This dissertation has been microfilmed exactly as received

66-2972

RHYNE, James Jennings, 1938— MAGNETOSTRICTION OF DYSPROSIUM, ERBIUM, AND TERBIUM SINGLE CRYSTALS.

Iowa State University of Science and Technology Ph.D., 1965 Physics, solid state

University Microfilms, Inc., Ann Arbor, Michigan

# MAGNETOSTRICTION OF DYSPROSIUM, ERBIUM, AND TERBIUM SINGLE CRYSTALS

bу

James Jennings Rhyne

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Physics

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Dean of Graduate College

Iowa State University
Of Science and Technology
Ames, Iowa

## TABLE OF CONTENTS

|      |     |                                                                  | page |
|------|-----|------------------------------------------------------------------|------|
| I.   | IN  | TRODUCTION                                                       | 1    |
|      | Α.  | Rare Earths and Magnetostriction                                 | 1    |
|      | В•  | Early Magnetostriction Work                                      | 2    |
|      | C.  | Other Rare Earth Magnetostriction Experiments                    | 5    |
| II.  | PR  | OPERTIES OF THE RARE EARTHS                                      | 6    |
|      | Α.  | General Properties                                               | 6    |
|      | В.  | Magnetic Interactions in the Rare Earths                         | 6    |
|      | C•  | Neutron Diffraction and Magnetization Results on the Rare Earths | 10   |
| III. | EX] | PERIMENTAL METHOD AND APPARATUS                                  | 15   |
|      | Α.  | Methods of Strain Measurement                                    | 15   |
|      | В•  | Strain Gages                                                     | 16   |
|      | C.  | Strain Gage Measurements and Calibration                         | 18   |
|      | D•  | Helium Dewar                                                     | 24   |
|      | E•  | Temperature Control Apparatus                                    | 28   |
|      | F•  | Rotating Sample Holder Assembly                                  | 34   |
|      | G•  | Sample Mounting                                                  | 36   |
|      | Н∙  | Temperature Measurement                                          | 37   |
|      | I.  | Magnet Equipment                                                 | 38   |
| IV.  | SPE | CIMENS FOR MAGNETOSTRICTION MEASUREMENTS                         | 41   |
|      | Α.  | Specimen Geometry                                                | 41   |

|       |     |                                                                         | page |
|-------|-----|-------------------------------------------------------------------------|------|
|       | В.  | Crystal Preparation                                                     | 42   |
|       | C.  | Specimen Preparation and Alignment                                      | 141  |
|       | D.  | Specimen Purity                                                         | 45   |
| ٧.    | MA  | GNETOSTRICTION OF A FERROMAGNET                                         | 47   |
|       | Α.  | Phenomenological Theory                                                 | 47   |
|       | В•  | Callen Theory of Magnetostriction                                       | 50   |
|       | C.  | Mason's Expression for the Magnetostriction                             | 53   |
|       | D.  | Approximation Valid for Dy and Tb Below the Néel<br>Temperature         | 55   |
| VI.   | EXC | CHANGE MAGNETOSTRICTION IN A HELICAL ANTIFERROMAGNET                    | 59   |
| VII.  | MEA | ASUREMENTS OF THE MAGNETOSTRICTION CONSTANTS                            | 67   |
|       | Α.  | Anisotropic Magnetostriction Constants A and C                          | 67   |
|       | В•  | Isotropic Constants D and G                                             | 76   |
| VIII. | ANI | SOTROPY ENERGY                                                          | 95   |
|       | Α.  | General Remarks                                                         | 95   |
|       | В•  | Anisotropy Constants of Dy and Tb Calculated from Magnetostriction Data | 96   |
| · IX. | Tb  | AND DY ISOTHERMAL MAGNETOSTRICTION                                      | 101  |
|       | Α.  | Ferromagnetic and Antiferromagnetic Results for Dy and Tb               | 101  |
|       | В•  | Critical Fields in Dy from a-c Plane Field Rotation Measurements        | 108  |
|       | C.  | Paramagnetic Magnetostriction                                           | 111  |
|       | D.  | Forced Magnetostriction                                                 | 114  |

|       |                            |                                                                                                   | page |  |  |  |
|-------|----------------------------|---------------------------------------------------------------------------------------------------|------|--|--|--|
| х•    | MAGNETOSTRICTION OF ERBIUM |                                                                                                   |      |  |  |  |
|       | Α.                         | Isothermal Measurements in Erbium                                                                 | 119  |  |  |  |
|       | В.                         | Erbium Field Rotation Measurements                                                                | 130  |  |  |  |
|       | C.                         | Temperature Dependence of Er Strain                                                               | 137  |  |  |  |
| XI.   | BIE                        | BLIOGRAPHY                                                                                        | 142  |  |  |  |
| XII.  | ACK                        | NOWLEDGEMENTS                                                                                     | 147  |  |  |  |
| XIII. | APPENDIX                   |                                                                                                   |      |  |  |  |
|       | Α•                         | Errors in Strain Gage Measurements                                                                | 149  |  |  |  |
|       | В•                         | Errors in the Magnetostriction Constants A and C of Dy and Tb Produced by the Magnetic Anisotropy | 150  |  |  |  |
|       | C.                         | Tabulation of Experimental Data                                                                   | 151  |  |  |  |

#### I. INTRODUCTION

## A. Rare Earths and Magnetostriction

The development of methods for obtaining pure rare earth metals at the Ames Laboratory has led to an extensive research program directed toward an understanding of the basic physical properties of these materials. Much of this work up to 1960 is summarized by Spedding and Daane (60) based primarily on polycrystalline measurements.

The heavy rare earths exhibit strong magnetic effects accompanied in most cases by large magnetocrystalline anisotropies. Interest in studying these properties and their effect on the galvanomagnetic properties has necessitated and stimulated work in producing single crystals of the elements at the Ames Laboratory. Belov et al. (5) have reviewed some of the results of these single crystal studies.

Recently, considerable interest has been shown in the magnetoelastic properties of the rare earths. These phenomena are a direct manifestation of the interaction between the magnetic exchange and anisotropy energies and the elastic energy. They are thus a way of studying the interatomic forces. It is hoped that this investigation of the magnetostriction of dysprosium, erbium and terbium will provide some insight into the magneto-elastic interactions in these metals.

The magnetostriction of a material is a change in physical dimension

resulting from a change in the direction or magnitude of the magnetization.

This change may be the result of a spontaneous ordering or the result of an applied field.

A strain dependent total magnetic energy is the essential requisite for such a distortion. The observed magnetostriction will then accompany changes in the magnetization whenever the dilatation results in a reduction of the total energy.

Magnetostrains are normally small;  $\frac{\Delta \ell}{\ell}$  is on the order of 10<sup>-5</sup> for the transition elements Fe, Co, and Ni. In the rare earths however, due to the large anisotropy energies, the strains are larger by almost two orders of magnitude. The apparent record magnetostriction of 0.96 per cent for an elemental material was observed in this study on dysprosium at 20°K.

## B. Early Magnetostriction Work

The mere observation of magnetostriction is not new; its accurate measurement and interpretation is new. The observation dates back to 1842 when Joule first observed the expansion of an iron bar when magnetized. He determined that in small fields the expansion took place along the direction of the magnetization and was accompanied by a transverse contraction which maintained the volume constant. Later work showed that the expansion becomes a contraction in larger fields due to the effects of domain rotations. Joule's result was really quite an

achievement sixty-five years before the Weiss theory of ferromagnetism.

Much of the later work showed much less insight.

The early studies of magnetostriction generally suffered from three main deficiencies. Two of these were the lack of measurements on single crystals (Co was measured only in 1954 (10)) and the lack of measurements below room temperature. Both of these make theoretical interpretation difficult, since a good theory must involve anisotropy and temperature dependent effects. By far the most serious defect, however, was the use of the demagnetized state as a zero reference state for the strain measurement. The strain in such a state is a function of the magnetic history. The domain configuration and, hence, the demagnetized strain, is not closely reproducible when the crystal is cooled through its ordering temperature, or when the applied field is removed. The futility of using the demagnetized state as a reference is illustrated in Figure 1, which shows the results of five sequential determinations of the magnetostriction in Dy at 79°K as a function of field applied along the easy magnetic direction. The data for the first and fifth curves were obtained after annealing the crystal above its Néel temperature. The other curves were obtained after conditioning the specimen in a 30 kilogauss field applied in the directions given in the figure. In each case, after the conditioning field was applied, the crystal was allowed to attain strain equilibrium in zero field before the magnetostriction

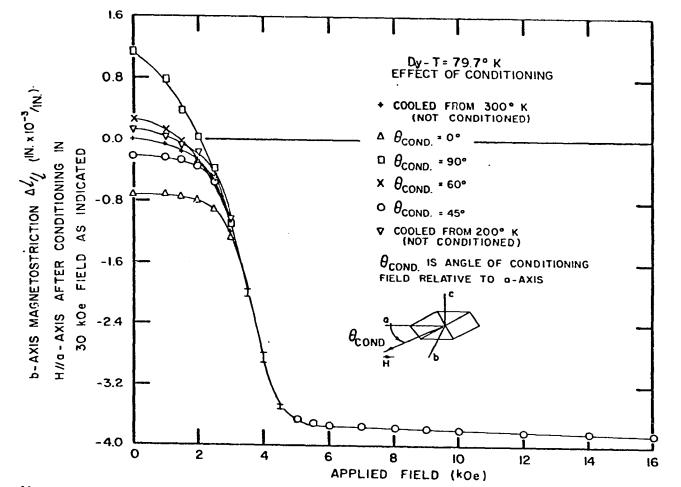



Figure 1. Magnetostriction of dysprosium as a function of field applied along the easy magnetic direction. The curves give the strains which result after preconditioning the specimen as indicated.

data were taken. The "demagnetized" strain and low field values of
the various curves are observed to be quite variable, emphasizing the
errors inherent in obtaining quantitative values from such measurements.

It is to be noted, however, that the saturated strain in each case is
identical, and thus magnetostriction measurements made between different
saturated states are quite valid. This has been the procedure for most
of the recent investigations.

## C. Other Rare Earth Magnetostriction Experiments

Most of the original magnetostriction work on the rare earths was done on polycrystals in Russia and England. Polycrystalline dyprosium was studied by Belov et al. (6) and by Lee and Alperts (44). Polycrystalline terbium measurements were made by Nikitin (55), gadolinium by Corner and Hutchinson (18) and Belov et al. (6), and holmium by Nikitin (55).

In addition to the work on Dy, Tb, and Er reported in this dissertation and elsewhere (56, 45), single crystal magnetostriction of Ho (45) and Gd (2) has been measured by Alstad while at this laboratory. Bozorth and Wakiyama (11, 12) have also reported the magnetostriction of Gd single crystals. Clark et al. (16, 17) measured the magnetostriction of Dy concurrently with the author's study.

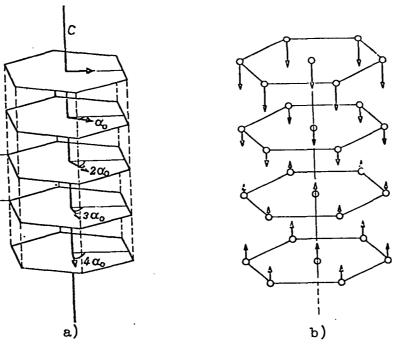
## II. PROPERTIES OF THE RARE EARTHS

## A. General Properties

The atomic structure of the heavy rare earths is characterized by three conduction electrons in mixed 5d and 6s bands. The 4f shell is being filled as one progresses across the series from Gd (atomic number 64) to Lu (atomic number 71). In view of the uniform number of conduction electrons, and crystal parameters of the series (61) the transport properties would be expected to be almost identical for these elements. This is not realized, however, due to an interaction between the conduction electrons and the 4f electrons which is also responsible for the magnetic properties.

## B. Magnetic Interactions in the Rare Earths

The rare earths exhibit exceedingly strong magnetic interactions leading to an observed magnetic moment as high as 10.6 Bohr magnetons per atom in Dy. This is somewhat surprising when one considers that the value of the direct magnetic exchange integral between the deeply buried 4f electrons is essentially zero. In contrast to the direct exchange in the transition elements, rare earth magnetism finds its explanation in an indirect exchange interaction known as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction named after the principal contributors to the theory. The fundamental postulate is the existence of an exchange interaction


between the localized 4f ion with effective spin  $\vec{s}_n$  (given by  $(g-1)\vec{f}_n$ ) and a conduction electron of spin  $\vec{s}$  in momentum state  $\vec{k}$ . In the interaction the conduction electron is scattered into momentum state  $\vec{k}'$ . The Hamiltonian for this exchange has the form

$$H = -\Gamma_{n} (\vec{k} \ \vec{k}^{\dagger}) \vec{s}_{k} \cdot \vec{s}_{n} , \qquad (1)$$

where  $\Gamma_n$  (kk') is a direct exchange integral between the localized ionic wave function and the conduction electron wave function. The result of the interaction is a polarization of the conduction electron medium with a consequent small increase in the net observed magnetic moment of the crystal.

The energy and wave functions resulting from a Hamiltonian of the above type have been calculated to second order by Ruderman and Kittel (57).

Experimentally it is found that, in addition to normal ferromagnetism, some of the rare earths exhibit a helical antiferromagnetic state over a limited temperature range. In such a state, the atomic magnetic moments are aligned ferromagnetically in each hexagonal layer. However, the direction of alignment changes by an interlayer turn angle  $\alpha$  from one layer to the next. The overall picture is one of the magnetic moment following a helical path progressing upward through the crystal along the c axis as shown in Figure 2. The net moment of the crystal is thus zero as required for an antiferromagnet.



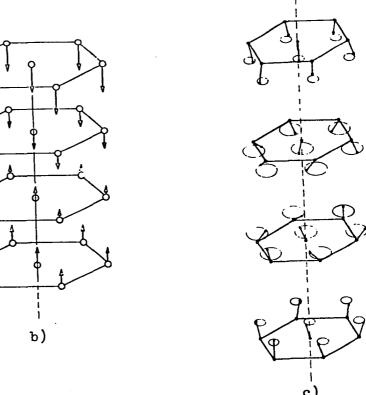



Figure 2. Antiferromagnetic states of the rare earths.

- a) The helical magnetic state in the absence of anisotropy and external field.
- b) and c) Two possible moment configurations in the modulated moment region of Er.

Ruderman and Kittel have shown that the helical magnetic states in the rare earths can be explained by postulating a ferromagnetic intralayer exchange energy and an interlayer exchange integral that is positive for interactions between nearest neighbor hexagonal layers and negative for interactions between second nearest neighbor layers. This interaction function, dependent on the distance r between two atoms is:

$$J = J_0 \frac{\sin x - x \cos x}{x^4}, \quad x = \frac{r}{r_0}, \quad (2)$$

r<sub>o</sub> is a constant on the order of an atomic distance. For an appropriate layer spacing, a, this function gives  $J\left(\frac{a}{r}\right) = J_1 > 0$  and  $J\left(\frac{2a}{r}\right) = J_2 < 0$  as required by the RKKY theory. A refined calculation by Herpin (32) gives the following result for the exchange energy in the helical states:

$$E_{ex} = -M_{s}^{2} \left( J_{1} \cos \alpha + J_{2} \cos 2\alpha \right) \tag{3}$$

where M<sub>s</sub> is the magnetic moment per atom and J<sub>1</sub>, J<sub>2</sub> are the above interlayer exchange functions. The angle  $\alpha$  is the interlayer turn angle. By minimizing the energy  $\frac{\partial E}{\partial \alpha} = 0$ , the stable helical angle is found to be:

$$\cos \alpha_{o} = -\frac{J_{1}}{4J_{2}} . \tag{4}$$

If  $|J_2| < \frac{1}{4} J_1$  then the second nearest layer exchange is too small to sustain the helical state and  $\alpha$  becomes zero producing ferromagnetism.

The mechanism of the actual transition from antiferromagnetism to ferromagnetism is somewhat obscure. Yosida and Miwa (69, 70) have postulated an explanation in terms of different temperature dependences of

the second, fourth, and six order anisotropy energies. For example, in Dy they attribute the stability of the helical state to the strong axial second and fourth order anisotropy holding the intralayer magnetic moments in the basal plane. On cooling, a rapid increase in the basal plane (six fold) anisotropy causes the helical structure to be destroyed in favor of the ferromagnetic state of lower energy. It is to be noted, though, that the temperature dependence of the turn angle calculated by Yosida and Miwa is not in good agreement with the observed neutron diffraction results (37).

Additional calculations and extensions of the theory of helical spin structions have been made by many workers including Kasuya (35), DeGennes and Friedel (21), Enz (24), Elliott (22, 23), and Nagamiya (51).

The rare earth magnetic interactions described above represent the situation for zero applied field. On application of an external field, the helical state is radically distorted and eventually collapses into a ferromagnetic configuration as the applied field energy overcomes the " $J_2$ " interlayer exchange energy. These results are described in the section on magnetostriction of a helical antiferromagnet.

C. Neutron Diffraction and Magnetization Results on the Rare Earths

The techniques of neutron diffraction, applied to the rare earths

principally by Koehler (37) and associates at Oak Ridge, have yielded

considerable insight into the various magnetic phases in these metals.

The qualitative results of studies on Tb (39), Dy (66), Ho (38), and Er (13) are shown in Figure 3.

## 1. Terbium and dysprosium

Terbium and dysprosium both exhibit the same ordered phases, helical antiferromagnetic and ferromagnetic. The range of stability of the helical state in Tb is quite restricted compared to Dy, and applied fields of less than one kOe will produce a transition to the ferro state. The respective Néel temperatures (para to antiferro transition) of Tb and Dy are 230°K and 179°K, and the Curie temperatures (antiferro to ferro transition) are 221°K and 87°K.

The interlayer turn angle of Tb varies from  $20.5^{\circ}$  at the Néel temperature to  $18^{\circ}$  at the Curie temperature. Below the Curie temperature, the b(1010) axis is the easy magnetic direction as established by the work of Hegland et al. (31). They found the value of atomic moment extrapolated to T= 0°K and infinite field to be 9.34 Bohr magnetons, slightly larger than the nine Bohr magnetons expected for a tripositive ion ignoring effects of conduction electron polarization.

The turn angle of Dy exhibits an almost linear decrease with temperature from 43.5° at 179°K down to about 130°K where it departs from linearity. At approximately 95°K it reaches a value of 26.5° and remains constant to the Curie temperature and then drops discontinuously to zero. Magnetization studies of Behrendt et al. (4) give a saturation moment

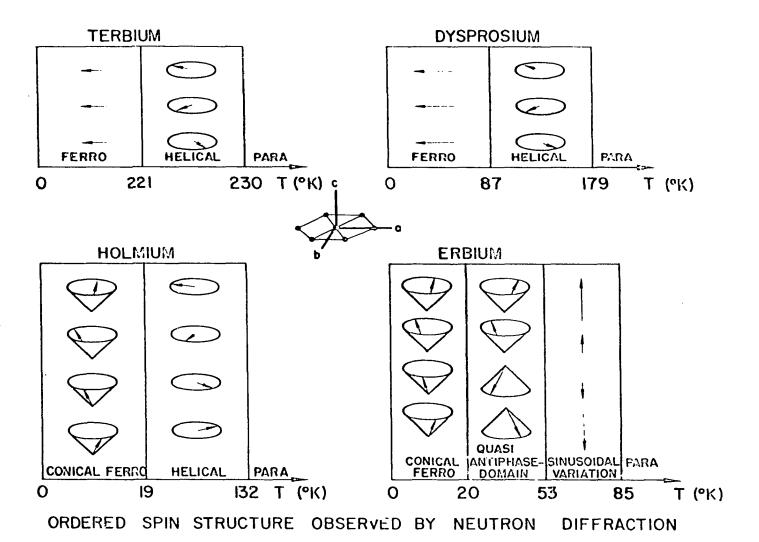



Figure 3. Magnetic states of the rare earths as determined from neutron diffraction results.

value of 10.2 Bohr magnetons per atom. The a(1120) axis is the easy basal plane direction. The critical fields required to destroy the helical state range from zero at the Curie temperature to over 10 kOe above  $160^{\circ}$ K.

## 2. Erbium

Erbium exhibits a rather more complicated magnetic structure consisting of three distinct ordered states. At 850K Er goes from a paramagnetic state into a state in which the c component of the magnetic moment is observed to oscillate in magnitude in progressing from one hexagonal layer to another. The period of this oscillation is seven layers. The basal plane component (if any) is completely disordered. This situation leads to two possible models for the state as shown in Figure 2. The first is one in which the atomic moments all point in the c-axis direction and their magnitudes are modulated layerwise in a sinusoidal manner. The second explanation assumes that the atomic moments remain constant in magnitude and lie along the generators of cones whose apex angles are modulated sinusoidally. A completely random distribution of the moments over the surface generators of the cones would account for the net disordered basal plane component. At about 53°K the basal plane components of the Er moment are observed to order into a helical configuration. The sinusoidal c-axis component modulation changes to more of a square wave modulation with a period of eight layers.

The result, termed a "quasi-antiphase-domain", is shown in Figure 3. At  $20^{\circ}$ K (17.5°K is indicated from this study) all the c-axis components swtich to one direction, while the basal plane ordering is essentially undisturbed. The result is a conical ferromagnetic state with the easy magnetic direction being the generators of the cones. The basal plane component of the moment as observed by neutron diffraction is 4.1  $\mu_{\rm B}$  and the c-axis component is 7.2  $\mu_{\rm B}$  corresponding to a cone angle of  $30^{\circ}$  in zero applied field. Application of a magnetic field drastically alters the magnetic states of Er as is discussed in the section of Er results. Magnetic moment studies below 18 kOe on Er single crystals were made by Green et al. (29).

