INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure arid thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

74-9160
TAYLOR, John Colin, 1945-
GULLY BANK EROSION: MECHANICS AND SIMULATION BY DIGITAL COMPUTER.

Iowa State University, Ph.D., 1973
Engineering, agricultural

University Microfilms, A XEROX Company , Annn Arbor, Michigan
Gully bank erosion: Mechanics and simulation by digital computer by
John Colin Taylor
A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY
Departments: Agricultural Engineering Agronomy
Co-majors: Agricultural Engineering Soil Physics

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Departments
Signature was redacted for privacy.
For the Graduate College

Iowa State University
Ames, Iowa
1973

TABLE OF CONTENTS

page1
GROUNDWATER FLOW MODELS 10
BANK STABILITY ANALYSIS 28
RESULTS AND DISCUSSION 46
FUTURE DEVELOPMENTS AND OTHER APPLICATIONS 79
BIBLIOGRAPHY 84
ACKNOWLEDGMENTS 87
APPENDIX A 88
APPENDIX B 155

INTRODUCTION, SELECTED LITERATURE REVIEW AND OBJECTIVES

Introduction

Erosion of gullies has long been recognized as a problem in the loess hills of the Missouri River valley. Deep gullies with sheer banks are characteristic of the deep loess soils in western Iowa. These gullies are periodically inclined to rapid growth rates caused by flash floods from localized but severe rainstorms and by high water tables which result from sustained rainfalls.

Material that has accumulated in the channel over a period of time is suddenly sluiced out by heavy rains. Both during and immediately following this event bank caving is observed. The headward advance of the gully can be spectacular, perhaps 20 to 30 feet in a few hours, which for a gully cross section that may be 600 square feet, amounts to 670 cubic yards of material eroded. In addition to the advance of the gully head we observe lateral widening along the banks that also contributes vast quantities of material to the sediment load of the stream.

Loess, popularly considered Aeolian in derivation, is largely silt with low cohesion and of particle size easily transported by running water. Thus previously sloughed material is moved away easily. Bank caving is observed immediately after the peak flow stage and continually after
the peak Q has long passed until temporarily stable talus profiles are formed. This suggests that instability is induced by a combination of factors: the removal of talus from the toe of the banks giving a steeper and less stable profile, the rapid drawdown effect of water recharged into the banks at high stage and left as exira weight after the peak flow passes, and continuous groundwater seepage through the banks.

Very little has been reported to explain the mechanics of this caving process in quantitative terms. The conceptualization, formulation and simulation of the process on a digital computer is presented in this thesis.

Selected Literature Review
Because there are few articles that relate explicitly to the approach taken in this thesis only a selected review of literature related to gullying is presented. Articles from subject areas such as soil physics and soil mechanics that deal with physical principles or techniques used in the synthesis and formulation of the computer models are cited appropriately in later sections.

Gully studies of the past have taken several forms that are conveniently classified as: historical documentations, statistical analyses of growth; reports on control measures or detailed studies of a particular gully.

Historical documentations

A most interesting study was conducted by Daniels (1960) of the entrenchment of the Willow drainage ditch in southwestern Iowa. The man-made ditch was constructed in the 1920s; the modification of its cross section and 28 mile longitudinal profile by erosion since then has been extreme. At one point the cross sectional change was from 11 feet depth and 30 feet top width in 1920 to 42 feet depth and 110 to 120 feet top width in 1958. Although the Willow drainage ditch was man-made, the processes inducing bank caving are the same as in a natural guily and the sudden change in cross section below Daniel's "knick point" that erodes its way upstream is very similar to a natural gully head where we observe a natural stream of much smaller cross section flowing into it (Bradford et al., 1973).

A similar historical documentation was part of the study by Beer and Johnson (1963). Original survey notes, aerial photography and interviews with local inhabitants were the basis for estimating the stages of gully development in Steer Creek Watershed in southwest Iowa from 1851 to 1961.

Another very detailed study of several gullies in the Piedmont Region of South Carolina was made by Ireland et al. (1939). Qualitative observations of the mechanics of gullying processes such as caving were made in addition to many quantitative surveys of gully geometries and their local geologic formations.

The United States is not the only place where gullies have been studied; in fact, there are many examples of historical studies in literature from the Third World and Australasia. One author, Bishop (1962), speculated that the cause of gully erosion in the Queen Elizabeth National Park of Uganda was the rapid build-up of "perched" water tables during heavy rain causing increases in subterranean flow into the gully head.

Statistical analyses of growth

Attempts have been made to quantify gully growth through statistical correlation to hydrologic and watershed parameters. The studies of Beer and Johnson (1963), and Thompson (1954) in the United States and Seginer (1966) in Israel are examples. The objectives of this type of study are two-fold: to derive a quantitative prediction equation and to isolate the important parameters or parameter combinations. The equations derived are not related to any hypothesized physical process but isolation of important parameters may give the researcher an indication of where to start formulating his physical model. Such equations are of limited value for prediction or simulation modeling where prediction of the effect of short-term rainfall events is required. The quantity and accuracy of data available to develop the prediction model determines the accuracy of such equations.

Reports on control measures
Because of the great inconvenience of gullies to man and resource loss much has been done to develop suitable control measures. The literature, particularly Soviet and Polish, is abundant with reports on the effectiveness of different types of control measures: For example, Kobezskii (1959), Asatryan (1965), and Zaitsev (1968). Examples similar to this type of report but from the Western World are those of Woolhizer and Miller (1963) in the United States, Hudson (1963) in Rhodesia and Thompson (1962) and Glass (1966) in New Zealand. Many types of control measures have been tried; concrete and earth structures, rock bolsters and weirs have been designed to plug up the gully by providing a sediment trap and thereby preventing headward advance. Stabilization of the bank and head soil by planting vegetation such as willow trees is another approach.

All the control measures reported seem variously successful depending on the particular geographic location. Appropriateness of a control measure, if not limited by economics or raw materials, is left to the experience of the individual worker. Lack of understanding of the processes that control erosion in the individual cases has prevented the formulation of scientifically based guidelines.

Detailed studies
There have been few detailed studies of individual gullies, that of Piest and Spomer (1968) near Treynor, Iowa, being an exception. The headward advance of the gully was measured periodically during 1965 and compared to the corresponding runoff quantities. There was no direct correlation between runoff and erosion quantities but significant runoff was needed for erosion to occur. They measured gully erosion during a storm by taking sediment samples above and below the gully head and subtracting the contribution of sheet and rill erosion.

Figure 1 shows the sediment concentration curve and runoff hydrograph obtained. The initial high peak coexistent with the rising stage of the hydrograph was attributed to the clean-out of talus and debris accumulated since the last runoff event. There is a drop in sediment concentration during the peak stages followed by a rise coexistent with the recession limb of the hydrograph. This was attributed to erosion induced by the present runoff event such as bank caving.

The above study prompted Bradford et al. (1973) to consider an approach similar to this study. They attempted to evaluate the stability of gully banks through soil mechanics by use of the Simplified Bishop Method of Slices. They used an available standard computer program to evaluate the factor of safety of the banks against shear failure. They considered

Figure 1. The process of gully cleanout and the erosive effect of runoff. (Piest and Spomer, 1968)
the situation where the phreatic surface of groundwater was at the toe of the gully wall and the true cohesion was zero. The banks were assumed saturated or nearly saturated with negative pore water pressure at a point equal to its height above the phreatic surface. This gave the soil some apparent cohesion. For angles of soil internal friction $\leqq 35$ degrees their model indicated instability of vertical banks. They also considered cases with water table positions below the base of the slope, that is, completely beneath the bed of the gully. This is equivalent to increasing the apparent cohesion of the bank soil because the increased height of the soil in the failure zone above the water table means increased soil water suction and an increase in effective stress. For an angle of internal shearing resistance of 25 degrees, a 300 centimeter vertical bank, and water table located less than 110 centimeters below the gully bed, their model predicted instability.

For the groundwater conditions they assumed, there would be no gully base flow; indeed, water would be imbibed into the soil under the suction head. Predictions of instability for high water tables was inconsistent with known field observations where the water table was above the toe of the gully bank and there existed a seepage face. They concluded that the assumption of zero true cohesion for the soils considered was invalid.

The model of Bradford et al. (1973) did not extend to sloping banks which in the loess, according to Lohnes and Handy (1968), could commonly be anywhere from 69 degrees to nearly 90 degrees to the horizontal. Their model did not account for desaturation of the soil under the suction heads above the water table. Loess is very porous and desaturates easily with consequent reductions in both soil wet unit weight and apparent cohesion.

Objectives
The objectives of this study are now summarized:
I. To develop concepts of the mechanics of gully bank failures. The effect of groundwater on soil shear strengths and the interaction with gravitational forces on the soil is the main theme of this work.
II. To express the concepts in the form of a digital simulation model. Groundwater flow systems are modeled through techniques developed in the area of soil physics and these flow systems are then incorporated into a slope stability model developed from the area of soil mechanics.
III. To examine future developments of the model and other problems where it may be applied.

GROUNDWATER FLOW MODELS

Background

In this section systems that describe flow of groundwater into a gully through its bed and banks are defined in mathematical terms. Laplace's equation for hydraulic potential is solved in the resulting boundary value problems using the method of Powers et al. (1967a), described in Kirkham and Powers (1972). Hereafter this is referred to as the PKS method. Many conceptualized groundwater flow systems have been modeled by this approach. Boast (1970), Khan (1970) and Van der Ploeg et al. (1971) modeled systems of flow toward wells; Powers et al. (1967b) and Khan (1973) modeled flow between ditches with unequal water levels, and Powers et al. (1967a) and Selim and Kirkham (1972a, b) modeled flow through various shapes of soil bedding that was saturated to the surface.

Other approaches to the simulation of groundwater flow are the numerical techniques of Freeze (1972) and Kirkham and Gaskell (1950). However, we consider that the PKS method gives solutions that are more conveniently applied to slope stability analyses. This is because the hydraulic potential function $\phi(x, y)$ is obtained for any point of cartesian coordinates (x, y) in the flow region. The numerical techniques evaluate ϕ at discrete points at nodes of a grid pattern over
the flow region. Values of ϕ between the nodes must be found by interpolation. Computer programs that include numerical techniques are less general than those using the PKS method. That is, they are less easily applied to different geometrical configurations of similar flow systems and they tend to be more costly to run because convergence to the solution may be hampered by a bad initial "guess" of ϕ at each node. Another advantage of the PKS method is that the stream function $\psi(x, y)$ is obtained analytically from the potential function; thus only one solution for the constants of the flow region is required to draw a flow net.

Groundwater flow systems are generally analyzed in an approximate way for slope stability analyses where the chief objective is to calculate pore water pressures along a trial failure surface in the soil. Usually the boundaries of the flow region are defined in terms of equipotentials and streamlines. The flow net is sketched in by trial and error and then used for the calculation of pore water pressures. Solutions obtained by the trial and error method (Lambe and Whitman, 1969) yield practical results and are relatively insensitive to error. However, because human judgment is needed to draw the flow net the method is unsuitable for computer simulation. In fact, the complete flow nets presented later are superfluous to the actual analysis of bank stability but they allow the comparison of flow systems visually and are
the ultimate check that the mathematical problem is solved. Once the potential function $\phi(x, y)$ is obtained by the PKS method we merely substitute in the x and y coordinates of points on the trial failure plane to evaluate ϕ from which we then calculate the pore water pressure.

Groundwater Flow
The soil material that comprises the porous flow medium is assumed to be isotropic and homogeneous. Flow velocities are assumed small so that the hydraulic potential at (x, y) is given by

$$
\begin{equation*}
\phi(x, y)=y+P^{\prime} / \gamma_{w} \tag{1}
\end{equation*}
$$

where P^{-}is the gage pressure, y is the height above the reference level, γ_{W} is the unit weight of water and velocity head is neglected.

We assume laminar flow and the validity of Darcy's law

$$
\begin{equation*}
v_{s}=-K \partial \phi / \partial s \tag{2}
\end{equation*}
$$

where v_{s} is the flow per unit cross section of soil, known as the Darcy velocity, K is the saturated hydraulic conductivity and $\partial \phi / \partial s$ is the hydraulic gradient in the s direction. The minus sign is required to make velocity positive because flow is positive in the direction of negative hydraulic potential gradient.

For steady state flow, using Darcy's law and concinuity of flow, the equation that describes hydraulic potential in the
flow region is

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial \dot{x}^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{3}
\end{equation*}
$$

which is Laplace's equation in two dimensions. The expression $\phi(x, y)$ that we seek must satisfy equation 3 and the boundary conditions of the particular flow region...

A general solution but not all solutions to equation 3 is given in Kirkham and Powers (1972, p. 96) and is the starting point for obtaining $\phi(x, y)$.

The Recharge Model
This flow system is termed the "recharge" case because water is supplied to the system from the soil above the water table. The flow region Oabcde0 is shown in Figure 2 and represents a semi-cross section of the groundwater flow region perpendicular to the longitudinal profile of the gully. Flow through unit thickness of the flow region perpendicular to the plane of the paper is equivalent to flow per unit distance along the gully bank. The flow system is symmetrical about the center line of the gully which is the y-axis. There is no flow across 0 a which is assumed to be a boundary streamline.

The length $a b$ represents the surface and half-width T of the horizontal gully bed and bc the gully bank that slopes at θ degrees to the horizontal. Water is seeping into the gully through its bed and banks along the saturated face abc where c is the upper extremity of the seepage face H_{s} above the

Figure 2. Diagrammatic representation of the flow region for the recharge model
gully bed. We assume water is transported away as fast as it seeps, thus the depth of water in the gully is zero. The water table ed extends to the right into the medium and is recharged through overlying soil from the surface. Our solution is general for any water table that is of known shape. The seepage recharge need not be known for the solution of the problem. The significance of recharge rate in real problems is discussed in later sections.

The right-hand limit of the flow region de is the groundwater divide, taken to be a vertical boundary streamline. The whole region is underlain by a horizontal impermeable barrier at depth A_{a} below the gully bed, which also represents a boundary streamline. This is taken as the x -axis and reference level for ϕ. The flow system of Figure 2 could represent real cases in western Iowa where Kansan Till is overlain by permeable loess through which the gully has partially eroded.

The boundary conditions (BC's) are summarized and expressed mathematically in Table 1. The BC's are mathematically similar to those in the problems of Selim and Kirkham (1972a, b). Therefore, we use the same solution of Laplace's equation which is our notation

$$
\begin{equation*}
\phi=\sum_{m=0,1}^{N \rightarrow \infty} A_{N m} \frac{\cosh (m \pi y / L)}{\cosh (m \pi B / L)} \cos (m \pi x / L) \tag{4}
\end{equation*}
$$

Equation 4 satisfied the $B C^{\prime}$ s l, 5 and 6 for all $A_{N m}$'s. The subscript N of $A_{N m}$ indicates the value of m at which the series

Table 1. Summary and mathematical definition of boundary conditions for the flow region of the recharge model.

Boundary Number	Letter Range	Boundary Condition	Coordinate Ranges x y
2	Oa	$К \partial \phi / \partial \mathrm{x}=0$	$\mathrm{x}=0 \quad 0 \leqq \mathrm{y} \leqq \mathrm{A}_{\mathrm{a}}$
$2^{\text {a }}$	ab	$\phi=y=f_{1}(x)=A_{a}$	$0 \leqq x \leq T \quad y=A_{a}$
3	bc	$\phi=y=f_{i}(x)=A_{a}$	$\begin{aligned} & T \leqq x \leq x_{S} \quad A_{a} \leq y \leq y_{S} \\ & \text { where } x_{s}=T+H_{s} \cot \theta \end{aligned}$
			$y_{s}=A_{a}+H_{s}$
$4^{\text {b }}$	cd	$\phi=y=f_{2}(x)$	$\mathrm{x}_{\mathrm{s}} \leqq \mathrm{x} \leqq \mathrm{L} \quad \mathrm{y}_{\mathrm{s}} \leqq \mathrm{y} \leqq \mathrm{B}$
5	de	$\kappa \partial \phi / \partial \mathrm{x}=0$	$\mathbf{x}=\mathrm{L}$
6	e0	$K \partial \phi / \partial y=0$	$0 \leq \mathrm{x}$ 人 L y $=0$

[^0]approximation is truncated. The $A_{N m}$'s are calculated by the PKS method so that BC's 2, 3 and 4 are satisfied. For BC's 2, 3 and 4 along abcd we write
\[

$$
\begin{equation*}
\phi=F(x) \tag{5}
\end{equation*}
$$

\]

where

$$
F(x)= \begin{cases}A_{a} & 0 \leq x \leq T \tag{6}\\ f_{1}(x)=A_{a}+(x-T) \tan \theta & T \leqq x \leqq x_{S} \\ f_{2}(x) & x_{S} \leqq x \leqq L\end{cases}
$$

Equation 4 is now rewritten without super and subscripts on the summation sign as

$$
\begin{equation*}
F(x)=\sum A_{N_{m}} u_{m}(x) \tag{7}
\end{equation*}
$$

wherein

$$
u_{m}(x)= \begin{cases}\frac{\cosh m \pi f_{i}(x) / L}{\cosh m \pi B / L} \cos m \pi x / L & 0 \leqq x \leqq x_{s} \tag{8}\\ \frac{\cosh m \pi f_{2}(x) / L}{\cosh m \pi B / L} \cos m \pi x / L & x_{s} \leqq x \leqq L\end{cases}
$$

Equation 7 is the correct form for application to the PKS method described later.

To obtain the stream function $\psi(x, y)$ the potential function $\phi(x, y)$ is first converted to velocity potential

$$
\begin{equation*}
\phi=K \phi \tag{9}
\end{equation*}
$$

where K is the saturated hydraulic conductivity. The Cauchy-

Riemann relations shown in Kirkham and Powers (1972, p. 105) could now be used to obtain $\psi(x, y)$. Instead we make use of the convenient Table 3-1, (Kirkham and Powers, 1972, p. 106) and get from Line 13

$$
\begin{equation*}
\psi=-K \sum A_{N m} \frac{\sinh m \pi y / L}{\cosh m \pi B / L} \sin m \pi x / L \tag{10}
\end{equation*}
$$

This function is used to calculate streamlines for flow nets of the system.

The Rapid Drawdown Model

The model described in this section is for cases where water table fluctuations are important only in the vicinity of the gully bank. The flow region is OabcdO of Figure 3. The bank face $O b$ slopes at θ degrees to the horizontal and the water level in the gully is at any point a between 0 and b and $a b$ represents the seepage face. The gully water level at a is the reference level for ϕ in this model. The water table of any, but known, shape extends to the right into the soil and is represented by bc. The flow region in a real situation would extend back to the groundwater divide and be supplied by seepage recharge from overlying soil. We assume that distance L from the toe of the bank, the water table elevation is not affected by changes in the water level in the gully, but is held steady by groundwater supply from the right. The flow system

Figure 3. Diagrammatic representation of the flow region for the rapid drawdown model
for $\mathrm{x}>\mathrm{L}$ is thus replaced by a fictitious constant head source at $\mathrm{x}=\mathrm{L}$. It is implicitly assumed that flow enters the region horizontally from the fictitious source because cd is a vertical equipotential. The position of the soil surface relative to the water table is immaterial since seepage recharge from above for $0 \leq x \leq$ L is neglected. The gully bank is shown extending upward from b in Figure 3. The lower horizontal boundary do along the x-axis is impermeable and passes through the toe of the gully bank and is a boundary streamline. The flow region OabcdO is equivalent to real cases in western Iowa where gullies have completely eroded through surface loess to the relatively impermeable Kansan Till below.

The use of the fictitious source limits the flow region to the area of interest near the gully bank and eliminates superfluous calculation.

The boundary conditions are summarized and defined mathematically in Table 2.

We chose the solution* of equation 3 as

$$
\begin{array}{ll}
\phi \tag{11}\\
- & x \\
H & -+\sum_{m=1,2}^{N \rightarrow \infty} A_{N m} \frac{\cosh m \pi y / L}{\cosh m \pi B / L} \sin m \pi x / L
\end{array}
$$

[^1]Table 2. Summary and mathematical definition of boundary conditions for the flow region of the rapid drawdown model.

Boundary Number	Letter Range	Boundary Condition	Coordinate Ranges \times y
1	Oa	$\phi=0$	$\begin{aligned} & 0 \leq x \leq x_{W} \quad 0 \leq y \leq W_{W} \\ & \text { where } x_{W}=W_{W} \tan \theta \end{aligned}$
2 a	ab	$\phi=f_{2}(x)-W_{W}$ where $f_{1}(x)=x \tan \theta$	$\begin{aligned} & x_{w} \leq x \leq x_{s} \quad W_{w} \leq y \leq H_{s} \\ & \text { where } x_{s}=H_{s} \tan \theta \end{aligned}$
$3^{\text {b }}$	bc	$\phi=f_{2}(x)-W_{W}$	$\mathrm{x}_{\mathbf{S}} \leq \mathrm{x} \leq \mathrm{L} \quad \mathrm{H}_{\mathbf{S}} \leq \mathrm{y} \leq \mathrm{B}$
4	cd	$\phi=H=B-W_{W}$	$x=\mathrm{L}$
5	do	$\mathrm{K} \partial \phi / \partial \mathrm{y}=0$	$0 \leq x \leq L \quad y=0$
$a_{f_{1}}(x)$ this w $\mathrm{b}_{\mathrm{f}_{2}}(\mathrm{x})$ are ta		tion describing the so ed in the table. tion descrijing the wa arbitrary curve repres	The function used in shape. A series of points water table.

Equation 11 satisfied $B C^{\prime} s 4$ and 5 for all $A_{N m}$'s. $B C ' s$ 1, 2 and 3 are satisfied by choice of the $A_{N m}$'s using the PKS method. Rearranging equation 11 and dropping super and subscripts from the summation sign

$$
\begin{equation*}
\frac{\phi_{-}}{-\quad} \underset{H}{L}=\sum A_{N m} \frac{\cosh \alpha_{m} y}{\cosh \alpha_{m} B} \quad \sin \alpha_{m} x \tag{12a}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{m}=m \pi / L \quad m=1,2, . . \tag{12b}
\end{equation*}
$$

Substituting $B C$'s 1,2 and 3 into equations $12 a$ and b for $B C 1$; $\phi=0, y=f_{1}(x)=x \tan \theta$

$$
\begin{equation*}
-\frac{x}{L}=\sum A_{N m} \frac{\cosh \propto_{m} f_{1}(x)}{\cosh \alpha_{m} B} \sin \alpha_{m} x \tag{13a}
\end{equation*}
$$

for $B C 2 ; \phi=f_{1}(x)-W_{W}, \quad y=f_{1}(x)=x \tan \theta$

$$
\begin{equation*}
\frac{f_{1}(x)-W_{W}}{H}-\frac{x}{L}=\sum A_{N m} \frac{\cosh \alpha_{m} f_{1}(x)}{\cosh \alpha_{m}^{B}} \quad \sin \alpha_{m} x \tag{13b}
\end{equation*}
$$

for $B C 3 ; \phi=f_{2}(x)-W_{W}, y=f_{2}(x)$

$$
\begin{equation*}
\frac{f_{2}(x)-W_{W}}{H}-\frac{x}{L}=\sum A_{N m} \frac{\cosh \alpha_{m} f_{2}(x)}{\cosh \alpha_{m} B} \sin \alpha_{m} x \tag{13c}
\end{equation*}
$$

From equations $13 a, b$ and c we define

$$
F(x)= \begin{cases}\begin{array}{ll}
-x / L & \text { over } B C 1 \\
\frac{f_{1}(x)-W_{W}}{H}-x / L & \text { over } B C 2 \\
\frac{f_{2}(x)-W_{W}}{H}-x / L & \text { over } B C 3 \tag{14}
\end{array}\end{cases}
$$

and

$$
u_{m}(x)= \begin{cases}\frac{\cosh \alpha_{m} f_{1}(x)}{} \sin \alpha_{m} x & \text { over } B C^{\prime} s 1 \text { and } 2 \\ \cosh \alpha_{m} B & \text { over BC } 3 \\ \frac{\cosh \alpha_{m} f_{2}(x)}{\cosh \alpha_{m}} \sin \alpha_{m} x & \end{cases}
$$

Equations l3a, b and can now be written in the form

$$
\begin{equation*}
F(x)=\sum A_{N m} u_{m}(x) \tag{16}
\end{equation*}
$$

where $F(x)$ and $u_{m}(x)$ are defined in equations 14 and 15. The ${ }^{A_{N m}}$'s can now be calculated by the PKS method.

