 A < G {n^^(<i),... ,n^^(/i)}. 

Therefore, by the definition of REDUCEREP,  

^<Ai,...,A„>i< V,v >) = ^^^{REDUCEREP{< U,v »). 

Theorem 4.1.2 ^^5.(fl££)r/C£(r)), for any I-table 

T  and domain-compatible projection attribute lists A i , . ,  A n -

Proof; Let Tgure = îa U Tg such that n = 0, 

(1) (B«'2)(«'2 € la A W2 C ^i)), and 

(2 )  €  l a  —> - ' (3w2) (^ '2  G Za  A W2 C w^)). 
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Consider wi G T^. By (1), there exists W2 E Ta such that W2 C Clearly, 

G U<^i,...,^„>{«'l)- Also, 

< G - II<Ai,...,An>(^'2) if ^nd only if 

(3ii)(ii e wj -1^2 Af e ),...,n^^(ti)}). 

Therefore, by the definition of REDUCEREP,  

Theorem 4.1.3 = REP{]l^J^^ _ J^^^(T)),  for any re­

duced I-table T and domain-compatible projection attribute lists Aj,..., An •  

Proof: Let T be a reduced I-table, where Tsure  =  {w%, . . . ,  wg}  and  l e t  T j  be  

w i t h o u t  t h e  R E D U C E  o p e r a t o r .  L e t  <  M M ,  M  >  ( T )  = <  

Ui,vi > and < MM,M > (Tj) =< U2,V2 >. Consider any r E Ui, where 

r = where G w^, 1 < i < e. Let U C U2 such that U con­

sists of relations that are related to the tuples By the definition of < 

M M ,  M  >  and it can be observed that ~ 

Therefore, by the definition of REDUCEREP and Theorem 3.1.3, we conclude that 

An>(n) .  

Corollary 4.1.1 for any I-

table T and domain-compatible projection attribute lists i • • • 1 • 

Proof: Let T be an I-table and let Tj = REDUCE(T) .  Then, by Theorem 4.1.3, 

This is equivalent to: 

^ < A i , . . . , A n>( ' imREDUCE{Tm = 

Therefore, by Theorem 3.1,3 and Theorem 4.1.2, 
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yl^>(r)). 

Theorem 4.7.1 Any extended relational algebraic expression involving cartesian 

product, union, selection, and project-union is monotonie. 

Proof; The semantic definition of weaker I-tables, the commutativity of the ex­

tended relational algebraic operators with REP, and the monotonicity of the regular 

algebraic operators allow us to conclude: 

1. {Ti < T2) ->• {ap{Ti) < crjr(Ï2)), 

2. (Ti < Tg) 

3. (ti < T2) a (ta < T4) ^  (RI X tg) < (T2 X T^) 

4. (ti < r2) a (tg < t4) (ti u t3) < (r2 u r4) 

A simple induction on the number of operators in the extended relational algebraic 

expression allows us to conclude the theorem. 