## 3. Holmium

Holmium again exhibits only two ordered states--helical antiferromagnetism from  $132^{\circ} K$  to  $19^{\circ} K$  and conical ferromagnetism below  $19^{\circ} K$ . The turn angle varies linearly from  $50^{\circ}$  at  $T_n$  to  $36^{\circ}$  at  $35^{\circ} K$  and finally goes to  $30^{\circ}$  below  $18^{\circ} K$  and remains fixed. Below  $19^{\circ} K$  a helical basal plane moment of  $9.5~\mu_B$  and a c-axis component of  $2.0~\mu_B$  is observed by neutron diffraction.

## III. EXPERIMENTAL METHOD AND APPARATUS

#### A. Methods of Strain Measurement

The measurement of magnetostrictive strains in the rare earths presented several unique problems. Depending upon the applied field and the temperature, linear strains ranging from below  $\frac{\Delta k}{k} = 1 \text{x} 10^{-6}$  up to  $\frac{\Delta k}{k} = 1 \text{x} 10^{-6}$  up to  $\frac{\Delta k}{k} = 1 \text{x} 10^{-6}$  were encountered. In order to resolve the fine structure present in some measurements, a sensitivity of  $\frac{\Delta k}{k} = 1 \text{x} 10^{-6}$  had to be maintained throughout the entire  $10^{14}$  range of strain. This required a highly sensitive and wide range strain detection system, one which was also capable of giving reliable results at temperatures from 350°K to  $1.3^{\circ}\text{K}$ .

Some of the techniques useful in thermal expansion work were not suitable for magnetostriction work. Interferrometric instruments are complicated, difficult to calibrate over a wide temperature range, have relatively slow response time, and do not allow a sample geometry that is appropriate for use in a transverse magnetic field. Capacitive methods in which dilitations of the sample produce changes in capacitance of a capacitor attached to the sample are quite suitable, especially for small dilitations, but require elaborate instrumentation and noise shielding. Similar problems would be expected in a mutual inductance or variable differential transformer method, and, in addition, there would be an unfavorable sample orientation difficulty.

## B. Strain Gages

Electrical resistance strain gages first used for magnetostriction measurements in Ni by Goldman (28) have proved quite successful. These gages are made by various manufactures for stress analysis and consist of a thin (1-2x10<sup>-8</sup> inch) metal foil electrical resistance element (nominally 100-200 ohms) embedded in a paper, epoxy, or bakelite carrier. The package is attached to the specimen with a suitable cement. The gage element thus follows any distortion of the sample. From measurements of the fractional change in resistance of the gage, the linear strain along the gage axis may be obtained by the relation

$$\frac{\Delta \ell}{\ell} = \frac{1}{G(T)} \frac{\Delta R_g}{R_g} . \tag{5}$$

G is a temperature dependent proportionality constant known as the gage factor. The design of the gage elements is such that sensitivity to strains transverse to the gage axis is several orders of magnitude below that along the axis.

In collaboration with J. K. Alstad (1) several of the available strain gage and cement combinations were evaluated. Considerable effort was required to find a suitable combination for the strain and temperature extremes encountered. Initially, the best gage found was the Budd Company type C9-624 epoxy-phenolic backed gage (active area 1/8"x 1/8") made of Budd alloy (similar to nichrome with small additions to improve temperature

stability). The cement used was Budd GA-5 cured for one hour at 100°C followed by a post cure of five hours at 70°C. Pressure was applied to the bond area through pads of silicone and sponge rubber compressed by a small bar clamp. Measurements on Tb were done entirely with this gage using lot number Jl-ACC-1. Isothermal strain versus field data on Dy and c-axis isofield runs were also made with the 624 gages from lot number J1-AC1-1. No change in gage characteristics was noted between lot numbers. In late 1963, a new cryogenic design gage (S-421) was introduced by Budd made of nichrome V with an improved epoxy backing. These gages had improved strain accuracy and less variation of the gage factor with temperature. Tests on this type of gage down to liquid He temperature by Kaufman (36) showed good consistency of the gage factor for both tension and compression loading. The gage response was found to be quite linear with strain to 1% strain, after which some non-linearity was apparent. Tests were conducted to 1.2% strain without gage or adhesive failure at 20°K. The strain drift observed at 1.2% strain was 210 and 60 micro-inches/inch in a two hour period for the two gages tested. Negligible gage hysteresis was observed by Kaufman in loading and unloading strains.

The Budd series S-421 gages were used in this investigation for all measurements on erbium and for rotation and isofield (except c axis) measurements on Dy. The lot number used was N2-AJJll.

## C. Strain Gage Measurements and Calibration

Crystal strains were obtained from measurements of fractional changes in resistance of the gages by use of Equation 5. The quantity  $\frac{Z}{R}$  was obtained by using a sensitive shunt-type Wheatstone bridge as shown in Figure 4. Two strain gages were used in opposite arms of the bridge: an active gage (R in the figure) bonded to the specimen, and a reference or "dummy" gage ( $R_d$  in the figure) bonded to a 2 mm thick disk of fused quartz and placed in the same temperature and magnetic field environment as the specimen gage. This arrangement effectively cancelled out effects of temperature variation of the gage resistance and most of the residual magnetoresistance (see below). The data were not corrected for the thermal expansion of the quartz which is about 0.25x10<sup>-6</sup>/  $^{\mathrm{O}}\mathrm{K}$ , almost two orders of magnitude smaller than the measured magnetostriction effects. A current of 3.5 ma was used in each gage. The initial bridge balance was obtained by varying the combination of precision fixed and variable decade resistors  $R_{j_1}$  in the diagram. All subsequent measurements were taken with the bridge in a balanced configuration by adjusting the five-dial decade resistor R<sub>2</sub>. The null was sensed by Leeds and Northrup D.C. Null Detector Model 9834. The fractional change in gage resistance at balance was given by

$$\frac{\Delta R_{a}}{(R_{a})} = C \frac{R_{1}}{(R_{2})} \left[ \frac{\Delta R_{2}}{\Delta R_{2} + R_{1} + (R_{2})} \right]$$
 (6)

## STRAIN GAGE BRIDGE

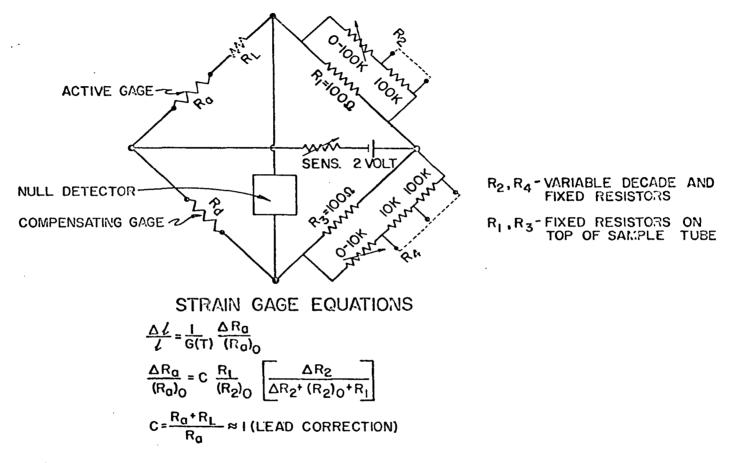



Figure 4. Strain gage bridge circuit and associated equations for calculating linear strains.

where the subscript zero refers to the initial or reference values. C is a correction for the "dead" resistance in the gage leads

 $C = \frac{R_a + R_L}{R_a} \approx \text{1.006 (For R}_{I_s} = \text{1.5 ohms and R}_a = 260 \text{ ohms).} \quad \text{The advantage}$  of making all measurements in a balanced configuration is apparent from Equation 6: the gage resistance R<sub>a</sub> and its temperature dependence need not be accurately known, as it enters the equations only as a small correction effect. The sensitivity of the bridge was 0.6 micro-ohms/ohm/ scale division, corresponding to a strain at room temperature of 0.3 micro-inches/inch/scale division. Bridge resistors R<sub>1</sub> and R<sub>3</sub> were counterwound on the same form and placed in an enclosure atop the sample holder assembly (see Figure 8) to reduce lead lengths and minimize thermal drifts.

The temperature dependence of the gage factor (see Equation 5)
was obtained by use of a cantilever beam strain gage calibrat on device
manufactured by Cryresco. This device, shown in Figure 5, is similar
to one described by McClintock (49) which provides a uniform strain in
an aluminum beam independent of temperature. Two active strain gages
were mounted on the beam, one in compression, and one in tension. Room
temperature values of the gage factor supplied by the manufacturer were
used to calibrate the device. Strains of -230., +239.; -465.,+481.;
-696.,+722. were obtained from the three steps of the wedge block.
These values were in fair agreement with those supplied with the
calibrator. The temperature of the calibrator assembly could be varied

## STRAIN GAGE CALIBRATOR

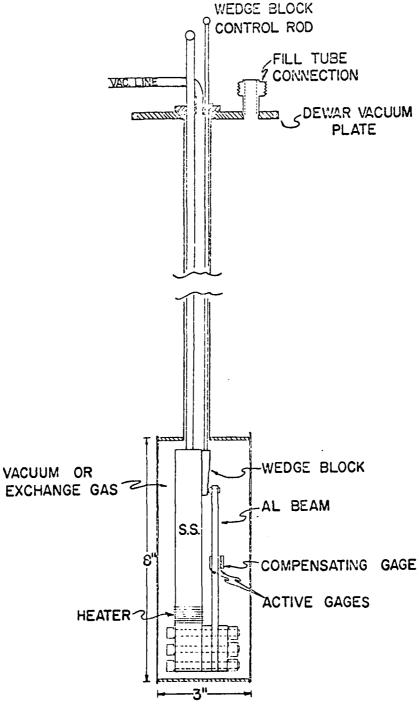



Figure 5. Calibrator and vacuum chamber used to obtain temperature dependence of gage factor.

by placing it in a dewar and alternatively using exchange gas in the enclosing can or evacuating the region and using a heater wound on the calibrator block. Using the known beam strains of the calibrator, the gage factor was computed at a given temperature from Equations 5 and 6. The result is shown in Figure 6 for both the series C9-624 and S-421 gages. Data shown for the C9-624 gages are for a gage in contraction only. The obvious superiority of the small gage factor temperature dependence in the S-421 gages is apparent. Considerable uncertainty is attached to the C9-624 gage factors below 20°K, possibly due to magnetic ordering. The solid lines are the result of a least squares computer fit of the data. For fitting purposes, the temperature range was broken down into three regions for the C9-624 gages and into two regions for the S-421 gages. For strain data taken as a function of temperature, the value of G used in Equation 5 was found by averaging:

$$\bar{G} = \frac{\int_{T_{ref}}^{T} G(T) dT}{T - T_{ref}}, \qquad (7)$$

where T is the reference temperature (usually 300°K) and T the measurement temperature. G(T) is the polynomial fit of the gage factor data just described. As can be seen from the figure,  $\bar{G}$  departs significantly from the simple straight line average in some temperature regions.

The accuracy of the strain gage measurement procedure was checked

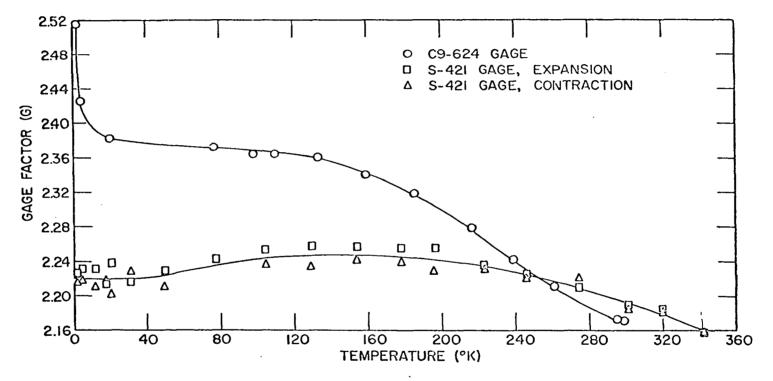



Figure 6. Gage factor as a function of temperature for Budd type C9-624 and type S-421 strain gages. Results are shown for both positive and negative strains applied to the type S-421 gages.

by mounting a gage on a high purity annealed copper disk and measuring the Cu thermal expansion from 300°K to 77°K or 4°K and comparing the data to that of Beenakker and Swenson (3). The results of several runs using different dummy gages showed errors ranging from less than two to about five per cent in the thermal expansion obtained by the strain gage method. The more accurate results were obtained with the S-421 gages. The surface of the quartz disk holding the dummy gage occasionally cracked abruptly during the taking of magnetostriction data necessitating a new quartz disk and gage. A copper thermal expansion run was made on almost every new dummy gage to check its accuracy. The non-magnetostrictive copper sample also provided a convenient method for determining the residual magnetoresistance of the strain gage package. Tests were made of the pseudo-strain introduced by the application of a 30 kOe field and of the rotation of this field about the gage axis in the plane of the gage. The results are shown in Table 1. Essentially no magnetoresistance was found above  $20^{\,\mathrm{O}}\mathrm{K}$  and negligible angle dependence of the apparent strain was observed. The S-421 gages show a slightly smaller over-all magnetoresistance effect.

## D. Helium Dewar

The nitrogen-shielded helium dewar used for these measurements was similar to one used by Strandburg (63), and is shown in Figure 7. No liquid was present in the tail section, heat transfer being accomplished

Table 1. Pseudo-strain resulting from differential magnetoresistance of gages

| S-421 Gages    |                      |     |             | C9-624 Gages |         |             |           |
|----------------|----------------------|-----|-------------|--------------|---------|-------------|-----------|
| emperature!    | $	heta^{\mathbf{a}}$ | H   | Pseudo-     | Temperat     |         | Н           | Pseudo-   |
| 0              |                      |     | strain      | 0            |         |             | strain    |
| о <sub>К</sub> | degrees              | k0e | μ in./in.   | •к           | degrees |             | μ in./in. |
| 79•0           | 0.                   | 0.  | 0.0         | 78.9         | 0.      | 0.          | 0.0       |
|                | 0.                   | 30• | 0.0         |              | 0.      | 30.         | 0.0       |
|                | 60.                  | 30. | 0.0         |              | 30.     | 30.         | -11.      |
|                | 90•                  | 30. | 0.0         |              | 60.     | 30•         | -1.1      |
|                | 90.                  | 0.  | 0.0         |              | 90•     | 30.         | -1.1      |
|                |                      |     |             |              | 180.    | 30.         | -1.1      |
| 48.5           | 0.                   | 0.  | 0.0         |              | 0.      | 30.         | -1.1      |
|                | 0.                   | 30. | 0.0         |              | 0.      | 0.          | -1.1      |
|                | 60.                  | 30. | 0.0         |              |         |             |           |
|                | 90.                  | 30. | 0.0         | 42.7         | 0.      | 0.          | 0.0       |
|                | 90.                  | 0.  | 0.0         |              | 0.      | 30 <b>.</b> | 0.0       |
|                |                      |     |             |              | 30.     | 30.         | 0.0       |
| 19.8           | 90.                  | 0.  | 0.0         |              | 60.     | 30•         | 0.0       |
|                | 90.                  | 30. | 0.0         |              | 90•     | 30·         | 0.0       |
|                | 60.                  | 30. | 0.7         |              | 0.      | 30·         | 0.0       |
|                | 0.                   | 30. | 0.0         |              | 0.      | 0.          | -1.2      |
|                | . 0.                 | 0.  | 0.0         |              |         |             |           |
|                |                      |     |             | 15.8         | 0.      | 0.          | 0.0       |
| 10.5           | 90.                  | 0.  | 0.0         |              | 0.      | 30•         | 8.4       |
|                | 90•                  | 30. | 3.0         | •            | 30•     | 30•         | 8.4       |
|                | 60.                  | 30. | 3.0         |              | 60.     | 30.         | 8.4       |
|                | 0.                   | 30. | <b>3.</b> 0 |              | 90.     | 30.         | 8.1+      |
|                | 0.                   | 0.  | 0.0         |              | 0.      | 0.          | 8.1       |
| 6.3            | 90•                  | 0.  | 0.0         | 4.4          | 0.      | 0.          | 0.0       |
|                | 90•                  | 30. | 11.9        |              | 0.      | 30•         | 33.0      |
|                | 60.                  | 30. | 11.9        |              | 30.     | 30.         | 33.0      |
|                | 0.                   | 30. | 11.9        |              | 60.     | 30.         | 33.0      |
|                | 0.                   | 0.  | 0.0         |              | 90•     | 30•         | 34.2      |
|                |                      |     |             |              | 180.    | 30•         | 34.2      |

Angle of applied field relative to gage axis.

Table 1 (Continued)

| Temperatu<br>OK | ire θ<br>degrees | H<br>k0e | Pseudo-<br>strain<br>μ in./in. | Temperat<br>O<br>K | ture θ | H   | Pseudo-<br>strain<br>in./in. |
|-----------------|------------------|----------|--------------------------------|--------------------|--------|-----|------------------------------|
| 4.6             | 90.              | 0.       | 0.0                            |                    | 0.     | 30. | 34.2                         |
|                 | 90.              | 30.      | 22.3                           |                    | 0.     | 0.  | -1.2                         |
|                 | 60.              | 30.      | 22.3                           |                    |        |     |                              |
|                 | 0.               | 30.      | 22.3                           |                    |        |     |                              |
|                 | 0.               | 0.       | 0.7                            |                    |        |     |                              |
| 3.7             | 90•              | 0.       | 0.0                            |                    |        |     |                              |
|                 | 90.              | 30.      | 27.5                           |                    |        |     |                              |
|                 | 60.              | 30.      | 27.5                           |                    |        |     |                              |
|                 | 0.               | 30.      | 26.8                           |                    |        |     |                              |
|                 | 0.               | 0.       | 0.0                            |                    |        |     |                              |
|                 |                  |          |                                |                    | ·      |     |                              |

by high purity copper shields connected to the reservoirs at liquid He and liquid  $N_2$  temperatures. This construction saves one metal wall in the tail. Quick changes of cryogenic liquids could be accomplished by use of a transfer tube without the need for boiling residual liquid out of the tail.

The outer diameter of the tail was 1.5 inches, with an inner working dimension of 0.936 inches. Over-all diameter of the dewar was 6.5 inches. All joints were silver soldered except those which need be broken to take the dewar apart.

Inner and outer dewar vacuum chambers were separately pumped to allow pre-cooling of the inner dewar from the outer  $N_2$  liquid by admitting



Figure 7. Helium dewar used in this investigation. No liquid was contained in the tail section. Heat transfer was through copper shields at liquid He and  $\rm N_2$  temperatures.

N<sub>2</sub> gas into the vacuum chamber. A N<sub>2</sub> level indicator and automatic fill device were included. Provision was made for pumping on the liquid in the inner dewar. Capacity of the inner dewar was slightly over one liter of liquid. Except when liquid He was used, the vacuum chambers were pumped continuously with an oil diffusion pump. With He the inner vacuum chamber was isolated. No charcoal trap was used.

## E. Temperature Control Apparatus

Isothermal and rotation magnetostriction measurements required control of sample temperature to  $\frac{1}{2}$  O.10K for up to 20 minutes from He bath to above room temperature. Similar control problems have been encountered in other magnetic measurements at this laboratory, and a fairly standard design temperature control system has evolved. This general plan was adopted for the construction of the present apparatus, some of the details of which are shown in Figure 8. The sample support tube was enclosed by a 3/4" tube of which the bottom  $8\frac{1}{4}$  inches were made of electrolytic copper and the remainder were of No. 321 stainless steel. The copper cylinder was thermally isolated except for a pair of phosphor bronze spring contacts located about three inches from the copper-stainless steel junction which made contact with the He bath temperature wall of the dewar. Heat generated by a 124 ohm No. 35 manganin wire heater on the copper cylinder was slowly dissipated to the liquid through the three inch stainless steel "heat leak" path, providing thermal grounding for

## ROTATING SAMPLE HOLDER

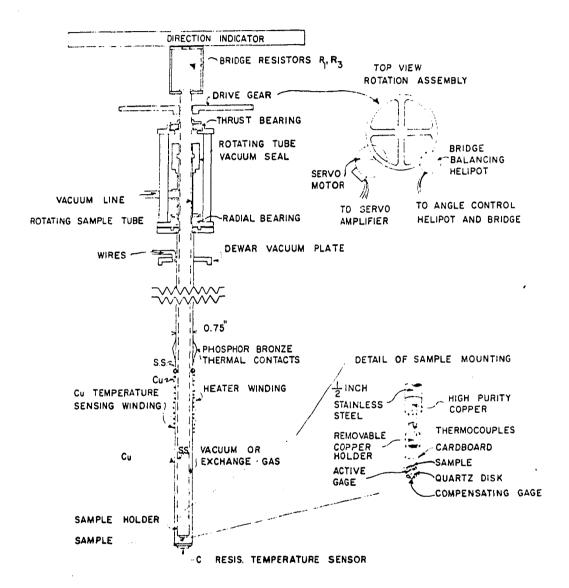



Figure 8. Rotating sample holder used for angle dependent magnetostriction measurements. Outer coaxial tube contains resistance thermometers and heater used for temperature control.

the enclosure. For rapid cool-down, 10-500 microns of He exchange gas were admitted to the vacuum chamber between the dewar bath temperature wall and the copper-stainless steel tube. The sample support tube was centered by teflon spacing washers and thermal contact provided to the surrounding copper can by He exchange gas at a pressure of about five inches of Hg. Thermostatic control of the heater was provided by a 156 ohm No. 40 Cu wire resistance sensing element wound beneath and coaxially with the heater, and by a 57 ohm Allen Bradley carbon resistor fastened to the bottom of the copper can. Both heater and copper resistance elements were wound bifilarly to reduce pickup from the magnetic field and ac interaction. Lead wires to room temperature were of No. 26 manganin. The copper (used above 30°K) and carbon (used below 30°K) resistance thermometers were part of a temperature control bridge shown in Figure 9. Desired operating temperatures were selected using helipots  $R_5$  (for carbon element) or  $R_6$  (for copper elements). The bridge error signal was fed to a modified dc Brown Chopper amplifier shown in Figure 10. The low level dc error signal from the bridge was chopped and amplified to operate a thyratron tube and plate relay to control the heater in either on-off pulses or in a "max-min" mode. The dc heater current was provided and could be varied by the power supply shown in Figure 11. In addition to the automatic control, this supply allowed separate manual operation of the heater and had provision for applying



Figure 9. Bridge used in conjunction with resistance thermometers shown in Figure 8 for temperature control.