By use of the same procedure as that for the recharge model, from Table 3-1, Kirkham and Powers (1972), lines 2 and 1l, the stream function is from equations 11 and $12 b$

$$
\begin{equation*}
\phi=K H\left(y / L+\sum A_{N m} \frac{\sinh \alpha_{m} y}{\cosh \alpha_{m} B} \cos \alpha_{m} x\right) \tag{17}
\end{equation*}
$$

This stream function is used in the flow net calculations for the rapid drawdown model.

Choice of A_{Nm} 's by the PKS Method
The solutions of the two boundary value problems defined rest on the correct choice of the $A_{N m}$'s to satisfy $B C ' s 2,3$ and 4 of the recharge model and BC's 1,2 and 3 of the rapid drawdown model. The A_{Nm} 's are selected by the PKS method using Table A2-1 (Kirkham and Powers, 1972, pp. 502,503). An abbreviated derivation of the table is given in Chapter 4 (Kirkham and Powers, 1972). For the full derivation refer to Van der Ploeg (1972).

To use Table A2-1, the following integrals are necessary:

$$
\begin{align*}
w_{m} & =\int_{0}^{L} F(x) u_{m}(x) d x \tag{18}\\
u_{m n} & =\int_{0}^{L} u_{m}(x) u_{n}(x) d x \tag{19}
\end{align*}
$$

where

$$
\begin{aligned}
& m=0,1,2 \cdot \cdot \cdot \cdot N \\
& n=0, l, 2: N \\
& \text { for the recharge model }
\end{aligned}
$$

and

$$
\begin{aligned}
& m=1,2 \cdot \cdot \cdot N \\
& n=1,2 \cdot N \\
& \text { for the rapid drawdown model. }
\end{aligned}
$$

The functions $F(x), u_{m}(x)$ and $u_{n}(x)$ are given by equations 6 and 8 for the recharge model and equations 14 and 15 for the rapid drawdown model. As an example, consider the rapid drawdown case:

$$
\begin{align*}
& w_{m}=\int_{0}^{x_{w}}-(x / L) \frac{\cosh \alpha_{m} f_{1}(x)}{\cosh \alpha_{m} B} \sin \alpha_{m} x d x \\
& +\int_{x_{W}}^{x_{s}} \frac{f_{2}(x)-W_{W}}{H}-x / L \frac{\cosh \alpha_{m} f_{1}(x)}{\cosh \alpha_{m} B} \sin \alpha_{m} x d x \tag{20}\\
& +\int^{L} \underline{f}_{2}(x)-W_{W}-x / L \underbrace{\cosh \alpha_{m} f_{2}(x)}_{m} \sin \alpha_{m} x d x \\
& \mathrm{x}_{\mathbf{s}} \\
& \text { H } \\
& \cosh \alpha_{m} B \\
& x_{s} \quad \cosh \alpha_{m} B \\
& \cosh \alpha_{n} B
\end{align*}
$$

The constants w_{m} and $u_{m n}$ of equations 20 and 21 are evaluate by numerical integration. With these constants known, a

FORTRAN subroutine ORTH developed by Boast (1969) is used to perform the calculations shown in Table A2-1 (Kirkham and Powers, 1972).

In the PKS method, one way to check that the accuracy of the solution is increasing with the addition of extra terms to the series approximation is through Bessel's inequality (Kirkham and Powers, 1972, p. 499).

$$
\begin{gather*}
\sum A_{N N}^{2} D_{N} \leqq_{0}^{L} F(x)^{2} d x \tag{22}\\
N=1,2 . . .
\end{gather*}
$$

wherein the $A_{N N}$ are the last $A_{N m}$ of each successive approximation as N increases and the D_{N} are defined in the Table A2-1 and must be positive. For example, in the rapid drawdown case the right-hand side of Bessel's inequality (BRHS) is given by

x_{w}
$+$

A similar expression was used for the recharge model.

Summary

In this section the basic equations governing groundwater flow were briefly reviewed. Two groundwater flow systems termed recharge and rapid drawdown models were then defined as boundary value problems with hydraulic potential functions $\phi(x, y)$'s given by solutions to Laplace's equation. The solutions are in the form of an infinite series of functions. Each term of the series satisfies as many of the boundary conditions as possible, regardless of the value of its constant coefficient A_{Nm}. Remaining boundary conditions of each model are to be approximated by the respective series through careful choice of the A_{Nm} values. The A_{Nm} 's are calculated by the PKS method.

BANK STABILITY ANALYSIS

Background

Standard texts on soil mechanics such as Lambe and Whitman (1969) and Harr (1966) are referred to for more detailed discussions of background material than is presented in this section.

Limit design

The objective of a bank stability analysis is to compare the forces required for limiting equilibrium of soil in the bank with its available strength. This is referred to as "limit design" (Lambe and Whitman, 1969, Chapter 13) because design against total collapse of the bank is required and smaller strains are ignored.

There are two common approaches to limit design. The first is the solution procedure of Sokolovsky in Harr (1966), and the second is the method of slices. Sokolovsky's method involves the numerical solution of Kotter's equation which is derived from the differential equations of soil equilibrium and the Mohr-Coulomb Failure Law. The limits of the failure zone are calculated from the solution so that trial failure surfaces do not have to be assumed as in the method of slices. Although mathematically less rigorous, the method of slices is more commonly used in the United States because of its simplicity. A version of the method is used for this work.

Methods of slices

According to Lambe and Whitman (1969), the main assumption in all methods of slices is that the normal stress on an assumed failure surface is predominantly influenced by the weight of overlying soil. The soil is considered semiinfinite so that stability is evaluated by taking a representative two-dimensional cross section through the bank and considering it to be of unit thickness. The body of soil above the trial surface is divided into slices and the equilibrium of each slice is considered. If all the forces on the two-dimensional slice have to be considered, the system is statically indeterminate. Indeterminacy is usually overcome by making simplifying assumptions regarding the resultant of side forces on the slice. In the Ordinary Method of Slices it is assumed that side forces have no resultant perpendicular to the failure plane at the base of the slice, whereas the Simplified Bishop Method assumed a zero resultant in the vertical direction. Bradford et al. (1973) used the Simplified Bishop Method. However, they point out that scatter in calculated factors of safety caused by errors due to soil parameter variation is greater than that caused by choice of method of slices. The side force assumption of the Ordinary Method of Slices is used for this work.

When the failure surface is assumed to be an arc of a circle, factor of safety F is often defined as the ratio of
moments about the circle center of disturbing forces to available soil strength. When the failure surface is assumed to be other than circular another definition is the ratio of disturbing forces along the surface to available shear strength along the surface. The failure surface we use is part of a cycloid; therefore, the second definition is followed.

Once F is determined for one trial failure, the trial failure surfaces are systematically cnanged until a minimum value of F is found. If $F<1$, the bank is unstable. If $F=1$ the bank is in limiting equilibrium, and if $F>1$, the bank is stable.

The effective stress principle
Effective stress $\bar{\sigma}$ on a plane in saturated soil is defined as the total normal stress σ minus the pore water pressure u on the plane so that

$$
\begin{equation*}
\bar{\sigma}=\sigma-u \tag{24}
\end{equation*}
$$

Physically this is interpreted as being approximately the force per unit area of the plane carried by the soil skeleton. Deformation or failure in soil therefore results from changes in effective rather than total stresses.

In a partially saturated soil with degree of saturation S, assuming pore air is at atmospheric pressure and the soil is isotropic

$$
\begin{equation*}
\bar{\sigma}=\sigma-\mathrm{Su} \tag{25}
\end{equation*}
$$

In such cases u is negative; therefore, $\bar{\sigma}$ is greater than σ. This results in an increase in mobilizable shear strength. However, as u becomes more negative, proportional increases in $\bar{\sigma}$ are smaller because the soil desaturates and the area of water in the soil pores is reduced.

The purpose of the groundwater flow models previously described is to enable the calculation of positive pore water pressures below the water table so that effective stresses may be evaluated. The water table is a phreatic surface; that is, the pore water pressure is at atmospheric or zero gage pressure. Above the water table, the pore water pressures become negative and are assumed to be equivalent to minus the elevation head above the water table.

The Mohr-Coulomb Failure Law

The familiar Mohr envelope is obtained by plotting a series of Mohr stress circles representing failure conditions for soil at different confining stresses and drawing an envelope that is tangent to them. The equation of this envelope describes the shear stress $\tau_{f f}$ at failure as a function of normal effective stress $\vec{\sigma}_{f f}$ on the failure plane.

$$
\begin{equation*}
\tau_{f f}=f\left(\bar{\sigma}_{f f}\right) \tag{26}
\end{equation*}
$$

Over a large range of confining stresses, this function is curvilinear. However, over limited ranges of confining stress a straight line approximation is

$$
\begin{equation*}
\because_{f f}=c+\bar{\sigma}_{f f} t \tan \phi_{S} \tag{27}
\end{equation*}
$$

where c is the cohesion intercept with units of force per unit area and ϕ_{S} is the angle of internal shearing resistance of soil. The cohesion intercept is referred to as "true cohesion" in this work to distinguish it from "apparent cohesion" derived from negative pore pressures. Our definition of true cohesion does not reflect the strength of chemical bonds between individual soil particles as does the usual definition. The linear approximation of equation 27 was first made by Coulomb and though not a physical law, is often referred to as the Mohr-Coulomb Failure Law. Because the true Mohr envelope is curvilinear, the values of c and ψ_{s} vary depending on the stress range; therefore, it is most important to match the stress range of the problem to the laboratory tests that determine c and ϕ_{S}.

Bank Stability Analysis Using
Cycloidal Failure Surfaces

Generation of cycloidal failure surfaces
Using portions of a cycloid as the shape of a trial failure surface is not new. Ellis (1973) used them to develop a simple stability analysis for trench walls and referred to a 19th century article where they had been used for the description of embankment failure surfaces.

The basis for choosing cycloids in this work was their visual similarity to observed failure surfaces though there was no verification of this hypothesis by measurement. A
contributing factor influencing the choice is the easy mathematical generation and parametric representation of such curves.

Figure 4 shows how the cycloidal shape is generated. The line aa' is the cycloidal surface that is the locus of a point on the circumference of a circle of radius R when it is rolled along the x-axis through angle of rotation θ^{\prime} radians. The parametric representation of the cycloid with respect to the x and y axes shown is

$$
\begin{align*}
& y=R\left(1-\cos \theta^{\prime}\right) \tag{28}\\
& x=R\left(\theta^{\prime}-\sin \theta^{\prime}\right) \tag{29}
\end{align*}
$$

The soil surface in the model is assumed to be horizontal and coincident with the x-axis. Consistent with field observation, the failure plane is assumed to pass through the toe of the gully bank.

With the end points of the failure surface fixed in this way its shape is completely defined by the radius R of the generating circle. Cycloidal failure surfaces are generated in the computer program by the following sequence of calculations that also define the bounds of n slices of equal thickness Δx. Referring to Figure 5 that shows the bank cross section, and the failure surface 0_{s} is the origin of the cycloid with coordinate axes $x_{s} ; y_{s} . \quad$ The x and y axes are the axes for the flow system and eventually coordinates of the failure plane are transformed from the (x_{s}, y_{s}) to the (x, y).

Figure 4. Generation of cycloidal failure surfaces

The maximum angle of rotation $\theta^{\prime} \mathrm{m}$ of the generating circle, radius R, is found by substituting B_{h}, the bank height, as the maximum value of y_{s} in equation 28 which on rearrangement gives

$$
\begin{equation*}
\theta_{\mathrm{m}}^{\prime}=\cos ^{-1}\left(1-B_{h} / R\right) \tag{30}
\end{equation*}
$$

Substituting θ^{\prime} m into equation 29 , the maximum horizontal distance $x_{s m}$ is given by

$$
\begin{equation*}
x_{s m}=R\left(\theta_{m}^{\prime}-\sin \theta_{m}^{\prime}\right) \tag{31}
\end{equation*}
$$

The thickness of each slice in the x or x_{s} direction is

$$
\begin{equation*}
\Delta x=x_{s m} / n \tag{32}
\end{equation*}
$$

The surface is generated backwards from the toe of the slope where $x_{s}=x_{s m}, y_{s}=B_{h}$ and $\theta^{\prime}=\theta^{\prime} \mathrm{m}$. Differentiating equation 29 and rearranging

$$
\begin{equation*}
d \theta^{\prime}=d x / R\left(1-\cos \theta^{\prime}\right) \tag{33}
\end{equation*}
$$

wherein $d \theta^{\prime}$, the angle of rotation required to generate the horizontal distance dx , is dependent on the total angle θ^{\prime}.

For the first slice, the generating circle has to be rolled backwards from ($\mathrm{x}_{\mathrm{sm}}, \mathrm{B}_{\mathrm{h}}$) through Angle $\Delta \theta^{\prime}{ }_{1}$ given by

$$
\begin{equation*}
\Delta \theta_{1}^{\prime}=\Delta x / R\left(1-\cos \theta_{m}^{\prime}\right) \tag{34}
\end{equation*}
$$

Differentiating equation 28

$$
\begin{equation*}
d y=R\left(1-\cos \theta^{\prime}\right) d \theta^{\prime} \tag{35}
\end{equation*}
$$

which is in finite difference form for the first slice

$$
\begin{equation*}
\Delta y_{1}=R\left(1-\cos \theta_{m}^{\prime}\right) \Delta \theta_{1}^{\prime} \tag{36}
\end{equation*}
$$

The coordinates of the bottom of the first slice are therefore $\left(x_{s m}, B_{h}\right)$ and $\left(x_{s 1}, y_{s l}\right)$ where

Figure 5. Cross section through bank showing a trial cycloidal failure surface, a hypothetical water table position and location of sample slices

$$
\begin{equation*}
y_{s l}=y_{s m}-\Delta y_{l} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{s 1}=x_{s m}-\Delta x \tag{38}
\end{equation*}
$$

and the total angle of rotation to this point is

$$
\begin{equation*}
\theta_{1}^{\prime}=\theta_{m}^{\prime}-\Delta \theta_{1}^{\prime} \tag{39}
\end{equation*}
$$

for the i th slice

$$
\begin{align*}
& \Delta \theta_{i}^{\prime}=\Delta x / R\left(1-\cos \theta_{i-1}^{\prime}\right) \tag{40}\\
& \Delta y_{i}=R\left(1-\cos \theta_{i-1}^{\prime}\right) \Delta \theta_{i}^{\prime} \tag{41}\\
& y_{s}(i)=y_{s(i-1)}-\Delta y_{i} \tag{42}\\
& x_{s}(i)=x_{s}(i-1)-\Delta x \tag{43}\\
& \theta_{i}^{\prime}=\theta_{i-1}^{\prime}-\Delta \theta_{i}^{\prime} \tag{44}
\end{align*}
$$

Cycling through equations 40 through 44 generates the coordinates of the failure plane at the bounds of n slices working backwards from the toe of the bank. The finite-difference algorithm of equations 40 to 44 assumes $\cos \theta \dot{i}_{-1} \simeq \cos \theta_{i}^{1}$. Thus the $\Delta \theta_{i}^{\prime}$ must be small; therefore n must be relatively large so that Δx is small. Even for small Δx, as the failure plane approaches the X_{s}-axis $\Delta \theta^{\prime}$ becomes larger for the fixed increment Δx. Therefore, errors can occur. For the last slice the coordinate, $y_{s n}$ is known to be zero. Therefore, $\Delta y_{S n}$ is given directly from

$$
\begin{equation*}
\Delta y_{s n}=y_{s(n-1)} \tag{45}
\end{equation*}
$$

The finite difference approximation and the procedure for calculating $\Delta y_{s n}$ give rise to the discontinuities in the
generated curves for the last slice as seen in the curves of Figure 20. These errors were ignored.

Evaluation of bank factor of safety

Figure 6 is a diagram of the i th slice isolated from the overall view of the bank shown in Figure 5. The small segment of the trial failure surface $C D$ is assumed linear as is the water table segment $B E$. Disturbing forces on the slice act from D to C and restoring forces are in the reverse direction.

The resultant of any side forces on ABC and DEF is assumed to be zero in the direction perpendicular to $C D$. Thus the total normal force on $C D$ is given by

$$
\begin{equation*}
F_{n i}=W_{i} \cos \beta_{i} \tag{46}
\end{equation*}
$$

where W_{i} is the weight of the i th slice and $\beta_{i}=\tan ^{-1}\left(\Delta y_{i} / \Delta x\right)$.
The resultant of side forces acting in the direction $C D$ is neglected in this analysis so that the disturbing force on the slice is the component of W_{i} acting along $D C$

$$
\begin{equation*}
F_{t i}=W_{i} \sin \beta_{i} \tag{47}
\end{equation*}
$$

The total weight of the i th slice W_{i} is equal to the weight of soil plus the weight of water. Wet unit weight of soil γ_{t} is calculated from

$$
\begin{equation*}
\gamma_{t}=\frac{G+S e}{l+e} \gamma_{w} \tag{48}
\end{equation*}
$$

where G is the specific gravity of soil particles, e is the voids ratio, S is the degree of saturation and γ_{W} is the unit

Figure 6. Free body diagram of the i th slice showing forces and dimensions
weight of water. For saturated soil $S=1$. Using equation 48 and dimensions given in Figure 6, the weight of soil below the water table W_{1} is

$$
\begin{equation*}
W_{1}=\left(z_{1}+z_{2}\right) \Delta x \gamma_{t} / 2 \tag{49}
\end{equation*}
$$

For soil above the water table $S<1$ and is a function of the height above the water table y_{w} which is the suction head. The unit weight of soil distance y_{w} above the water table is given by

$$
\begin{equation*}
\gamma_{t}\left(y_{w}\right)=\frac{G+S\left(y_{w}\right) e}{1+e} \gamma_{\cdot w} \tag{50}
\end{equation*}
$$

Therefore the weight of the column W_{2} above the water table up to point $y_{W_{1}}$ is given by

$$
\begin{gathered}
W_{2}=\Delta x \int_{0}^{y}{ }_{w z} \gamma_{t}\left(y_{w}\right) d y_{w} \\
=\frac{\Delta x G \gamma_{W}}{(1+e)}\left(y_{w_{1}}-0\right)+\frac{\Delta x e \gamma_{w}}{(1+e \cdot)} \int_{0}^{y_{W_{1}}} S\left(y_{w}\right) d y_{w}
\end{gathered}
$$

$=w t$ of dry soil $+w t$ of water in column
From Figure 6 the average distance from the water table to the soil surface is

$$
\begin{equation*}
y_{W 1}=\left(z_{3}+z_{4}\right) / 2 \tag{52}
\end{equation*}
$$

To evaluate the integral in equation 51 it is necessary to know the function $S\left(y_{w}\right)$. This function is obtained by fitting
a polynomial to experimental data

$$
\begin{equation*}
S\left(y_{w}\right)=Q_{1}+Q_{2} y_{w}+\ldots \quad+Q_{p+1} y_{w}^{p} \tag{53}
\end{equation*}
$$

where p is the order of the polynomial and the Q^{\prime} s are the coefficients that give the best least squares fit. Experimental data for loess soil were obtained from Figure 43, Melvin (1970) and were replotted with different units in Figure 7. Points from Melvin's curve and values back calculated using a fitted 5 th order polynomial are almost coincident. The integral of equation 51 is now evaluated by integrating equation 53

$$
\begin{equation*}
\int_{0}^{y_{w}} s\left(y_{w}\right) d y_{w}=Q_{1} y_{w_{1}}+\frac{Q_{2} y_{w_{1}}^{2}}{2}+\ldots+\frac{Q_{p+1} y_{w 1}^{p+1}}{p+1} \tag{54}
\end{equation*}
$$

Therefore from equations 49,51 and 54 the weight of the i th slice W_{i} is

$$
\begin{equation*}
W_{i}=W_{1}+W_{2} \tag{55}
\end{equation*}
$$

The available stabilizing force T_{i} per unit slice thickness is derived from the shear strength of the soil along CD. Multiplying each side of the Mohr-Coulomb Failure Law of equation 27 by the length $C D$ gives

$$
\begin{equation*}
T_{i}=c A_{b i}+\bar{F}_{n i} \tan \phi_{s} \tag{56}
\end{equation*}
$$

where $A_{b i}$ is the length of $C D=\left(\Delta x^{2}+\Delta y_{i}{ }^{2}\right)^{\frac{7 / 2}{2}}$ and $\bar{F}_{n i}$ is the effective normal force which is

$$
\begin{equation*}
\bar{F}_{n i}=F_{n i}-U_{i} \tag{57}
\end{equation*}
$$

where the average boundary pore water force on $C D$

$$
\begin{equation*}
u_{i}=A_{b i}\left(u_{i-1}+u_{i}\right) / 2 \tag{58}
\end{equation*}
$$

Figure 7. Desaturation curve for loess soil redrawn from Melvin (1970)

and the pore water pressures u_{i-1} and u_{i} at C and D, respectively, are given by

$$
\begin{align*}
u_{i-1} & =\phi\left(x_{i-1}, y_{i-1}\right)-y_{i-1} \tag{59}\\
u_{i} & =\phi\left(x_{i}, y_{i}\right)-y_{i}
\end{align*}
$$

where $\left(x_{i}, y_{i}\right)$ is the potential function derived from the flow system models.

The factor of safety F of the bank is calculated by using equations 47 and 56 so that

$$
\begin{equation*}
F=\frac{\sum_{i-1}^{n} T_{i}}{\sum_{i-1}^{n} F_{t i}} \tag{60}
\end{equation*}
$$

which is the sum over n slices of restoring forces along the failure plane divided by the sum of the disturbing forces along the failure plane.

The procedure for calculating the weight of the i th slice shows the general principles used in the model. However, the computer. programs for calculating factor of safety take account of eleven specific varieties of slice that can occur in the analysis; for example, slices along the sloping bank face or completely above the water table, labeled M and N in Figure 5.

As an example, consider the slice N completely above the water table, shown in Figure 8 . In this case component W_{1} of equation 55 is zero and for component W_{2} given by equation 51 , the lower limit of the integral is changed from zero to $y_{w 2}$, the average distance of the slice bottom above the water table

$$
\begin{equation*}
y_{W_{2}}=\left(z_{5}+z_{6}\right) / 2 \tag{61}
\end{equation*}
$$

The pore water pressures u_{i-1} and u_{i} for such a case are negative and equal to the elevation heads above the water table

$$
\begin{align*}
& u_{i-1}=-z_{5} \gamma_{w} \tag{62}\\
& u_{i}=-z_{6} \gamma_{w}
\end{align*}
$$

so that the pore water force for equation 59 is given by

$$
\begin{equation*}
u_{i}=A_{b i} S\left(y_{w 2}\right)\left(u_{i-1}\right) / 2 \tag{63}
\end{equation*}
$$

where the area of pore water is proportionately reduced by $S\left(y_{w_{2}}\right)$ because of desaturation under the suction head and $S\left(y_{W_{2}}\right)$ is given by equation 53.

Once a value of factor of safety F has been found for a given failure plane, the computer program systematically changes the radius of the generating circle R until the minimum value of F has been determined.

Figure 8. Free body diagram for slice N, completely above the water table

RESULTS AND DISCUSSION

Two flow systems and a bank stability model have been formulated. This section deals with the representation of these models by computer programs and their ensuing performance in the analysis of gully bank stability.

Computer Programs

The computer programs written for the flow system models, flow net calculations and the bank stability analysis are listed in FORTRAN in Appendix A. All the programs were run on the I.S.U. 360 computer in both WATFIV and FORTG. The storage requirements and running times of the programs are so dependent on declared array sizes and the convergence properties of a given solution that details of run costs and times may be misleading. The runs required to obtain results for this thesis cost from $\$ 20.00$ to $\$ 30.00$ to solve each flow system and $\$ 5.00$ to $\$ 6.00$ for each bank stability analysis. All subprograms required but not listed in Appendix A are standard and available from the IBM Scientific Subroutine Package. The programs also use the I.S.U. Computation Center Calcomp Plotter options for graphical output.