# TEMPERATURE CONTROL AMPLIFIER

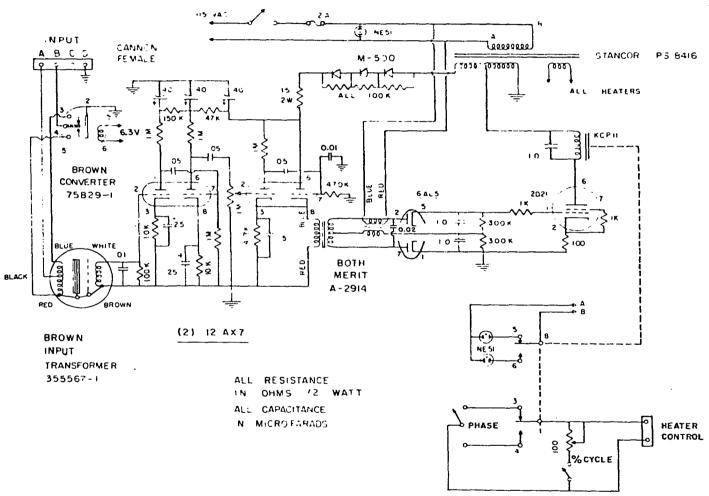



Figure 10. Servo amplifier used to amplify error signal from temperature control bridge shown in Figure 9. Amplifier output controls heater power supply shown in Figure 11.

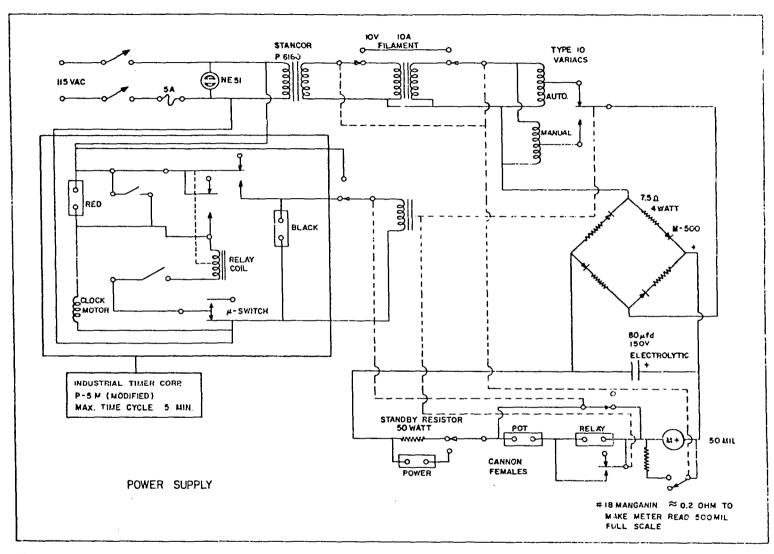
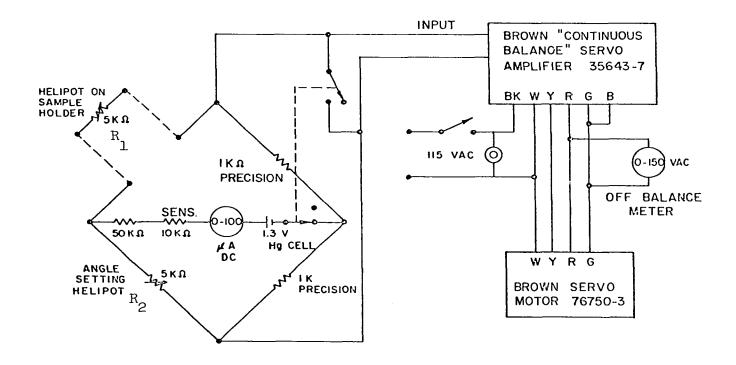




Figure 11. Heater power supply for temperature control apparatus.

a timed heat pulse of up to five minutes duration at a different heater current level. This facilitated rapid change in temperature with return to automatic operation at the completion of the high heat pulse. Using this temperature control apparatus,  $\pm$  .1 degree control could be achieved within about twenty minutes from He temperature to about 200°K. At higher temperatures a somewhat longer period was required for stabilization. The appropriate cryogenic liquid (or solid) was used in the inner dewar depending on the temperature range to be covered.

## F. Rotating Sample Holder Assembly

In order to obtain the anisotropic magnetostriction constants, it was necessary to rotate the magnetic field relative to the crystal axes. This was accomplished in the magnetostriction experiments by making a servo-controlled rotating sample holder. The major mechanical details are shown in Figure 8. The stainless steel sample support tube passed through a pair of ball bearings and a Cenco glass tube connector which provided a good vacuum seal and at the same time permitted relatively free rotation of the tube. The sample assembly was turned by a six inch diameter brass spur gear attached to the upper end of the sample tube and driven by Brown No. 76750-3 20 rpm servo-motor in a 12:1 gear reduction. A ten turn helipot was driven from the same six inch gear in a 12:1 gear ratio. This helipot formed part of the bridge shown in Figure 12. The servo-amplifier which sensed the bridge error signal was



# ROTATING SAMPLE HOLDER ELECTRONICS

Figure 12. Rotating sample holder control bridge and electronics.

a Brown type 356 + 13 - 7. Helipot  $R_2$  was calibrated in angle (degrees) of rotation. When the desired angle of rotation was set on  $R_2$  the bridge was unbalanced, and the servo-amplifier and motor rotated the six inch gear atop the sample holder. This gear was directly linked to helipot  $R_1$  which in turn brought the bridge back into a new balance and stopped the rotation. The assembly easily responded to angle changes as small as 0.3 degrees which corresponded to one division on the angle setting helipot. Electrical leads to the strain gages and thermocouples were brought out through a glass vacuum seal at the top of the sample tube.

## G. Sample Mounting

The lower end of the rotating sample tube contained a removable copper sample mount as shown in the detail of Figure 8. The sample disk carrying the active strain gage was affixed to this mount which also supported the quartz disk and dummy gage. Considerable time was spent in trying methods of fastening the sample disk to the mount which would be flexible and not restrain the dilatation of the sample, and at the same time be resistant to failure from the high torques on the disk produced by the magnetic anisotropy. Several combinations of spacer materials and glues of the cellulose acetate type and also General Electric 7031 varnish were tried with little success at resisting the torques especially at low temperature. It was then decided to try Budd GA-5 epoxy which is designed to allow considerable strain. The sample

was cemented to a cardboard spacer using a thin strip of epoxy under about one-half of the sample. The cardboard was, in turn, fastened to the copper sample mount with GA-5 epoxy. A measurement of the thermal expansion of a copper disk 2 mm thick mounted in this fashion showed that negligible strain errors were induced by the mounting; however, some adverse effects were noted on a sample slightly less than 0.8 mm thick. Rare earth samples were thus generally prepared about 1.5-2 mm in thickness. It was possible to losen the GA-5 epoxy bond to the sample and also the strain gage by soaking for 24-72 hours in DuPont dimethyl formamide, a reducing agent. This allowed the sample and gage to be removed without grinding off the epoxy bond.

# II. Temperature Measurement

Temperature of the sample was determined by thermocouples located in the copper tip of the sample support tube. A copper constantan thermocouple was used above 20°K and a AuFe versus Cu thermocouple below 20°K. The calibration of the AuFe wire was performed by Finnemore et al. (26) of this laboratory. Individual thermocouples prepared from the same roll of thermocouple wire are found to differ by several microvolts, presumably due to nonhomogeneous distributions of impurities in the wires. Due to the "dry-tail" design of the dewar, it was not possible to renormalize the calibration at bath temperature for each run. From a series of tests made over a period of time by immersing the sample tube directly in the cryogenic liquid storage dewars, a set of values was obtained for the emf

of the thermocouples at N<sub>2</sub>, H<sub>2</sub>, and He temperatures. The accepted calibration tables for constantan and for AuFe were divided into regions (five for constantan, four for Au-Fe), and the points in each region were fit to cubic equations by least squares. Some care was taken in picking the region boundaries and the amount of overlap of each region to produce a smooth change in slope of the fitted curve. The deviations in emf of the experimental thermocouple at He, H<sub>2</sub>, N<sub>2</sub> and ice bath (zero deviation) temperatures were fit to a second order polynomial. This error curve was then added algebraically to the calibration data polynomials, and a thermocouple table listing the emf for each tenth degree Kelvin was prepared on the computer.

Thermocouple junctions in the ice bath were made with soft solder and those at the sample were made by spot welding (constantan) and beading (Au-Fe). Thermocouple emf was measured with a Rubicon K2 potentiometer and Honeywell galvanometer. Absolute accuracy of the temperature data is estimated to be  $\pm$  0.5 K and the relative accuracy of the data is about 0.1 K over the range 4 K to 300 K.

#### I. Magnet Equipment

The principal electromagnet used in this study was a fifteen inch Harvey Wells L-158 with an accompanying 22 kilowatt HS-200 solid state power supply. The magnet was equipped with Hyperco-35 tapered pole caps with a final diameter of three inches and a gap of 1.6 inches.

The maximum field attainable was 30.7 kOe. Calibration was done with a Rawson Type 501 0.1% rotating coil gaussmeter checked against a NMR spectrometer in fields up to 26 kOe.

The Harvey Wells magnet was capable of rotation, and this was used for initial line-up of the field; subsequent sample rotations during the experiment were accomplished with the rotating sample holder previously described.

Residual fields in the magnet gap varied from 35 to 75 gauss depending on the method and rate of demagnetization. A small constant current power supply was connected in parallel opposition to the HS-200 supply and used to reverse the magnet current and reduce the field to zero in the gap. This required a reverse current of approximately 0.2 to 0.3 amperes. Null field within ± 0.5 gauss was sensed by a Bell Halleffect element type BH-206 placed in the gap. The output of the element was amplified by a Bell design two-transistor difference amplifier and displayed on a zero-center 25 microampere meter. As a precaution, the amplifier output was also used to drive a thyratron tube and relay circuit which automatically disconnected the small reverse current supply from the magnet when the main supply was turned up.

All magnetostriction measurements on Tb, Er, and Dy were made on the equipment described in this chapter except the magnetostrain versus applied field measurements in Dy which were made on the apparatus built and

described by Alstad (1) utilizing an A.D. Little electromagnet with a maximum field of 25.8 kOe.

#### IV. SPECIMENS FOR MAGNETOSTRICTION MEASUREMENTS

#### A. Specimen Geometry

As mentioned earlier, single crystal specimens are necessary for magnetic studies on the rare earths in order to directly observe the effects of anisotropy. The single crystals were grown and aligned by the methods described in the following section.

Ideally, ellipsoidal samples would be desirable in order to have a uniform internal demagnetizing field. In practice however, this is a difficult geometry to obtain or work with, and as a result, disk shaped samples were used to approximate an oblate ellipsoid. Diameter to thickness ratios ranged from 11.6:1 to 5.4:1 which represent a compromise between ideal ellipsoidal geometry and a sample sufficiently thin to be distorted by the strain gage and mounting.

Table 2 lists the dimensions of the disk shaped samples of Tb, Er, and Dy prepared for this investigation. For Tb and Dy the two sample planes prepared were the basal plane and the plane containing the c axis and the easy basal plane magnetic direction. For Er three samples were prepared. The approximate demagnetizing fields for the specimens, assuming that they were oblate ellipsoids (9), are also given in Table 2. The demagnetizing field was found from  $H_{demag} = 4\pi N \rho \sigma$  where

Table 2. Sizes and approximate demagnetizing fields for disk-shaped magnetostriction specimens

| Code <sup>a</sup> | Diameter (in.) | Thickness (in.) | H<br>demag<br>(gauss) |  |  |
|-------------------|----------------|-----------------|-----------------------|--|--|
| Dy a-b            | 0.245          | 0•035           | 10•2σ                 |  |  |
| Dy a-c            | 0.350          | 0.030           | 6 <b>.</b> 50         |  |  |
| Er a-b            | 0.365          | 0.037           | 8.10                  |  |  |
| Er a-c            | 0.383          | 0.071           | 13.3σ                 |  |  |
| Er b-c            | 0.367          | 0.065           | 12.9σ                 |  |  |
| Tb a-b            | 0 <b>.</b> 368 | 0.088           | 14•9σ                 |  |  |
| Tb b-c            | 0.370          | 0.070           | 12.40                 |  |  |

Letters following element name indicate axes in the plane of disk--a (1120), b(1010), c(0001).

moment per gram. The maximum demagnetizing field for these specimens is about six kilogauss.

## B. Crystal Preparation

The rare earth metal used in this investigation was produced at the Ames Laboratory by use of an ion exchange process for the separation of the rare earth compounds (62) and a reduction process for the preparation of the pure metal from the fluoride. The single crystal specimens were grown from arc-melted buttons of pure metal by a thermal-strain-anneal method described by Nigh (53, 54). The high strains induced by the

arc-melting process were removed by annealing the metal button in a temperature gradient of about 25°C/cm in a series of 50°C temperature steps. These were started about 200°K below the melting or crystal structure transition temperature, and ended about 15-50 degrees below the above temperatures. The crystal was annealed 8-10 hours at each step. A post anneal of 8-10 hours in a constant temperature zone at the highest temperature was followed by a slow cool-down. In the furnace the metal button was not in contact with a crucible, but was supported by a tungsten bail to minimize contamination. Grain boundaries were clearly visible in the annealed crystals due to thermal etching. Crystals produced by this method did not have predictable or uniform size and orientation, thus it was often necessary to re-arc-melt the button or obtain new material and repeat the process. A button was not generally arc-melted more than three times to minimize impurity contamination -principally oxygen. In general, if crystal growth was successful, the resulting crystals were of good quality and were of the same orientation throughout the thickness of the buttons. Laue X-ray pictures taken at various points on the face gave uniformly good single crystal patterns with virtually no twinning from surface platelets or twisting of the axis direction. One exception occurred in the first basal plane sample of Tb which was prepared. This specimen apparently contained a small inclusion of a different crystal orientation which was not visible and

did not show on X-ray pictures. This defect had the effect of increasing the magnetic hardness of the dominant b-axis direction in the sample. This phenomenon became more pronounced with repeated thermal cycling. All data taken with this crystal were marked and are not included in this dissertation. A new basal plane Tb sample was prepared and is the one reported on here.

### C. Specimen Preparation and Alignment

Appropriately oriented crystals were selected from the button and aligned by use of Laue back reflection X-ray pictures (30). The disk shaped single crystal specimens were cut from the button by use of a Servomet electro-spark cutter which produced a relatively strain free cut. In this process the X-ray goniometer was mounted on the spark cutter eliminating the errors inherent in demounting the crystals.

After cutting, the crystals were etched in a solution of 60% nitric and 40% acetic acid and re-X-rayed. Final alignment, if needed, was accomplished by light grinding using fine carborundum paper. The prepared crystals were oriented by X-ray and scribed in the principal axis directions using a height gage and scribing accessory.

Strain gages were aligned with the crystal axis scribe marks and mounted under a microscope. Alignment of the gage axis with the magnetic field in basal plane samples was accomplished by exploiting the symmetry of the magnetostrain effect as the field was rotated about the easy

magnetic axis. For specimens with the hard c-axis direction in the plane, a visual alignment process was used employing two plumb bobs and an alignment bar fixed to the sample holder. For the basal plane samples total alignment error between crystal axis, gage and magnetic field directions is estimated to be  $\pm$  1°. Due to the less precise visual alignment, the error expected with the c-axis samples is about  $\pm$  2°. The larger field alignment errors in the Tb and Dy c-axis samples do not affect the data significantly as the magnetization is strongly constrained to the basal plane direction by the magnetic anisotropy. The angle error thus changes only the applied field component and not the magnitization.

### D. Specimen Purity

Samples used in this work were obtained from the best metal available at the Ames Laboratory in 1963-4. Residual pieces of the metal immediately surrounding the crystal disks were analyzed for impurities at the Laboratory. A semi-quantitative spectrographic analysis was performed as well as a quantitative vacuum fusion analysis for dissolved gas impurities. The results of the analyses are presented in Table 3 and indicate an over-all purity of the specimens of better than 99.8%, except for the Tb which contained Ta amounting to 0.2-0.4% and 02 amounting to 0.1%. No impurity analysis was made on the Er basal plane sample.

Table 3. Analysis of impurities in rare earth specimens. Impurities given in percent

| Impurity | Spectrographic Analysis Sample Code |                        |          |        |        | Dissolve            | Vacuum Fusion Analysis<br>Dissolved Sample Code |         |        |          |          |       |       |       |
|----------|-------------------------------------|------------------------|----------|--------|--------|---------------------|-------------------------------------------------|---------|--------|----------|----------|-------|-------|-------|
| Impairoy | Dy                                  |                        | Er       |        | Tb     | )                   | Gas                                             | _       | Dy     |          | Er       |       | Tb    |       |
|          | a-b                                 | a-c                    | a-c      | b-c    | a-b    | b- <b>c</b>         |                                                 | a       | .−b    | a-c      | a-c      | b-c   | a-b   | b-c   |
| Al       | ~.01                                | ~.01                   | <.0035   | <.0035 | •006   | •0035               | 0                                               | •       | 0340   | •0326    | •0545    | •0420 | .1215 | •1040 |
| Ca       | <.003                               | <.003                  | ~.0015   | <.0015 | •006   | •003                | 0<br>H2                                         | •       | 0024   | •0022    | •0029    | •0033 | .0012 | •0004 |
| Co       | -                                   | -                      | -        | -      | -      | -                   | $N_2$                                           | •       | 0025   | •0022    | •0011    | •0052 | •0218 | .0100 |
| Cr       | <.003                               | <.003                  | .0080    | •0060  | <.006  | <.006               | _                                               |         |        |          |          |       |       |       |
| Cu       | X                                   | X                      | -        | -      |        | <.002               |                                                 |         |        |          |          |       |       |       |
| Fe       | ~.02                                | ~.02                   | •01      | •003   | •006   | •0115               |                                                 |         |        |          |          |       |       |       |
| Mg       | <.007                               | <.007                  | •002     | <.001  | <.0016 | ó <b>&lt;.</b> 0016 | ,<br>)                                          |         |        |          |          |       |       |       |
| Mn       | -                                   | -                      | -        | -      | -      | _                   |                                                 |         |        |          |          |       |       |       |
| Mo       | -                                   | _                      | TX       | TX     | -      | -                   |                                                 |         |        |          |          |       |       |       |
| Ni       | ~.01                                | ~.01                   | •02      | •004   | •0055  | 5 <.0020            | )                                               |         |        |          |          |       |       |       |
| Pb       | -                                   | -                      | -        | _      | -      | -                   |                                                 |         |        |          |          |       |       |       |
| Si       | <.002                               | <.002                  | •03      | •005   | •004   | •004                |                                                 |         |        |          |          |       |       |       |
| Ta       | ~.04                                | ~.04                   | <.03     | <.03   | ~.23   | ~.42                | •                                               | S       | SYMBOI | MEANI    | 1G       |       |       |       |
| Ti       | -                                   | _                      | _        | -      | -      | -                   |                                                 |         |        |          |          |       |       |       |
| v        | -                                   | _                      | -        | -      | _      | -                   |                                                 | _       | Elem   | nent not | t detect | ted   |       |       |
| W        | TX                                  | $\mathbf{T}\mathbf{X}$ | <.03     | <.03   | -      | -                   |                                                 | <       | Less   | s than   |          |       |       |       |
| Y.       | <.001                               | <.001                  | <.001    | <.001  | ~.05   | <.01                |                                                 | X       | Inte   | erferenc | ce       |       |       |       |
| Dy,Er    | <.005                               | <.005                  | <.01     | <.01   | <.01   | <.01                |                                                 | ${f T}$ | Trac   | e        |          |       |       |       |
| Eu       | -                                   | -                      | _        | _      | -      | _                   |                                                 |         |        |          |          |       |       |       |
| Gđ       | <.02                                | <.02                   | -        | _      | <.02   | ~.1                 |                                                 |         |        |          |          |       |       |       |
| Но       | ~.1                                 | ~.1                    | <.005    | <.005  | -      | _                   |                                                 |         |        |          |          |       |       |       |
| Nd       | -                                   | -                      | <u>-</u> | _      | -      | -                   |                                                 |         |        |          |          |       |       |       |
| Pr       | _ ,                                 | -                      | _        | -      | _      | _                   |                                                 |         |        |          |          |       |       |       |
| $^{-}$   | <.1                                 | <.1                    | -        | -      |        |                     |                                                 |         |        |          |          |       |       |       |
| Tm       | -                                   | _                      | <.001    | <.001  | -      | _                   |                                                 |         |        |          |          |       |       |       |
| Yb       | х                                   | х                      | <.005    | <.005  | _      | _                   |                                                 |         |        |          |          |       |       |       |

#### V. MAGNETOSTRICTION OF A FERROMAGNET

#### A. Phenomenological Theory

The magnetostriction of a material arises as a result of an interaction between the total magnetic energy and the elastic energy. The observed distortions will occur if their result is a lowering of the total energy of the crystal.

The total magnetic energy of a material consists of three contributions—the exchange energy, the anisotropy energy, and the demagnetizing energy. The fundamental postulate of magnetostriction is that at least one of these must be a function of the state of strain of the crystal (i.e. of the interatomic distances). If there is no strain dependent magnetic energy, there will be no magnetostriction.

The strain dependence of the demagnetizing energy, known as the form effect, arises from the variation of the demagnetizing factor with changes in the geometry of the specimen. Normally, the contribution from this source is relatively small and is neglected (64).

The exchange energy (or indirect exchange energy) is a function only of the relative orientation and magnitude of the magnetic electron spins. Since this is generally not altered by application or rotation of a magnetic field, the strain dependence of the exchange energy is largely neglected in magnetostriction calculations (an important

exception to this statement occurs in the rare earths as is discussed later).

The remaining magnetic energy, the anisotropy energy, is thus the key contribution in most magnetostriction studies. To produce a magnetostriction, there must be an anisotropy energy,  $\mathbf{E}_{\mathbf{K}}$ , and it must be dependent on the strains,  $\mathbf{S}_{\mathbf{i}\,\mathbf{j}}$ , viz.:

$$E_{K} = E_{K}^{o} + \frac{\partial E_{K}}{\partial S_{i,j}} S_{i,j} + \frac{1}{2} \frac{\partial^{2} E_{K}}{\partial S_{i,j} \partial S_{kl}} S_{i,j} S_{kl}$$
(8)

in phenomenological form. The first term is the undistorted anisotropy energy, the second a coupling term between the anisotropy and elastic energies (normally referred to as the magneto-elastic coupling energy), and the third term, known as the morphic energy, represents contribution to the total energy arising from the distortion of the crystal symmetry. The morphic term is again small and normally neglected.

The formal calculation of the expression for the magnetostriction of a hexagonal ferromagnet was done originally by Bitter (8) with independent calculations and later refinements by Mason (47, 48), Birss (7), Lee (43), and Callen and Callen (14, 15). The general procedure most have followed involves writing a magneto-elastic Hamiltonian consisting of the following terms

$$H = H_{el} + H_{k}^{o} + H_{ME} + H_{R}$$
 (9)

where  $H_{el}$  is the elastic energy,  $H_{k}^{0}$  is the undistorted anisotropy

energy,  $H_{\overline{ME}}$  is the magneto-elastic coupling energy, and  $H_{\overline{R}}$  is the morphic energy, if included.

The lowest order anisotropy energy expression which is consistent with hexagonal symmetry has the form  $k_2 \sin^2\theta + k_4 \sin^4\theta + \sin^6\theta$  ( $k_6 + k_6 \cos 6 \phi$ ). The coefficients  $k_2$ ,  $k_4$ , ( $k_6$  and  $k_6$ ) are made up respectively of the components of the second, fourth, and sixth rank anisotropy energy tensors  $K_{mn}$ ,  $K_{mnop}$ , and  $K_{mnopqr}$ . The angle  $\theta$  is measured from the c axis toward the basal plane, and  $\phi$  is an angle in the basal plane measured from the easy magnetic axis. Similarly, the equivalent magneto-elastic coupling coefficients are made up of fourth and sixth rank tensor components,  $M_{ijmn}$  and  $M_{ijklmn}$ . Odd rank tensors are absent since the lattice possesses a center of symmetry. Thus, up to sixth rank contributions, the total magneto-elastic energy may be written:

$$H = C_{ijkl} S_{ij} S_{kl} + K_{mn} \alpha \alpha + K_{mnop} \alpha \alpha \alpha \alpha \alpha$$

$$+ K_{mnopqr} \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha + M_{ijmn} \alpha \alpha S_{mnopqr} S$$

where  $C_{ijkl}$  are the elastic constants,  $S_{ij}$  are the strains,  $\alpha$  are direction cosines of the magnetization, and  $R_{ijklno}$  are the morphic energy terms. The program followed by most authors is to evaluate the tensor components of Equation 10 in the symmetry group of the hexagonal lattice, 6m2, 6mm, 62, and 6/mmm. This result is then minimized with

respect to the strains and transformed back to Cartesian coordinates to obtain the equilibrium magnetostriction lattice strains. A slightly different approach was followed by Mason (48) which involves using the elastic enthalpy  $H_1 = U - T_{ij} S_{ij}$  as the fundamental quantity. This is a function of the stresses  $T_{ij}$ , intensity of magnetization and the entropy. After expansion of the tensor form, the equilibrium strains are found from  $S_{ij} = -\frac{\partial H_1}{\partial T_{ij}}$ 

## B. Callen Theory of Magnetostriction

Callen and Callen (14, 15) have developed a very elegant expression for the magneto-elastic interaction energy using group theory. They considered two types of interactions namely, interactions of a single ion (e.g. a 4f in the rare earths) with its surrounding charge environment and interactions between pairs of ions. The single ion terms describe the effects of the anisotropy energy while the two ion terms are necessary to evaluate the exchange energy and dipole-dipole energy. As basis functions they used polynomials of the spin components of an ion "f" for the one ion terms, and polynomials in the product spaces of ions "f and g" for the two ion terms. These polynomials designated  $K_{\bf i}^{\mu \ell}(S_{\bf f})$  and  $K_{\bf i}^{\mu \ell}(S_{\bf f},S_{\bf g})$  transform as the basis functions of the  $\mu$ 'th irreducible representation of the symmetry group (6m2, 6mm, 62,6/mmm). The  $\ell$  labels the order of the polynomial, and describes the magnetic symmetry represented (i.e.  $\ell$  = 0 corresponds to spherical symmetry,  $\ell$  = 2 to

cylindrical symmetry, and  $\ell=4$  and  $\ell=6$  to hexagonal symmetry). The one interaction Hamiltonian containing one ion and two ion magneto-elastic coupling coefficients  $B_j^{\mu\ell}$  and  $D_j^{\mu\ell}$  and irreducible strains  $\epsilon_i^{\mu j}$  has the form

$$H_{\text{me}} = -\sum_{\mu,j} \sum_{k} B_{j}^{\mu k} \sum_{i} \epsilon_{i}^{\mu j} \sum_{k} K_{i}^{\mu k} (S_{f}) + \sum_{\mu,j} \sum_{k} \epsilon_{i}^{\mu j} \sum_{f,g} D_{j}^{\mu k} (f,g) K_{i}^{\mu k} (S_{f},S_{g}). \quad (11)$$

They have expanded this Hamiltonian up to order  $\ell = 4$ , calculated the free energy by a perturbation method, minimized the result with respect to the hexagonal strains, and transformed the equilibrium strains back to Cartesian symmetry.

The linear dilatation  $\triangle l/l$  in a direction characterized by direction cosines  $\beta_X \beta_Z \beta_Z$  may be derived from the equilibrium tensor strains  $S_{ij}$  by the following method: Consider lattice coordinates  $X_i$  distorted from their equilibrium values  $X_{io}$  by the strains  $S_{ij}$ . Then:  $X_i = X_{io} + S_{ij} X_{jo}$  (assuming summation over repeated indicies). The direction cosine  $\beta_i = X_{io}/r_o$  where  $r_o$  is the radial distance of the lattice point; thus:

$$X_{i} = r_{o} (\beta_{i} + S_{ij}\beta_{j})$$
squaring and adding
$$r^{2} = r_{o}^{2} (1 + 2S_{ij}\beta_{i}\beta_{j})$$
or
$$r^{2} - r_{o}^{2} \approx 2r_{o} (r - r_{o}) = 2r_{o}^{2} S_{ij}\beta_{i}\beta_{j}$$
therefore the linear strain
$$\frac{\Delta \ell}{\ell} = \frac{r - r_{o}}{r_{o}} = S_{ij}\beta_{i}\beta_{j} . \tag{12}$$

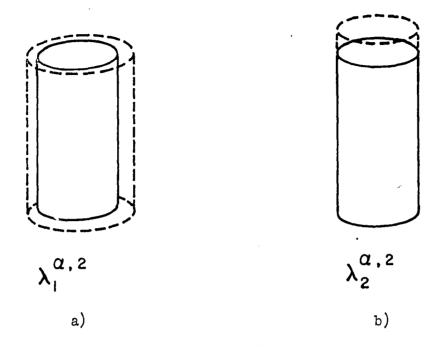
From the equilibrium strains and the above relation, the following expression was obtained by the Callens for the magnetostriction of a hexagonal ferromagnet correct to fourth order in the magnetization direction cosines  $\alpha$ ; (Complete specification of hexagonal magnetostriction requires terms to  $\ell = 6$  which results in a 19 constant expression.)

$$\frac{\Delta \ell}{\ell} = \left[\lambda_{1}^{\alpha,0} + \lambda_{1}^{\alpha,2}(\alpha_{z}^{2} - \frac{1}{3}) + \lambda_{1}^{\alpha,4}(\alpha_{z}^{4} - 6(\alpha_{z}^{2} - \frac{1}{3}) - \frac{1}{5})\right] (\beta_{x}^{2} + \beta_{y}^{2}) 
+ \left[\lambda_{2}^{\alpha,0} + \lambda_{2}^{\alpha,2}(\alpha_{z}^{2} - \frac{1}{3}) + \lambda_{2}^{\alpha,4}(\alpha_{z}^{4} - 6(\alpha_{z}^{2} - \frac{1}{3}) - \frac{1}{5})\right] \beta_{z}^{2} 
+ \frac{1}{2} \left[\lambda^{\gamma,2} + \lambda_{1}^{\gamma,4}(\alpha_{z}^{2} - \frac{1}{7})\right] \left[(\alpha_{x}\beta_{x} - \alpha_{y}\beta_{y})^{2} - (\alpha_{x}\beta_{y} - \alpha_{y}\beta_{x})^{2}\right] 
+ \lambda^{\gamma,4} \left[\frac{1}{2}(\beta_{x}^{2} - \beta_{y}^{2})(\alpha_{x}^{4} - 6\alpha_{x}^{2}\alpha_{y}^{2} + \alpha_{y}^{4}) + 4\beta_{x}\beta_{y}\alpha_{x}\alpha_{y}(\alpha_{y}^{2} - \alpha_{z}^{2})\right] 
+ 2 \left[\lambda^{\epsilon,2} + \lambda^{\epsilon,4}(\alpha_{z}^{2} - \frac{5}{7})\right] \left[\alpha_{x}\beta_{x} + \alpha_{y}\beta_{y}\right] \alpha_{z}\beta_{z} \tag{13}$$

The coordinate system used here is orthogonal with the x axis along the a(1120) crystal axis, the y axis along the b(1010) direction, and the z axis along the c(0001) crystal axis. This expression contains eleven magnetostriction constants  $\lambda$ , which are functions of the elastic constants  $c_{ij}$ , the one and two magneto-elastic coupling coefficients (except  $\lambda_1^{\alpha,0}$  and  $\lambda_2^{\alpha,0}$  which describe the exchange energy and thus contain only two ion terms) and expectation values of the spin operators.

<sup>&</sup>lt;sup>1</sup>Callen, E. R., U.S. Naval Ordnance Laboratory, Silver Spring, Maryland. The fourth order magnetostriction terms. Private Communication. 1965.

These functions are given in reference 17 and only the form of  $\lambda^{\gamma,2}$  will be given here as an example:


$$\lambda^{\gamma,2} = -\frac{B^{\alpha,2}}{c_{11}^{-c}} < (s_f^{\xi})^2 - \frac{1}{3} s(s+1) >$$

$$+ \sum_{f,g} D^{\alpha,2} (f,g) < s_f^{\xi} s_g^{\xi} - \frac{1}{3} s_f \cdot s_g >$$
(14)

The superscripts 0,2,4 denote 1, the order of the spin symmetry polynomials K appearing in the Hamiltonian and correspond to the order of the magnetization direction cosines in the coefficient of the magnetostriction constant. The superscripts  $\alpha$ ,  $\gamma$ , and  $\epsilon$  denote the strain representation as shown in Figure 13. The  $\alpha$  modes are a symmetry preserving stretching of a direction or directions (e.g. in cylindrical symmetry ( $\ell = 2$ ),  $\ell = 2$ ), and the basal plane diameter,  $\ell = 2$ 0 expands the c axis). The  $\ell = 2$ 1 modes correspond to a distortion of the basal plane from hexagonal to orthorhombic symmetry (from a circle to an ellipse in the second order  $\ell = 2$ 1, and the  $\ell = 2$ 2 modes as shearing of the planes perpendicular to the c axis.

#### C. Mason's Expression for the Magnetostriction

At the start of this investigation, the above expression derived by Callen and Callen was not available and the interpretation used was that due to Mason (47). His expression for the magnetostriction of a hexagonal ferromagnet derived from the elastic enthalpy is:



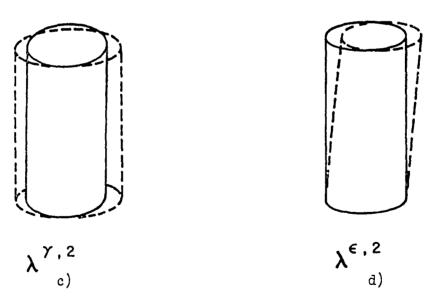



Figure 13. Magnetostrictive strain modes for a hexagonal crystal in the second order approximation. Modes (a) and (b) are symmetry preserving dilatations; (c) and (d) are distortion and shearing modes.

$$\frac{\Delta \ell}{\ell} = A \left[ 2\alpha_{X}\alpha_{y}\beta_{x} + (\alpha_{X}^{2} - \alpha_{y}^{2}) \beta_{y} \right]^{2} + B \alpha_{z}^{2} \left[ (\alpha_{X}\beta_{x} + \alpha_{y}\beta_{y})^{2} \right]$$

$$- (\alpha_{X}\beta_{y} - \alpha_{y}\beta_{x})^{2} \right] + C \left[ (\alpha_{X}\beta_{x} + \alpha_{y}\beta_{y})^{2} - (\alpha_{X}\beta_{y} - \alpha_{y}\beta_{x})^{2} \right]$$

$$+ D (1 - \alpha_{z}^{2})(1 - \beta_{z}^{2}) + E \alpha_{z}^{2} \beta_{z}^{2} (1 - \alpha_{z}^{2}) + F \alpha_{z}^{2} (1 - \alpha_{z}^{2})$$

$$+ G \beta_{z}^{2} (1 - \alpha_{z}^{2}) + H \alpha_{z}\beta_{z} (\alpha_{z}\beta_{x} + \alpha_{y}\beta_{y}) + I \alpha_{z}^{2}\beta_{z}$$

$$(\alpha_{X}\beta_{x} + \alpha_{y}\beta_{y}) + J\alpha_{z}^{2} (1 - \beta_{z}^{2}) + K \alpha_{z}^{2} \beta_{z}^{2}$$
(15)

This equation was originally derived for Co which has the z axis as the direction of spontaneous magnetization. Since Tb and Dy have an easy direction in the basal plane, it is necessary to retain the J and K terms which were dropped by Mason in his expression for Co. The eleven magnetostriction constants, A through K, are expressible in terms of the components of the magnetostriction energy tensors and the saturation magnetization (see Mason (48)). Mason's expression describes the magnetostriction to the same degree of symmetry as the Callen equation; however, the physical representation of the strain modes is not as apparent in Mason's expression since it is not derived directly by group theory.

D. Approximation Valid for Dy and Tb Below the Neel Temperature

In the antiferromagnetic and ferromagnetic temperature range, Dy

and Tb possess quite large axial magnetic anisotropy energies constraining
the magnetization to the basal plane. Flippen (27) has shown that fields

considerably in excess of normal laboratory fields would be necessary to produce significant rotation of the moment out of the basal plane (estimated to be of order  $10^6$  gauss). It is then not unrealistic to assume  $\alpha_z = 0$  in the above magnetostriction expression. This assumption reduces Mason's eleven constant equation to one containing only four constants:

$$\frac{\Delta \ell}{\ell} \Big|_{\alpha_{z}=0} = A \Big[ 2\alpha_{x} \alpha_{y} \beta_{x} + (\alpha_{x}^{2} - \beta_{y}^{2}) \beta_{y} \Big]^{2} 
+ C \Big[ (\alpha_{x} \beta_{x} + \alpha_{y} \beta_{y})^{2} - (\alpha_{x} \beta_{y} - \alpha_{y} \beta_{x})^{2} \Big] 
+ D \Big( \beta_{x}^{2} + \beta_{y}^{2} \Big) + G \beta_{z}^{2}$$
(16)

An immediate comparison can be made between this simplified equation and Callen's form which for  $\alpha_z=0$  becomes:

$$\frac{\Delta \ell}{\ell} \Big|_{\alpha_{z} = 0} = \left[ \lambda_{1}^{\alpha,0} - \frac{1}{3} \lambda_{1}^{\alpha,2} + \frac{9}{5} \lambda_{1}^{\alpha,4} \right] \left( \beta_{x}^{2} + \beta_{y}^{2} \right) \\
+ \left[ \lambda_{2}^{\alpha,0} - \frac{1}{3} \lambda_{2}^{\alpha,2} + \frac{9}{5} \lambda_{2}^{\alpha,4} \right] \beta_{z}^{2} \\
+ \frac{1}{2} \left[ \lambda_{2}^{\gamma,2} - \frac{1}{7} \lambda_{1}^{\gamma,4} \right] \left[ (\alpha_{x} \beta_{x} + \alpha_{y} \beta_{y})^{2} - (\alpha_{x} \beta_{y} - \alpha_{y} \beta_{x})^{2} \right] \\
+ \lambda_{2}^{\gamma,4} \left[ \frac{1}{2} \left( \beta_{x}^{2} - \beta_{y}^{2} \right) (\alpha_{x}^{4} - 6\alpha_{x}^{2} \alpha_{y}^{2} + \alpha_{y}^{4} \right) \\
+ 4\beta_{x} \beta_{y} \alpha_{x} \alpha_{y} \left( \alpha_{y}^{2} - \alpha_{x}^{2} \right) \right] \tag{17}$$

It is thus apparent that the inseparable combinations in the first two brackets may be identified directly with D and G in Mason's formulation.

The constants in the third bracket are equivalent to C. (The fourth

order correction  $\frac{1}{7}\lambda_1^{\gamma,4}$  is apparently small and will be neglected as shown later.) The form of the  $\alpha,\beta$  polynomial multiplying  $\lambda_2^{\gamma,4}$  is not of the same form as that multiplying A in Mason's expression, although it can be obtained by antisymmetrizing Mason's polynomial. The result of this is merely a shift in the zero or reference level for the measurement of A. The relations between the two sets of constants are then:

$$A = -\lambda_{2}^{\gamma,4} + A_{\text{Sym}}.$$

$$C = \frac{1}{2} \left(\lambda^{\gamma,2} - \frac{1}{7}\lambda_{1}^{\gamma,4}\right)$$

$$D = \lambda_{1}^{\alpha,0} - \frac{1}{3}\lambda_{1}^{\alpha,2} + \frac{9}{5}\lambda_{1}^{\alpha,4}$$

$$G = \lambda_{2}^{\alpha,0} - \frac{1}{3}\lambda_{2}^{\alpha,2} + \frac{9}{5}\lambda_{2}^{\alpha,4}.$$
(18)

Equation 16 was chosen as the working expression for this investigation. The constants A, C, D, G appearing in the expression have been determined for Dy and Tb by methods discussed in a later section. The A is the only constant characteristic of hexagonal symmetry, the others correspond to cylindrical symmetry. D and G represent, respectively, an isotropic dilatation of the basal plane and a dilatation of the c-axis direction. C corresponds to a distortion of an assumed circular basal plane into an ellipse and A corresponds to a higher order distortion of hexagonal symmetry into orthorhombic symmetry. Note that the shearing strains of Equation 13 cannot be measured unless the magnetic moment

can be aligned out of the basal plane toward the c axis.

Equation 16 cannot be applied to magnetostriction in Er due to the high magnetic anisotropy as is discussed later.

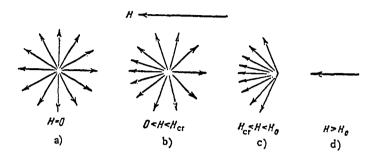
#### VI. EXCHANGE MAGNETOSTRICTION IN A HELICAL ANTIFERROMAGNET

An examination of Equation 16 for the magnetostriction of a hexagonal ferromagnet indicates that no c-axis dilatation is expected from changes in the basal plane magnetization. This is seen by setting  $\beta_2 = 1$ ,  $\beta_1 = \beta_2 = 0$  in which case  $\frac{\Delta \ell}{\ell} = G$ . No dependence on the magnetic moment direction remains, thus the magnetostriction between any two measurement states will be zero. This is confirmed (except for small domain induced strains) in the experimental results on Dy and Tb in a later section.

In a helical antiferromagnet the situation is quite different and the field induced and spontaneous transitions to ferromagnetism are both accompanied by large c-axis magnetostriction. The origin of the anomalous behavior lies in the strain dependence of the exchange energy. The exchange energy is a function of the magnitude and angle between the spins. In a normal ferromagnet or antiferromagnet this angle remains fixed at zero or 180°. The process of magnetization, being one of domain rotation and expansion, does not alter the exchange integral (an exception occurs near the Curie temperature where the field induced enhancement of the saturation magnetization may be appreciable). Hence the strain dependence of the exchange energy is not manifested in an isothermal measurement on such a material.

In a helical antiferromagnet the situation is different, as the angle between the spins in neighboring hexagonal layers can be changed

drastically by the application of a field, as shown for progressively higher fields in Figure 14. H<sub>k</sub> is the critical field required to perturb the helical structure and H<sub>0</sub> is the field required for complete ferromagnetic alignment. The effects of the strain dependence of the exchange energy thus becomes apparent in a helical antiferromagnet.


E. W. Lee (42) has calculated the expected results using the work of Yoshimori (67), Enz (25), Herpin et al. (33), and Nagamiya et al. (52) on the behavior of a helical spin structure in the presence of an applied field.