Flow systems

Figure 9 is a simplified flow chart showing the sequence of major calculations in programs 1 and 2 that calculate the $A_{N m}$'s up to a pre-set maximum value of N using the PKS method.

Figure 9. Flow chart showing the sequence of major calculations in the flow system computer programs

Program 1 is for the recharge model and program 2 is for the rapid drawdown model, but the sequence of calculations presented in Figure 9 is the same for both.

Examples of input data for programs 1 and 2 are given in Appendix B and consist of flow region geometry, control parameters that fix the maximum value of N, the order of polynomial approximations, the number of bisections for the ranges of numerical integrations et cetera, and a table of points that describe the water table shape.

For ease of manipulation in the program, a polynomial curve is fitted by least squares to the water table data. BRHS of Bessel's Inequality is then calculated from equation 22. The $u_{m n}$'s of equation 19 are obtained by numerical integration using Simpson's Rule as is the w_{m} of equation 18. These are then passed to Boast's subroutine ORTH that calculates the $A_{N m}$'s. The left-hand side LHS of Bessel's Inequality is then calculated and divided into BRHS and should give a number less than but approaching unity as N increases. This number we call Bessel's check BSCHK.

In addition to being printed, the A_{Nm} 's are punched onto cards and the boundary function and its approximation using the $A_{\text {rin }}$'s are graphed. The cycle is repeated as shown in Figure 9 until the maximum pre-set value of N is reached.

Flow nets

Programs 3 and 4 were used to calculate ϕ and ψ at regular intervals of x and y within the flow regions. The flow system geometry and the $A_{N m}$'s from programs 1 and 2 were the inputs. Calculated values of ϕ or ψ were then graphed for one cartesian coordinate fixed, for example, $\phi(0, y)$ versus y with x fixed at zero. The y coordinates for required values of ϕ or ψ were interpolated from a series of these graphs drawn for different values of x. Streamlines or equipotentials for the flow net were then drawn through the interpolated points representing equal values of ϕ or ψ respectively.

Bank stability

Programs 5 and 6 are the listings for bank stability analysis using the recharge and rapid drawdown models respectively. The sequence of the major calculations is the same for both and is shown in Figure 10. Sample input is listed in Appendix B. Details of the calculations are described in the previous section on BANK STABILITY ANALYSIS.

The Flow Systems
The convergence of the PKS series approximation is demonstrated in Figure 11 for the recharge model and Figure 12 for the rapid drawdown model. As N increases, Bessel's.'check BSCHK approaches unity and the approximation of the boundary function $F(x)$ gets visually better. In Figures 11 and 12 the

Figure 10. Flow chart showing the sequence of major calculations for the bank stability computer programs

Figure 10 continued

Figure 10 continued

Figure 11. Required boundary function $F(x)$ for the recharge model and successive approximations by the PKS method using N terms

Figure 11 continued

Figure 12. Required boundary function $\mathbf{F}(x)$ for an extreme case of rapid drawdown and its successive approximations by the PKS method using N terms

Figure 12 continued

abscissae are horizontal distance x in feet and the ordinates are hydraulic potential ϕ in feet. The solid line represents the required shape of $F(x)$ and the circles are the approximation given by the PKS method for the indicated value of N. Flow region dimensions and all other parameters were selected as "typical" values that could occur in a field situation in the deep loess soils of western Iowa. They are listed in Appendix B.

The flow nets of Figures 13 and 14 are for the "typical" geometries of the recharge model and rapid drawdown models using the $A_{N m}$'s for $N=30$, and $N=40$, respectively. The flow patterns in each case are intuitively reasonable and are the basis for assuming the $A_{\mathrm{Nm}^{\prime}}$'s are correctly calculated. The arithmetic of all programs was checked as far as possible by electronic desk calculator.

Figures 15 a and b show two flow nets that represent two instances in time of an extreme case of rapid drawdown. The lower flow net Figure 15 b , applies when the gully water level is high and the direction of the streamlines indicates that water is being recharged into the banks. The water table shape was arbitrarily chosen. The fact that the streamlines intersect the water table indicates that it is rising. All the flow systems analyzed are quasi-steady state, that is, we assume that water velocities are negligible compared to the speed of sound which is the velocity of pressure waves in the

Figure 13. Flow net obtained using the recharge model for an arbitrary but typical flow region geometry

Figure 14. Flow net obtained using the rapid drawdown model for an arbitrary but typical flow region geometry

Figure 15a. Flow net obtained using the rapid drawdown model for an extreme case of rapid drawdown. Water level in the gully has fallen to zero

Figure l5b. Flow net for extreme rapid drawdown. High water level in the gully

medium. Thus a transient flow system can be modeled as a series of such quasi-steady states. For Figure 15b:we assume there is no seepage face so that the gully water and the water table are the same level at the bank. The value of ψ at this point is uncertain as the solution seemed to break down, probably because of the cusp in the flow region. The units of ψ in all the flow nets are $\mathrm{ft}^{2} /$ day for hydraulic conductivity $K=0.2 \mathrm{ft} /$ day. The difference in the value of ψ at two streamlines gives the flow between them in $\mathrm{ft}^{3} /$ day per foot thickness of the flow region perpendicular to the plane of the paper.

The flow net of Figure $15 a$ is for an instant of time later when the gully water level has fallen to zero. The whole bank face below the water table is now a seepage face. The streamlines show the change in direction of flow so that water is in this case moving out of the bank as base flow and the water table is falling.

While the flow nets shown in Figures $15 a$ and b were again intuitively reasonable, the approximation by the PKS method of ϕ along the bank face for the case in Figure 15a was not good. This is shown by the deviation of the circles from the required function between the origin and point b in the first graph of Figure 12. These errors are reflected by errors in the flow net. In Figure 15a, we know that along the seepage face ϕ is equal to the height above the x axis y. The.
dotted equipotential lines were sketched in to show the discrepancy between known and calculated values of ϕ at the bank face. However, their true paths back in the flow region are only surmised.

For all cases considered, the solutions gave good approximations to ϕ along the water table and relatively inaccurate approximations along the gully bed and bank segments of the boundary. The case in Figures 12 and $15 a$ was the worst case encountered. Reference to equations 20 and 21 shows that the integrals w_{m} and $u_{m n}$ for the PKS method are broken into parts corresponding to segments of the boundary being represented, that is, the gully bed or portion of the gully face below the water table, the seepage face and the water table. The integrals representing segments of the boundary around the gully bed and the banks are over small ranges of x and are small in comparison to the integrals representing the water table segment. This is one reason for the relatively inaccurate approximation of ϕ at the gully. Another is the discontinuities in the gradient of the boundary function $F(x)$ where the water table intersects the bank face and where the bank face intersects the gully bed.

There are several possible ways of improving the solutions. The first is to increase N. This may prove to be impractical because the integrals of equations 18 and 19 involve sine and cosine functions, for example, equations 20 and
21. The number of bisections of the range $0 \leq x \leq L$ for the numerical integrations must be great enough so that there is an accurate representation of the harmonics produced by the sine or cosine functions. The number of harmonics over the range increases with N; therefore, so must the number of bisections. For large values of N the cost to run the program may be prohibittive.

A second improvement would simply be to choose upper boundary functions that have no discontinuities of gradient. However, such boundaries may not match practical cases.

A third possibility is to make the relative sizes of the integrals for each boundary segment more equal. For cases with less steep banks this would automatically happen, though another approach for the rapid drawdown case would be to move the fictitious source nearer to the gully bank. For the rapid drawdown case of Figure 15a the effect of moving the fictitious source towards the bank 5 feet and changing its height to 5.05 feet is assessed in Figure 16. The solid line shows $\phi(15, y)$. For the solution with the fictitious source at $x=20$ feet moving the source in would make $\phi(15, y)$ a vertical equipotential as indicated by the dotted line. Figure 16 shows that there would be very small changes in the potential distribution for this case.

In spite of the described difficulties in matching the boundary conditions along the gully bed and banks, calculated

Figure 16. The effect on $\phi(15, y)$ of moving the fictitious source of Figure li5a from $x=20$ to $x=15$
values of ϕ further into the soil mass were assumed accurate enough for the calculation of pore water pressures.

Bank Stability Analyses

Stability analyses were made for banks of typical dimensions and soil properties using the flow systems of the recharge model in Figure 13 and the rapid drawdown model in Figures 14 and 15a.

The bank height chosen for the case in Figure 13 was 20 feet, which was twice the height of the seepage face above the gully bed. For the flow systems of Figures 14 and 15a, a 15 foot high bank was considered. All the banks sloped at 75 degrees to the vertical. Figure 17 shows how the predicted factor of safety and radius of failure plane generating circle change with true conesion c, assuming the soil angle of internal shearing resistance is constant at 35 degrees. For cohesion greater than around 1.5 psi the model predicted F > l, that is, a stable condition.

Figure 18 shows similar graphs obtained using the rapid drawdown flow system. Curves F_{1} and R_{1} were for the extreme rapid drawdown case in Figure $15 a$ and F_{2} and R_{2} were for the less severe case of Figure 14. As would logically be expected, the extreme case of Figure 15 required a higher value of cohesion to stabilize the slope. The radii of the generating circles were also somewhat higher so the size of the failure zone at $F=1$ would be larger. The values of true soil

Figure 17. The effect of true cohesion on factor of safety F and radius of generating circle R. Using the recharge model in Figure 13 for a bank height of 20 feet, slope angle of 75 degrees and angle of internal shearing resistance of 35 degrees.

Factor of Safety, F

Radius of Gen. Circle, R, ft.

True Cohesion. p.s.i.
Figure 18. The effect of true cohesion of factor of safety F and radius of generating circle $R . F_{1}$ and R_{2} are for the extreme rapid drawdown case in Figure l5a. F_{2} and R_{2} correspond to the rapid drawdown case of Figure 14. The bank height was 15 feet and the slope angle 75 degrees.
cohesion required for $F=1$ were less than 0.5 psi in each case. The height of the bank relative to the water table was greater for the cases in Figure 18 than for the case in Figure 17.

It is evident that much of the stabilizing strength of the bank is obtained from apparent cohesion through negative pore pressures as illustrated by the typical plots of pressure head versus distance along the failure plane in Figure 19. Therefore, the case in Figure 17 was relatively more severe because there was proportionately less soil above the water table. This is one reason why a greater value of soil cohesion was required to stabilize the bank. The shapes and proportions of the trial failure surfaces do not vary greatly and are similar to the geometries of failure planes observed in the field. Figure 20 shows the failure planes corresponding to the relationship R_{2} versus C in Figure 18 .

Summary and Conclusions

Computer programs were written to simulate the two groundwater flow systems and perform bank stability analyses using cycloidal failure surfaces. Typical soil parameters for deep loess soils of western Iowa and typical groundwater and bank geometries were used as input data.

The reaction of the model to variations in true conesion was explored, all other data remaining constant. Where seepage faces were high relative to the total bank height, higher

Figure 19. Calculated pore water pressure head distribution along the trial failure surfaces for the runs used to generate F_{2} versus c in Figure 18

Figure 20. Generated cycloidal failure surfaces giving minimum values of F corresponding to the runs used to generate the curve F_{2} versus c in Figure 18
values of true cohesion were required to stabilize the bank. Small increases in true cohesion changed the model's prediction from failure to stability. Low values of true cohesion were required for the prediction of stable banks. Low experimental accuracy when determining true cohesion in field cases may thus cause difficulty when evaluating the model's predictions in specific cases.

The accuracy of predicted results could not be assessed because comparison with field cases was not attempted. However, the predictions using the "typical" values were again intuitively reasonable. All the performance characteristics, such as reactions to changes in internal shearing resistance ϕ_{s} and bank steepness θ, could not be explored because of limitations in available time and money.

FUTURE DEVELOPMENTS AND OTHER APPLICATIONS

The computer programs written for this thesis form only the first stage in the development of a bank erosion model. Many other processes have been ignored, such as the transportation of talus away from the toe of the banks and the effect of freeze - thaw cycles. Additionally, the model has not been field tested. In this section we consider some possibilities for future development of the model and additional applications.

Time Dependent Solutions

When the water table in the rapid drawdown case is steady-state, it becomes a boundary streamline. When the water table of the recharge model is steady-state, the seepage through the gully bed and banks is equal to the recharge to the water table from the soil above. The streamlines intersecting the water tables in Figures 14, 15a and 15b indicate that those cases were not steady-state. Recharge was zero for the case in Figure 13, therefore, it also cannot be steady-state.

The models presented in this thesis can be extended to calculate steady-state conditions by using an equation derived by Kirkham and Gaskell (1950), which in our notation is

$$
\begin{equation*}
\Delta y_{w t}=\frac{\Delta t \mathrm{~K}}{f_{p}}\left(\partial \phi / \partial y-\partial \phi / \partial x \tan \theta_{w t}\right) \tag{64}
\end{equation*}
$$

where $\Delta y_{w t}$ is the fall of the water table in time Δt. The soil has saturated hydraulic conductivity K and drainable pore space f_{p}. The partial derivatives at points (x, y) along the water table are obtained by partial differentiation of the potential function $\phi(x, y)$ which is easily performed term by term in our series solutions.

When the new water table position is found a new set of $A_{\text {Nm }}$ s must be calculated. By repeatedly adjusting the water table levels through equation 64 and recalculating a new set of $A_{N_{m}}$'s, equilibrium of the water table is eventually reached. This procedure, first used by Boast (1970) to simulate falling water tables around wells, assumed that movement of the water table is slow compared to the velocity of sound so that each water table position may be considered a quasi-steady state; that is, steady-state for the time increment Δt.

Such an extension of the recharge model would be particularly valuable because the effect of different recharge rates on water table shape and the height of the seepage face could be evaluated. Field observations by Saxton and Spomer (1968) show how base flows from small experimental watersheds were increased by the application of conservation measures, especially level terraces. The modified recharge model could be applied to a field case such as theirs to simulate the effects on the water table of increasing the recharge rate by encouraging infiltration.

Collapsible Soil Failure

Our bank stability analysis assumes that soil fails in shear. Handy (1973) proposed that loessal soils of western Iowa can be susceptible to collapsible failure. Collapsible failure occurs when soil grains suddenly collapse into the voids as a result of overburden pressure. This is precipitated by the loss of apparent cohesion when the soil moisture content increases.

Soil below the water table has probably collapsed already and is normally consolidated. Should the water table rise some small increment, then collapse could occur within the newly wetted layer. At gully banks and heads, the collapse could cause unfavorable stress distributions that could make the banks fail.

Such a process is not considered in the existing model. However, a model for the collapse process should be formulated and combined with a time dependent recharge model to evaluate any changes in bank stability brought about by changes in recharge rate.

Other Applications

The models developed in this thesis can be applied to any similar stability problems. For example, the stability of excavation banks could be particularly suited because regular man-made soil boundaries can be approximated more alosely
in the model. Also, intensive soil and groundwater surveys are economically feasible so that a more accurate assessment of the flow region could be made. For excavations, short-term groundwater fluctuations are of interest nearer to the site, therefore the rapid drawdown model would be suitable.

Final Conclusions

Two groundwater flow systems and a bank stability model were formulated and represented by computer programs. Data generated by the groundwater programs was used in the bank stability program for calculating pore water pressures along trial cycloidal failure arcs. The results generated by use of "typical" soil parameters and bank geometries showed that the model reacted in an "intuitively reasonable" fashion; that is, in accordance with general field experience. However, the absolute accuracy of the predictions for a specific case was not tested with field data.

Three-dimensional cases, such as the gully head, were not considered because three-dimensional methods for bank stability analysis are not available.

The mathematical models we have presented are flexible in that they may be applied to a wide range of stability problems. But they are not fully developed and we have proposed that they be extended to include time dependent solutions and to consider collapsible soil failures. We conclude
that the objectives of this thesis have been met athough more testing and development of the models is required.

BIBLIOGRAPHY

Asatryan, R. G. 1965. Hydrotechnical methods of fighting gully erosion. Sedimentation Survey No. 3. 1967. (Abstract)

Beer, Craig E., and Howard P. Johnson. 1963. Factors related to gully growth in the deep loess area of western Iowa. Amer. Soc. Agricultural Eng. Trans. 6:237-240.

Bishop, W. W. 1962. Gully erosion in the Queen Elizabeth National Park. Uganda Journal 26:161-165.

Boast, Charles W. 1969. Potential flow to a piezometer or a well partially penetrating a porous medium. Unpublished M.S. thesis. Library, Iowa State University of Science and Technology, Ames, Iowa.

Boast, Charles W. 1970. Potential flow and drawdown for a well in a partially confined porous medium. Unpublished Ph.D. thesis. Library, Iowa State University of Science and Technology, Ames, Iowa.

Bradford, J. M., D. A. Farrell, and W. E. Larson. 1973. Mathematical evaluation of factors affecting gully stability. Soil Sci. Soc. Amer. Proc. 37:103-107.

Daniels, Raymond B. 1960. Entrenchment of the Willow Drainage Ditch, Harrison County, Iowa. American Journal of Science 258:161-176.

Ellis, Harold B. 1973. Use of cycloidal arcs for estimating ditch safety. Amer. Soc. Civil Eng. Journal SM2. 99:165-179.

Freeze, R. Allen. 1972. Role of subsurface flow in generating surface runoff. 1. Baseflow contributions to channel flow. Water Resources Research 8:609-623.

Glass, A. N. 1966. Gully erosion checked. New Zealand Journal of Agriculture 113:32-33.

Handy, Richard L. 1973. Collapsible loess in Iówa. Soil Sci. Soc. Amer. Proc. 37:281-284.

Harr, M. E. 1966. Foundations of theoretical soil mechanics. McGraw-Hill, New York.

Hudson, N. W. 1963. Gully control in Mopani Soils. Rhodesia Agriculture Journal 60:22-31.

Ireland, H. A., C. F. S. Sharp, and D. H. Eargle. 1939. Principles of gully erosion in the Piedmont of South Carolina. USDA Technical Bulletin No. 633.

Khan, Muhammad Y. 1970. Steady state flow around a well in unconfined stratified aquifer. Unpublished M.S. thesis. Library, Iowa State University of Science and Technology, Ames, Iowa.

Khan, Muhammad Y. 1973. Theory of some free surface groundwater problems. Unpublished Ph.D. thesis. Library, Iowa State University of Science and Technology, Ames, Iowa.

Kirkham, Don, and R. E. Gaskell. 1950. The falling water table in tile and ditch drainage. Soil Sci. Soc. Amer. Proc. 14:37-42.

Kirkham, Don, and W. L. Powers. 1972. Advanced soil physics. Wiley-Interscience, New York.

Kobezskii, M. D. 1959. Effectiveness of hydraulic installations for control of gully erosion in the Ukraine Abstract. Sedimentation Survey No. 2. 1966. (Abstract)

Lambe, William T., and Robert V. Whitman. 1969. Soil mechanics. Wiley, New York.

Lohnes, R. A., and R. L. Handy. 1968. Slope angles in friable loess. Journal of Geology 76:247-258.

Melvin, Stewart W. 1970. Determination of deep percolation losses in loessial soils. Unpublished Ph.D. thesis. Library, Iowa State University of Science and Technology, Ames, Iowa.

Piest, R. F., and R. G. Spomer. 1968. Sheet and gully erosion in the Missouri Valley Loessial Region. Amer. Soc. Agricultural Eng. Trans. 11:850-853.

Powers, W. L., D. Kirkham, and G. Snowden. 1967a. Orthonormal function tables and the seepage of steady rain through soil bedding. J. Geophysical Res. 72:6225-6237.

Powers, W. L., Don Kirkham, and G. Snowden. 1967b. Seepage of steady rainfall into ditches of unequal water level height. Soil Sci. Soc. Amer. Proc. 31:301-312.

Saxton, K. K., and R. G. Spomer. 1968. Effects of conservation on the hydrology of loessal watersheds. Amer. Soc. Agricultural Eng. Trans. 11:848, 849, 853.

Seginer, I. 1966. Gully development and sediment yield. Israel (Tel-Aviv) Ministry of Agricultural Soil Conservation Division, Research Unit, Research Report 13.

Selim, M. S., and D. Kirkham. 1972a. Seepage through soil bedding or a hillside due to steady rain: I. Soil surface of constant slope. Soil Sci. Soc. Amer. Proc. 36:402-407.

Selim, M. S., and D. Kirkham. 1972b. Seepage through soil bedding or a hillside due to steady rain: II. Soil surface of arbitrary shape:. Soil Sci. Soc. Amer. Proc. 36:407-412.

Thompson, J. R. 1954. Quantitative effect of watershed variables on the rate of gully head advancement. Amer. Soc. Agricultural Eng. Trans. 7:54-55.

Thompson, J. L. 1962. Gully control on the Wither Hills. New Zealand Journal of Agriculture 105:301,-303, 305.

Van der Ploeg, R. R., Don Kirkham, and C. W. Boast. 1971. Steady-state well flow theory for a confined elliptical aquifer. Water Resources Research 7:942-954.

Van der Ploeg, R. Rienk. 1972. Steady-state well flow theory for a horizontal confined aquifer with arbitrary conditions on the outer boundary. Unpublished PhD. thesis. Library, Iowa State University of Science and Technology, Ames, Iowa.

Woolhiser, D. A., and C. R. Miller. 1963. Case histories of gully control structures in southwestern Wisconsin. USDA ARS 41-60.

Zaitsev, V. T. 1968. An active method for the stabilization of gullies. Sedimentation Survey No. 6. 1970. (Abstract)

ACKNOWLEDGMENTS

I am deeply indebted to Dr. H. P. Johnson for his enthusiastic advice given throughout this project. I would like to express sincere thanks to Dr. Don Kirkham for his personal involvement in the development of the flow system models presented in this thesis; also to Dr. R. L. Handy for his advice on soil mechanics. Dr. C. E. Beer, Dr. W. H. Scholtes and Dr. R. A. Lohnes are gratefully thanked for serving on my graduate committee and Drs. H. M. and M. S. Selim for their advice and help with the PKS method. Finally, I would like to express special thanks to Linda Anderson who typed this thesis at very short notice.

This research was supported in part by a grant from the U.S. Department of Interior, Office of Water Resources Research and made available through the Iowa State Water Resources Research Institute as Project A-034-IA.

Completion of this thesis was made possible by three months leave of absence from academic duties granted by the Governors of the National College of Agricultural Engineering, Silsoe, Bedford, England.