A brief review of Lee's results follow. The derivation applies only to high temperatures where the basal plane anisotropy energy is sufficiently small that the helical state is not distorted in zero applied field (e.g. Dy above  $130^{\circ}$ K). If the two exchange integrals  $J_1$ ,  $J_2$  appearing in Equation 3 are assumed to be strain dependent, the sum of the elastic and exchange energy may be represented as

$$E_{m} = \frac{1}{2} \frac{(c-c_{o})^{2}}{c_{o}^{2}} E - M_{S}^{2} \left[ J_{1}(0) + \frac{dJ_{1}}{dc} (c-c_{o}) \right] \cos \theta$$

$$- M_{S}^{2} \left[ J_{2}(0) + \frac{dJ_{2}}{dc} (c-c_{o}) \right] \cos 2\theta$$
(19)

where  $c_0$  is the equilibrium interlayer separation for  $\theta=\pi/2$ . E is a combination of elastic constants appropriate to the c-axis direction, J(0) is the value of J for  $c=c_0$  and M is the saturation magnetization. Minimizing this with respect to the c-axis dilatation,  $\partial E/\partial c=0$  gives



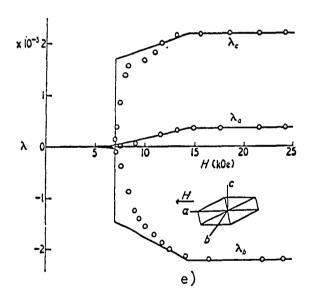



Figure 14. Field induced magnetic transitions in Dy.
a)-d) Helical magnetic states of Dy under the influence of progressively higher external fields.

e) Experimental data and theoretical fit for the magnetostriction of Dy at 144°K.

$$\frac{\Delta \ell}{\ell} \Big|_{c} = \frac{cM^{2}}{E} \left( \frac{dJ_{1}}{dc} \cos \theta + \frac{dJ_{2}}{dc} \cos 2\theta \right)$$
 (20)

In the absence of an external field,  $\theta = \alpha_0$ , the equilibrium turn angle. In the presence of a filed  $\theta$  varies from layer to layer due to the perturbed helical structure.

The strain can be calculated by introducing an appropriate average of the turn angles over the layers of the crystal.

$$\frac{\Delta \ell}{\ell} \Big|_{c} = \frac{cM_{s}^{2}}{E} \left[ \frac{dJ_{1}}{dc} < \cos \left( \theta_{n} - \theta_{n-1} \right) >_{av} + \frac{dJ_{2}}{dc} < \cos \left( \theta_{n} - \theta_{n-2} \right) > \right]$$
(21)

Enz (25) and others have shown that the turn angles in the presence of a field may be found by solving the variational problem

$$\delta \int E_{\text{ex}} - M_{\text{S}} H \cos \theta(z) dz = 0$$
 (22)

where the exchange energy of the n'th layer is

$$E_{\text{ex}} = -M_s^2 \left[ J_1 \cos \left( \theta_n - \theta_{n-1} \right) + J_2 \cos \left( \theta_n - \theta_{n-2} \right) \right].$$
 (23)

The solution for all field strengths has not been found, but low and high field limits are available. In low fields H < H critical the helix is only slightly perturbed and the turn angle of the nth layer is represented by  $\theta_n = n \alpha_0 + \epsilon_n + \theta^i$  where (24)

$$\epsilon_n = A_1 \sin (n\alpha_0 + \theta^i) + A_2 \sin 2 (n\alpha_0 + \theta^i)$$

and  $A_1$  and  $A_2$  are functions of  $J_1$ ,  $J_2$ , H,  $M_s$ , and  $\alpha_o$  (42, 52). The angle  $\theta$ ' in the above equation is not significant and is dropped by Lee.

The low field average of  $\theta_n$  is then found to be  $\cos \theta_n = -\frac{1}{2} A_1$  and the average over-all layers of the crystal is

$$< \cos (\theta_{n} - \theta_{n-1}) >_{av} = \cos \alpha_{o} \left[1 - \frac{1}{2} A_{1}^{2} (1 - \cos \alpha_{o})\right]$$

$$< \cos (\theta_{n} - \theta_{n-2}) >_{av} = \cos 2\alpha_{o} \left[1 - \frac{1}{2} A_{1}^{2} (1 - \cos 2\alpha_{o})\right]$$

$$(25)$$

 $A_1$  is proportional to  $H_{appl}$  and is thus zero in the initial state.

The resulting low field c-axis strain found from substituting the above averages in Equation 21 and subtracting the initial strain is:

$$\frac{\Delta \ell}{\ell} | \begin{array}{c} \text{low} \\ \text{field} = -\frac{1}{2} \lambda_{\text{cs}} A_{1}^{2} \\ c_{\text{ex}} \end{array} \right.$$
 (26)

where

$$\lambda_{cs} = \frac{cM^2}{2E} \left[ \frac{dJ_1}{dc} \cos \alpha_0 \left( 1 - \cos \alpha_0 \right) + \frac{dJ_2}{dc} \cos 2\alpha_0 \left( 1 - \cos 2\alpha_0 \right) \right].$$

This low field magnetostriction was found to be quite small in Dy. However, at higher fields, a discontinuity in the magnetization of the helical structure occurs at a critical field  $\mathbf{H}_k$  given by

$$H_{k} = -2M_{s}J_{2} (1 - \cos 2\alpha_{o})^{2}$$
 (27)

with large magnetostriction resulting. In the absence of a basal plane anisotropy energy complete ferromagnetic saturation is achieved in a field  $H_0 = 2H_k$ . In a highly anisotropic material such as Dy (below  $100^{\circ}$ K) the critical field expression is modified somewhat:

$$H_{k} = -2M_{s}J_{2} (1 - \cos 2\alpha_{o})^{2} - K_{6}^{6} - E_{m}$$
 (28)

where  $K_6^6$  is the basal plane anisotropy energy and  $E_m$  is the magnetostrictive energy. In such a material saturation is reached essentially

at  $H_k$  since the total energy above  $H_k$  is abruptly lowered by  $E_m$  for magnetization in the hard directions and by  $E_m + K_0^6$  for magnetizations in the easy directions. Above  $130^{\circ} K$  in Dy, and in the helical state of Tb,  $K_6^6$  and  $E_m$  are small and for values of H between  $H_{cr}$  and  $2H_{cr}$  the turn angle is found to have an oscillatory behavior about the field direction. The moment of the nth layer makes an angle  $\theta_n$  with the field given by (Enz (25))

$$\theta_{n} = B_{1} \sin k z_{n}$$
 (z is the coordinate along the c axis). (29)

$$B_{1}^{2} \text{ as given by Enz is:}$$

$$B_{1}^{2} = \frac{\frac{1}{4}}{3} \left[ \left( \frac{c_{o}}{\alpha_{o}} \right)^{2} \left( \frac{-M_{s} c_{o}^{4} J_{2}}{H} \right)^{\frac{1}{2}} - 1 \right]$$
and  $k^{4} = -H/M_{s} \left( \frac{c_{o}}{\alpha_{o}} \right)^{4} J_{2}$ . (30)

The average of  $\cos \theta_n$  over all layers is then:

$$<\cos\theta_{\text{pay}}^{>} = 1 - \frac{1}{4} B_1^2$$
 (31)

Substitution of the result into Equation 21 gives after subtraction of the initial strain,

where
$$\frac{\Delta l}{l} \begin{vmatrix} \text{field} \\ \text{field} \end{vmatrix} = \lambda_{\text{cs}} \left(1 - \frac{1}{2} B_{1}^{2}\right)$$

$$\frac{c}{c} = \frac{cM^{2}}{E} \left[ \frac{dJ}{dc} \cos \alpha_{0} \left(1 - \cos \alpha_{0}\right) + \frac{dJ}{dc} \cos 2\alpha_{0} \left(1 - \cos 2\alpha_{0}\right) \right].$$
(32)

The significant result is that in both low and high field limits a

c-axis magnetostriction occurs in a helical antiferromagnet in contrast to the behavior of a normal ferromagnetic or antiferromagnetic material. Experimentally (see Dy results) this c-axis strain is also accompanied by a large basal plane strain, although this cannot be deduced from the theoretical arguments presented above. Lee has assumed that the basal plane strain may be represented by

$$\frac{\Delta l}{l} \Big|_{b,p} = \rho \frac{\Delta l}{l} \Big|_{c} \tag{33}$$

where  $\rho$  is the magnetic equivalent of the Poisson ratio. The resulting over-all strain produced by the combination of the anisotropic magnetostriction discussed in the previous section and the exchange magnetostriction presented here may be represented (e.g. for H along the a axis):

a-axis strain 
$$\frac{\Delta l}{l} \Big|_{a}^{a} = C - \rho \frac{\Delta l}{l} \Big|_{c_{ex}}$$
b-axis strain  $\frac{\Delta l}{l} \Big|_{b}^{a} = -C - \rho \frac{\Delta l}{l} \Big|_{c_{ex}}$ 
c-axis strain  $\frac{\Delta l}{l} \Big|_{c}^{a} = \frac{\Delta l}{l} \Big|_{c_{ex}}$ 
(34)

C is the second order anisotropic magnetostriction constant and  $\frac{\Delta \ell}{\ell} \big|_{c_{\rm ex}}$  is the c-axis exchange magnetostriction. Lee has calculated the theoretical helical magnetostriction curve for Dy using the above expressions and the exchange magnetostriction results outlined in this section. He has compared the results to this author's experimental data

on the field dependence of the magnetostriction of Dy at 144  $^{\circ}$ K (45) corrected for the forced magnetostriction and demagnetizing fields. The results are shown in Figure 14. The value of C used was 1.3x10  $^{-3}$ , of  $\lambda_{\text{CS}}$  was 2.2x10  $^{-3}$  and of  $\rho$  was 0.43.

#### VII. MEASUREMENTS OF THE MAGNETOSTRICTION CONSTANTS

Equation 16 represents the magnetostriction of a hexagonal ferromagnet under the assumption that the magnetic moment is constrained to the basal plane. Strictly speaking it pertains only to a single domain; hence, if bulk measurements are to be made, the crystal must be magnetically saturated. Only under this constant moment condition may the constants be unambiguously determined.

## A. Anisotropic Magnetostriction Constants A and C

The constants A and C may be determined as follows: a basal plane sample is rotated in a saturating field applied parallel to the sample plane, and the linear strain along the a or b axis is measured as a function of the angle between the magnetization and the easy magnetic axis direction.

The following equations are obtained for the a- and b-axis strains from Equation 16:

a axis 
$$(\beta_{x} = 1, \beta_{y} = \beta_{z} = 0)$$
:  $\left[\frac{\Delta \ell}{\ell}\right]_{a} = A(4\alpha_{x}^{2}\alpha_{y}^{2}) + C(\alpha_{x}^{2}-\alpha_{y}^{2}) + D$ 

$$(35a)$$
b axis  $(\beta_{x} = 0, \beta_{y} = 1, \beta_{z} = 0)$ :  $\left[\frac{\Delta \ell}{\ell}\right]_{b} = A(\alpha_{x}^{2}-\alpha_{y}^{2})^{2} + C(\alpha_{y}^{2}-\alpha_{y}^{2}) + D$ 

$$(35b)$$

#### 1. Dysprosium

The a axis of dysprosium is the easy magnetic axis and is thus taken as the reference state. The a- and b-axis strains with the magnetization

in this direction ( $\alpha_{x} = 1$ ,  $\alpha_{y} = 0$ ) are:

a axis: 
$$\left[\frac{\Delta \ell}{\ell}\right]_a^a = C + D$$
 (36a)

b axis: 
$$\left[\frac{\Delta \ell}{\ell}\right]_b^a = A - C + D$$
 (36b)

In this notation the superscript indicates the magnetization direction and the subscript the measuring or gage direction.

The a- and b-axis strains between the above reference state and any other state where the magnetic moment makes an angle  $\theta_a$  with the a axis may be written ( $\alpha_x = \cos \theta_a$ ,  $\alpha_y = \sin \theta_a$ ):

a axis: 
$$\left[\frac{\Delta l}{l}\right]_{a}^{\theta a} - \left[\frac{\Delta l}{l}\right]_{a}^{\theta a} = \left[\frac{\Delta l}{l}\right]_{a}^{\theta a} = A \sin^{2} 2\theta_{a}' - 2C \sin^{2} \theta_{a}'$$
 (37a)

b axis: 
$$\left[\frac{\Delta \ell}{\ell}\right]_{b}^{\theta} = \left[\frac{\Delta \ell}{\ell}\right]_{b}^{\theta} = \left[\frac{\Delta \ell}{\ell}\right]_{b}^{\theta} = -A \sin^{2}2\theta'_{a} + 2 \operatorname{C} \sin^{2}\theta'_{a}$$
 (37b)

Here  $\theta'$  indicates the strain of the reference state has been subtracted.

### 2. Terbium

The b axis of Terbium is the easy magnetic axis and the reference strains with the magnetic moment along the b axis ( $\alpha_x = 0$ ,  $\alpha_v = 1$ ) are:

a axis: 
$$\frac{\Delta \ell}{\ell}\Big|_{a}^{b} = -C + D$$
 (38a)

b axis: 
$$\frac{\Delta \ell}{\ell} \Big|_{b}^{b} = + A + C + D \tag{38b}$$

The a- and b- axis strains between this reference state and any other state where the magnetization makes an angle  $\theta_b$  with the b axis may be written ( $\alpha_x = \sin \theta_b$ ,  $\alpha_y = \cos \theta_b$ ):

a axis: 
$$\left[\frac{\Delta l}{l}\right]_{a}^{\theta_{b}} - \left[\frac{\Delta l}{l}\right]_{a}^{\theta_{b}} = \left[\frac{\Delta l}{l}\right]_{a}^{\theta_{b}} = A \sin^{2} 2\theta_{b}^{\prime} + 2C \sin^{2} \theta_{b}^{\prime}$$
 (39a)

b axis: 
$$\left[\frac{\Delta \ell}{\ell}\right]_{b}^{\theta} - \left[\frac{\Delta \ell}{\ell}\right]_{b}^{\theta} = \left[\frac{\Delta \ell}{\ell}\right]_{a}^{\theta} = -A \sin^{2} 2\theta_{b}' - 2C \sin^{2} \theta$$
 (39b)

Equations 37 and 39 form the basic equations for the determination of the constants A and C in dysprosium and terbium respectively. The procedure followed in this investigation was to measure the a- or b-axis strains at  $\theta = 60^{\circ}$  (adjoining easy axis) and at  $\theta = 90^{\circ}$  where respectively:

Dysprosium

$$\begin{bmatrix}
\frac{\Delta \ell}{2} \\ \frac{1}{2} \\ \frac{1}{2}$$

The upper sign is for the a-axis strain measurement, the lower for the b-axis measurement. From these relations and the  $60^{\circ}$  and  $90^{\circ}$  strains, A and C were calculated.

As stated above, the fourth order constant A is the only one characteristic of hexagonal symmetry. The importance of using at least a fourth order theory in Tb and Dy as opposed to the second order theory used with Co (10) and Gd (2,11) is illustrated in Figure 15. The experimental data for the b-axis strain versus angle of the 30 kOe applied field in the basal plane of Tb at  $99.9^{\circ}$ K are shown (data points and solid curve). This can be compared to the results of the fourth order theory (dash line) fitted at  $\theta_b^{\prime} = 60^{\circ}$  and  $90^{\circ}$ ; and to the results

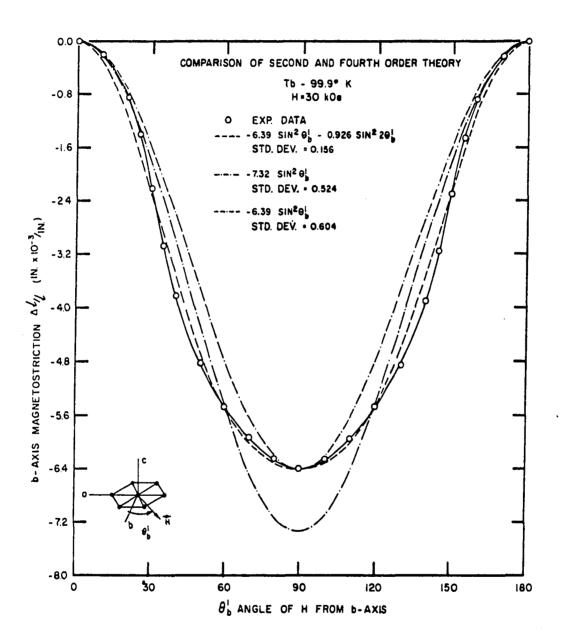



Figure 15. Comparison of second and fourth order theoretical fit to the field rotation magnetostriction data of Tb at 99.9°K.

of a second order theory (-2C  $\sin^2 \theta_b^{\text{!`}}$ ) fitted at  $\theta_b^{\text{!`}} = 60^{\circ}$  (dash-dot line) and at  $\theta_b^{\text{!`}} = 90^{\circ}$  (dash-dash-dot line). The standard deviations of the various curves from the data points are indicated. From this, it is readily apparent that the inclusion of fourth order term A  $\sin^2 2\theta$  improves the fit considerably.

Figures 16 and 17 show representative curves of the a- and b-axis strains versus angle  $\theta'$  of applied field relative to the a axis in the basal plane of Dy. The result of the fourth order theory fit are also shown for three temperatures. Similar data for Tb are shown in Figures 18 and 19 for the a- and b-axis strain versus applied field angle  $\theta'$  b relative to the b axis.

Considerable "squaring off" of the experimental rotation curves is evident at temperatures well below the Curie temperature, especially in dysprosium. This is due to the large six fold basal plane anisotropy which prevents the magnetic moment from closely aligning with the magnetic field applied in hard magnetic direction. Indeed, in Dy at very low temperatures the magnetization remains essentially along the easy axis as the magnetic field angle  $\theta$  changes from  $0^{\circ}$  to  $30^{\circ}$ , and then abruptly jumps to the next easy axis and remains there as  $\theta$  goes from  $30^{\circ}$  to  $90^{\circ}$ , etc. The result is the sharp change in strain observed at  $30^{\circ}$  and  $150^{\circ}$ , with only a small variation for intermediate angles. The magnetostriction Equations 37 and 39 involve the angle of the magnetic moment, and the

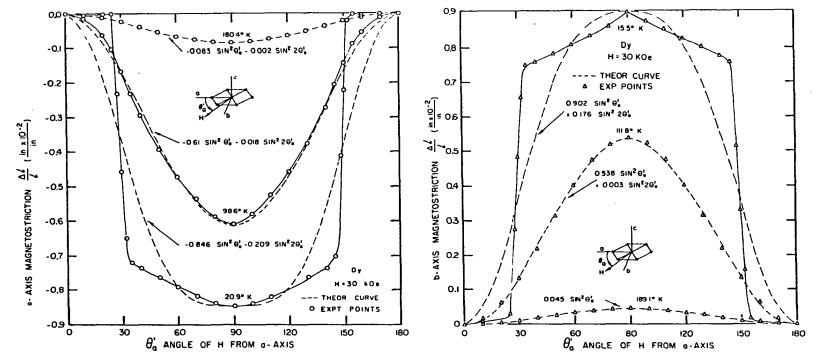



Figure 16. Dy a- and b-axis magnetostriction as a function of applied field angle,  $\theta'$ , relative to the a axis. The 30 kOe field was applied in the basal plane. The dash curve shows the result of the fourth order theoretical fit.

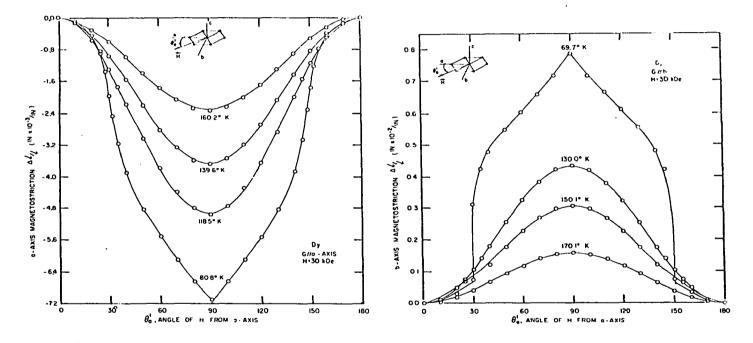



Figure 17. Dy a- and b-axis magnetostriction as a function of applied field angle,  $\theta^i$ , relative to the a axis. The 30 kOe field was applied in the basal plane.

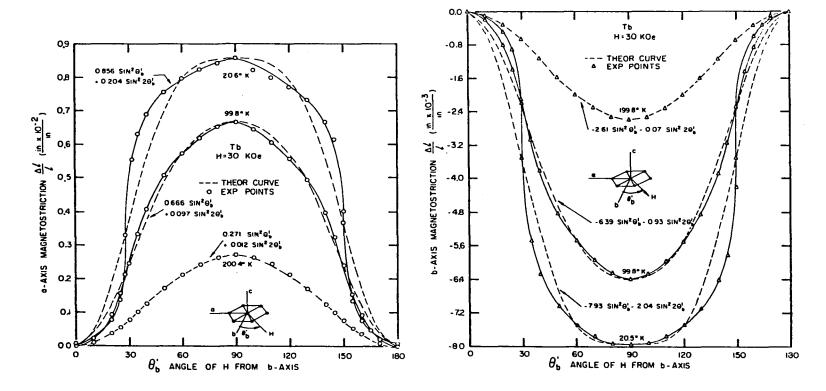



Figure 18. To a- and b-axis magnetostriction as a function of applied field angle,  $\theta_b^t$ , relative to b axis. The 30 kOe field was applied in the basal plane. The dash curve shows the result of the fourth theoretical fit.

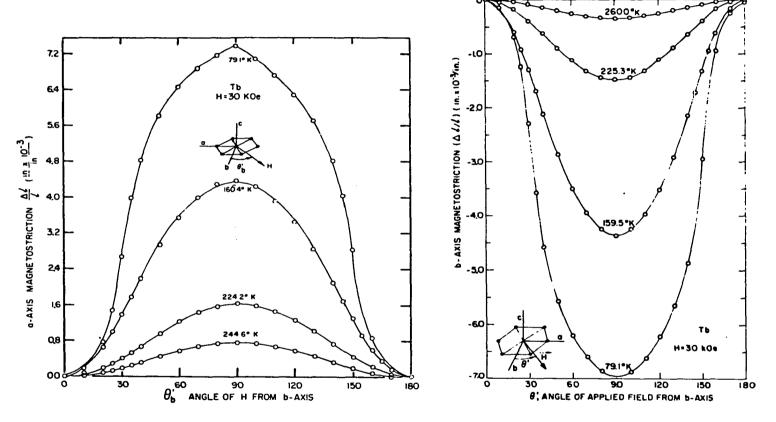



Figure 19. The a- and b-axis magnetostriction as a function of applied field angle,  $\theta_b^i$ , relative to the b axis. The 30 kOe field was applied in the basal plane.

substitution of the applied field angle can produce errors in the determination of the constants A and C at low temperatures principally in Dy.

These effects are considered in a later section.

#### B. Isotropic Constants D and G

The remaining magnetostriction constants D and G are not dependent upon the magnetic field direction in the basal plane. These constants were determined by measuring the strain as a function of temperature in a saturating applied field and subtracting the thermal expansion extrapolated from above the Néel temperature. The difference is the magnetostriction contribution. It is to be noted that the thermal expansion cannot be measured below the Néel temperature as here the magnetostrain is the dominant effect and cannot be isolated from the thermal strain. Measurements of the strain below the Curie temperature in the absence of an applied field are subject to the same hysteresis effects and lack of reproducibility mentioned in the introduction with respect to the demagnetized state. Hence the need to extrapolate the expected thermal expansion from the paramagnetic region.

## 1. Extrapolation of the thermal expansion

This extrapolation of the thermal strain was done by measuring the linear thermal expansion coefficients for the a, b, and c axes in a limited zone around 300°K (350°K for Tb) and using the Grüneisen expression

$$\frac{\partial V}{\partial T} = K_{\gamma} C_{V}(T) \tag{41}$$

to obtain the lower temperature dependence of these expansion coefficients.  $C_v$  is the specific heat from the Debye theory and K and  $\gamma$  are, respectively, the isothermal compressibility and the Grüneisen constant, both of which were assumed independent of temperature. The Grüneisen relation is actually a bulk relationship and its application to single crystal properties is dubious. To test this and the other assumptions, the method was applied to Er shown in Figure 20, whose thermal expansion exhibits normal behavior down to  $85^{\circ}$ K, its first magnetic transition temperature. The procedure was as follows: From the measured thermal expansion coefficients  $\alpha$  at the reference temperature,  $300^{\circ}$ K, the relation

$$\frac{\Delta \ell}{\ell} (T) = \int_{T_{ref}}^{T} \alpha(t) dT = \frac{\alpha(T_{ref})}{C_{v}(T_{ref})} \int_{T_{ref}}^{T} C_{v}(T) dT$$
(42)

was used to evaluate the linear strain as a function of temperature. The calculated results are compared to the experimental data in the figure. The Debye specific heat tables of Landolt and Bornstein (41) were fitted to least squares polynomials using several regions, and these polynomials were used in the calculation of the integral. The Debye temperature, obtained from sound velocity measurements (61), of Er is 192°K, of Tb is 175°K, and of Dy is 182°K.

As the figure for Er shows, this extrapolation method is far from exact. The justification for its use lies in the fact that the errors involved are only a few per cent of the total effect and are within the

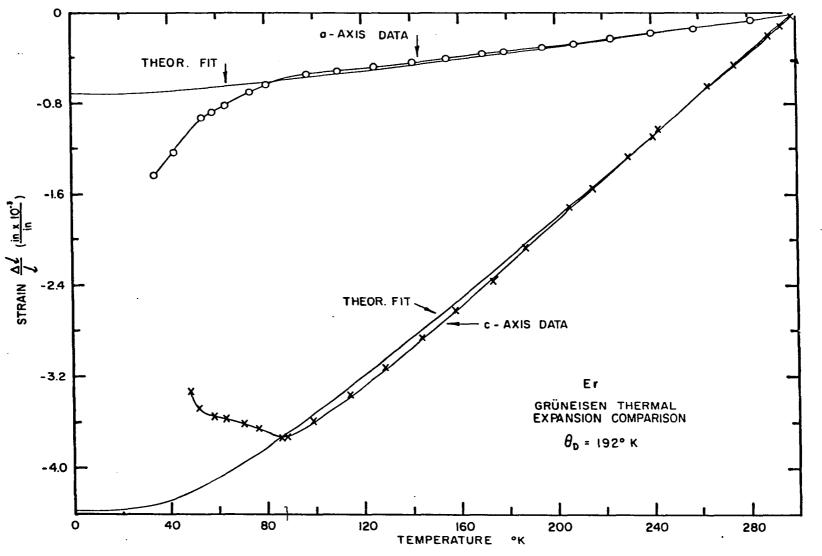



Figure 20. Comparison of thermal expansion fit using Grüneisen relation to experimental data in Er.

limits of other experimental errors.

# 2. <u>Determination of constants D and G from strain versus temperature</u> measurements

a. Results for dysprosium The easy magnetic direction of Dy is the a axis. It is thus appropriate to apply a saturating field in this direction and measure the strains in the a-, b-, and c-axis direction. With the field along the a axis ( $\alpha_x = 1$ ,  $\alpha_y = 0$ ) Equation 16 becomes:

$$\frac{\Delta \ell}{\ell} \mid^{a} = A\beta_{y}^{2} + C \left[\beta_{x}^{2} - \beta_{y}^{2}\right] + D(1 - \beta_{z}^{2}) + G\beta_{z}^{2}.$$

The strains found by subtraction of the extrapolated thermal expansion from the a-, b-, and c-axis strains measured in an applied field satisfy the following relations:

a axis 
$$(\beta_x = 1, \beta_y = \beta_z = 0)$$
:  $\left[\frac{\Delta \ell}{\ell}\right]_a^a - \left[\frac{\Delta \ell}{\ell}\right]_a^o = C + D$  (43a)

b axis 
$$(\beta_{x} = 0, \beta_{y} = 1, \beta_{z} = 0)$$
:  $[\frac{\Delta l}{l}]_{b}^{a} - [\frac{\Delta l}{l}]_{b}^{o} = A - C + D$  (43b)

c axis 
$$(\beta_x = \beta_y = 0, \beta_z = 1)$$
:  $\left[\frac{\Delta \ell}{\ell}\right]_c^a - \left[\frac{\Delta \ell}{\ell}\right]_c^o = G$  (43c)

Here the superscripts indicate the field direction and the subscripts the measurement direction. From Equation 43a and the values of C obtained from rotation measurements, the constant D was calculated. Equation 43c provided the remaining constant G directly. It should be remarked that it is not possible to obtain all four constants by linear strain measurements as outlined above with the magnetic moment remaining in the easy direction. This is seen by assuming a fourth measuring direction

with cosines u, v, w and inspecting the determinant of the coefficients of A, C, D, and G from Equations 43a, 43b, and 43c and the fourth direction equation. This determinant is seen to be zero. The constant A which represents departures from cylindrical symmetry in the magneto-elastic energy cannot be isolated unless the magnetic moment is rotated out of the easy magnetic direction. This resolves some of the discrepancies between the results presented here and those obtained by Darnell (19) in the absence of an applied field.

Figure 21 shows the temperature dependence of the a-, b-, and c-axis strains in both zero field and in a 30 kOe field applied along the a axis of Dy. In a field the c axis is observed to expand with decreasing temperature in the (zero field) antiferromagnetic range as discussed above while showing a saturation effect with a decreasing strain at lower temperatures characteristic of the thermal expansion. This is in accord with the negligible c-axis magnetostriction expected well below the Curie temperature for a magnetic moment constrained to the basal plane. The b-axis magnetostrain exhibits a large contraction with decreasing temperatures amounting to 0.8 per cent at 20°K after subtracting an extrapolated value of the thermal expansion. The a-axis magnetostriction reverses slope just below the Néel temperature. This is presumably due to the change in interlayer exchange energy resulting from the variation in the helical turn angle.

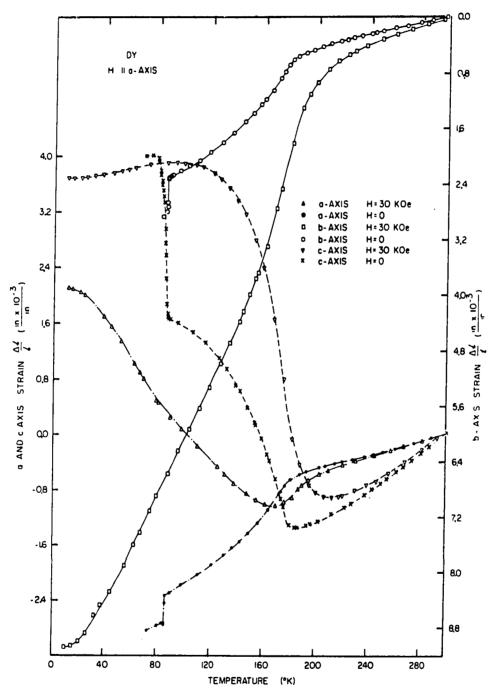



Figure 21. The a-, b-, and c-axis strain of Dy as a function of temperature in zero field and in a 30 kOe field applied along the a axis. The large discontinuities in the zero field curves at 85 K are the result of an orthorhombic distortion of the lattice at the ordering temperature.

The zero applied field strain curves are observed to have discontinuities at the Curie temperature,  $87^{\circ}\text{K}$ . This is an agreement with the change in crystal structure from hexagonal to orthorhombic at the ordering temperature as observed by Darnell (19) in X-ray studies on Dy. His results indicate a contraction,  $\Delta k/k = -4.52 \text{x} 10^{-3}$ , in the b axis with a correspondingly smaller expansion,  $\Delta k/k = 2.79 \text{x} 10^{-3}$ , of the a axis in the unit cell. In the macroscopic average results reported here, the a axis was also observed to contract due to the component of the large contraction along the adjoining b axis. The zero field measurements were not continued below  $80^{\circ}\text{K}$  due to hysteresis effects encountered below the Curie temperature as mentioned above.

Thermal hysteresis amounting to several degrees was noted in the 87°K transition temperature both in these zero field strain measurements and in measurements of the resitivity (34) and other transport properties. The antiferro-ferromagnetic transition always occurs at a lower temperature in cooling runs than in warming runs. A possible explanation lies in the effect of the large orthorhombic distortion on the anisotropy energy. As the crystal is cooled, the rapidly increasing basal plane anisotropy overcomes the helical exchange energy at the ferromagnetic transition temperature, producing the observed distortion.

Once in the ferromagnetic state, the anisotropy field is changed to one characteristic of the orthorhombic cell instead of the original hexagonal cell. This means that the reverse (ferro to antiferro) transition can take place at a different temperature due to the new energy balance. The result in Dy is that, on warming the specimen, the orthorhombic anisotropy energy maintains the ferromagnetic alignment against the exchange forces to a higher temperature than is possible in the reverse process.

Figure 22 shows the temperature dependence of the constants A, C, D, and G. C was obtained from the rotation measurements as described and D and G were obtained by subtracting from the magnetostriction curves of Figure 21 the extrapolation of the linear region of the thermal expansion curve from far above the Néel temperature. The constants as shown apply to a 30 kOe applied field. No attempt was made to extrapolate values of the constants to zero applied field (or more properly, zero internal field) for two reasons: first, some error is inherent in the values of C at low temperatures due to the unknown discrepancy between the angles of the magnetization and applied magnetic field, and second, extrapolation to zero of the field dependence of C would produce an unrealistically large correction due to the lack of saturation. The differences between the values of C obtained from a- and b-axis measurements shown in the figure are ascribed to nonlinear behavior of the strain gages at low temperatures and strains approaching + 1%.

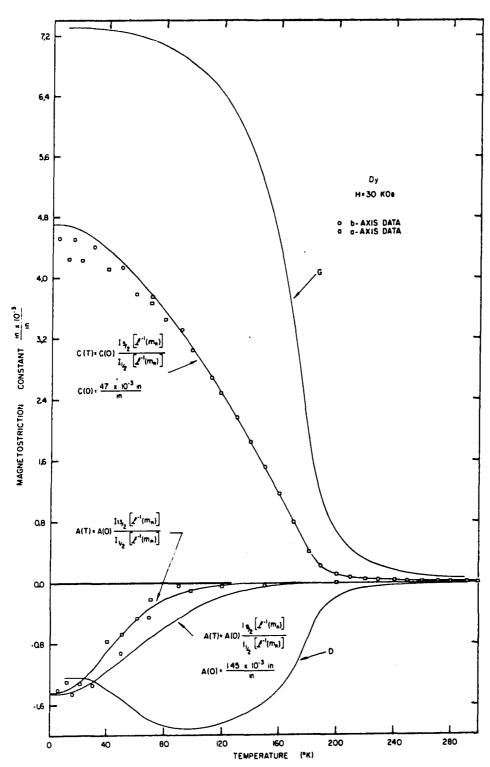



Figure 22. Magnetostriction constants A, C, D, and G of Dy at 30 kOe applied field. The theoretical expressions for the anisotropic constants A and C are shown along with the experimental data obtained from the a- and b-axis field rotation measurements.

:

The solid line relationships shown for C and A are the result of a theory by Callen and Callen (14, 15) which relates the magnetostriction constants to the magnetic moment. Using the one ion term in the internal field Hamiltonian exhibited in Equation 11 they have found that the temperature dependence of the related magnetostriction constant is represented by

$$\frac{\Delta \ell}{\ell} (T) = \frac{\Delta \ell}{\ell} (T=0) \frac{I_{\ell+\frac{1}{2}} [L^{-1} (M_n)]}{I_{\frac{1}{2}} [L^{-1} (M_n)]}$$
(44)

where I is a modified Bessel function of the first kind,  $L^{-1}$  is the inverse of the Langevin function and  $M_n = \frac{M(T)}{M(T=0)}$  is the reduced magnetization. The subscript  $\ell$  again denotes the degree of the symmetry polynomial in the Hamiltonian and corresponds to the degree of the magnetization direction cosines appearing in the magnetostriction expression. The magnetostriction constant C represents terms of second degree ( $\ell$  = 2), while the constant A represents terms of fourth degree ( $\ell$  = 4). Using the Dy magnetic moment data of Behrendt (4) and Jew (34), the Langevin function was inverted using an iterative procedure on the Iowa State IEM 7074 computer and the ratio of the Bessel functions calculated from their closed form expressions. The curve calculated for C(T) = C(T=0) I<sub>5</sub> ( $\ell^{-1}$  ( $M_n$ ))/I<sub>1</sub> ( $\ell^{-1}$  ( $M_n$ )) using C(T=0) = 4.7x10<sup>-3</sup> is shown in Figure 22.

The data points for the constant A in the figure were obtained from Equations 37a,b using the experimental strains measured at  $\theta = 60^{\circ}$ and the values of C taken from the above theoretical curve. Use of the experimental values of C directly for calculating A produced unrealistically large values due to the angle errors resulting from the high basal plane anisotropy mentioned above. In general, values of A shown in the figure should be viewed only qualitatively due to the uncertainties in the data. Theoretical curves are shown for A derived from Bessel functions of order 9/2 (l = 4) and order 13/2 (l = 6). The temperature dependence of A should be represented by the 9/2 order Bessel function; however, as shown, the agreement is actually better with the 13/2 order function. This anomaly could be the result of a significant sixth order constant admixed with the fourth order term, or it could be merely the result of inaccurate data. In terbium, which is described in the next subsection, the basal plane anisotropy is much lower and the constant A clearly follows the 9/2 order Bessel function relation.

Values of D and G shown in the figure are not affected by basal plane anisotropy and may be considered correct within stated experimental error. G shows that the c axis expands rapidly in the antiferromagnetic range before reaching saturation near the Curie temperature. The isotropic dilatation of the basal plane described by D shows a contraction down to the Curie temperature with a subsequent expansion for lower temperatures.

This is presumably a result of the change in the exchange forces in going from the zero field antiferromagnetic state into the spontaneously ordered ferromagnetic state.

Figure 23 shows the b-axis strain of Dy with a 26 kOe field applied along the b axis. As shown in the next paragraph, the fourth order expression for this strain after subtraction of the thermal contribution is:

$$\left[\frac{\Delta \ell}{\ell}\right]_{b}^{b} - \left[\frac{\Delta \ell}{\ell}\right]_{b}^{o} = A + C + D$$

Thus, to second order (A=0), this curve should be identical to the a-axis magnetostrain curve of Figure 21(cf. Equation 43a). The radical departure below 75°K is a consequence of the fourth order correction constant A and also of a regression of the moment from the b-axis direction into the adjoining a-axis directions as a consequence of the rapidly increasing anisotropy energy.

b. Results for terbium The b axis of Tb is the easy magnetic direction. Equation 16 gives the following result for the strain with the magnetization along the b axis ( $\alpha = 0$ ,  $\alpha = 1$ ):

$$\left[\frac{\Delta \ell}{\ell}\right]^{b} = A\beta_{y}^{2} + C[\beta_{y}^{2} - \beta_{x}^{2}] + D(1-\beta_{z}^{2}) + G\beta_{z}^{2}$$
 (45)

The strains found by subtraction of the extrapolated thermal expansion from the a-, b-, and c-axis magnetostrain curves satisfy the following relations:

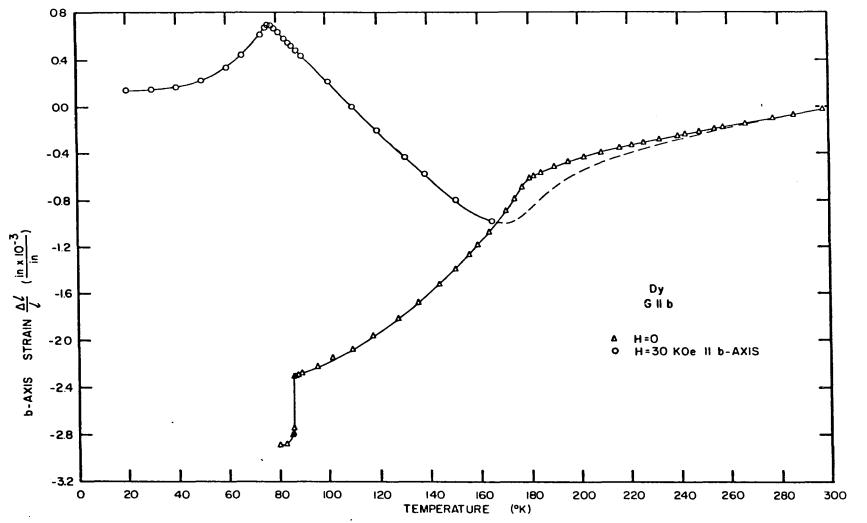



Figure 23. The b-axis strain of Dy as a function of temperature in zero field and in a 30 k0e field applied along the b axis. The effect of the large basal plane anisotropy is evident below  $75^{\circ}$ K.

a axis 
$$(\beta_x = 1, \beta_y = \beta_z = 0) \left[\frac{\Delta l}{l}\right]_a^b - \left[\frac{\Delta l}{l}\right]_a^o = -C + D$$
 (46a)

b axis 
$$(\beta_{x} = 0, \beta_{y} = 1, \beta_{z} = 0) \left[\frac{\Delta \ell}{\hat{k}}\right]_{b}^{b} - \left[\frac{\Delta \ell}{\hat{k}}\right]_{b}^{0} = A + C + D$$
 (46b)

c axis 
$$(\beta_x = \beta_y = 0, \beta_z = 1) \left[\frac{\Delta \ell}{\ell}\right]_c^b - \left[\frac{\Delta \ell}{\ell}\right]_c^o = G$$
 (46c)

From Equation 46a and the values of C obtained in the rotation measurements, D was calculated. Equation 46c provided G directly.

Figure 24 shows the temperature dependence of the a-, b-, and c-axis strains in both zero field and in a 30 kOe field applied along the b axis The exchange interaction giving rise to the helical antiferromagnetic structure of To is much weaker than in Dy. The spiral structure appears only above 221 K and is stable over only a 9 degree range in zero Thus the c-axis strain shown in Figure 24 is much smaller than in The a- and b-axis behavior in an applied field is essentially opposite to that in Dy as expected, although the magnetostrain of the b axis does not reverse sign as does the a axis in Dy. This is probably due to the restricted variation in the interlayer turn angle ranging from  $20.5^{\circ}$  at  $230^{\circ}$ K to  $18^{\circ}$  at  $220^{\circ}$ K (39). As a result of the smaller change in exchange energy at the Curie temperature, the spontaneous orthorhombic distortion is almost unobservable except in the a axis. This effect amounting to about  $80 \mu$  inches/inch is shown in the inset of the figure. The transition is not as sharp as in Dy but is smeared out over a two degree range about 221 K.

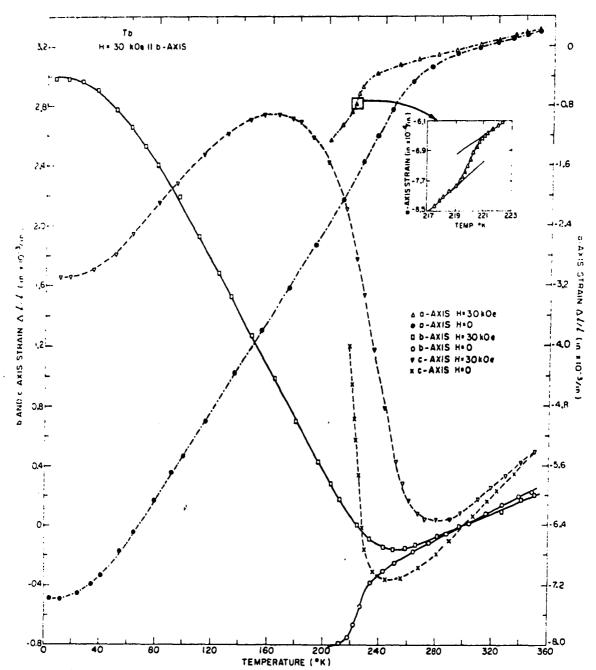



Figure 24. The a-, b-, and c-axis strain of Tb as a function of temperature in zero field and in a 30 kOe field applied along the b axis. The inset shows the anomalous slope change of the a-axis zero-field strain at 220°K. This corresponds to a structure change from hexagonal to orthorhombic at the ordering temperature.