APPENDIX A


```
C
C PROGRAM }1\mathrm{ CALCULATION OF A-NMS FOR RECHARGE MODEL
C
C****************&********************************************************
    IMPLICIT REAL* 8(A-H,D-Z)
    REAL*8 J(780)
    REAL*4 XB(151),YB(151),XLAB(5),YLAB(5),GLAB(5),DATLAB(5)
    REAL*4 FXS(129), XXS(129),HT(129)
    DIMENSION DFX(129),PHIWT(129)
    DIMENSION XX(129), YFIT(129)
    DIMENSION Q(11)
    DIMENSION UU(40),C(40),D(40),G(40),A(40)
    DIMENSION X(5),Y(129),Z(129),FX(129)
    INTEGER TOINT,TOINPI
    COMMON X,Y,Z,YFIT
    READ(5,985)XLAB,YLAB,GLAB,DATLAB
    985 FORMAT(20A4
    READ(5, 1005)INT1, INT2,INTS,MAX,NN,INTX
1005 FORMAT(6I3)
    WRITE(6,1006)INT1,INT2,INTS,INTX,MAX,NN
1006 FORMAT!' NUMBER OF INTERVALS IN INTEGRATIONS = %,I3,3X,I3,3X,I3/2
    X: NUMBER OF HATERTABLE INTERVALS READ IN = , I3,%,
    X' MAX. NO. OF A-NMS TO BE CALCULATED = %,I3./.
    X' ORDER OF POL YNOMIAL TO BE FITTED TO HATERTABLE SHAPE = , 13)
    READ(5,1015)WW,AA, B, THETA,DL,HS,T
1015 FORMAT(8F10.0)
    NBPTS=INTS+4
    NCPTS = INTS +23
    NNP1 =NN+1
    NPTS = INTS S I
    IXPI=INTX+1
    IPI=INTS+1
    PI=3.141592653589793
    X(1)=0.00
    TTHETA=DTAN(THETA*PI/180.D0)
    X(2)=T
```

```
        X(3) =T+(WW/TTHETA)
        X(4) =T +(HS/TTHETA)
        X(5)=DL
        WRITE(6,1016)WW,HS,AA,B,DL,THETA,T
    1016 FORMAT(' DEPTH OF WATER IN GULLY = 1,F10.4/,
        X' HEIGHT OF INITIAL SEEPAGE FACE = ',F10.4,%,
        X' DEPTH TO IMPERMEABLE BARRIER = ',F10.4,%,
        X' MAXIMUM DRIVING HEAD = ',F10.4,1,
        X ' LENGTH OF FLOW REGION = ',F10.4,%,
        X' SLOPE OF BANK TO HORIZONTAL = ',F10.4%/,
        X: HALF WIDTH OF GULLY = 1,F10.4,1)
C READ IN WATERTABLE ELEVATIONS ABOVE THE X-AXIS
            READ(5,1025)(FX(I),I=1, IXP1)
    1025 FORMAT(8F10.0)
        WRITE(6,1026)
    1026 FORMAT(//' INITIAL WATERTABLE HEIGHTS "/)
        WRITE(6,1036)(FX(I),I=1,IXP1)
    1036 FORMAT(IOF10.4,3X)
        KA=MAX
        KAMl=KA-1
        KADIAG=(KA*KAM1)/2
C FIT CURVE TO WATERTABLE
C CALCULATE XIS FOR WATERTABLE HEIGHTS
            DELX=DABS(X(4)-X(5))/INTX
            xx(1) =x(4)
            XX(IXP1)=X(5)
            DO 100 I=2,INTX
            XX(I) =XX(I-1)+DELX
    100 CONTINUE
            WRITE(6,1046)
1046 FORMATI//' DISTANCES ALONG X-AXIS CORRESPONDING TO FED IN
            X WATERTABLE HEIGHTS '/l
            WRITE(6,1036)(XX(I),I=1,IXPI)
C WEIGHT VALUES OF INDEPENDANT VARIABLE TO be fitted
    101 CONTINUE
    BESLHS=0.DO
    DO 99 I=1,I XPI
```

```
        FXS(I)=FX(I)
        XXS(I)=XX(I)
        WT(I)=1.0
        IF(I-LE.10)WT(I)=10.
        IF(I.GE.30)WT(I)=10.
        9 9 ~ C O N T I N U E ~
C
C FIT YFIT(I)=Q(1)+Q(2)*X(I)+Q(3)*X(I)*X(I)+\ldots.......
    CALL DPLSPA(NN,IXP1,XXS,FXS,HT,Q,O.I
    WRITE(6,1076)
1076 FORMAT (//! COEFFICIENTS OF EQUATION YFIT %/|
    WRITE(6,1086)(Q(I),I=1,NNP1)
    WRITE(7,1087)(Q(I),I=1,NNP1)
1087 FORMAT(3024.17)
1086 FORMAT(4(6X,024.17))
    DELX=DABS(X(4)-X(5))/INTS
    XX(1) =X(4)
    YFIT(1)= FX(1)
    XX(IP1) =X(5)
    YFIT(IP1)=FX(IXP1)
    DO 200 JJ=2,INTS
    XX(JJ)=XX(JJ-1)+DELX
    YFIT(JJ)=Q(1)
    XDUN=1.DO
    DO 300 K=1,NN
        XDUM=XDUM*XX(JJ)
    300 YFIT(JJ)=YFIT(JJ)+(Q(K+1)*XDUM)
    200 CONTINUE
        WRITE(6,1056)
1056 FORMAT ///' CALCULATED HATERTABLE HEIGHTS %/%
            WRITE(6,1036)(YFIT(I),I=1,IP1)
            WRITE(6,1066)
1066 FORMAT///: DISTANCES ALONG X-AXIS CORRESPONDING TO CALCULATED
    X WATERTABLE HEIGHTS '/\
    WRITE(6,1036)(XX(I),I=1,IPI)
C CALCULATE THE RHS OF BESSEL'S INEQUALITY
```

```
    BCKDUM=0.
    CALL BRHS(INTS,TTHETA,AA,DL,BESRHS,WW)
C CALCULATE THE UMN'S
    M=0
    MCOU=5
    1 CONTINUE
    MP1=M+1
    DO 10 I=1,MP1
    N=I-1
    CALL UMN(NN,INT1,INT2,INTS,U,M,N,DL,TTHETA,B,AA,WW)
    UU(I) =U
    10 CONTINUE
    CALCULATE THE WM'S
    CALL WM(NN,INT1,INT2,INTS,M,W,OL,TTHETA,B,AA,WW)
C CALCULATE THA ANM'S
    CALL ORTH(UU,W,C,D,G,J,A,MPI,KA,KAMI,KADIAG,IER)
    CALCULATE THE LHS OF BESSELS INEQUALITY
    BESLHS=BESLHS+(A(MP1)*A(MP1)*D(MP 1)
    BESCHK = BESLHS/BESRHS
    WRITE(6,1096)M,BESCHK
    FORMATI/,' M = ',13,5X,' BESSELS CHECK = ',D24.17j
    BCKDUM=BESCHK
    IF\BESCHK.GE..9999)GOTO 500
    IF(MP1.GE.MAX)GOTO 500
    IF(MCOU.LT.5)GOTO 98
    MCOU=0
    500 CONTINUE
        XB(1)=0.
        YB(1)=0.
        XB(2)=0.
        YB(2)=AA
        XB(3)=T
        YB(3)=AA
        XB(4)=T+HS/TTHETA
        YB(4) =AA+HS
        DO 97 I= 5,NBPTS
        XB(I) =XX(I-3)
```

$\mathrm{YB}(1)=\mathrm{YFIT}(\mathrm{I}-3)$
97 CONTINUE
CALL GRAPHINBPTS,XB,YB,1,4,10., 5., 8., 0., 8., 0., XLAB, YLAB, GLAB , XDATLAB)

C
EVALUATE THE PHI ALONG BOUNDARIES 1. 2. AND 3.
$20 \times P=X(1)$
WRITE(6,1106)
1106 FORMAT(//:' A-NM VALUES $/ / 1$
$\operatorname{WRITE}(6,1086)(A(1), I=1, M P 1)$
WRITE (7, 1087) (A(I), I=1,MP1)
WRITE $(6,1116)$
1116 FORMAT (/1,: ALONG GULLY BED AND BANK $/ 1,{ }^{\prime}$ XP XP
X PHIXY '1
$\operatorname{DELXP}=\operatorname{DABS}(X(2)-X(1)) / 10$
$Y P=A A$
DO $30 \mathrm{I}=1,11$
CALL PHI (XP,YP,PHI XY,MPI,DL,H,A,KA,B)
WRITE (6,1126)XP,YP, PHIXY
1126 FORMAT(3(F10.4,3X))
$Y B(I)=P H I X Y$
XB(I) $=X P$
$X P=X P+D E L X P$
IF(I.EQ.INTSIXP=X(2)
30 CONTINUE
C EVALUATE PHI ALONG the bank
DELXP=DABS(X(4)-X(2))/10
$X P=X(2)$
DO $40 \mathrm{I}=1,11$
$Y P=A A+(X P-X(2)) * T T H E T A$
CALL PHI (XP,YP,PHIXY,MPI,DL,H,A,KA,B)
WRITE $(6,1126) X P, Y P, P H I X Y$
$Y B(I+11)=P H I X Y$
$X B(I+11)=X P$
XP $=X P+D E L X P$
IF(I.EQ.INTS)XP=X(4)
40 CONTINUE
WRITE(6,1146)

```
1146 FORMAT(//' HYDRAULIC HEAD ALONG WATERTABLE '//
C
    EVALUATE PHI-ALONG THE WATERTABLE
    XPT=X(4)
    DELX=DABS(X(4)-X(5))/INTS
    DO 59 I=1,NPTS
    YPT=YFIT(I)
    CALL PHI(XPT,YPT,PHIXY,MP1,DL,H,A,KA,B)
    PHIWT(I)=PHIXY
    YB(I+22)=PHIWT(I)
    XB(I+22)=XPT
    XPT=XPT+DELX
    5 9 ~ C O N T I N U E ~
    WRITE(6,1086)(PHIWT(I),I=1,NPTS)
    CALL GRAPHS (NCPTS;XB,YB,1,7,';')
    98 CONTINUE
    MCOU=MCOU+1
    IF(BESCHK.GE.. 9999) STOP
    IF(MP1.GE.MAX)STOP
    M=M+1
    GOTO 1
    END
C
    SUBROUTINE WM(NN,INTX1,INTX2,INTX3,M,H,DL,TTHETA,B,AA,WH1
    IMPLICIT REAL*8(A-H,O-Z)
    COMMON X(5),Y(129),Z(129),FX(129)
    WY(CAPFX,AM1,XX,Y1,B)=(DCOSH(AM1*Y1)/DCOSH(AM1*B))*CAPFX*DCOS (AM1*
XXX)
    IPI=INTX 1+1
    PI=3.141592653589793
    AM1=M*PI/DL
    DELTAX=DABS (X(1)-X(2))/INTX1
    XX=X{1}
    DO 10 I= 1, IP I
    CAPFX=AA+WW
    Yl=AA
```

```
    Y(I)=WY(CAPFX,AM1,XX,Y1,B)
    XX=XX+DELTAX
    IF(I.GE.INTXI)XX=X(2)
    10 CONTINUE
        CALL DQSF(DELTAX,Y,Z,IPI)
        WII=Z(IPI)
        DELTAX= DABS(X(2)-X(4))/INTX2
        IP1=INT X 2+1
        DO 30 I=1,IP1
        CAPFX=AA+(XX-X(2))*TTHETA
        Y1=AA+(XX-X(2))*TTHETA
        Y(I) =WY(CAPFX,AM1,XX,Y1,B)
        XX=XX+DELTAX
        IF(I.GE.INTX2)XX=X(4)
    30 CONTINUE
    CALL DQSF(DELTAX,Y,Z,IPI)
    W12=2(IP1)
    DELTAX=DABS(X(4)-X(5))/INTX3
    IPL=INT X 3+1
    DO 40 I=1,IP1
    CAPFX=FX(I)
    Yl=FX(I)
    Y(I)=WY(CAPFX,AM1,XX,Y1,B)
    XX=XX+DELTAX
    IF(I.GE.INTX3) XX=X(5)
4 0 ~ C O N T I N U E ~
    CALL DQSF(DELTAX,Y,Z,IP1)
    W13=2(IP1)
    W=WI1+HI 2+WI3
    RETURN
    END
```

C
C FUNCTION FOR INTEGRATION
ABCY(AM1,AN1,X1,Y1,DL,B)=(DCOSH(AM1*Y1)/DCOSH(AM1*B))
X*(DCOSH(AN1*Y1)/DCOSH(AN1*B))*DCOS(AM1*X1)*DCOS(AN1*X1)
PI=3.141592653589793
AMI=M*PI/DL
ANL = N*PI/DL
DELTAX=DABS(X(1)-X(2))/INTX1
IPI= INTXI +1
XX=X(1)
DO 10 I=1,IP1
Y(I)=ABCY(AM1,AN1,XX,AA,DL,B)
XX=XX+DELTAX
IF(I.GE.INTXI IXX=X(2)
10 CONTINUE
CALL DQSF(DELTAX,Y,Z,IPI) \&
All=2(IP1)
DELTAX= DABS(X(2)-X(4))/INTX2
IP1 = INT X 2+1
DO 20 I= 1,IP1
Y1=AA+((XX-X(2))*TATHET)
Y(I)=ABCY(AM1,AN1,XX,Y1,DL,B)
xx=xX+DELTAX
IFII.GE.INTX2) XX=X(4)
20 CONTINUE
CALL DQSF(DELTAX,Y,Z,IPI)
AI2=Z(IP1)
DELTAX=DABS (X(4)-X(5))/INTX3
IPl=I NTX3+1
DO 30 I= 1,IPI
Y(I)=ABCY(AM1,AN1,XX,FX(I),DL,B)
XX=XX+DELTAX
IF(I .GE. INT X3) XX=X(5)
30 CONTINUE
CALL DQSF(DELTAX,Y,Z,IPI)
AI3=Z(IP1)

```
```

 U =AII+AI2+AI 3
 RETURN
 END
 C
SUBROUTINE PHI (X,Y,PHIXY,M,DL,H,A,KA,B)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(KA)
UM(AMl,X,Y,B)=(DCOSH(AM1*Y)/DCOSH(AM1*B))*DCOS (AM1*X)
PI=3.141592653589793
MM=0
PHIXY=0.
1 AML=MM*PI/DL
MPl=MM+1
PHIXY=PHIXY+A(MP1)*UM(AM1,X,Y,B)
IF(MPI.EQ.M)GOTO 2
MM=MM+1
GOTO 1
2 CONTINUE
RETURN
END
C
C
SUBROUTINE BRHS(INTS,TTHETA,AA,DL,BESRHS,WW)
IMPLICIT REAL*8(A-H,O-Z)
COMMON X(5),Y(129),Z(129),FX(129)
IPI= INTS+1
BI 1=AA*AA*X(2)
DELX=DABS(X(2)-X(4))/1NTS
XX=X(2)
DO 10 I=1,IP1
Y(I)=(AA+(XX-X(2))*TTHETA)*(AA+(XX-X(2))*TTHETA)
XX=XX+DELX
IF(I.GE.INTS)XX=X(4)
10 CONT INUE

```

CALL DQSF(DELX,Y,Z,IPI)
BI2=Z(IP1)
DELX=DABS (X(4)-X(5))/INTS
DO 20 I=1,IPl
\(Y(I)=F X(I) * F X(I)\)
20 CONT INUE
CALL DQSF (DELX,Y,Z,IPI)
3I3=2(IP1)
BESRHS \(=B I 1+B I 2+B 13\)
RETURN
END

```

C
C
PROGRAM 2 CALCULATION OF A-NMS FOR RAPID DRAWDOWN MODEL

```

```

 IMPLICIT REAL*8(A-H,O-Z)
 REALL*8 J(780)
 REAL*4 XB(153),YB(153),XLAB(5),YLAB(5),GLAB(5),DATLAB(5)
 REAL*4 FXS(129), XXS(129),WT(129)
 DIMENSION DFX(129),PHIWT\129)
 DIMENSION XX(129),YFIT&129%
 DIMENSION Q(11)
 DIMENSION UU(40),C(40),0(40),G(40),A(40)
 DIMENSION X(5) ,Y(129), Z(129),FX(129)
 INTEGER TOINT,TOINPI
 CDMMON X,Y,Z,YFIT
 READ(5,985)XLAB,YLAB,GLAB,DATLAB
 985 FORMAT (20A4)
 READ(5,1005)INT1, INT2,INTS,MAX,NN,INTX
 1005 FORMAT(6I3)
WRITE(6,1006)INT1,INT2,INTS,INTX,MAX,NN
1006 FORMATI' NUMBER OF INTERVALS IN INTEGRATIONS = 1,I3,3X,I3,3X,I3/.
X: NUMBER DF WATERTABLE INTERVALS READ IN = %,I3./.
X: MAX.NO. DF A-NMS TO BE CALCULATED = . 13,%%
X' ORDER OF POLYNOMIAL TO BE FITTED TO HATERTABLE SHAPE = . I 3)
READ(5,1015)WH,AA,B,THETA,DL,HS ,T
1015 FORMAT(8F10.0)
NBPTS=INTS+4
NCPTS=INTS+23
NNP1 =NN+1
NPTS=INTS+1
IXPI = INTX+1
IPI =INTS+1
PI=3.141592653589793
X{1)=0.00
TTHETA=DTAN(THETA*PI//180.D0)
x(2)=(WH-AA)/TTHETA

```
```

 IF((WW.EQ.O.DO).AND.(AA.EQ.0.DO))X(2)=0.DO
 X(3)=0.
 X(4)=(HS-AA)/TTHETA
 X(5) =DL
 H=B-WW
 WRITE(6,1016)WW,HS,AA,B,DL, THETA,H
 1016 FORMAT(' DEPTH OF WATER IN GULLY = ',F10.4/,
X' HEIGHT OF INITIAL SEEPAGE FACE = ',F10.4,%,
X' HEIGHT OF VERTICAL SECTION OF BANK = ',FIO.4,%,
X' HEIGHT OF FICTICIOUS SOURCE = ',FIO.4,1,
X , LENGTH OF FLOW REGION = ',F10.4,%,
X' SLOPE OF BANK TO HORIZONTAL = ',F10.4,%,
X: MAXIMUM DRIVING HEAD = 1,F10.4,%
IF(HS.GT.B)B=HS
C READ IN WATERTABLE ELEVATIONS ABOVE THE X-AXIS
READ(5,1025)(FX(I),I=1,IXP1)
1025 FORMAT(8F10.0)
WRITE (6,1026)
1026 FORMAT(//' INITIAL WATERTABLE HEIGHTS '/)
WRITE(6,1036)(FX(I),I=1,IXP1)
1036 FORMAT(10F10.4.3X)
KA=MAX
KAMI =KA-1
KADIAG=(KA*KAMI)/2
C FIT CURVE TO HATERTABLE
C CALCULATE XIS FOR WATERTABLE HEIGHTS
OELX=DABS(X(4)-X(5))/INTX
XX(1)=X(4)
XX(IXP1)=X(5)
DO 100 I=2,INTX
XX(I) = XX(I-1) +DELX
100 CONTINUE
WRITE (6,1046)
1046 FORMATI//' DISTANCES ALONG X-AXIS CORRESPONDING TO FED IN
X WATERTABLE HEIGHTS '/)
WRITE(6,1036)(XX(I),I=1,IXP1)
C WEIGHT VALUES OF INDEPENDANT VARIABLE TO BE FITTED

```
```

 101 CONTINUE
 BESLHS=0.DO
 DO 99 I=1,IXP1
 FXS(I)=FX(I)
 XXS(I)=XX(I)
 WT(I)=1.0
 IF(I.LE.10)WT(I)=10.
 IF(I.GE.30)WT (I)=10.
 9 9 ~ C O N T I N U E ~
 C
C FIT YFIT(I)=Q(1)+Q(2)*X(I)+Q(3)*X(I)*X(I)+···.......
CALL OPLSPA(NN,IXP1,XXS,FXS,WT,Q,O.)
WRITE(6,1076)
1076 FORMAT(//: COEFFICIENTS OF EQUATIGN YFIT //)
WRITE(6,1086)(QSI),I=1,NNP1)
1086 FORMAT(4(6X,D24.17))
WRITE(7,1087)(Q(I),I=1,NNP1)
1087 FORMAT(3024.171
DELX=DABS(X(4)-X(5))/INTS
XX(1) =X(4)
YFIT(1)=FX(1)
XX(IP1) =X(5)
YFIT(1P1)=FX(IXP1)
DO 200 JJ=2,INTS
XX(JJ)=XX(JJ-1)+ DELX
YFIT(JJ)=Q(1)
XDUM=1.DO
DO 300 K=1,NN
XDUM=XDUM* XX(JJ)
300 YFIT(JJ)=YFIT(JJ)+(Q(K+1)*XDUM)
200 CONTINUE
WRITE (6,1056)
1056 FORMAT(//' CALCULATED WATERTABLE HEIGHTS */|
WRITE(6,1036)(YFIT(I),I=1,IP1)
WRITE (6,1066)
1066 FORMATI//' DISTANCES ALONG X-AXIS CORRESPONDING TO CALCULATED
1087 FORMAT (3024. 171
DELX=DABS(X(4)-X(5))/INTS
$X X(1)=X(4)$
YFIT(1)=FX(1)
DO 200 JJ=2 INTS
$X X(J J)=X X(J J-1 J+D E L X$
YFIT (JJ)=Q(1)
XDUM $=1.00$
DO $300 \mathrm{~K}=1$, $N \mathrm{~N}$
XDUM=XDUN*XX(JJ)
300 YFIT(JJ)=YFIT(JJ)+(Q(K+1)*XDUM)
200 CONTINUE
WRITE $(6,1056)$
1056 FORMAT ///' CALCULATED WATERTABLE HEIGHTS •//
WRITE (6, 1036)(YFIT(I), I=1,IP1)
WRITE $(6,1066)$
1066 FORMAT $/ /:$ DISTANCES ALONG X-AXIS CORRESPONDING TO CALCULATED

```
```

 x WATERTABLE HEIGHTS '/1
 WRITE(6,1036)(XX(I),I=1,IP1)
 C CALCULATE THE RHS OF BESSEL'S INEQUALITY
BCKDUM=0.
CALL BRHS(INTS,TTHETA,AA,DL,BESRHS,WW,H)
CALCulate the umN'S
M=1
MCOU=5
1 continue
MP1=M
DO 10 I=1,MP1
N=I
CALL UMN(NN,INT1,INT2,INTS,U,M,N,DL,TTHETA,B,AA,WW)
UU(I) =U
10 CONTINUE
CALCulate the wm's
CALL WM(NN,INT1,INT2,INTS,M,W,DL,TTHETA,B,AA,WW,H)
CALCULATE THA ANM'S
CALL ORTH(UU,H,C,D,G,J,A,MP1,KA,KAMI,KADIAG,IER)
CALCULATE THE LHS OF BESSELS INEQUALITY
BESLHS=BESLHS+(A(MP1)*A(MP1)*D(MP 1))
BESCHK=BESLHS/BESRHS
WRITE(6,1096)M,BESCHK
1096 FORMATI/,' M = ',13,5X,' BESSELS CHECK = 0.024.17)
BCKDUM=BESCHK
IF(BESCHK.GE..9999)GOTO 500
IF(MP1.GE.MAX)GOTO 500
IF(MCOU.LT.5)GOTO 98
MCOU=0
5 0 0 ~ C O N T ~ I N U E ~
XB(1)=0.
YB(1)=0.
XB(2)=(WW-AA)/TTHETA
YB{2)=0.
XB(3)=(WW-AA)/TTHETA
YB(3)=0.
XB(4)=(HS-AA)/TTHETA

```
```

 YB(4)=HS-WW
 DC 97 I=5,NBPTS
 XB(I)=XX(I-3)
 YB(I)=YFIT(I-3)-WW
 9 7 \text { CONTINUE}
 CALL GRAPHINBPTS,XB,YB,1,4,10., 5.,2.,0.,2.,0.,XLAB,YLAB,GLAB,
 XDATLABI
 C EVALUATE THE PHI ALONG BOUNDARIES 1. 2. AND 3.
20 XP=X(1)
WRITE(6,1106)
1106 FORMAT(//,' A-NM VALUES '//
WRITE(6,1086)(AlI),I=1,MP1)
WRITE (6,1116)
WRITE(7,1087)(A(I),I=1,MP1)
1116 FORMATI//,' ALONG GULLY BED AND BANK 1/,
X PHIXY',
DELXP=DABS(X(2)-X(1))/10
YP=AA
YP
DO 30 I=1,11
CALL PHI (XP,YP,PHI XY,MPI,OL,H,A,KA,B)
WRITE(6,1126)XP,YP,PHIXY
1126 FORMAT(3(F10.4,3X))
YB(I)=PHIXY
YB(I)=DABS (PHIXY)
XB(1)=XP
XP=XP+DELXP
YP=AA+XP*TTHETA
IF(I.EQ.INTS)XP=X(2)
30 CONTINUE
EVALUATE PHI ALONG THE BANK
DELXP=DABS(X(4)-X(2))/10
XP=X{2}
DO 40 I=1,11
YP=AA+XP*TTHETA
CALL PHI(XP,YP,PHIXY,MPI,DL,H,A,KA,B)
WRITE (6,1126)XP,YP,PHIXY
YB(I+11)=PHIXY

```
```