Figure 25 shows the temperature dependence of the constants A, C, D, and G for Tb. In Tb C and A were both obtained directly from the experimental rotation data (e.g. Figure 18). C was determined from the  $\theta = 90^{\circ}$  strain and A from the  $\theta = 60^{\circ}$  strain and the value of C in accordance with Equations 39a,b. This direct determination of A was possible because of the much lower basal plane anisotropy in Tb than in Dy. Constants D and G were obtained from Equations 46a,c and the values of C.

The theoretical curve for the temperature dependence of the constants A and C according to the Callen one ion theory is also shown in the figure. The magnetic moment data of Hegland (31) were used. It should be noted that the constant C actually consists of two terms:

$$2C = \lambda^{\gamma, 2} - \frac{1}{7} \lambda_2^{\gamma, 4} \tag{47}$$

From the fit of C to  $I_{\frac{5}{2}}(L^{-1}(M_n))^2/I_{\frac{1}{2}}(L^{-1}(M_n))$  (i.e.  $\ell=2$ ) it

can be concluded that the  $\ell$  = 4 term  $\frac{1}{7}$   $\lambda_2^{\gamma, \frac{1}{4}}$  is negligible in Tb.

The fourth order term A shows the  $I_{\frac{9}{2}}$   $(L^{-1}(M_n))/I_{\frac{1}{2}}$   $(L^{-1}(M_n))$  behavior

as expected. The closeness of the theoretical fit to the constants A and C shows that the one ion interaction in the Callen theory is sufficient to describe the behavior in Tb. This means that the anisotropy energy (represented by the one ion terms) is the dominant basal plane magnetostriction mechanism as postulated earlier.

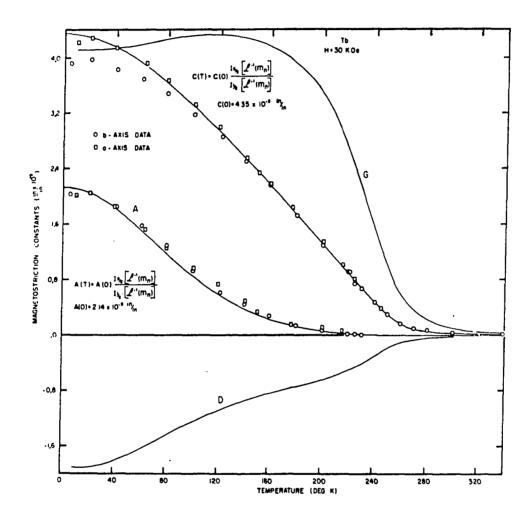



Figure 25. Magnetostriction constants, A, C, D, and G, of Tb at 30 kOe applied field. The theoretical expressions for the temperature dependence of the anisotropic constants A and C are shown along the experimental data obtained from the a- and b-axis field rotation measurements.

The values of the constants shown in Figure 25 apply to a 30 k0e magnetic field. Figure 26 shows the values of the constants  $A_{\rm o}$ ,  $C_{\rm o}$ ,  $D_{\rm o}$ , and  $G_{\rm o}$  extrapolated to zero applied field. The constants  $D_{\rm o}$  and  $G_{\rm o}$  were corrected to zero field by use of the a- and c-axis forced magnetostriction data (discussed in a later section) while  $A_{\rm o}$  and  $C_{\rm o}$  were obtained by direct measurement of the field dependence of C and A+2C. Above 240°K, the forced magnetostriction correction becomes large and difficult to evaluate; hence, there is some uncertainty in the values of  $D_{\rm o}$  and  $G_{\rm o}$  in this region.

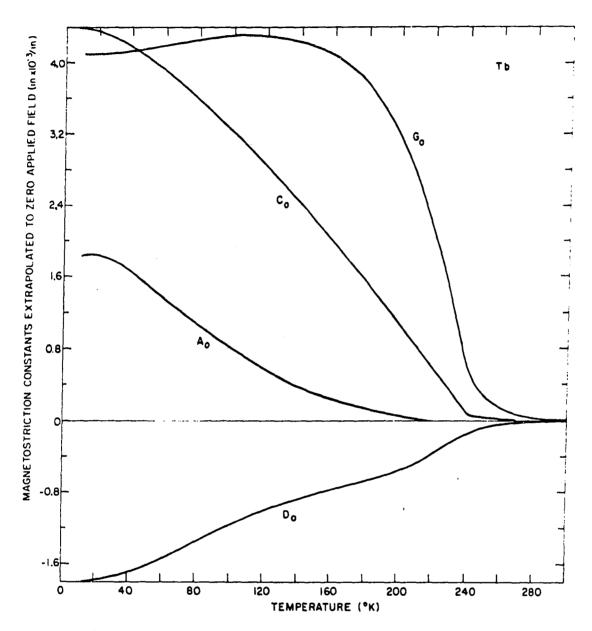



Figure 26. To magnetostriction constants Ao, Co, Do and Go. The subscript indicates the values have been extrapolated to zero applied field.

#### VIII. ANISOTROPY ENERGY

#### A. General Remarks

The magnetic anisotropy energy of a hexagonal ferromagnet can be written in the following form due to Miwa and Yosida (50):

$$H_{anis} = V_2^0 + V_4^0 + V_6^0 + V_6^6$$
 (48)

The first four terms describe the axial anisotropy tending to align the spins either parallel to the c axis, perpendicular to the c axis, or on a cone about the c axis. The last term describes the anisotropy of the basal plane (six fold anisotropy). Treating the atomic spins classically, the functional form of the anisotropy may be written:

$$H_{\text{anis}}(\theta, \phi) = K_2 Y_2^{\circ}(\theta, \phi) + K_4 Y_4^{\circ}(\theta, \phi) + K_6 Y_6^{\circ}(\theta, \phi) + K_6^{\circ} Y_6^{\circ}(\theta, \phi)$$

$$(49)$$

where the  $Y^m$  are spherical harmonics, and the K's are the anisotropy constants. Theta and  $\varphi$  are the spin angles measured from the c and a axes respectively. The relative signs, magnitudes, and temperature dependences of the constants determine the stable zero field magnetic states in the rare earths. Negative values of  $K_2$ ,  $K_4$ , and  $K_6$  favor spin alignment along the c axis, positive values correspond to basal plane alignment. Mixed signs in these constants produce the intermediate (cone, etc.) states such as in Er. From calculations of the

effects of the crystalline field at the tri-positive ion sites, Miwa and Yosida deduced the signs for the rare earth anisotropy constants in Table 4.

Table 4. Signs of anisotropy constants in the heavy rare earths

|                      | Tb | Dy | Но | Er | Tm |
|----------------------|----|----|----|----|----|
| к <sub>2</sub>       | +  | +  | +  | -  | -  |
| К <sub>14</sub> -    | -  | +  | +  | -  | -  |
| к <sub>6</sub>       | -  | +  | -  | +  | -  |
| <sup>к</sup> 6<br>к6 | +  | -  | +  | -  | +  |

# B. Anisotropy Constants of Dy and Tb Calculated from Magnetostriction Data

As indicated previously, departures of the experimental basal plane rotation magnetostriction from the fourth order theoretical curves are due largely to the six fold anisotropy in Tb and Dy. This anisotropy prevents the magnetization from following the field applied in hard magnetic directions. For  $30^{\circ} < \theta^{\circ} < 60^{\circ}$  the magnetization leads the field, and the measured strain is larger than that predicted by the theory. For  $60^{\circ} < \theta^{\circ} < 90^{\circ}$  the magnetization lags behind the field direction, and the measured strain is lower than the theoretical strain. At  $\theta = 0^{\circ}$  and  $60^{\circ}$  the magnetization and field are aligned in the easy direction.

The total angle dependent magnetic energy consists of two parts-the six fold anisotropy energy and the internal magnetic energy:

$$E_{\rm m} = -MH \cos (\theta - \phi) - K_6^6 \cos 6\phi$$

where  $\phi$  is the angle of the magnetization relative to the easy magnetic direction. Minimization of this energy with respect to the magnetization angle  $\phi$  gives the equilibrium configuration:

$$\frac{\partial E}{\partial \phi} = 0 = -MH \sin (\theta - \phi) + 6K_6^6 \sin 6\phi \tag{50}$$

The quantity  $\theta$ - $\phi$  represents the degree of misalignment of the magnetic moment and field. Equation 50 also provides a method for calculation of the anisotropy constant  $K_6^6$  if the angles  $\theta$  and  $\phi$  are known. These angles were obtained from the rotation magnetostriction data of Dy and Tb by forcing the experimental data to fit the prediction of the fourth order theory as follows:

The fourth order rotation theory (Equations 37 and 39) predicts a strain dependence of the form,

$$\frac{\Delta l}{l} = + A \sin^2 2\phi + 2C \sin^2 \phi, \qquad (51)$$

where  $\phi$  is the magnetization angle relative to the easy magnetic direction. Knowing the values of the magnetostriction constants A and C and the measured strains for  $\theta = 40^{\circ}$ ,  $50^{\circ}$ ,  $70^{\circ}$ , and  $80^{\circ}$  ( $\theta$  = applied field angle), it was possible to solve Equation 51 for the corresponding magnetization

angles which would produce the observed strains. These angles \$\phi\$ together with the field angles  $\theta$  when substituted into Equation 50 provided values of  $K_6^6$ . The region  $40^{\circ} < \theta < 80^{\circ}$  was chosen since it is in this region that the strain deviations due to the anisotropy are most pronounced. The values of C used were from the experimental data except in regions of high anisotropy where the values were obtained from the theoretical curve of Figures 22 and 24. From values of C and the strain at  $\theta = 60^{\circ}$ , A was calculated. It should be mentioned that the anisotropy does not seriously affect the experimental values of C due to the small first derivative of the dominant  $\sin^2\theta$  in the vicinity of  $\theta = 90^{\circ}$  (see appendix). Figure 27 shows the anisotropy constants of Dy and Tb obtained by this method. The experimental points represent an average of the values obtained at the four field angles  $\theta = 40^{\circ}$ ,  $50^{\circ}$ ,  $70^{\circ}$ , and  $80^{\circ}$ . The accuracy of the values is not expected to be better than + 25 per cent, especially in Tb due to the smallness of the effect.

The solid line represents the theoretical dependence of  $K_6^6$  on the 21st power of the magnetic moment predicted by the Zener (71) theory. This theory predicts the temperature dependence of the anisotropy constants through the relationship  $K(T)^{\epsilon}[M(T)]^{n(n+1)/2}$  where n=6 for a six fold axis.

Liu, Behrendt, Legvold and Good (46) have calculated the anisotropy

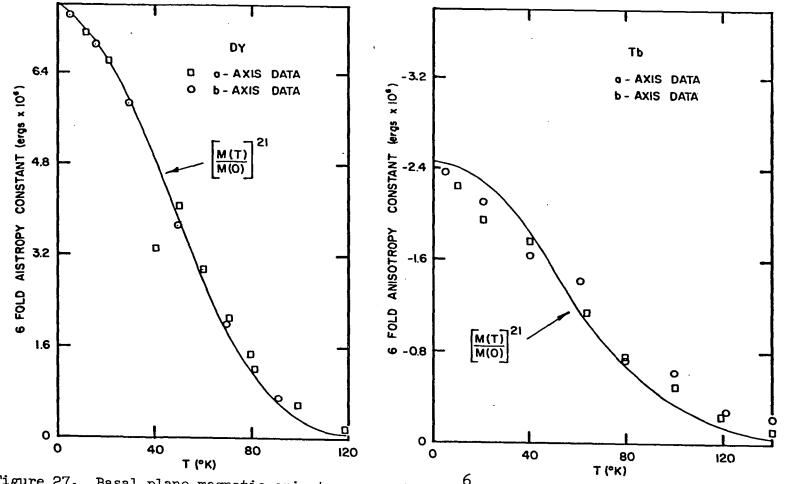



Figure 27. Basal plane magnetic anisotropy constant, K<sub>6</sub>, for Dy and Tb as determined from rotation magnetostriction data.

constants of Dy from the single crystal magnetization data. Their method, which is less susceptible to experimental error, gave values of  $K_6$  somewhat smaller than those found in the present study. Their value of K(T=0) was  $5.24 \times 10^6$  ergs/cm<sup>3</sup> compared to  $7.6 \times 10^6$  ergs/cm<sup>3</sup> found from this calculation.

#### IX. TO AND DY ISOTHERMAL MAGNETOSTRICTION

Measurement of the magnetostrain as a function of applied field in a ferromagnet below saturation is a classic but virtually fruitless study. As mentioned in the introduction, quantitative results require a knowledge of the domain structure at each stage in the magnetization process. Semi-quantitative results can be obtained for the magnetostriction constants by averaging Equation 16 over a hypothetical "ideal demagnetized state" (e.g. assuming an equal distribution of domains along each of the six equivalent a-axis directions in Dy). In reality, however, this ideal state is seldom realized and variations up to 20 or 30 per cent in the demagnetized strain are encountered depending on the magnetic history as demonstrated in Figure 1.

A. Ferromagnetic and Antiferromagnetic Results for Dy and Tb

Measurements of magnetostrain versus applied field were made on Dy,

Tb, and Er. These gave information on the forced magnetostriction

(discussed later) and on the required critical fields and strains resulting

from collapse of the spiral antiferromagnetic states of the metals.

The measurements reported here were made with the magnetic field along the respective easy magnetic directions. Measurements were principally confined to this case due to the lack of magnetic saturation with the applied field in other directions.

The results for Dy and Tb are shown in Figures 28-32. Er is discussed in a later section. Figures 28 and 29 show the a-, b-, and c-axis strains in the ferro- and antiferromagnetic regions of Dy as a function of applied field along the a (easy) axis. Qualitatively, the crystal is observed to expand in the direction of the magnetization and to contract in the transverse basal plane direction. The strains are larger for the lower temperatures as a result of the increased anisotropy energy. c-axis strain is quite small below the Curie temperature (87°K) as was shown previously from Equation 16 for the case of a magnetic moment constrained to the basal plane. In the helical antiferromagnetic range  $(87^{\circ}\text{K} < \text{T} < 178^{\circ}\text{K})$  the c axis exhibits a large positive strain as discussed in the section on magnetostriction of a helical antiferromagnet. In this temperature range the strains of all three axes are observed to exhibit almost zero strain up to a critical field characteristic of the exchange energy producing the helical state. Above this field the helix is collapsed and ferromagnetic alignment takes place along the applied field direction.

The situation is similar for Tb as shown in Figures 30-32. Here the field was applied along the b-axis (easy) direction and the a-, b-, and c-axis strains were measured. Similar behavior to Dy is noted below the Curie temperature (220°K), with the a and b axis interchanged.

The antiferromagnetic state of Tb is much weaker than in Dy and an

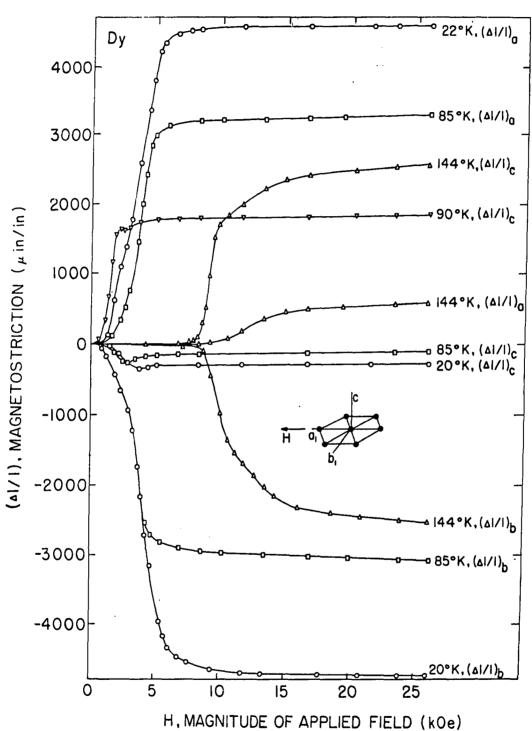



Figure 28. The a-, b- and c-axis strains of Dy as a function of field applied along the a axis. Curves are shown for both ferromagnetic and antiferromagnetic temperature regions. The subscript indicates the strain gage direction.

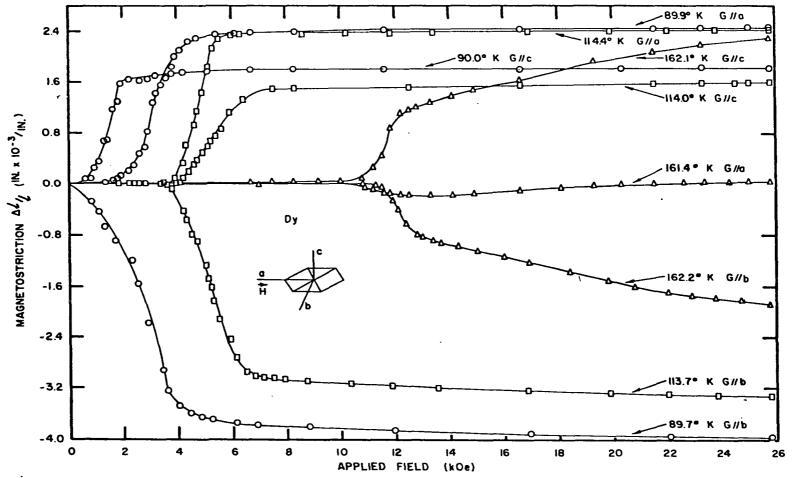



Figure 29. Magnetostriction of Dy as a function of field applied along the a axis. The curves shown are in the antiferromagnetic temperature range.

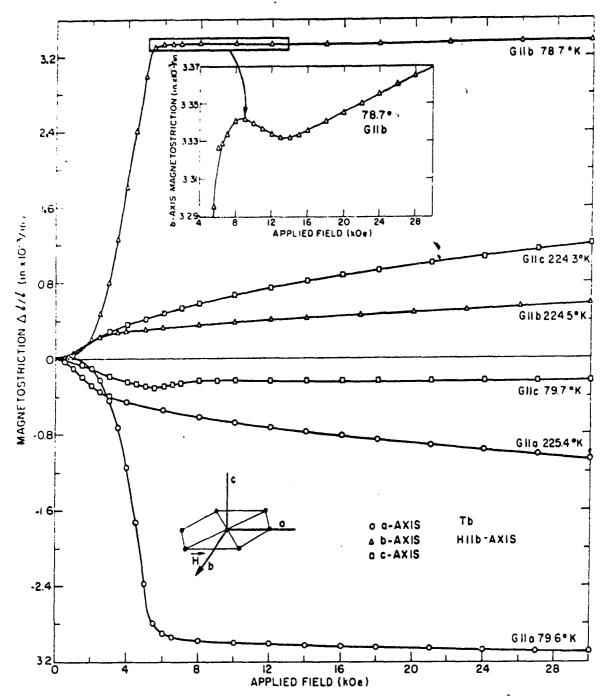



Figure 30. The a-, b-, and c-axis strains of Tb as a function of field magnitude applied along the b direction. Curves in the ferromagnetic and antiferromagnetic temperature range are given. The inset shows the forced magnetostriction above saturation. G indicates the strain gage direction.

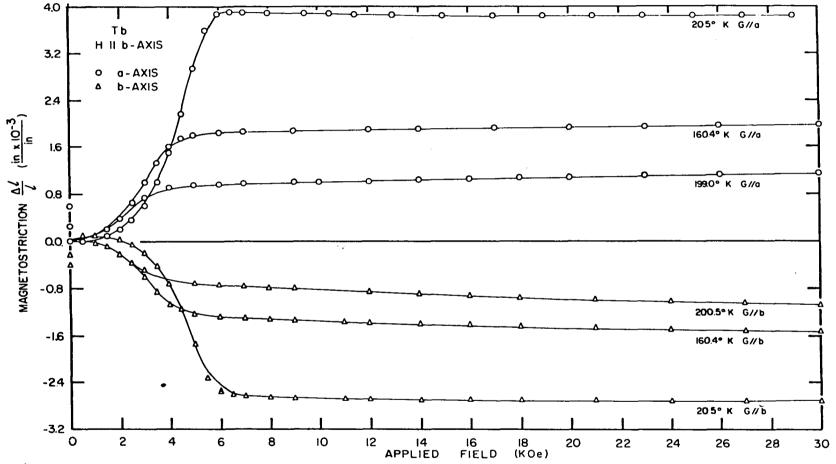



Figure 31. Basal plane magnetostriction of Tb as a function of field applied along the easy b-axis direction. The curves shown are in the ferromagnetic temperature range. G indicates the strain gage direction.

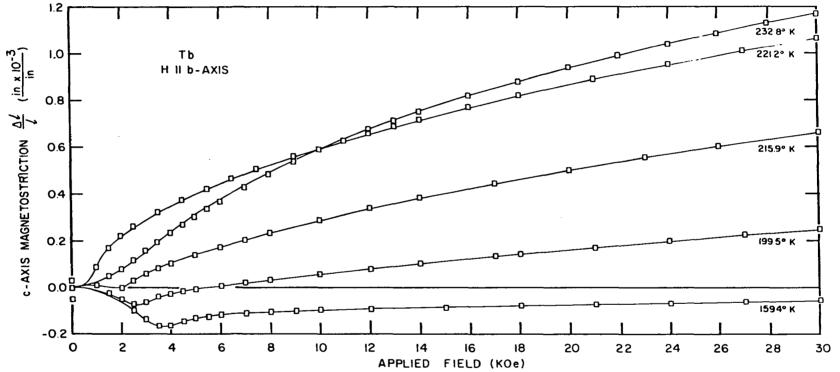



Figure 32. The c-axis magnetostriction of Tb as a function of field applied along the easy b-axis direction. The 221°K curve is in the antiferromagnetic temperature range. In contrast to Dy, fields less than 1 kOe are sufficient to remove the helical state. The 232°K curve is in the paramagnetic range. The remainder of the curves are in the ferromagnetic region.

applied field of less than one kOe will overcome the exchange field.