 YB(I+11)=DABS(PHIXY)
 XB(I+11)=XP
 XP=XP+DELXP
 IF(I.EQ.INTS)XP=X(4)
 40 CONTINUE
 WRITE (6,1146)
 c}114
FORMAT///I HYDRAULIC HEAD ALONG WATERTABLE //J
EVALUATE PHI ALONG THE WATERTABLE
XPT=X(4)
DELX=DABS(X(4)-X(5))/INTS
DO 59 I=1,NPTS
YPT=YFIT(I)
CALL PHI(XPT,YPT,PHIXY,MPI,DL,H,A,KA,B)
PHIWT(I)=PHIXY
YB(I+22)=PHIWT (I)
YB(I+22)=DABS(PHIWT(I)
XB(I+22)=XPT
XPT=XPT+DELX
59 CONTINUE
WRITE(6,1086)(PHIWT(I),I=1,NPTS)
CALL GRAPHS(NCPTS,XB,YB,1,7,';')
9 8 CONTINUE
MCOU=MCOU+1
IF(BESCHK.GE.. 9999)STOP
IF(MP1.GE.MAX)STOP
M=M+1
GOTO 1
END
C
C
SUBROUTINE WM(NN,INTX1,INTX2,INTX3,M,W,DL,TTHETA,B,AA,WW,H)
IMPLICIT REAL*8(A-H,O-Z)
COMMON X(5),Y(129),Z(129),FX(129)
WY(CAPFX,AM1,XX,Y1,B)=(DCOSH(AM1*Y1)/DCOSH(AM1*B))*CAPFX*DSIN(AM1*
xxx)
IP1=1NTX1+1

```
```

PI=3.141592653589793

```
\(A M 1=M * P I / D L\)
WI \(1=0\).
OELTAX=DABS \((X(1)-X(2)) / I N T X 1\)
\(\mathrm{xX}=\mathrm{x}(1)\)
IF(X(1).EQ.X(2))GOTO 11
\(0010 \mathrm{I}=1\), \(\mathrm{IPI}_{1}\)
\(C A P F X=-X X / D L\)
\(Y 1=A A+X X *\) TTHETA
Y(1) \(=W Y(C A P F X, A M 1, X X, Y 1, B)\)
\(\mathrm{XX}=\mathrm{XX}+\mathrm{DELTAX}\)
IF(I.GE.INTX1) XX=X(2)

10 CONTINUE
CALL DQSF(DELTAX,Y,Z,IPL)
WII=2(IP1)
WI 2=0.
IF \((X(2), E Q . X(4))\) GOTO 12
11 DELTAX=DABS(X(2)-X(4))/INTX2
\(I P 1=I N T X 2+1\)
DO 30 I=1,IP1
CAPF \(=((A A+X X * T T H E T A-W W) / H-X X / D L)\)
\(Y 1=A A+X X * T T H E T A\)
\(Y(I)=W Y(C A P F X, A M 1, X X, Y 1, B)\)
XX=XX+DELTAX
IF(I.GE.INTX2) XX=X(4)
30 CONTINUE
CALL DQSF(DELTAX,Y,Z,IP1)
WI2=2(IP1)
12 DELTAX=DABS(X(4)-X(5))/INTX3
I P1 \(=1 N T \times 3+1\)
DO \(40 \mathrm{I}=1\), IP 1
CAPFX=( \((F X(I)-W W) / H-X X / D L)\)
Yl=FX(I)
\(Y(I)=W Y(C A P F X, A M 1, X X, Y 1, B)\)
\(X X=X X+D E L T A X\)
IF(I.GE.INTX3) XX=X(5)
40
cont inue
```

 CALL DQSF(DELTAX,Y,Z,IP1)
 WI3=Z (IP1)
 W=WI 1+WI2+WI 3
 RETURN
 END
 C
C
SUBROUTINE UMN(NN,INTX1,INTX2,INTX3,U,M,N,DL,TATHET,B,AA,WW)
IMPLICIT REAL*8(A-H,O-Z)
COMMON X(5),Y(129),Z(129),FX(129)
c function for integration
ABCY(AM1,AN1,X1,Y1,DL,B)=(DCOSH(AM1*Y1)/DCOSH(AM1*B))
X*(DCOSH(AN1*Y1)/DCOSH(AN1*B))*DSIN(AM1*X1)*DSIN(AN1*X1)
PI=3.141592653589793
AM1=M*PI/DL
ANL=N*PI/DL
AI1=0.
DELTAX=DABS(X(1)-X(2))/INTX1
IPl = INTX L +1
XX=X(1)
IF(X(1).EQ.X(2))GOTD 11
00 10 I=1,IP1
Y1=AA+XX*TATHET
Y(I)=ABCY(AMI,ANI,XX,Y1,DL,B)
XX=XX+DELTAX
IF(I.GE.INTXI)XX=X(2)
10 CONTINUE
CALL DQSF(DELTAX,Y,Z,IP1)
AII=Z(IP1)
AI2=0.
IF(X(2).EQ.X(4))GOTO 12
11 DELTAX=DABS(X(2)-X(4))/INTX2
IP1=INTX2+1
DO 20 I=1,IP1

```
\(Y l=A A+X X * T A T H E T\)
\(Y(I)=A B C Y(A M 1, A N 1, X X, Y 1, D L, B)\)
\(X X=X X+D E L T A X\)
IF(I.GE.INTX2) \(X X=X(4)\)
20 CONTINUE
CALL DQSF(DELTAX, \(Y, Z, I P 1)\)
A12=Z(IP1)
12 DELTAX=DABS(X(4)-X(5))/INTX3
IP1=INTX3+1
DO \(30 \mathrm{I}=1\), IPI
\(Y(I)=A B C Y(A M 1, A N 1, X X, F X(I), D L, B)\)
\(X X=X X+D E L T A X\)
IF(I.GE.INTX3) XX \(=X(5)\)
30 CONTINUE
CALL DQSF(DELTAX,Y,Z,IP1)
AI \(3=Z(I P 1)\)
\(U=A I 1+A I 2+A I 3\)
RETURN.
END
C
C
C
C
SUBROUTINE PHI \((X, Y, P H I X Y, M, D L, H, A, K A, B)\)
IMPLICIT REAL*8(A-H, D-Z)
DIMENSION A(KA)
UM (AMI, \(X, Y, 8)=(D C O S H(A M 1 * Y) / D C O S H(A M 1 * B)) * D S I N(A M 1 * X)\)
\(P I=3.141592653589793\)
\(M M=1\)
PHIXY=X/DL
1 AMI=MM*PI/DL
\(M P 1=M M\)
PHIXY=PHIXY+A(MP1\}*UM(AM1, X,Y,B)
IF(MPl.EQ.M)GOTO 2
\(M M=M M+1\)
GOTO 1
2 PHIXY=PHIXY*H
RETURN
```

 END
 C
C
SUBROUTINE BRHS(INTS,TTHETA,AA,DL,BESRHS,WW,H)
IMPLICIT REAL*8(A-H,O-2)
COMMON X(5),Y(129),Z(129),FX(129)
IPI=INTS+1
BII=X(2)*x(2)*x(2)/(3.*DL*DL)
DELX=DABS(X(2)-X(4))/INTS
xX=x(2)
DO 10 I=1,IP1
Y(I)=(((AA+XX*TTHETA-WW)/H)-XX/DL)*(((AA+XX*TTHETA-WW)/H)-XX/DL)
XX=XX+DELX
IF(I.GE.INTS)XX=X(4)
10 CONTINUE
CALL DQSF(DELX,Y,Z,IPI)
BI2=Z(IPI)
DELX=DABS(X(4)-X(5))/INTS
00 20 I=1,IPI
Y(I)=(((FX(I)-WW)/H)-XX/DL)*((IFX(I)-WW)/H)-XX/DL)
XX=XX+DELX
20 CONTINUE
CALL DQSF(DELX,Y,Z,IP1)
BI3=2(IPI)
BESRHS=BI1+BI2+BI 3
RETURN
END

```
```

C**
C
PROGRAM 3 CALCULATION OF PHI AND PSI AT NODES
RECHARGE CASE
C
C**
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION XX(101), YY(101),PHIWT(101),PSIWT(101)
REAL*8 A(40),Q(11)
995 FORMAT(8I3)
1015 FORMAT(3024.17)
1025 FORMAT(8F10.0)
1036 FORMAT(//,% Y = 0.f 10.4)
1046 FORMAT(10(2X,F10.4))
READ(5,995)NA,NN,NWT,NFL,NPHIL, NPTS,INTX,INTY
NNP1 =NN+1
PRINT,NA,NN,NWT,NFL,NPHIL,NPTS,INTX,INTY
READ(5,1015)(A(I),I=1,NA)
READ(5, 2015)(Q(I),I=1,NNP1)
PRINT,A
PRINT:Q
READ(5,1025)WW,AA,B,THETA,DL,HS,T, HYDCON
PRINT,NW,AA,B,THETA,DL,HS,T,HYDCON
PI=3.141592653589793
TTHETA=DTAN\&THETA*PI /1 80.1
C GRAPH THE FLOW REGION
XX(1)=0.
YY(1)=0.
XX(2)=0.
YY(2)=AA
XX(3)=T
YY(3) =AA
XX(4)=T+HS/TTHETA
YY(4) =AA+HS
PHIMAX=YY(4)
DELX=DABS(XX(4)-DL)/NWT
NWTP4=NWT+4

```
```

 00 10 I= 5,NWTP4
 XX(I)=XX(I-1)+DELX
 CALL HITWT(XX(I),Q,NN,YY(I))
 CALL PHI(XX(I),YY(I),PHIHT(I),NA,DL,H,A,NA,B)
 CALL PSI(XX(I),YY(I),PSIWT(I),NA,DL,A,NA,B,HYDCON)
 IF(YY(I).GT.PHIMAX)PHIMAX=YY(I)
 10 CONTINUE
 XX(NWTP4+1) =xX(NWTP4)
 YY(NWTP4+1)=0.
 NBPTS=NWTP4+1
 PRINT,XX
 PRINT,YY
 PRINT,PHIWT
 PRINT,PSIWT
 C CALCULATE PSIMAX
 CALL PSI(XX(4),YY(4),PSIMAX,NA,DL,A,NA,B,HYDCON)
 C CALCULATE PSIMIN
 CALL PSI(XX(NWTP4),YY(NWTP4),PSIMIN,NA,DL,A,NA,B,HYDCON)
 DELPSI=(PSIMAX-PSIMIN)/(NFL+1)
 PRINT,PSIMAX,PSIMIN,DELPSI
 C CALCULATE STREAMLINES
 DELX=DL/INTX
 NX=INTX+1
 DELY=(B+1)/INTY
 NY=INTY+1
 C CALCULATE PSI
PRINT,DELX,DELY
Y=0.
DO 30 K=1,NY
x=0.
OO 31 J=1,NX
CALL PSI (X,Y,PSIXY,NA,OL,A,NA,B,HYOCON)
YY(J)=PSIXY
XX(J)=x
X=X+DELX
31 CONTINUE
WRITE(6,1036)Y

```
```

 IF(K.EQ.1)WRITE(6,1046)(XX(I),I=1,NX)
    ```
        WRITE 6,1046\()(\mathrm{YY}(\mathrm{I}), \mathrm{I}=1, \mathrm{NX})\)
        \(Y=Y+D E L Y\)
    30 CONTINUE
C CALCULATE EQUIPOTENTIAL LINES
    PHIMIN=AA
        DELPHI = (PHIMAX-PHIMIN)/(NPHIL-1)
        PRINT, PHI MAX, PHI MIN, DELPHI
    C CALCULATE PHI
        \(\gamma=0\).
        DO \(40 \mathrm{~K}=1\), NY
        \(\mathrm{X}=0\).
        DO \(41 \mathrm{~J}=1, N X\)
        CALL PHI (X,Y,PHIXY,NA,DL,H,A,NA,B)
        YY(J) \(=\) PHIXY
        \(X X(J)=X\)
    \(X=X+D E L X\)
    41 CONTINUE
    HRITE (6, 1036) Y
    IF(K.EQ.1)WRITE(6,1046)(XXII),I=1,NX)
    WRITE \((6,1046)(Y Y(I), I=1, N X)\)
    \(Y=Y+D E L Y\)
    40 CONTINUE
    STOP.
    END
\(C\)
\(C\)
    SUBROUTINE PHI (X,Y,PHIXY, \(M, D L, H, A, K A, B\) )
    IMPLICIT REAL*8(A-H,O-Z)
    REAL* 8 A(KA)
    \(\operatorname{UM}(A M 1, X, Y, B)=(D C O S H(A M 1 * Y) / D C O S H(A M 1 * B)) * D C O S(A M 1 * X)\)
    \(P I=3.141592653589793\)
    \(M M=0\)
    PHIXY=0.
1 AMI \(=M M * P I / D L\)
    \(M P 1=M M+1\)
```

 PHIXY=PHIXY+A(MP1)*UM(AMI, X,Y,B)
 IF(MPI.EQ. M)GOTO 2
 MM=MM+1
 GOTO 1
 2 CONTINUE
 RETURN
 END
 C
C
SUBROUTINE PSI(X,Y,PSIXY,M,DL,A,KA,B,CDN)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 A(KA)
PI=3.141592653589793
PSIXY=0.
DO 100 I=2,M
EM=I-1
D1 = EM*PI *X/DL
O2=EM*PI*Y/DL
03=EM*PI*B/DL
CSH=DCOSH(D3)
APSI =-DSIN(D1)*(DSINH(D2)/CSH)
PSIXY=PSIXY+CON*A(I)*APSI
100 CONTINUE
RETURN
END
C
C
SUBROUTINE HITHT(X,Q,NN,HTHT)
IMPLICIT REAL*B(A-H,O-Z)
REAL*8 Q(11)
HTWT=Q{1}
XDUM=1.
DO 300 K=1,NN
XDUM=XDUM*X
300 HTWT=HTWT+Q(K+1)*XDUM

```

RETURN
END

```

C
C PROGRAM }4\mathrm{ CALCULATION OF PHI AND PSI AT NODES
RAPID DRAWDOWN CASE
C
C**
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION XX(101),YY(101),PHIWT(101), PSIWT(101)
REAL*8 A(40),Q(11)
995 FORMAT (813)
1015 FORMAT(3D24.17)
1025 FORMAT(8F10.0)
1036 FORMAT(/, 'Y = , F10.41
1046 FORMAT(10(2X,F10.4))
1136 FORMAT(/,' DISTANCES ALONG X-AXIS')
1146 FORMAT(/,' PSI VALUES AT GRID NODES ")
1156 FORMAT(/,' PHI VALUES AT GRID NODES !)
READ(5,995)NA,NN,NWT,NFL,NPHIL,NPTS, INTX, INTY
NNP l=NN+1
WRITE(6,1056)NA,NN, INTX,INTY
1056 FORMATI'1NUMBER OF A-NMS READ IN = ',13,/%
X' ORDER OF POL.YNOMIAL FITTED TO HATERTABLE = %,I3,/%
X: X-DIMENSIBN OF GRID = 1,I3,/,
X: Y-DIMENSION OF GRID = ',I3)
READ(5,1015)(A(I),I=1,NA)
READ(5,1015)(Q(I),I=1,NNP1)
WRITE(6,1066)
1066 FORMATI/;' A-NM VALUES '|
WRITE(6, 1076)(A(I),I=1,NA)
1076 FORMAT(4(6X,D24.17))
WRITE (6,1086)
1086 FORMAT(/;" POLYNOMIAL CDEFFICIENTS ')
WRITE(6,1076)(Q(I),I =1,NNP1)
READ(5,1025)WW,AA,B,THETA,DL,HS,T,WTMAX,HYDCON
WRITE (6,1096)WW, AA,B,THETA,DL,HS,T,WTMAX,HYDCON
1096 FORMATI/,' DEPTH OF WATER IN GULLY = ',F10.4,/,
X' HEIGHT OF VERTICAL PORTION OF GULLY FACE = ',F10.4./;

```
```

 X: HEIGHTT OF FICTITIOUS SOURCE = ',F10.4,/,
 X' ANGLE OF BANK TO HORIZONTAL = ',F10.4./,
 X' LENGTH OF FLOW REGION = ',F10.4,%,
 X' HEIGHT OF SEEPAGE FACE ABOVE GULLY BOTTOM = ',F10.4./,
 X' HALF WIDTH OF GULLY = ',F10.4./,
 X' MAX. HEIGHT OF WATERTABLE = 1,F10.4,/,
 X' HYDRAULIC CONDUCTIVITY = ',F10.4)
 PI=3.141592653589793
 TTHETA=DTAN(THETA*PI/180.)
 XX(1)=0.
 YY(1)=0.
 XX(2)=0.
 YY(2)=AA
 XX(3)=(HW-AA)/TTHETA
 YY(3)=WH
 XX(4)=(HS-AA)/TTHETA
 YY(4)=HS
 H=B-WW
 IF(HS.GT.B)B=HS
 PHIMAX=WTMAX-WH
 C CALCULATE PSIMAX
CALL PSI(XX(4),YY(4),PSIMAX,NA,DL,A,NA,B,HYDCON,H)
C CALCULATE PSIMIN
CALL PSI(XXC1),YY(1 B,PSIMIN,NA,DL,A,NA,B,HYDCON,H)
DELP SI = (PSI MAX-PSIMI N) / (NFL+1)
WRITE(6,1106)PSIMAX,PSIMIN,DELPSI
1106 FORMAT (/,: PSIMAX = , F10.4,3X," PSIMIN = ',F10.4,3X,' DELPSI = '
X,F10.4)
C CALCULATE STREAMLINES
DELX=DL/INTX
NX=INTX+1
DELY = (B+1)/INTY
NY=1NTY+1
C CALCULATE PSI
WRITE(6,1116)DELX,DELY
1116 FORMAT(/,' DELX = 1,F10.4,3X,' DELY = ',F10.4)
Y=0.

```
```

 DO 30 K=1,NY
 X=0.
 OO 31 J=1,NX
 CALL PSI (X,Y,PSIXY,NA,DL,A,NA,B,HYOCON,H)
 YY(J)=PSIXY
 XX(J)=X
 X=X+DELX
 31 CONTINUE
 IF(K.EQ.1)WRITE(6,1146)
IF(K.EQ.1)WRITE(6,1136)
IF(K.EQ.1)WRITE(6,1046)(XX(I),I=1,NX)
WRITE(6,1036)Y
NRITE(6,1046)(YY(1),I=1,NX)
Y=Y+DELY
30 CONTINUE
C CALCULATE EQUIPOTENTIAL LINES
PHIMIN=0.
DELPHI=(PHIMAX-PHIMIN)/(NPHIL+1)
HRITE(6,1126)PHI MAX, PHIMIN,DELPHI
1126 FORMATI/,' PHIMAX = , F10.4,3X,' PHIMIN = ',F10.4,3X," DELPHI = '
X,F10.41
C CALCULATE PHI
Y=0.
DO 40 K=1,NY
X=0
DO 41 J=1,NX
CALL PHI (X,Y,PHIXY,NA,DL,H,A,NA,B)
YY(J)=PHIXY
XX{J)=X
X=X+DELX
41 CONTINUE
IF(K.EQ.1)WRITE(6,1156)
IF(K.EQ.1)WRITE (6,1136)
IF(K.EQ.1)WRITE(6,1046)(XX(I),I=1,NX)
WRITE(6, 1036) Y
WRITE(6,1046)(YY(I);I=1,NX)
Y=Y+DELY

```

40 CONTINUE
STOP
END
C
C
SUBROUT INE PHI (X,Y,PHIXY, M,DL,H,A,KA,B)
IMPLICIT REAL*8(A-H, \(\mathrm{O}-\mathrm{Z})\)
REAL* 8 A(KA)
\(\operatorname{UM}(A M 1, X, Y, B)=(\operatorname{DCOSH}(A M 1 * Y) / D C O S H(A M 1 * B)) * D S I N(A M 1 * X)\)
PI \(=3.141592653589793\)
\(M M=1\)
PHIXY=X/DL
1 AMI=MM*PI/DL
MPI \(=\) MM
PHIXY=PHIXY+A(MP1)*UM(AMI, X,Y,B)
IFIMPI.EQ. M)GOTO 2
\(M M=M M+1\)
GOTO 1
2 PHIXY=PHIXY*H
RETURN
END

SUBROUTINE PSI (X,Y,PSIXY,M,OL,A,KA,B,CON,H)
IMPLICIT REAL* \(8(A-H, O-Z)\)
REAL* 8 A(KA)
PI \(=3.141592653589793\)
PSIXY=Y*CON/DL
D \(100 \mathrm{I}=1 \mathrm{M}\)
\(E M=1\)
\(D 1=E M * P I * X / D L\)
D2: \(=\) EM*PI*Y/OL
D3=EM*PI*B/DL
\(\mathrm{CSH}=\mathrm{DCOSH}(\mathrm{D} 3)\)
APSI \(=D C O S(D 1) *(D S I N H(D 2) / C S H)\)

\section*{PSIX.Y=PSIXY+CON*A(I)*APSI}

100 CONTINUE
PSI XY=P SI XY*H
RETURN
END
C
C
\(C\)
\(C\)
SUBROUTINE HITWT( \(X, Q, N N, H T W T)\)
IMPLICIT REAL* \(8(A-H, O-2)\)
REAL* 8 Q(11)
HTWT \(=Q(1)\)
XDUM=1.
DO \(300 \mathrm{~K}=1, \mathrm{NN}\)
XDUM = XDUM*X
300 HTWT=HTWT+Q(K+1)*XDUM
RETURN
END

```

C
C PROGRAM 5 BANK STABILITY ANALYSIS USING CYCLOIDAL ARCS
C RECHARGE CASE
C*****************\&***
IMPLICIT LOGICAL*I(\$)
REAL*8 A(40),Q(11),QS(11)
DIMENSION S(20),HEAD(201,HEIGHT(20),SATINT(20)
DIMENSION XFP(65), YFP(65),YWT(65),PORPR(65),PHIHT(65)
DIMENSION DELYS(64),SPSI(64),F(64)
DIMENSION XL(5),YL(5),GL(5),DDL(5)
DIMENSION SX(5),SY(5),XXHT(65),YYHT(65),SHT(65)
10105 FORMAT(3F10.0,13)
20005 FORMAT (6F10.0)
20105 FORMAT(413)
20205 FORMAT(3D24.17)
20305 FORMAT (8F10.0)
30005 FORMAT(7F10.0,13)
20216 FORMAT(4(3x,024.17))
20246 FORMAT(10(2X,F10.41)
10095 FORMAT(20A4)
READ(5,10105) BANKHT, AR AD,BTHETA,NSLCS
WRITE(6, 10106) BANKHT,ARAD,BTHETA,NSLCS
10106 FORMAT I/,'1HEIGHT OF BANK = 1,F10.4,%,
X' RADIUS OF INITIAL GENERATING CIRCLE = 1,F10.4,%%
X' ANGLE OF BANK TO HORIZONTAL = ',F10.4,/%
X' NUMBER OF SLICES USED IN ANALYSIS = 1,I3)
READ(5,20005)AA,T,WH,DL,HS,B
WRITE(6,20006)AA,T,WH,DL,HS,B
20006 FGRMAT(/,' DEPTH TO IMPERMEABLE BARRIER = ',F10.4.%,
X' HALF WIDTH OF GULLY = ',F10.4./,
X' DEPTH OF WATER IN GULLY =1,F10.4.%%
X' LENGTH OF FLOW REGION = ',F10.4,%,
X' heIGHT OF SEEPAGE FACE ABOVE GULLY BOTTOM = ',F10.4,%,
X' HEIGHT OF GROUNDWATER DIVIDE = ',F10.4)
READ (5,20105)NS,NN,NA,NSPTS

```

WRITE 6,20106 ) NS , NN, NA , NSPTS
```

20106 FORMAT(/,' ORDER OF POLYNOMIAL TO BE FITTED TO SATURATION CURVE =
XI,I3,/,' ORDER OF POLYNOMIAL TO BE FITTED TO WATERTABLE DATA = I,I

```
    X3,1,' NUMBER OF A-NMS TO BE READ IN \(=1,13\)
    \(X, 1,1\) NUMBER OF POINTS ON SATURATION CURVE READ IN \(=, \cdot 131\)
    \(\operatorname{READ}(5,10095) \times L, Y L, G L, D D L\)
    NNP \(1=\) NN +1
    NSP1 \(=\) NS +1
    \(\operatorname{READ}(5,20205)(\) Q(I), I \(=1\), NNP 1)
    WRITE 6,20206 )
20206 FORMAT(/,' COEFFICIENTS OF POLYNOMIAL FITTED TO WATERTABLE DATA ')
    WRITE(6,20216)(Q(I), I=1,NNP1)
    \(\operatorname{READ}(5,20205)(A(1), I=1, N A)\)
    WRITE(6,20226)
20226 FORMAT (/:' A-NMS READ IN ')
    \(\operatorname{WRITE}(6,20216)(A(I), I=1, N A)\)
    \(\operatorname{READ}(5,20305)(S(I), \operatorname{HEAD}(I), I=1, N S P T S)\)
    WRITE \((6,20236)\)
20236 FORMAT (/,' SATURATION VALUES ')
    WRITE \((6,20246)(S(I), I=1, N S P T S)\)
    WRITE \((6,20256)\)
20256 FORMAT(/,' CORRESPONDING SUCTION HEAD VALUES •)
    WRITE \((6,20246)(\operatorname{HEAD}(I), I=1\), NSPTS)
    READ (5, 30005) GAMAH, GS, PORSTY, ORAPOR, JRUCOH, SPHI,FTOL, MAXCOU
    HRITE \((6,30006)\) GAMAH, GS, PORSTY, DRAPOR, TRUCDH, SP HI , FTOL, MAXCOU
30006 FORMAT (/,' UNIT WT. OF WATER \(=1, F 10.4,1\),
    X' SPECIFIC GRAVITY OF SOIL PARTICLES \(=1, F 10.4 \%\),
    X' SOIL POROSITY = \(\quad\),F10.4./,' DRAINABLE POROSITY = \(\quad ., F 10.4,1\),
    \(X^{\prime}\) TRUE SOIL COHESION \(={ }^{\prime}, F 10.4,1 \prime^{\prime}\) ANGLE OF INTERNAL SHEARING RESI
    XSTANCE \(=1, F 10.4,1, \%\) TOLERANCE ON FACTOR OF SAFETY = \(1, F 10.4 ; 1\),
    X' MAXIMUM NUMBER OF ITERATIONS \(=1,131\)
C THIS SECTION FITS CURVE TO SATURATION-SUCTION HEAD OATA
    DO \(100 \mathrm{I}=1\), NSPTS
    100 WEIGHT(I)=1.
    CALL OPLSPA(NS,NSPTS,HEAD,S,WEIGHT,QS,O.)
    WRITE (6, 30016)
30016 FORMAT(/." COEFFICIENTS OF CURVE FITTED TO SATURATION DATA ')
```

 WRITE(6,20216)(QS(I),I=1,NS)
 C SUBSTITUTE BACK INTO FITTED EQUATION FOR CHECK
DO 101 I=1,NSPTS
CALL SINT(HEAD(I),QS,NS,SATINTII))
101 CALL SAT(HEAD(I),QS,NS,S(I))
WRITE (6,30026)
30026 FORMAT(/;: BACK CALCULATED SATURATION VALUES :)
WRITE (6, 20246)\S(I),I=1,NSPTS)
WRITE(6,30036)
30036 FORMAT (/:' INTEGRALS OF S.DHEAD UP TO HEAD(II')
WRITE(6, 20246)(SATINT(I),I =1,NSPTS)
C THIS SECTION INITIALIZES CONSTANTS FOR THE PROGRAM
PI=3.1415926
SPHI = SPHI*PI /1 }80
TRUCOH=TRUCOH*144.
BTHETA=BTHETA*PI/180.
NPTS = NSLCS+1
NSLM1=NSLCS-1
VOIDR=PORSTY/(1.-PORSTY)
C
C THIS SECTION COMPUTES X,Y COORDINATES OF FAILURE PLANE FOR
C THE BOUNDS OF EACH SLICE
C
DELA=4.
NCOUN=1
\$COUN1=.FALSE.
\$COUN2=.FALSE.
\$COUN3=. FALSE.
\$RITYP=.FALSE.
\$RITYP=.TRUE.
XSMIN=BANKHT/(TAN(BTHETA))
TATHET=TAN(BTHETA)
XSMINT =XSMIN+T
GAMAT=((GS+VOIDR)/(1.+VOIDR))*GAMAH
GAMAD=GS*GAMAH/(1.+VOIDR)
WCON=VOIDR*GAMAW/(1.+VOIDR)
XHS=(HS/(TAN(BTHETA)))+T

```

\section*{WRITE(6,30136) GAMAT, GAMAD, VOIDR, WCON, XHS}

30136 FORMATI\%' WET UNIT WT. OF SOIL \(=1, F 10.4 \% /\),
X' DRY UNIT WT. OF SOIL \(=1, F 10.4, \%\),
\(X\) ' VOIDS RATID OF SOIL \(=1, F 10.4 \% 1\),
\(X \cdot\) CONSTANT TERMS FOR INT S.OY \(=1, F 10.4 ; 1\),
X' X-COORDINATE OF TOP OF SEEPAGE FACE \(=1, f 10.41\)
99 DUMMY \(=1 .-\) (BANKHT /ARAD)
IF(ABS(DUMMY).GE.1.)GOTO 97
THETAP =ARCOS (DUMMY)
XSMAX=ARAD*(THETAP-SIN(THETAP))
IF(XSMAX.LT-XSMINIGOTO 96
\$THETA=.FALSE.
GOTO 98
97 ARAD=BANKHT/2.
THETAP \(=\) PI
XSMAX \(=A R A D * P I\)
\$THETA=.TRUE.
WRITE(6,30046)
30046 FORMAT(//,' RADIUS OF GENERATING CIRCLE LESS THAN BANK HEIGHT/2.')
GOTO 98
96 WRITE \((6,30056)\)
30056 FORMAT(//,' FAILURE PLANE ENDS ON BANK SLOPE')
\(A R A D=A R A D+D E L A\)
IFISCOUN3ISTOP
\$COUN3=.TRUE.
GOTO 99
98 DELXS=XSMAX/NSLCS
\(Y S=\) BANKHT
\(X S=X S M A X\)
THETA=THETAP
\(\operatorname{XFP}(\) NPTS \()=X S M A X+T\)
YFP (NPTS \()=\) BANK HT +AA
XFP(1)=T
YFP(1)=AA
DO \(102 \mathrm{I}=1\), NSLML
XS \(=X S\)-DELXS
\(X F P(I+1)=T+X S M A X-X S\)
```

 IF($THETA) GOTO }9
 DETH=DELXS/(ARAD*(1.-COS(THETA)))
 GOTO }9
 94 DETH =DELXS/(ARAD*2.)
 95 THFTA=THETA-DETH
 YSN=ARAD*(1.-COS(THETA))
 SPSI(I)=ATAN(IYS-YSN)/DELXS)
 DELYS(I)=YS-YSN
 YS=YSN
 YFP(I+1)=BANKHT-YS+AA
 102 CONTINUE
 SPSI(NSLCS) = AT AN(\BANKHT+AA-YFP(NSLCS)//DELXS)
 DELYS (NSLCS)=B ANKHT-YFP(NSLCS) +AA
 THE ABOVE DO LOOP ALSO CALCULATES SPSI FOR EACH SLICE
 C
C CALCULATE X,Y COORDINATES OF HATERTABLE
C CALCULATE PORE PRESSURES FOR THE BOUNDS OF EACH SLICE
DO 200 I=1,NPTS
CALL HITHT(XFPII),Q,NN,YHTIII)
CALL PHI(XFP(I), YUT(I),PHIUT(I),NA,DL,H,A,NA,BI
SEE IF WE ARE ABOVE OR BELOH THE HATERTABLE
IF(YWTII)-YFP(I)\201,202,203
201 PORPR(I)=-(YFP(I)-YNT(I))
GOTO 200
202
PORPR(I)=0.
GOTO 200
203 CALL PHI(XFP(I), YFP(I),PORPR(I),NA,DL,H,A,NA,B)
SUBTRACT ELEVATION HEAD YFP(I)
PORPR\I\=PORPR(II-YFP{I)
200 CONTINUE
THIS SECTION EVALUATES THE FACTOR OF SAFETY FOR CHDSEN FAILURE
C PLANE
TSFS=0.
TTFS=0.
DO 300 I=1,NSLCS
IF\XFP\I\.GE.XSMINT\GOTO 301
C SLICE ENDS DN BANK FACE

```
```

 IF(XFP(I+1).GT.XSMINT)GOTO 302
 1F(XFP(I).GE.XHSIGOTO 303
 IF(XFP(I+1).GT -XHS)GOTO 304
 C CALCULATE WT. OF SLICE IN SATURATED REGION ON BANK FACE
C AVG. LENGTH OF SLICE
SLI=(XFP(I)-T)*TATHET+AA-YFP(I)
SLIPI= (XFP(I+1)-T)*TATHET+AA-YFP(I+1)
AVGL=(SLI+SLIPI)/2.
VOLUME OF SLICE PER UNIT LENGTH OF CHANNEL
SLVOL=AVGL*DELXS
SLHT=SLVOL*GAMAT
IF($RITYP)GOTO 305
 HRITE(6,40006) SLHT
40006 FORMAT\//:' TYPE 1 ,FF10.4)
 GOTO 305
 FOR SLICE THAT INCLUDES HS
 304 SLI=(XFP(I)-T)*TATHET-YFP(I)+AA
 OEL=XHS-XFP(I)
 YFPDEL=YFP(I)+(YFP(I+1)-YFP(I))*DEL/DELXS
 SL2=HS+AA-YFPDEL
 W1=(SL1+SL2)*DEL*GAMAT/2.
 SL3=YHT(I+1)-YFP(I+1)
 H2=(SL2+SL3)*(DELXS-DEL)*GAMAT/2.
C FIND WT. OF UNSAT. PART
 SL4= (XFP(I+1)-T)*TATHET-YHT(I+1)+AA
C HT. OF DRY SOIL
 WDS3=SL4*(DELXS-DEL)*GAMAD/2.
 HT. OF WATER IN UNSAT REGION
 CALL SINTISL4,QS,NS,SATIN)
 HH3=\DELXS-DELJ*WCON*SATIN 12.
 SLHT=W1+H2+WDS 3+WH3
 IF($RITYP)GOTO 305
WRITE{6,40016)W1,W2,WDS3,NW3,SLWT
40016 FORMAT(/," TYPE 2 . 5(2X,F10.4))
GOTO 305
C FOR SLICE ABOVE HS BUT STILL ON BANK FACE
303
SLI=YHT(I+1)-YFP(I+I)

```
```

 SL2=YHT(I)-YFP(II)
 IF((SL1.GE.0.).AND.ISL2.GT.0.1)GOTO 313
 WT. OF DRY SOIL
 SL3=(XFP{I+1)-T)*TATHET-YFP(I+1)+AA
 SL4=(XFP(I)-T) कTATHET-YFP(I)+AA
 WL=(SL3+SL4)*DELXS*GAMAD/2.
 IF\(SLI.LT.O.).AND.(SL2.GE.O.))GOTO }32
 C HT. OF WATER
CALL SINT(-SL2,QS,NS,SAT2)
SL5=SL4-SL2
CALL SINTISL5,OSgNS,SAT41
CALL SINT(-SLI,QS,NS,SAT1)
SL6=SL3-SL 1
CALL SINTISL6,QS,NS,SAT3)
WH=DELXS*HCON*{(SAT4-SAT2)+(SAT3-SAT 1))/2.
SLWT = Wl +WW
IF($RITYP)GOTO 305
 WRITE{6,40026) W1,WW, SLWT
40026 FORMATI/:" TYPE 3 0.3(2X,F10.4))
 GOTO 305
 HT. OF HATER
 323 CALL SINT(SL3,OS,NS,SAT3)
 CALL SINT(SL4,QS,NS,SAT4)
 WH=DELXS*WCON*ISAT4+SAT3)/2.
 SLWT=W1+WH
 IF($RITYP)GOTO 305
HRITE(E,40036) W1,HW, SLWT
40036 FORMAT(/:" TYPE \& ,3(2X,F10.4))
GOTO 305
BELON HATERTABLE
313 AVGL1=(SL1+SL2)/2.
H1=AVGL1*DELXS*GANAT
WT. OF SOIL ABOVE HATERTABLE
SL1={XFP(I+1)-T)*TATHET-YHT(I+1) +AA
SL2=(XFP(I)-T)*TATHET-YWT(I)+AA
AVGL2=(SL2+SL1)/2.
WDS2=AVGL2*DELXS*GAMAD

```

C HT. OF HATER IN SOIL ABOVE THE WATERTABLE
CALL SINTISL2, QS,NS,SAT2)
WH21 = DEL XS*WCON*SAT2
CALL SINT(SLI, QS,NS,SAT3)
WH22 \(=\) DELXS*HCON*(SAT3-SAT2)/2.
SLWT = W1 + WDS 2+WW2 1+WH22
IF(\$RITYP)GOTO 305
WRITE(6,40046) W1, WDS 2,WW21,WW22,SLWT
40046
FORMAT(/,' TYPE 5 1,5(2X,F10.4))
GOTO 305
FOR SLICE AT TOP OF BANK
\(302 \operatorname{SLI}=\mathrm{YHT}(I+1)-Y F P\{I+1)\)
SL2=YHT(I)-YFP(I)
IF(ISLI.GE.O.).AND.(SL2.GT.O.1)GOTO 312
WT. OF DRY SOIL
DEL =XSMINT-XFP(I)
YFPDEL=YFP(I)+(YFP(I+1)-YFP(1))*DEL/DELXS
SL3=(XFP(I)-T)*TATHET-YFP(I)
SL4=YFP(NPTS)-YFPDEL
SL5=YFP(NPTS)-YFP(I+1)
H1=((SL3+SL4)*DEL*GAMAD/2.) \(+((S L 4+S L 5) *(D E L X S-D E L) * G A M A D / 2\).
C WT. OF HATER
IF((SL1.LT.O.) AND.(SL2.GE.O.)) GOTO 322
YWTDEL=YWT(I)+(YHT(I+1)-YHT(I))*DEL/DELXS
SL6=YFPDEL-YHTDEL
CALL SINT(-SLI,QS,NS, SATI)
SDUM1=SL3-SL1
CALL SINT(SDUM1,OS,NS, SAT2)
CALL SINTISLG,QS,NS,SAT3)
SDUM2 = SL4+SL6
CALL SINT(SDUM2, QS,NS,SAT4)
WH1=DEL*HCON*( (SAT2-SAT1)+(SAT4-SAT3))/2.
CALL SINT(-SL2,QS,NS,SAT5)
SDUM 3=SL5-SL2
CALL SINT(SDUM3, QS,NS,SATG)
\(W H 2=(D E L X S-D E L) * W C D N *((S A T 6-S A T 5)+(S A T 4-S A T 3)) / 2\).
\(S L W T=W 1+W H 1+W W 2\)
```

 IF($RITYP)GOTO 305
 WRITE(6,40056) W1,WW1,WW2,SLHT
 40056 FORMAT(/,: TYPE 6 , 4(2X,F10.4))
GOTO 305
322 CALL SINT(SL3, QS,NS,SAT3)
CALL SINT(SL4,QS,NS,SAT4)
CALL SINTISL5;QS,NS;SAT5I
WW1=DEL*WCON*(SAT4+SAT3)/2.
HW2=(DELXS-DEL)*WCON*(SAT5+SAT4)/2.
SLWT=W1+WW1+WH2
IF($RITYP)GOTO 305
 WRITE (6,40066) W1,WW1,WW2,SLHT
40066 FORMAT(/.' TYPE 7 :.4(2X,F10.4))
 GOTO 305
 312 AVGL1=(SL1+SL2)/2.
 H1=AVGLL*DELXS*GAMAT
C WT. OF DRY SOIL ABOVE HATERTABLE
 DEL =XSMINT-XFP(I)
 SLI=(XFP(I)-T)*TATHET-YWTII\+AA
 YHTDEL=YWT(I)+(YWT(I+1)-YHT(I))*DEL/DELXS
 SL2=YFP(NPTS)-YWTDEL
 SL3=YFP(NPTS)-YWT(I+1)
 WDS1=(SL1+5L2)*DEL*GAMAD/2.
 HDS2={SL2+SL3)*(DELXS-DEL)*GAMAD/ 2.
 WT. OF WATER ABOVE HATERTABLE
 CALL SINT(SLI,QS,NS,SAT1)
 CALL SINT(SL2,QS,NS,SAT2)
 CALL SINTISL3,QS,NS,SAT3)
 WH1=DEL*WCON*(SAT1+SAT2)/2.
 HH2=(DELXS-DEL)*WCON*(SAT2+SAT3)/2.
 SLHT=W1 +WDS 1 +WDS 2+WH1 +WW2
 IF($RITYP)GOTO 305
WRITE(6,40076)W1,HDS1,WDS2,WH1,WH2,SLWT
40076 FORMAT(/,' TYPE 8 1,6(2X,F10.4)1
GOTO 305
301 SLI=YWT(I)-YFP(II)
SL2=YWT(I+1)-YFP(I+1)

```
```

 IF((SL1.GT.O.).AND.(SL2.GE.O.))GOTO 311
 C WT. OF DRY SOIL
 SL3=YFP(NPTS)-YFP(I)
 SL4=YFP(NPTS)-YFP(I+1)
 W1=DELXS*GAMAD*(SL 3+SL4)/2.
 C WT. DF HATER
IF((SLI.GE.O.).AND.(SL2.LT.O.)IGOTO 321
CALL SINT(-SLI,QS,NS,SAT1)
CALL SINT(-SL2,QS,NS,SAT2)
SDUM1=SL3-SL1
CALL SINT(SDUM1,QS,NS,SAT3)
SDUM2=SL4-SL2
CALL SINT(SDUM2,QS,NS,SAT4)
WH=DELXS*HCON*((SAT4-SAT2)+(SAT3-SAT1))/2.
SLHT =H1+WW
IF(\$RITYP)GOTO 305
WRITE (6,40086) Wl,HW, SLWT
40086 FORMATI/,: TYPE 9 :,3(2X,F10.4))
GOTO 305
321 CALL SINT(SL3,OS,NS,SATI)
CALL SINT(SL4,OS,NS,SAT2)
WW=DELXS*HCON*(SAT1+SAT2)/2.
SLWT=WL +WW
IFISRITYPIGOTO 305
WRITE(6,40096)W1,WW, SLWT
40096 FORMAT(/,' TYPE 10 ',3(2X,F10.4))
GOTO 305
C WT. OF WET SOIL
311 H1=DELXS*GAMAT*(SL1+SL2)/2.
SL3=YFP(NPTS)-YWT(I)
SL4=YFP(NPTS)-YHT(I+1)
C WT. OF DRY SOIL
N2=DELXS*GAMAD*(SL3+SL4)/2.
C HT. OF HATER
CALL SINT(SL3,OS,NS,SAT1)
CALL SINT(SL4,QS,NS,SAT2)
WH=DELXS*WCON*(SAT1+SAT2)/2.

```
```

 SLWT=W1+W2+WW
 IF($RITYP)GOTO 305
 WRITE(6,40106) W1,H2,WH,SLWT
 4 0 1 0 6 ~ F O R M A T (/ , ' ~ T Y P E ~ 1 1 ~ 1 , 4 (2 X , F 1 0 . 4)) ~
305 CONTINUE
C AREA OF SLICE BOTTOM
ASLI8O =SQRT((DELXS*DELXS)+(DELYS(I|*DELYS(I)))
C AVG. PORE HATER FORCE ON EACH SLICE
PORAV=(PORPR(I)+PORPR(I+1))/2.
IF(PORAV.LT.O.)GOTO }31
UAVG=PORAV*GAMAW*ASLIBO
GOTO 316
315 CALL SAT(-PORAV,QS,NS,SPOR)
UAVG=SPOR*PORAV*GAMAW*ASLIBO
316 CONTINUE
C TANGENTIAL WEIGHT FORCE ON SLICE
TFS=SLWT*SIN(SPSI(I)]
C NORMAL FORCE
ANFS=SLHT*COS(SPSI(I))
C EFFECTIVE NORMAL FORCE
ENF=ANFS-UAVG
IF(ENF.LT.O.)ENF=0.
C COHESIVE FORCE
FCOH=ASLIBO*TRUCOH
C mobilizable SHEAR FORCE AVAIlABLE TO SLIGE
IF(ABS(ENF).LT.1.E-10)GOTO }60
SFS=FCOH+ENF*TAN(SPHI)
GOTO 605
604 SFS=FCOH
C SLICE FACTOR OF SAFETY
605 F(I)=SFS/TFS
TOTAL FACTOR OF SAFETY
TSFS=TSFS+SFS
TTFS=TTFS+TFS
300 CONTINUE
TF=TSFS/TTFS
WRITE(6,50016) TF

```
```

50016 FORMATI/,' FACTOR DF SAFETY FOR THIS TRIAL FAILURE SURFACE = '
X,F10.4)
WRITE(6,50026) ARAD, NCOUN
50026 FORMAT(/,' RADIUS OF GENERATING CIRCLE = ',F10.4,%,
X: NUMBER OF ITERATIONS = ', I3)
IF(NCOUN.EQ.MAXCOU)GOTO }80
IFISCOUNIIGO TO 800
ARAD=ARAD+DELA
SCOUN1=.TRUE.
TFO =TF
NCOUN=NCOUN+1
GOTO 99
800 IF(\$COUN2)GOTO 802
IFITF.GT.TFOIGOTO }80
ARAD=ARAD+DELA
\$COUN2=.TRUE.
TFO =TF
NCOUN=NCOUN+1
GOTO }9
801 DELA=-DELA
ARAD=ARAD+2.0*DELA
\$COUN2=-TRUE.
NCOUN=NCOUN+1
GOTO 99
802 IFITF.GT.TFOIGOTO }80
ARAD=ARAD+DELA
NCOUN=NCOUN+1
TFO =TF
GOTO 99
803 DELF=TF-TFO
IF(ABS(DELF).LE.FTOL)GOTO 804
DELA =-DELA/2.0
ARAD=ARAD+DELA
NCOUN=NCOUN+1
TFO =TF
GOTO 99
8 0 4 CONTINUE

```

WRITE 6,30066\()\)
```

30066 FORMATI/,' X-COORDINATES OF FAILURE PLANE 'I
WRITE(6,20246) (XFP(I),I=1,NPTS)
WRITE(6,30076)
30076 FORMAT(/,' Y-COORDINATES OF FAILURE PLANE')
WRITE(6,20246)(YFP(I),I=1,NPTS)
WRITE(6, 30086) DELXS
30086 FORMAT(/,' DELTA Y INCREMANTS ALONG FAILURE PLANE FOR DELTA X = ',
XF10.4)
WRITE(6,20246)(DELYS(I),I=1,NSLCS)
WRITE(6,30096)
30096 FORMATI/,' ANGLE OF SLICE BOTTOM TO VERTICAL ALPHA = TANIDELTAY(I
x/DELTAXI')
URITE(6,20246)(SPSI(I),I=1,NSLCS)
WRITE(6,30106)
30106 FORMAT(/,' HATERTABLE ELEVATIONS ')
WRITE (6,20246)(YWT(I),I=1,NPTS)
WRITE(6,30116)
30116 FORMAT(/,' HYDRAULIC POTENTIAL ALONG WATERTABLE 'I
WRITE(6,20246)(PHIWT(I),I=1,NPTS)
WRITE(6,30126)
30126 FORMAT (/,: PORE HATER PRESSURES ALONG TRIAL FAILURE SURFACE 'I
WRITE(6, 20246)(PORPR(I),I=1,NPTS)
WRITE(6;50006)
50006 FORMAT(/,' SLICE FACTORS OF SAFETY ')
WRITE(6,20246)(F(I),Ix1,NSLCS)
C
C PLOTTING SECTION
C PLOT AXES AND SOIL SURFACE
SX(1)=0.
SY(1)=AA
SX(2)=T
SY(2)=AA
SX(3)=XSMINT
SY(3)=YFP(NPTS)
SX(4)=XFP(NPTS)

```
```

 SY(4)=YFP(NPTS)
 YSCALE=YFP(NPTS)/5.25
 XSCALE=XFP (NPTS)/7.25
 IF(YSCALE.GT.XSCALE)GOTO 1000
 SCALE=XSCALE
 GOTO 1001
 1000 SCALE=YSCALE
1001 CONTINUE
CALL GRAPH(4,SX,SY,0,4,7.25,5.25,SCALE,0.,SCALE,O.,XL,YL,GL,DDLI
C PLOT WATERTABLE
XXHT (1)= XHS
YYHT(1)=HS+AA
DO 1002 I=2,NPTS
II=I
IF(XFPII).GT.XHSIGOTO 1003
1002 CONTINUE
1003 CONTINU
NWTPT=NPTS-II+1 N
IIM2=II-2
00 1004 I=2,NWTPT
XXWT(I) = XFP{IIM2+I)
YYHT(I)=YHT(IIM2+I)
1004 CONTINUE
CALL GRAPHS(NWTPT,XXHT,YYHT,0,2,0;')
plot faItURE PLANE
CALL GRAPHS(NPTS,XFP,YFP,0,2,';')
PLOT PORE HATER PRESSURES
SHT(1)=0.
DO 1005 I=1,NSLCS
ASLIBO=SQRT(DELXS*DELXS+(DELYS(I)*DELYS(I)|)
1005 SHT(I+1)=SHT(I)+ASLIBO
CALL GRAPH(NPTS,SWT,PORPR,0,2,7.25,5.25,0.,0.,0.,0.,XL,YL,GL,DOL)
STOP
END
C

```
```

SUBROUTINE SAT(HEAD,QS,NS,SI
C THIS SUBROUTINE CALCULATES THE PERCENT SATURATION FOR A GIVEN
THIS SUBRDUTINE CALCULATES THE
REAL*8 QS(11),DS,XDUM,DBLE
DS=QS(1)
XDUM=1.00
DO 300 K=1,NS
XDUM=XDUM*(DBLE(HEAD))
300 DS=DS+QS(K+1)*XDUM
S=SNGL(DS)
RETURN
END
C
C
SUBROUTINE HITHT(X,Q,NN,HTHT)
C THIS SUBROUTINE CALCULATES WATERTABLE ELEVATIONS
REAL*8 Q(11),DHTWT,XDUM,DBLE
DHTHT=Q(1)
XDUM=1.DD
DO 300 K=1,NN
XDUM=XDUM*(DBLE(X))
XHTMT=DHTWT+Q(K+1)*XDUM
HTMT=SNGL(DHTWT)
RETURN
END
C
C
SUBROUTINE PHI (X,Y,PHI XY,M,DL,H,A,KA,B)
THIS SUBROUTINE CALCULATES PHI AT X,Y
REAL*8 A,PI,AMI,DPHIXY,DBLE,OCOSH,DCOS
DIMENSION A(KA)
UM(AM1, X,Y,B)=(DCOSH(AM1*Y)/DCOSH (AM1*B))*DCOS(AM1*X)
PI =3.141592653589793
MM=0
DPHIXY=0.DO

```
```

 Y1=DBLE(Y)
 X1=DBLE(X)
 81=DBLE(B)
 1 AMI=MM*PI/DBLE(DL)
 MP1 =MM+1
 DPHI XY=DPHIXY+A(MP1)*UM(AM1,X1,Y1,B1)
 IF(MP1.EO.M)GOTO 2
 MM=MM+1
 GOTO 1
 2 PHIXY=SNGL(DPHIXY)
 RETURN
 END
 C
C
SUBROUTINE SINT(HEAD,QS,NS,SATINT)
C THIS SUBROUTINE CALCULATES THE INTEGRAL OF S DY UP TO SUCTION
C OF HEAD
REAL*8 QS(11), DSATIN,XDUM,DHEAD,DBLE,DFLOAT
DHEAD=DBLE(HEAD)
DSATIN=QS(1) *DHEAD
XDUM=DHEAD
DO 300 K=1,NS
XDUM= XDUM*DHEAD
300 DSATIN=DSATIN+(QS(K+1)*XDUM/DFLOAT(K+1))
SATINT=SNGL(DSATIN)
RETURN
END

```
```

C*******\&***************************************\&*******************中***
C
C PROGRAM 6 BANK STABILITY ANALYSIS USING CYCLOIDAL ARCS
C******************************\&**
IMPLICIT LOGICAL*1(\$)
REAL*8 A(40),Q(11),QS(11)
DIMENSION S(20),HEAD(20),WEIGHT (20),SATINT(20)
OIMENSION XFP(65),YFP(65),YWT(65),PORPR(65),PHIWT(65)
DIMENSION DELYS(64),SPSI(64),F(64)
DIMENSION XL(5),YL(5),GL(5),DDL(5)
DIMENSION SX(5),SY(5), XXWT(65), YYWT(65),SWT(65)
10105 FORMAT(3F10.0,I3)
20005 FORMAT (6F10.0)
20105 FORMAT(413)
20205 FORMAT(3024.17)
20305 FORMAT(8F10.0)
30005 FORMAT(7F10.0,13)
20216 FORMAT(4(3X,024.17))
20246 FORMAT(10(2X,F10.4))
10095 FORMAT(20A4)
READ(5,10105)BANKHT, ARAD,BTHETA,NSLCS
WRITE(6,10106) BANKHT,ARAD,BTHETA,NSLCS
10106 FORMAT //.1HEIGHT OF BANK = %,F10.4,/%
X: RADIUS OF INITIAL GENERATING CIRCLE= %,F10.4.1.
X' ANGLE OF BANK TO HORIZONTAL = *F10.4.%%
X' NUMBER OF SLICES USED IN ANALYSIS = ',I3)
READ(5,20005)AA,T,WWTBL,DL,HS,B
WRITE(6,20006) AA,T,WWTBL,DL,HS,B
20006 FORMATI/,: DEPTH TO IMPERMEABLE BARRIER = %,F10.4,%,
X' HALF WIDTH OF GULLY = %,F10.4,%,
X' DEPTH OF WATER IN GULLY=0,F10.4,1,
X' LENGTH OF FLOW REGION = %,F10.4,/%
X: HEIGHT OF SEEPAGE FACE ABOVE GULLY BOTTOM = , F10.4,%,
X' HEIGHT OF FICTITIOUS SOURCE = 'F10.4)
H=B-WWTBL

```
```

 IF(HS.GT.B)B=HS
 READ(5,20105)NNS,NN,NA,NSPTS
 WRITE(6,20106)NS,NN,NA,NSPTS
 20106 FORMATI/,' ORDER OF POLYNOMIAL TO BE FITTED TO SATURATION CURVE =
X',I3,/,' ORDER OF POLYNOMIAL TD BE FITTED TO WATERTABLE DATA = ',I
X3,1,' NUMBER OF A-NMS TO BE READ IN = ',I3
X,l,' NUMBER OF POINTS ON SATURATION CURVE RFAD IN = ',I3I
READ(5,10095)XL,YL,GL,DDL
NNP1=NN+1
NSP1=NS+1
READ(5,20205)(Q(I),I=1,NNP1)
WRITE(6,20206)
20206 FORMAT(/,' COEFFICIENTS OF POLYNOMIAL FITTED TO WATERTABLE DATA ')
WRITE(6,20216)(Q(I),I=1,NNP1)
READ (5,20205)(A(I),I=1,NA)
WRITE(6,20226)
20226 FORMAT(/,' A-NMS READ IN '')
WRITE(6,20216)(A(I),I=1,NA)
READ(5,20305)(S(I),HEAD(I),I =1,NSPTS)
WRITE(6, 20236)
20236 FORMAT(/,' SATURATION VALUES '|
WRITE(6, 20246)(S(I),I=1,NSPTS)
WRITE(6,20256)
20256 FORMAT(/,' CORRESPONDING SUCTION HEAD VALUES '।
WRITE(6,20246)(HEAD(I), I=1,NSPTS)
READ(5,30005)GAMAW,GS,PORSTY,DRAPOR,TRUCOH, SPHI,FTOL,MAXCOU
WRITE(6,30006)GAMAW,GS, PORSTY, DRAPOR,TRUCOH, SPHI,FTOL, MAXCOU
30006 FORMAT(/,' UNIT WT. OF WATER = ',F10.4,/,
X' SPECIFIC GRAVITY OF SOIL PARTICLES = ',F10.4,%,
X' SOIL POROSITY = ',F10.4,/,' DRAINABLE POROSITY = ',F10.4,/,
X' TRUE SOIL COHESION = ',FIO.4,/.% ANGLE OF INTERNAL SHEARING RESI
XSTANCE = ',F1O.4,/,' TOLERANCE ON FACTOR OF SAFETY = ',F10.4.1,
X: MAXIMUM NUMBER OF ITERATIONS = ',I3)
C THIS SECTION FITS CURVE tO SATURATION-SUCTION hEAD dATA
DO 100 I=1,NSPTS
100 WEIGHT(I)=1.
CALL OPLSPAINS,NSPTS,HEAD,S,WEIGHT,QS,O.)

```

WRITE: \((6,30016)\)
30016 FORMATI,' COEFFICIENTS OF CURVE FITTED TO SATURATION LATA ') WRITE(6,20216)(QS(I), I=1,NS)
C SUBSTITUTE BACK INTO FITTED EQUATION FOR CHECK
DO \(101 \mathrm{I}=1\), NSPTS
CALL SINT(HEAD(I), QS,NS,SATINT(II)
101 CALL SAT(HEAD(I), QS,NS,SII)
WRITE 16,30026\()\)
30026 FORMAT (/;' BACK CALCULATED SATURATION VALUES •) WRITE(6, 20246)(S(I),I=1,NSPTS) WRITE (6,30036)
30036 FORMATI/,' INTEGRALS OF S.DHEAD UP TO HEADIIM') WRITE(6,20246)(SATINT(I),I=1,NSPTS)
\(C\) THIS SECTION INITIALIZES CONSTANTS FOR THE PROGRAM
PI=3. 1415926
SPHI=SPHI*PI/180.
TRUCOH=TRUCOH* 144.
BTHETA=BTHETA*PI/180.
NPTS = NSLCS \(S+1\)
NSLM1 \(=\) NSLCS -1
VOIDR=PORSTY/(1.-PORSTY)
\(\stackrel{C}{C}\)
this section computes \(X, Y\) coordinates of failure plane for
C THIS SECTION CCMPUHES C ,
C
DELA \(=4\).
NCOUN=1
\$COUNI=.FALSE.
\$COUN2=.FALSE.
\$COUN3=. FALSE.
\$RITYP=.FALSE.
\$RITYP=. TRUE.
XSMI N=BANKHT / (TAN(BTHETA))
TATHET=TAN(BTHETA)
XSMINT=XSMIN+T
GAMAT \(=((G S+V O I D R) /(1 .+\) VOIDR \()) * G A M A W\)
GAMAD=GS*GAMAW/(1.+VOIDR)
```

 WCON=VOIDR*GAMAN/(1.+VJIDR)
 XHS=(HS/(TAIN(BTHETA))) +r
 WRITE(6,30136)GAMAT,GA,MAD,VJIDR,WCON, XHS
 30136 FGRMATI/,' WET UNIT WT. OF SOIL = %,F10.4,/%
X' DRY UNIT WT. OF SJIL = %,F10.4,/,
X: VIIOS RATIO OF SOIL = ,FF10.4,%,
X' CONSTANT TERMS FOR INT S.DY = ,Fl0.4,/%
X: X-COORDINATE OF TOP OF SEEPAGE FACE = 1,F10.41
99 DUMMY=1.-{BANKHT /ARAD)
IF(ABS(DUMMY).GE.1.)GOTO }9
THETAP =ARCOS (DUMMY)
XSMA X=ARAD*(THETAP-SIN(THETAP))
IF(XSMAX.LT .XSMIN)GOTO }9
\$THETA=.FALSE.
GOTO }9
97 ARAD=BANKHT/2.
THETAP=P I
XSMAX=ARAD*PI
$THETA=.TRUE.
 WRITE(6,30046)
30046 FORMAT (//,' RADIUS OF GENERATING CIRCLE LESS THAN BANK HEIGHT/2.')
 GOTO }9
 96 WRITE(6,30056)
30056 FORMATI//,' FAILURE PLANE ENDS ON BANK SLOPE'!
 ARAD=ARAD+DELA
 IF($ CGUN3)STOP
\$COUN3=.TRUE.
GOTJ 99
9 8 OELXS=XSMAX/NSLCS
YS=BANKHT
XS=XSMAX
THETA=THETAP
XFP(NPTS)=XSMAX+T
YFP(NPTS) =BANKHT+AA
XFP(1)=T
YFP(1)=AA
DO 102 I=1,NSLM).

```
```

 XS=XS-DELXS
 XFP(I+1)=T+XSMAX-XS
 IF(ITHETA)GDTO }9
 DETH=DELXS/(ARAD*(1.-COS(THETA)))
 GOTO 95
 94 DETH=DELXS/(ARAD*2.)
 95 THETA=THETA-DETH
 YSN=ARAD*(1.-COS(THETA))
 SPSI(I)=ATAN((YS-YSN)/DELXS)
 DELYS(I)=YS-YSN
 YS=YSN
 YFP(I+1)=BANKHT-YS+AA
 102 CONTINUE
 SPSI (NSLCS) =AT AN((BANKHT+AA-YFP(NSLCS))/DELXS)
 DELYS(NSLCS)=BANKHT-YFP(NSLCS)+AA
 C THE ABOVE DO LOOP ALSO CALCULATES SPSI FOR EACH SLICE
C CALCULATE X,Y COORDINATES OF HATERTABLE
CALCULATE PORE PRESSURES FOR THE BOUNDS DF EACH SLIGE
DO 200 1=1,NPTS
CALL HITWT(XFP(I),Q,NN,YWT(II)
CALL PHI(XFP(I), YWT(I), PHIWT(I),NA,DL,H,A,NA, E,WWTBL)
C SEE IF WE ARE ABOVE OR BELOW THE WATERTABLE
IF(YWT(I)-YFP(I) I201,202,203
201 PORPR(I)=-(YFP(I)-YWT(I))
GOTO 200
202 PORPR(I)=0.
GOTO 200
203 CALL PHI(XFP(I),YFP(I),PORPR(I),NA,DL,H,A,NA,B,WWTBL)
SUBTRACT ELEVATION HEAD YFP(I)
PORPR(I)=PORPR(I)-YFP(I)
200 CONTINUE
THIS SECTION EVALUATES THE FACTOR OF SAFETY FOR CHOSEN FAILURE
PLANE
TSFS=0.
TTFS=0.
DO 300 I = i,NSLCS

```
```

 IFIXFP(I).GE.XSMINT)GOTO }30
 C SLICE ENDS ON BANK FACE
IF(XFP{I+1).GT.XSMINTIGOTO }30
IF(XFP(I).G5.XHSIGOTO }30
IF(XFP(I+1).GT \&XHS)GOTO 304
C CALCULATE WT. OF SLICE IN SATURATED REGION ON BANK FACF
C AVG. LENGTH OF SLICE
SLI=(XFP(I)-T)*TATHET+AA-YFP(I)
SLIPI=(XFP(I+1)-T)*TATHET+AA-YFP(I+1)
AVGL=(SLI+SLIP1)/2.
C VOLUME OF SLICE PER UNIT LENGTH OF CHANNEL
SLVOL=AVGL*DELXS
SLWT=SLVOL*GAMAT
IF($RITYPIGOTO 305
 WRITE(6,40006) SLWT
40006 FORMAT (/:' TYPE 1 ',F10.4)
 GOTO }30
C FOR SLICE THAT INCLUDES HS
 304 SLL=(XFP(I)-T)*TATHET-YFP(I)+AA
 DEL=XHS-XFP(I)
 YFPDEL=YFP(I)+(YFP(I+1)-YFP(I))*DEL/DELXS
 SL2=HS+AA-YFPDEL
 W1=(SL1+SL2)*DEL*GAMAT/2.
 SL3=YWT(I+1)-YFP(I+1)
 W2=(SL2+SL3)*(DELXS-DEL)*GAMAT/2.
C FIND WT. OF UNSAT. PART
 SL4=(XFP(I+1)-T)*TATHET-YWT(I+1)+AA
C WT. OF DRY SOIL
 WDS3=SL4*(DELXS-DEL)*GAMAD/2.
C WT. OF WATER IN UNSAT RFGIDN
 CALL SINTISL4,QS,NS,SATIN I
 WH3 = (DELXS-DEL)*WCON*SATIN /2.
 SLWT =W1 +W2+WDS 3+WW 3
 IF($RITYP)GOTO 305
WRITE(6,40016)W1,W2,WDS3,WW3,SLWT
40016 FORMAT(/,: TYPE 2 %,5(2X,F10.4))
GOTJ 305

```

C FOR SLICE ABOVE HS BUT STILL ON BANK FACE
303 SLI \(=Y W T(I+1)-Y F P(I+1)\)
SL2=YWT(I)-YFP(I)
IF((SL1.GE.0.).AND.(SL2.GT.0.) IGOTO 313
WT. DF DRY SOIL
SL3=(XFP(I+1)-T)*TATHET-YFP(I+1)+AA
\(S L 4=(X F P(I)-T) * T A T H E T-Y F P(I)+A A\)
W1=(SL3+SL4)*DELXS*GAMAD/2.
IF((SLI.LT.O.).AND.(SL2.GE.0.))GOTO 323
C WT. OF WATER
CALL SINT(-SL2,QS,NS,SAT2I
SL5=SL4-SL2
CALL SINT(SL5,QS,NS,SAT4)
CALL SINT(-SLI,QS,NS,SAT1I
SL6=SL3-SLI
CALL SINT(SL6, QS,NS,SAT3)
WH=DELXS*WCON* ( (SAT4-SAT2)+(SAT3-SAT1) )/2.
\(S L W T=W I+W W\)
IF(\$RITYP)GOTO 305
WRITE \((6,40026) \mathrm{WI}, W W\), SLWT
40026 FORMAT(/:" TYPE 3 •, \(3(2 X, F 10.4)\)
GOTO 305
C WT. OF WATER
323 CALL SINT(SL3,0S,NS,SAT3)
CALL SINTISL4, QS,NS, SAT4)
WW=DELXS*WCON* (SAT4+SAT3)/2.
\(S L W T=W I+W W\)
IF(\$RITYP) GOTO 305
WRITE \((6,40036)\) W1,WW, SLWT
40036 FORMAT(/,' TYPE \(4 \cdot 3(2 X, F 10.4))\)
GOTO 305
C BELOW WATERTABLE
313 AVGLI=(SL1+SL2)/2.
WI=AVGLI*DELXS*GAMAT
C WT. DF SUIL ABOVE WATERTABLE
\(S L I=(X F P(I+1)-T) * T A T H E T-Y W T(I+1)+A A\)
SL2=(XFP(I)-T)*TATHET-YWT(I)+AA
```

AVGL2=(SL2+SL1)/2
WDS2=AVGL2*DELXS*GAMAD
C WT. OF WATER IN SOIL ABOVE THE WATFRTABLE
CALL SINTISL2,QS,NS,SAT2I
WW21=DELXS*WCON*SAT2
CALL SINTISLI,QS,NS,SAT3)
WW22 =DELXS*WCON*(SAT3-SAT2)/2.
SLWT =W1+WDS 2+WW21+WW22
IF(SRITYPIGOTO 305
WRITE(6, 40046)W1,WDS2,WW21,WW22,SLWT
40046 FORMAT(/,' TYPE 5 ',5(2X,F10.4))
GOTO 305
FOR SLICE AT TOP OF BANK
302 SLI=YWT(I+1)-YFP(I+1)
SL2=YWT(I)-YFP(I)
IF((SL1.GE.O.).AND.(SL2.GT.0.1)GOTO }31
C WT. OF DRY SOIL
DEL =XSMINT-XFP(I)
YFPDEL=YFP(I)+(YFP(I+1)-YFP(I))*DEL/DELXS
SL3=(XFP(I)-T)*TATHET-YFP(I)
SL4=YFP(NPTS)-YFPDEL
SL5=YFP(NPTS)-YFP(I+1)
W1=((SL3+SL4)*DEL*GAMAD/2.)+((SL4+SL5)*(DELXS-DEL)*GAMAD/2.)
C WT. DF WATER
IF((SLI.LT.O.).AND.(SLZ.GE.O.)IGOTO }32
YWTDEL=YWT(I)+(YWT(I+1)-YWT(I))*DEL/DELXS
SLG=YFPDEL-YWTDEL
CALL SINT(-SLI,QS,NS,SATI)
SDUM1=SL3-SL1
CALL SINT(SOUM1,OS,NS,SAT2)
CALL SINT(SL6,QS,NS,SAT3)
SDUM 2=SL4+SL6
CALL SINTISDUM2,QS,NS,SAT4)
WW1=DEL*WCON*((SAT2-SAT1)+(SAT4-SAT3))/2.
CALL SINT(-SL2,QS,NS,SAT5I
SDUM3=SL5-SL2
CALL SINT(SDUM3,QS,NS,SAT6)

```
```

 WW2=(DELXS-DEL)*WCDN*((SAT6-SAT5)+(SAT4-SAT3))/2.
 SLWT = W1 +WWL +WW2
 IF($RITYP)GOTO 305
 WRITE(6,40056)W1,WW1,WW2,SLWT
 40056 FDRMAT(/,' TYPE 6 1,4(2X,F10.4))
GOTO 305
322 CALL SINT(SL3,QS,NS,SAT3)
CALL SINT(SL4,QS,NS,SAT4)
CALL SINT(SL5,QS,NS,SAT5)
WW1=DEL*WCON*(SAT4+SAT3)/2.
HW2 = (DELXS-DEL)*WCON*(SAT5+SAT4)/2.
SLWT=W1+WW1 +WW2
IF($RITYP) GOTO 305
 WRITE (6,40066)W1,WW1,WH2,SLWT
40066 FORMAT(/,' TYPE 7 ',4(2X,F10.4))
 GOTO 305
 312 AVGL1=(SLI+SL2)/2.
C WT. OF DRY SOIL ABOVE WATERTABLE
 DEL =XSMINT-XFP(I)
 SLI=(XFP(I)-T)*TATHET-YWT(I)+AA
 YWTDEL=YWT(I)+(YWT(I +1)-YWT(I))*DEL/DELXS
 SL2=YFP(NPTS)-YWTDEL
 SL3=YFP(NPTS)-YWT(I+1)
 WDS1=(SL i+SL2)*DEL*GAMAD/2.
 WDS2=(SL2+SL3)*(DELXS-DEL)*GAMAD/2.
C WT. OF WATER ABOVE WATERTABLE
 CALL SINTISLI,QS,NS,SATI)
 CALL SINT(SL2,QS,NS,SAT2)
 CALL SINT(SL3,QS,NS,SAT3)
 WWI=DEL*WCON*(SATI+SAT2)/2.
 WW2=(DELXS-DEL)*WCON*(SAT2+SAT3)/2.
 SLWT =W1 +WDS 1 +WDS 2+WW 1+WW2
 IF($RITYP)GOTO 305
WRITE(6,40076)W1,WDS 1,WDS2,WW1,WW2,SLWT
40076 FORMAT(/,' TYPE 8 ',6(2X,F10.4))
GOTO 305

```
```

 3O1 SL:=YWT(1)-YCP(I)
 SL2=YWT(I+1)-YFP(I+1)
 IF((SLI.GT.0.1.AND.(SLZ.GE.0.)|GOT] 311
 WT. JF DRY SOIL
 SL3=YFP(INPTS)-YFP(I)
 SL4=YFP(NPTS)-YEP(I+1)
 WL=DELXS*SAMAD*(SL3+SL4)/2.
 WT - IF WATER
 IF((SLI.GÉ0.).AND.(SL2.LT.0.))GOTO }32
 CALL SINTI-SLI,QS,NS,SATII
 CALL SINT(-SL2,QS,NS,SAT2)
 SDIM1=SL3-SLI
 CALL SINT(SDUM1,QS,NS,SAT3)
 SDUM2=SL4-SL2
 CALL SINT(SIUMM2,QS,NS,SAT4)
 WW=DELXS*WCON*((SAT4-SAT2)+(SAT3-SAT1))/2.
 SLWT=WL + WW
 IFISRITYP)GJTO 305
 WRITE(6,40036)W1,WW,SLNT
 40086 FDRMAT(/,0 TYPE 9 1,3(2X,F10.4))
GOT: 305
321 CALL SINTISL3,QS,NS,SATLI
CALL SINT(SL4,OS,NS,SAT2)
WW=OELXS*WCON*(SAT1+SAT2)/2.
SLWT = Wl + WW
IF(\$RITYP)GJTO 305
WRITE:(6,40096)WL,WW,SLWT
4 0 0 9 6 ~ F O R M A T (/ , ' ~ T Y P E ~ 1 0 ~ ' , 3 (2 X , F 1 0 . 4)) ,
GOTO 305
WT. JF WET SUIL
311 Wl=DELXS*GAMAT*(SLI+SL2)/2.
SL 3=YFP(NPTS)-YNT(I)
SL4=YFP(NPTS)-YNT(I+1)
C WT. JF DRY SJIL
W2=DELXS*GAMAD*(SL3+SL4)/2.
C WT. OF WATE?
CALL SINT(SL3,QS,NS,SATII

```
```

 CALL SINT(SL4,OS,NS,SGT2)
 Wh=DiLXS*WC.JN*(JAT1+SAT2)/2.
 SL'HT=W1+W2+WW
 IF(EOITYPIGOTD 305
 WRITE(6,40106) Wl, N2,Wh,SLWT
 40106 ECRMATC/,' TYP: 11 1,4(2X,F10.4))
305 CONTINUF
C area jF SLIEE bJTTGM
ASLIBO=SQRT((CELXS*DELXS)+(DELYS(I)*DELYS(I)))
C AVG. POPE WATEP.FORCE GN EACH SLICF
PDRAV=(PORPR(I)+PORPPR(I+1))/2.
IF(PORAV.LT.O.)GOT\ 315
UAVG=PDRAV*GAMAW*A SLIBO
GOTO 316
315 CALL SCT(-PORAV,QS,NS,SPOR)
UAVG=SPOR*PORAV*GAMAW*ASLIBO
316 CONTINUE
TANGENTIAL WEIGHT FORCE ON SLICE
TFS=SLWT*SINISPSIIII)
C NORMAL FORCE
ANFS=SLWT*CJS(SPSIII)
c EFFECTIVF NGRMAL FORCE
ENF=ANFS-UA VG
IF(ENF.LT.O.)ENF=O.
C COHESIVE FORCF
FCOH=ASLIBO*TRUC:DH
C MOBILIZABLE SHEAR FDRCE AVAILABLE TO SLICE
IF(ABS(ENF).LT.1.E-10)GOTO 604
SFS=FCOHIENF*T AN(SPHII
GOTJ 605
604 SFS=FCOH
SLICE FACTOR OF SAFETY
605 F(I)=SFS/TFS
C TOTAL FACTOR OF SAFETY
TSFS=TSFS+SFS
TTFS=TTFS+TFS
300
CONTINUF

```
```

 TF=TSFS/TTFS
 WRITE(6,50016)TF
 50016 FORMAT(/,' FACTOR TF SAFETY FJR THIS TPIAL FAILURF SURFACE= =
x,:10.4)
WRITS(6,50026)ARAD,NCJUN
50026 FGRMATI/,' RADIUS OF GEMFRATING CIFCLE = ',FIO.4,/,
X' NUMEEP OF ITERATIONS = ',I3)
IFINCOUN.FQ.MAXCOUIGOTO }30
IF(\$COUNI)GJ TO 800
ARAD=ARAD+DELA
$COUN1=.TRUE.
 TFO =TF
 NCOUN=NCOUN+1
 GOTO 99
 800 IF($COUN2)GכTO }80
IFITF.GT.TFOIGOTO 801
ARAD=ARAD+DELA
SCOUN2=.TEUUE.
TFD = TF
NCOUN=NCOUN+1
GOT] 99
801 DELA=-DELA
ARAD =ARAD+2.0*DELA
\$COUN2=.TRUE.
NCOUN=NCOUN+1
GOTO 99
802 IFITF.GT.TFJIGCTO }80
ARAD=ARAD+DELLA
NCOUN=NC OUN+1
TFO =TF
GOTO 99
803 DELF=TF-TFO
IF(ABS(DELF).LE.FTOL)GOTO }80
DELA =-DELA/2.0
ARAD=ARAC+TELA
NCCUN=P:CCU:N+1
TFC: =TF

```
```

 GCTO 99
 804 CONTINUE
 WRITE (6,30066)
 30066 FORMAT(/:' X-COORDINATES IF FAILURE PLANE 'I
WRITE(t, 20246)(XFP(I),I=1,NPTS)
WRITE(6,30076)
30076 FORMAT(/,' Y-COORDINATES OF FAILURE PLANFI)
WRITE:(Ó, 20246) (YFP(I),I=1,NPTS)
WRITE:(6,30036) DELXS
30086 FGRMATI/;' DFLTA Y INCREMANTS ALDNG FAILURE PLANE FOF DELTA X = ',
XF10.4)
WRITE(6,20246)(DELYS(I),I=1,NSLCS)
WRITE(6,30096)
30096 FORMAT//:' ANGLE OF SLICE BOTTOM TO VERTICAL ALPHA = TANIDELTAYII
X/DFLTAX)')
WRITE(G, 20246)(SPSI(I),I=1,NSLCS)
WRITE(6, 30106)
30106 FORMATI/,' WATERTABLE ELFVATIONS 'I
WRITE (6, 20246)(YWT(I),I=1,NPTS)
WRITE(6,30116)
30116 FORMAT(/,' HYDRAULIC POTENTIAL ALOPNG WATERTABLE *)
WRITE:(0, 20246)(PHIHT(I),I=1,NPTS)
WRITE(6,30126)
30126 FORMAT(/,' PORE WATEF. PRESSURES ALUNG TRIAL FAILURE SURFACE ')
WRITE(5, 20246) (PORPR(I),I=1,NPTS)
WRITE(6,50006)
50006 FORMAT(/,' SLICE FACTORS OF SAFETY ')
WRITE(6,20246)(FII),I=1,NSLCS)
C
C PLOT AXES AND SOIL SURFACE
SX(1)=0.
SY(1)=\A
SX(2)=T
SY(2)={A
SX(3)=XSMINT

```
```

 SY(3)=YFP(:&TTS)
 SX(4)=XFP(NPTS)
 SY(4)=YFP(INPTS)
 YSCALSEYF?(NPTS)/5.25
 XSCALF=XFP(INPTS)/7.25
 IF(YSCALF.GT.XSCALE)GCTO 1000
 SCALE=XSCALE
 GOTJ 1001
 1000 SCALE=YSCAL:
 1001 CDNTINUE
 CALL GRAPH(4,SX,SY,0,4,7.25,5.2.5,SCALE,O.,SCALE,J.,XL,YL,GL,DDL)
 PLDT W\triangleTERTABLE
 XXWT(1)=XHS
 YYWT(1)=HS+AA
 DO 1002 I=2,NPTS
 I I=I
 IF(XFP(I).GT - XHS)GOTO 1003
 1002 CDNTINUE
1003 CONTINUF
NWTPT=NPTS-II+I
I IM2=II-2
DO 1004 l=2;NWTPT
XXWTII)=XFP(IIM2+I)
YYWTEI)= YWT(IIM2+I)
1004 CONT INUE
CALL GRAPHS\iNWTPT,XXWT,YYWT,0,2,";'1
C PLOT FAIL!JRE PLANE
CALL GRAPHS(NPTS;XFP,YFP,0,2,0;")
C PLCT PORE WATER PRFSSURES
SWT(1)=0.
DO 1005 I=1,NSLCS
ASLIBO=SQRT(DELXS*DELXS+(DELYS(I)*DELYS(I)))
1005 SWT(I+1)=SWT(I)+ASLIBO
CALL GRAPHIVPTS,SWT,PORPR,0,2,7.25,5.25,0.,0.,0.,0.,XL,YL,GL,DDLI
STIP
END
C

```
```

c
C SUBRJUTINE SAT (HEAN,QS,NS,SI
C this subfjutime calculates the percent satjuration for a givev
C SUCTIGN hEAD USING FITTED CURVF
REAL*8 2S(111, ES, XOUM,DBLE
DS=QS(1)
XDUM=1.DO
DJ 300 K=1,NS
XDUM=XDUM*(DSLE(HEAD))
300 DS=0S+2S(K+1)*XDUM
S=SNGL(DS)
RETURN
END
C
C
SUBROUTINE HITWT (X,Q,NN,HTWT)
C THIS SUBRJUTINE CALCULATES WATERTABLF ELEVATIONS
REAL*8 Q(11.),DHTWT,XDUM,DBLE
DHTWT=0(11)
XDUM=1.00
DO 300 K=1,NN
XDUM=XDUM*(DBLE(X))
300 DHTWT=DHTNT+Q(K+1) \#XOUM
HTWT=SNGL(DHTWT)
RETURN
END
C
C
SUBRTUTINE PHII(X,Y,PHIXY,N,OL,H,A,KA,R,WW)
C THIS SUBRJUTINE CALCULATES PHI AT X,Y
REAL*8 A,PI,AMI,DPHIXY,DBLE,DCOSH,OSIN
REAL*S Y1,X1,B1,DDL,OWW,OH,IS:4
DIMENSION A(KA)
UM(AM1,XI,Y1,B1)=(DCOSH(AMI*Y1)/DCOSH(AM1*B1))*DSIN(AM1*X1)

```
```

 PI = 3.141572653589793
 MM=1
 Yl=DELY(Y)
 Xl=OBL:(X)
 Bl=DतL (%(B)
 DDL=PBLE(OL)
 OWW=DBLE(NW)
 DH=DBLE (H)
 OPHIXY=(X1/OOL)
 1 AN1=MM* PI/OOL
 MPl=MM
 DPHIXY=DPHIXY+A(MP1)*UM(AM1,X1,Y1,B1)
 IF(MP1.EQ.MIGOTO 2
 MM=MM+1
 GOTO 1
 2 PHIXY=SNGL((DPHIXY*DH)+DWW)
 RETURN
 END
 C
C
SUBRJUTINE SINT(HEAD,QS,NS,SATINT)
C THIS SUBROUTINE CALCULATES THE INTEGRAL DF S DY UP TU SUCTION
OF HEAD
REAL*8 QS(11),DSATIN,XDUM,DHEAD,DBLE,DFLOAT
DHEAD=DBLE(HEAD)
DSATIN=QS(1)*DHEAD
XCUM=DHE4D
DO 300 K=I,NS
XDUM=XDUM*DHEAD
300 DSATIN=OSATIN+(QS(K+1)*XDUM/DFL.TAT (K+1))
SATINT=SNGL(DSATIN)
RETURN
END

```

```

C
C SUBROUTINE JRTH HRITTEN BY SOAST(1969). CALCULATES A-NMS FROM
U-MNS ANO W-M
cCmmjn to programs 1,2
C
C***み****************************
SUBROUTINE DETH(U,W,C,D,G;J,A,NCAPPI,KA,KAMI,KADIAG,IER)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION U(KA),C(KAMI),D(KA),G(KA),A(KA)
REAL*8 J(KADIAG),JTEMP
IF(NCAPP1-1) 1,2,2
IER=1
RETURN
IF(NCAPP1-KA) 4,4,3
IER=2
RETURN
4 IF(KA-1-KAM1) 5,6,5
5 IER=3
RETURN
6 IF((KA*KAMI)/2-KADIAG) 7,8,7
7 IER=4
PETURN
8 CONTINUE
IER=0
NCAP = NCAPP1-1
NCAPM1 = NCAP-1
IF(NCAPM1) 10,20,30
10 D(1) = U(1)
G(I)=W
E=G(1)/0(1)
A(I) = E
RETURN
20 C(1)=U(1)/D(1)
D(2)=U(2)-C(1)*C(1)*D(1)
G(2)=W-C(1)*G(1)

```
```

 I=G(2)/0(2)
 J(1) = C(1)
 A(1)=A(1)-E*J(1)
 A(2) = E
 RETURN
 110 CTEMP = CTEMP-U(NN)*J(NFORJ)
120 C(N) = CTEMP/D(N)
DTEMP = U(NCAPP1)
GTEMP = W
DO 140 N = 1,NCAP
CTEMP = C(N)
DTEMP = DTEMP-CTEMP*CTEMP*D(N)
140 GTEMP = GTFMP-CTEMP*G(N)
D(NCAPP1) = GTEMP
G(NCAPP1) = GTEMP
E = GTEMP/DTEMP
NSTART = O
DO 180 N = 1,NCAPM1
JTEMP = C(N)
NSTART = NSTART+N
NFDRJ = NSTART
NP1 = N+1
OJ 170 NN = NPI,NCAP
JTEMP = JTEMP-C(NN)*J(NFOFJ)
NFORJ = NFOR J +NN-1
J{NFORJ) = JTEMP
180 A(N) = A(N)-E*JTEMP
NFORJ = NFORJ+1
J(NFORJ) = C(NCAP)
A(NCAP)=A(NCAP)-F*J(NFORJ)

```
\(A(N C A P P I)=\bar{z}\)
GETURN
END
\begin{tabular}{|c|c|}
\hline & 620dS7de \\
\hline & 820dS7dC \\
\hline & 920dS7do \\
\hline & s20ds7do \\
\hline & ヶ20dS7d0 \\
\hline & ع20dSTdo \\
\hline & 220dS7d0 \\
\hline & ［20dS7do \\
\hline & O20dS7do \\
\hline & \(610 d 57 d 0\) \\
\hline & 8t0dS7do \\
\hline & LIOdS 7 do \\
\hline & \(9 \operatorname{lodS7do}\) \\
\hline & stodSTdd \\
\hline & ヶ10dS7do \\
\hline & عIOdS7do \\
\hline & 2 IOdS7do \\
\hline & itodS 7 do \\
\hline & ol0dS7do \\
\hline \(\stackrel{\sim}{\square}\) & 600dS7d0 \\
\hline & 800dS7d0 \\
\hline & 200dS7d0 \\
\hline & 900dS7do \\
\hline & s00dS7d0 \\
\hline & \(\rightarrow 00 \mathrm{~d}\) S do \\
\hline & E00dS7do \\
\hline & 200dS7do \\
\hline & T00dS7do \\
\hline
\end{tabular}
```

 801 09
 (i)X*XNd+(r)Nd=XNC 6
 6'0I'0I (r) }\ddagger|
 iv=r
 O*I = XNd
 SIdN*T=I IT 0O
 O*O=(XIW\capS L
 \varepsilon"I=Y L DU 9
 (r)INd+(T+r)Nd=(ItriNG G
 N'I=r G UC
 dWL=(r)INd }
 (r) INd*コ + (r)Nd*& = (r)Nd
 (r)Nd=dWL
 N6T=r * OO
 -0=(IT+N)Nd
 - O= ENIINd
 T+N=N
 (\varepsilon)W\capS=(*)W\capS
 (\varepsilon)W\capS/(I)W\capS-=& \varepsilon
 (ャ)W\capS/(\varepsilon)W\capS-=0 Z
 9 01 09
 O*I=(I)Nd
 -0=5
 O=N T
 Z*T*Z (07גMn&) fI
    ```

```

 &IIM '(I)A *(I)X NOISNEWIO
    ```

```

: ************コ
-9*G*26年
SシどV\capOS כ

```

```

 J
    ```

\(10 \operatorname{sum}(1)=\) SUM(1)+W(I)*X(I)*PRX*PNX
OPLSP030
\(\operatorname{SUM}(2)=\operatorname{SUM}(2)+W(1) * Y(I) * \operatorname{PNX}\)
\(11 \operatorname{SUM}(3)=\operatorname{SUM}(3)+W(1) * P N X * P\) NXX
OPLSP031
\(Q(N+1)=\operatorname{sum}(2) / \operatorname{SUM}(3)\)
IF (N) 3,3,12
OPLSP032
OPLSPO33
12 DO \(13 \mathrm{~J}=1, \mathrm{~N}\)
\(13 Q(J)=Q(J)+Q(N+1) * P N(J)\)
IF ( \(N\)-NCEG) 2,14,14
14 FETURN
OPLSP034
OPLSP035
OPLSP036
OPLSP037
OPLSP038
OPLS P039
```

C**\&*********************:***
C
C EXAMPLE INPUT DATA
C
C**
C
C NOTE. REMOVE COMMENT CARDS UNLESS OTHEZWISE STATED
C
C***
C
C**
C
C PROGRAM 1
C
C***
C
C REPLACE WITH BLANK CARD
C INT1,INT2,INTS,MAX,NN,INTX
20 20128 31 540
C WH,AA,B,THETA,DL,HS,T (10.0 35,0
C WATER TABLE ELEVATIONS
20.0 21.2 22.25
27.0 27.6 28.0
30.7 31.1

32.8	31.1	31.4
33.1	33.3	

34.2
34.3 34
\$4.4
34.5 33.6
25.7
26.4
30.7
32.

75.0	80.0
23.25	24.2
28.7	29.1
31.7	32.0
33.4	33.6
34.5	34.6

25.0
29.6
32.2
33.75
34.
5.0
34.2
34.3 34.4
34.7
30.0
30.3
35.0
12831540
WH, AA, B, THETA, DL, HS,T
WATER TABLE ELEVATIONS
$21.2 \quad 22.2$
$31.1 \quad 31.4$
34.4
5
32.4
32.6
34.1
34.9

```
C*******************************************************************************
C*******************************************************************************
C*******************************************************************************
C*******************************************************************************
C**********************************************************:*********************
C*******************************************************************************
```



```
C
C PROGRAM 3
C
C*************************************************&*k&*******************
C
C NA,NN,NWT,NFL,NPHIL,NPTS,INTX,INTY
    31
C A-NM VALUES
0.257295095089898500 02-0.165706601108139100 02-0.178562270831762800 02
-0.26125905735572700D 02-0.41020013635109650D 02-0.665857882917307700 02
-0.108829574104174200 03-0.17760034493845590D 03-0.287177316565169740D 03
-0.45841929239784980D 03-0.71991977625957000D 03-0.110941594190416500 04
-0.16732425125816770D 04-0.24637228703295620D 04-0.35319805429481520D 04
-0.49155880506206620D 04-0.66197810676262680D 04-0.85944345772344970D 04
-0.10711267996656450D 05-0.12751076880229810D 05-0.144131531654059200 05
-0.153592071686142200 05-0.152950229926738500 05-0.14076391172729260D 05
-0.11802504962143940D 05-0.88449554694885070D 04-0.57687338161464800D 04
-0.31479937535696010D 04-0.134913938228927500 04-0.40392122735571010D 03
-0.632986275163040000 02
C COEFFICIENTS OF POLYNOMIAL FITTED TO WATER TABLE Q-S
    0.13517086031231160D 02 0.102685802015492500 01-0.268334923084257300-01
    0.44586750632442200D-03-0.40896591521771240D-05 0.153507893092722900-07
C WW,AA,B,THETA,DL,HS,T,HYDCON
0. 10. 35. 75. 80. 10. 5. 2
```



```
C
C
PROGRAM
```



```
C
C NA,NN,NWT,NFL,NPHIL,NPTS,INTX, INTY
31 5 10 4 4 0 20 6
C
    A-NM VALUES
0.50760952774857310D 00 0.19996483307843740D 00 0.120178959916589400 00
0.797547035069758000-01 0.850646594251835000-01 0.801756573871052000-01
0.85170424864755800D-01 0.89776395122907800D-01 0.96265786946715600D-01
0.104509761704035400 00 0.112209025231998000 00 0.121933918672583700 00
0.129790095272442900 00 0.139096296738241400 00 0.145343218811413900 00
0.15193430169928130D 00 0.154203242548423500 00 0.15549560887627820D 00
0.151355470043730100 00 0.14523337602127670D 00 0.1 133295678247075000 00
0.11941495125637450D 00 0.10074925170973970D 00 0.817891826589543000-01
0.60704776061945640D-01 0.42288563214693900D-01 0. 250730045562348200-01
0.13113120949183880D-01 0.42449669081079190D-02 0.677006720775783400-03
-0.11837276201770870D-02
C COEFFICIENTS OF POLYNOMIAL FITTED TO WATEQ TABLE Q-S
0.28607521691292110D O1 0.420189228822320300 00-0.157412009895632200-01
-0.23840099637375740D-02 0.223675532762903700-03-0.522770513535050900-05
C WW,AA,B,THETA,DL,HS,T,WTMAX
```



```
HYDCJN
0.2
```



```
dictigNARY OF INPUT VARIABLE NAMES
C
C**********************************************************************
C
C**********************************************************************
C NAME FUNCTION. PROGRAM
C************************************************************************
C A A-NMS 3-6
C AA AEPTH TO IMP. BARRIER FT. 1-6
C ARAD RADIUS OF GEN. CIRCLE FT. 5,6
C B
ARAD RADIUS OF GEN. CIRCLE FT. 
    BANKHT HEIGHT OF GULLY BANK FT. 5,6
    5,6
    1-6
    BTHETA ANGLE OF BANK TO HORIZ. DEG. 5,6
    DL LENGTH OF FLOW REGION FT. 1-6
    DRAPOR DUMMY=2ERO 5,6
    FTOL TOLERANCE ON FACTOR OF SAFETY 5,6
    FX WATER TABLE HEIGHTS FT. 1,2
    GAMAW UNIT HT. OF WATER P.C.F. 5,6
    GS SPEC. GRAV. OF SOIL PARTICLES 5,6
    HEAD SUCTION HEAD FT. 5,6
    HS HEIGHT OF SEEPAGE FACE FT. 1-6
    HYDCON HYDRAULIC CONDUCTIVITY FT./DAY 3,4
    INTS BISECTIONS ALONG WATER TABLE 1,2
    INTX NO. OF WATER TABLE POINTS-1 1,2
    BISECTIONS ALONG X-AXIS 3,4
INTY BISECTIONS ALONG Y-AXIS 3,4
INT1 BISECTIONS ALDNG GULLY BED OR BELOW WATERTABLE 1,2
INT2 BISECTIONS ALONG SEEPAGE FACE 1.2
MAX MAX. ND. OF A-NMS TO BE CALCULATED 1,2
MAXCOU MAX. NO. OF FAILURE PLANES TO BE GENERATED 5,G
NA NUMBER OF A-NMS TO BE READ 3-6
NFL DUMMY 4,5
```

C	NFL	DUMMY						3,4
C	NN	ORDER O	OF POLYNOMIAL	FITTED T	TO WATER	TABLE	DATA	1-6
C	NPHIL	DUMMY						3,4
C	NPTS	DUMMY						3,4
C	NS	ORDER C	CF POLYNOMIAL	F FITTED T	TO SATURAT	TION D	DATA	5,6
C	NSLCS	NUMBER	OF SLICES					5.6
C	NSPTS	NO. OF	SATURATION D	DATA POINT				5,6
C	NhT	DUMMY						3,4
C	PORSTY	SOIL POR	OROSITY					5.6
C	Q	COEFFIC	CIENTS OF POL	YNOMIAL F	FITTED TO	WATER	R TABLE	5,6
C	S	DEGREE	OF SATURATIO					5,6
C	SPHI	ANGLE 0	OF INTERNAL S	SHEARING R	RESISTANCE	CE DEG.		5,6
C	T	HALF WI	IDTH OF GULLY	Y FT.				1-6
C	THETA	ANGLE 0	OF BANK TO HOR	ORI ZONTAL	DEG.			1-4
C	TRUCOH	TRUE CO	OHESION P.S.I	I.				5,6
C	WTMAX	MAX. HE	HEIGHT OF WATE	ER TABLE F	FT.			4
C	WW	DEPTH O	OF WATER IN G	GULLY FT.				1-5
C	WWTBL	DEPTH O	OF WATER IN G	GULLY FT.				6

[^0]: ${ }^{\prime} \mathrm{a}_{f_{1}}(x)$ is any function describing the soil surface. The function used in this problem is defined in the table.
 $b_{f_{2}}(x)$ is any function describing water shape. A series of points are taken from an arbitrary curve representing the water table.

[^1]: ${ }^{\text {T}}$ The author is indebted to Dr. Sami Selim for advice given in the selection of this solution. Iowa State University, Ames, Iowa, 1973.