As expected, the c-axis strain accompanying the breakdown of the helical state is relatively small as shown in the 224°K curve.

An anomalous change in slope of the strain at the onset of technical saturation was observed, principally in the b- and c-axis curves. This effect, shown in the inset of the figure, is attributed to the rotation of domains across hard magnetic directions in the magnetization process, giving rise to the extra observed strain. The b-axis anomaly is largest at the lower temperatures and vanishes above 140°K.

The finite slope of the ferromagnetic magnetostriction curves below saturation is due to the demagnetizing field effect. The large values of magnetic moment (350 emu/gm. in Dy at 4°K) produces a maximum demagnetizing field in the specimens used of about 5.9 kilogauss.

# B. Critical Fields in Dy from a-c Plane Field Rotation Measurements

Curves are given in Figure 33 for the c-axis magnetostriction of Dy as a function of the angle of the applied field in the a-c plane. The angle  $\gamma_a$  of the 26 kOe field was referenced to the a axis. As shown below, these curves provide an alternate determination of the critical fields required to overcome the helical exchange energy and produce ferromagnetic alignment.

In the antiferromagnetic temperature region, applied fields whose

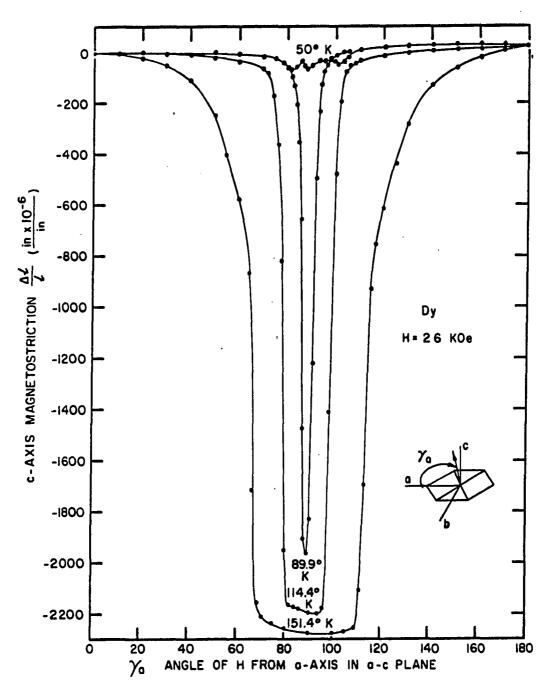



Figure 33. Dy c-axis magnetostriction as a function of applied field angle relative to the a axis. The 26 k0e field was applied in the a-c plane. The broadening of the curves at higher temperatures indicates the larger basal plane field component required to maintain the ferromagnetic state.

a-axis component is greater than the critical fields shown in Figures 28 and 29 will produce a spontaneous transition to ferromagnetic alignment of the moment along the a axis. This effect is the origin of the abrupt changes in c-axis strain evidenced in Figure 33. The a-axis component of the field is  $H_a = 26 \cos \gamma_a$ . The strain discontinuity occurs at a field

$$H_{cr} = 26 \cos \gamma_{ac} \tag{52}$$

where  $\gamma_{\rm ac}$  is the critical angle of Figure 33. Values of the critical field calculated from this expression agree rather closely with those found from the linear magnetostriction curves as shown in Table 5. This fact again indicates that the axial magnetic anisotropy of Dy is sufficient to prevent appreciable rotation of the moment out of the basal plane by the 26 kOe field even in this temperature range.

Table 5. Comparison of calculated and observed values of the critical fields in dysprosium

| T<br>°K | H <sup>a</sup><br>cr<br>kOe | H <sup>b</sup> cr<br>kOe |
|---------|-----------------------------|--------------------------|
| 89.9    | 0.45 <u>+</u> .3            | 0.5 + .2                 |
| 14.4    | 4.5 ± .3                    | 4.2 <u>+</u> .2          |
| 51.4    | 9•7 <u>+</u> •4             | 9•2 <u>+</u> •5          |

<sup>&</sup>lt;sup>a</sup>H<sub>cr</sub>from Equation 52.

H<sub>cr</sub> from linear magnetostriction curves.

#### C. Paramagnetic Magnetostriction

In the paramagnetic region (T >  $230^{\circ}$ K in Tb and T >  $179^{\circ}$ K in Dy) the magnetostriction is proportional to the square of the applied field as follows:

From thermodynamics dU = Tds-PdV+HdM

$$\cdot \cdot \cdot - \frac{\partial H}{\partial V} \Big|_{W} = \frac{\partial D}{\partial M} \Big|_{V}$$
 (53)

To first order M = VI = VXH, therefore, integrating

$$\Delta V = - \int \frac{\partial}{\partial P} (VXH) dH$$
 (54)

For a paramagnetic substance the susceptibility X is not a function of the magnetization (X  $\neq$  X(M,H)). Neglecting the pressure dependence of X and introducing the compressibility  $K = \frac{1}{V} \frac{\partial V}{\partial P}$  we have

$$\frac{\Delta V}{V} = \omega = \chi K \int H dH = \chi K \frac{H^2}{2}$$
 (55)

Assuming the linear magnetostriction to be proportional to this, the desired result is obtained.

Figures 34 and 35 show the linear magnetostriction of Dy and Tb plotted as a function of the square of the applied field. The curves are observed to be quite linear except at  $240^{\circ}K$  in Tb which shows slight curvature. This is probably the result of the breakdown of the assumption  $X \neq X(H,M)$  due to spin corrolation. In principal in the paramagnetic range it is possible to obtain values for all of the magnetostriction

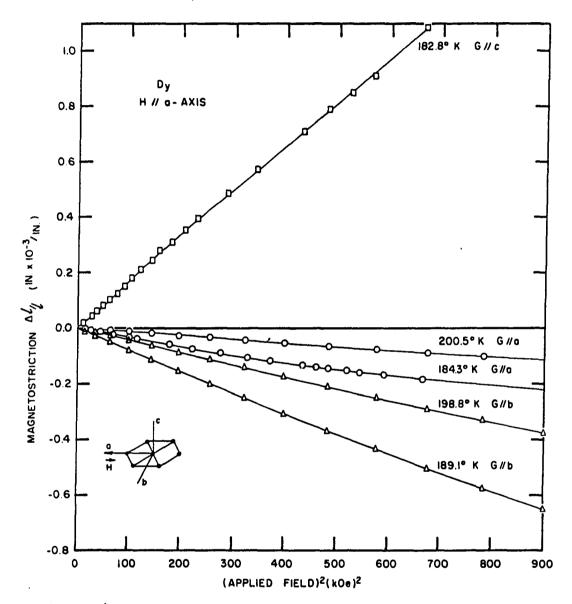



Figure 34. Dy a-, b-, and c-axis strain as a function of H<sup>2</sup> applied along the a axis in the paramagnetic region. G indicates the strain gage direction.

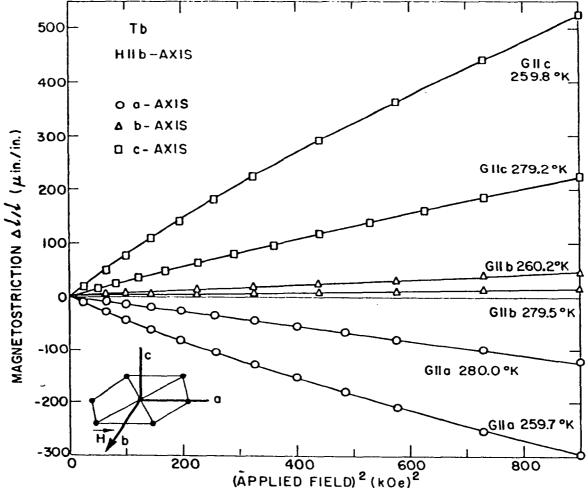



Figure 35. To a-, b-, and c-axis strain as a function of H<sup>2</sup> applied along the b direction in the paramagnetic region. Some ordering is indicated at 260° by the slight curvature at the higher fields. G indicates the strain gage direction.

constrains the moment to the basal plane. In reality, however, values so measured are highly field dependent and are difficult to obtain at constant value of magnetic moment as required by the theory. Due to these complications, no attempt was made to measure additional magnetostriction constants in the paramagnetic range.

#### D. Forced Magnetostriction

In the region above technical saturation, magnetostriction curves exhibit a small field dependence known as the forced magnetostriction.

This is a volume effect arising chiefly from the field induced change in the magnetization above saturation. Starting with the Maxwell relation

$$\left(\frac{\partial V}{\partial H}\right)_{P} = -\frac{\partial M}{\partial P}\Big|_{H \text{ ext}},$$
 (56)

and assuming a linear volume dependence of the magnetization, it can be shown (42) that the volume magnetostriction  $\omega = \Delta V/V$  is given by:

$$\omega = \frac{1}{2} \frac{\text{MI}^2}{\text{K}} - \frac{1}{\text{V}_0} \int_0^{\text{H}_S} \frac{\partial}{\partial P} (\text{VI}) dH - \frac{\text{I}_S^0 \text{H}_S}{\text{K}} + \frac{\text{I}_S^0 \text{U}}{\text{K}} + \frac{\text{I}_S^0 \text{U}}{\text{K}} (\text{H}_{\text{ext}} - \text{NI}_S)$$
 (57)

Here M = VI is the magnetic moment, N the demagnetizing constant, K the compressibility,  $I_s^O$  and  $H_s$  the undistorted saturation magnetization and field,  $I_s$  and  $H_{ext}$  the values of the magnetization and applied field above saturation, and v is a constant describing the volume dependence of  $I_s^O$ . The first term in the expression is the dominant low field term

proportional to the square of the magnetization. It saturates when I = I<sub>s</sub>. The second and third terms depend on the saturating field and not on the applied field. Their origin lies in the rotation of domains in the sample below saturation. The final term is the true volume forced magnetostriction and is linear in the applied field. As shown here the term is magnetically isotropic; however, Sato (58) has shown that in general the crystal anisotropy is field dependent, and this gives rise to an anisotropic forced magnetostriction.

Figures 36 and 37 show the forced magnetostriction of the a, b, and c axis of Dy and Tb as found from the high field slopes of the strain versus field curves. The values quoted for temperatures near the Néel temperature cannot be literally ascribed to forced magnetostriction as complete magnetic saturation cannot be obtained in the applied fields used here. The values given in this region were field dependent and were used only for correcting the magnetostriction constants to zero applied field. Points close to and above the Neel temperature were obtained from the slopes of strain versus H<sup>2</sup> plots.

Equation 55 gives a clue to the effect of pressure on the magnetization. As an example, combining the values of the a-, b-, and c-axis forced magnetostriction of Tb at  $80^{\circ}$  to obtain  $\frac{\partial(\Delta V/V)}{\partial H} = \frac{\partial\omega}{\partial H} = -\frac{1}{V}\frac{\partial M}{\partial P}$  it is found that  $\frac{\partial\omega}{\partial H}$  is negative indicating an increase in pressure will increase the magnetization. At  $200^{\circ}$ K, due to the large positive

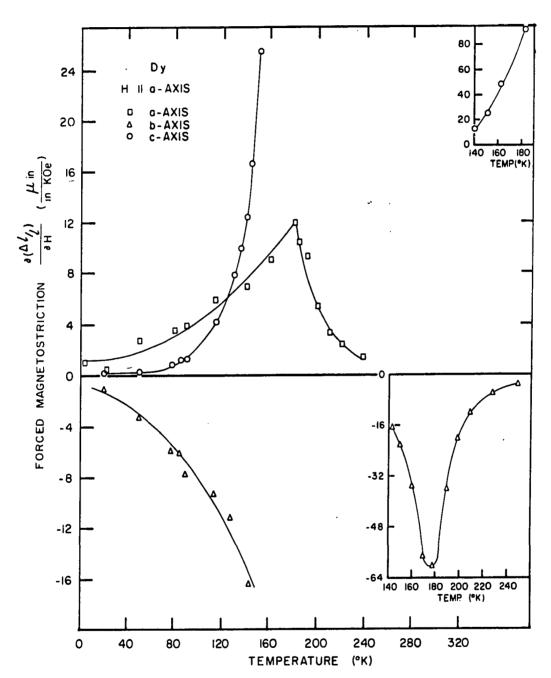



Figure 36. Forced magnetostriction of Dy in the a-, b-, and c-axis directions. The data points are the slopes of the high field region of the isothermal mangetostriction curves. The field was applied along the a axis. Values near the Néel temperature are field dependent and do not represent true saturation forced magnetostriction.

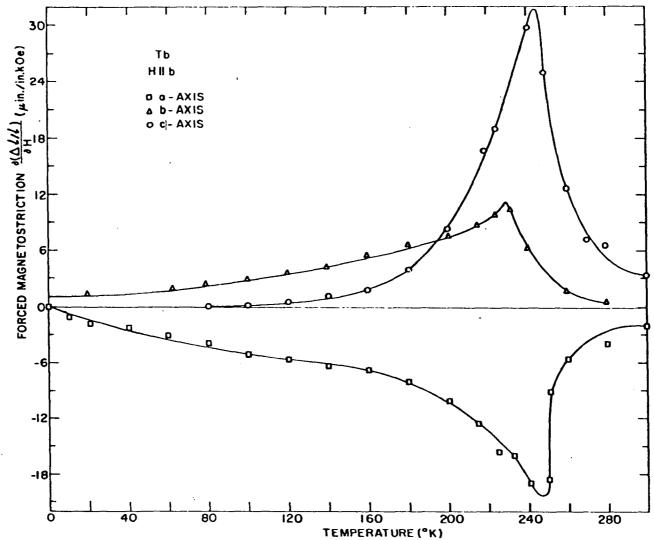



Figure 37. Forced magnetostriction of Tb in the a-, b-, and c-axis directions.

The data points are the slopes of the high field region of the isothermal magnetostriction curves. The field was applied along the b direction.

contribution from the c axis,  $\frac{\partial \omega}{\partial H}$  is positive indicating an increase in pressure lowers the magnetization.

The pressure dependence of the Curie temperature can be obtained from the forced volume magnetostriction under the assumptions of a theory by Kornetzki (40). He assumed that the change in saturation magnetization was the result of the volume dependence of the exchange integral or molecular field constant. In doing so it was possible to relate the pressure dependence of the Curie temperature to the volume magnetostriction by assuming  $M_s = f(T/T_c)$  with  $T_c$  a function of volume. The exact functional form of f was not critical in his calculation. The result derived by Kornetzki for the pressure dependence of the Curie temperature is

$$\frac{1}{T_{c}} \frac{\partial T_{c}}{\partial P} = \frac{1}{T} \frac{\partial \omega/\partial H}{(\partial M_{s}/\partial T)_{P} - 3\alpha K \partial \omega/\partial H}, \qquad (58)$$

where  $\alpha$  is the thermal expansion, K is the compressibility, and the other quantities are the same as used previously. This theory and its assumptions have several inherent deficiencies which are discussed by Sato (58) who also gives details of some later work on the subject.

#### X. MAGNETOSTRICTION OF ERBIUM

The four magnetic states of erbium which are stable in zero applied field have been described previously. The application of a field produces striking distortions of these phases as is described in the next subsection. The nature of these distortions is quite different from that encountered in the helical phases of Dy due to the anisotropy energy.

In Er large negative values of the second and fourth order anisotropy constants (see Table 4) favor magnetic alignment along the c axis.

A positive value of the sixth order constant K<sub>6</sub> produces a small basal plane component also (cone configurations). From these considerations the c axis is generally considered to be the easy magnetic direction.

#### A. Isothermal Measurements in Erbium

The a- and c-axis strains in Er as a function of field magnitude applied along the c axis are shown in Figure 38. The b-axis strain is essentially collinear with the a axis on this scale. Curves are shown for both the sinusoidal c-component region  $(53^{\circ} < T < 85^{\circ})$  and quasi-antiphase-domain  $(18^{\circ} < T < 53^{\circ})$  regions of Er. It was mentioned earlier that this type of measurement in ferromagnets is highly non-reproducible due to random domain effects. This objection does not exist in Er since the zero field state is a unique and reproducible magnetic configuration. The large strains shown in the figure at  $20^{\circ}$ ,  $29^{\circ}$ , and  $47^{\circ}$  result from

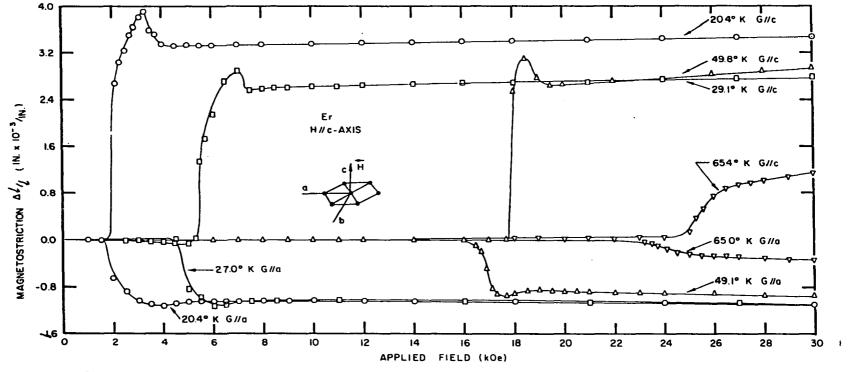



Figure 38. Magnetostriction of Er as a function of field applied along the c axis. Temperatures below 53°K correspond to the quasi-antiphase-domain structure in zero external field. The 65°K curves are in the modulated moment phase. G indicates the strain gage direction.

the destruction of the intermediate magnetic phase in favor of ferromagnetic alignment along the c axis. Actually, complete alignment of the moment along the c axis is probably not accomplished due to the magnetic anisotropy. The quasi-antiphase-domain is spontaneously destroyed by the anisotropy energy at 180K in favor of conical ferromagnetism. higher temperatures, increasingly higher critical applied fields are required to effect the transition as shown in the figure. At 640K the strain produced above the critical field presumbly arises from a field induced modification of the sinusoidal c-component structure in opposition to the exchange field. Below 180K application of a c-axis field produced very small strains due to the extremely high axial magnetic anisotropy as shown in Figure 39. Very little modification of the zero field conical state is apparently produced by the c-axis field. This is also confirmed by the magnetic moment work of Green (29). He measured a c-axis moment at 18 kOe of 7.9  $\mu_{\textrm{R}}$  which is close to the zero field neutron diffraction result (13) at 7.2  $\mu_{\mbox{\scriptsize p}}$  (ignoring conduction electron polarization).

Application of a field along a basal plane direction below 18°K produced the striking effect shown in Figure 40. Negligible strain (corresponding to no modification of the magnetic structure) was observed up to about 18.5 kOe at which point a fairly large strain was observed in all three axes. This critical field of approximately 18.5 kOe is independent of temperature within experimental accuracy from 15°K

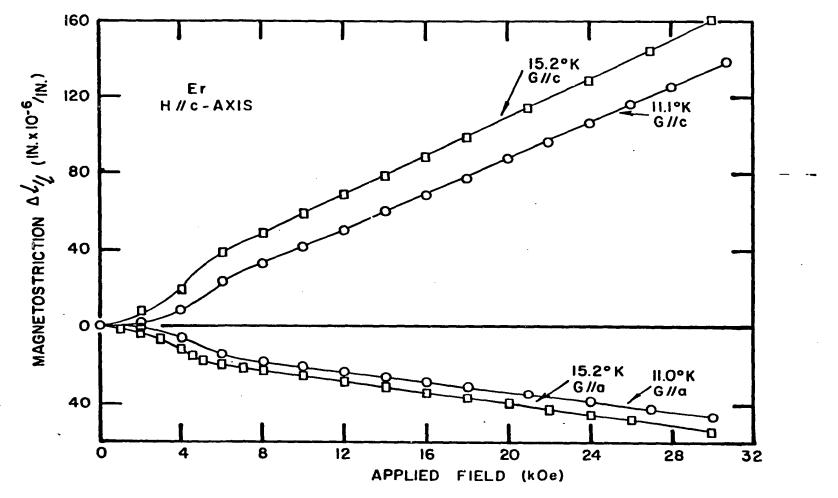



Figure 39. Magnetostriction of Er as a function of applied field in the conical ferromagnetic region. The field was applied along the c axis.

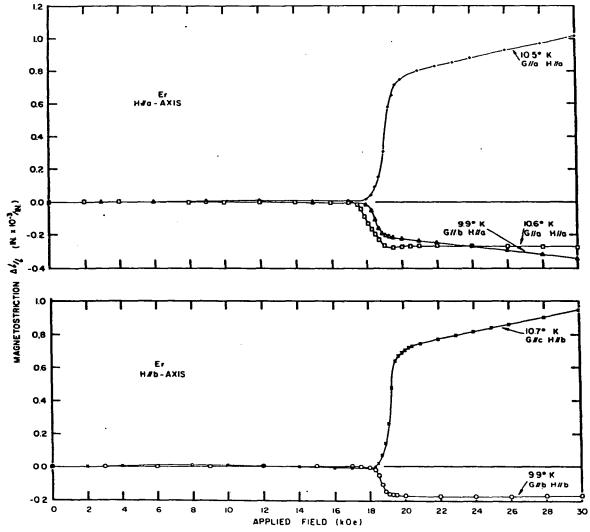



Figure 40. Magnetostriction of Er as a function of applied field in the conical ferromagnetic temperature range. The field was applied along the a axis in the upper figure and along the b axis in the lower figure.

down to 4.2°K. Only small temperature variations in strain magnitude were observed. The prominent features of this effect are the essentially isotropic contraction of the basal plane and expansion of the c axis which results from application of the field along either the a or b axis. This indicates the magnetostrain is dominated by the change in the exchange energy terms and not by the six fold anisotropy energy in contrast to Dy and Tb. Basal plane strain measurements made perpendicular to the field direction exhibited larger strain variations above the "knee" of the curve than those made parallel to the field directions as shown in the figure.

Flippen (27) has measured the magnetic moment of an a-axis Er crystal in static fields up to 56 kOe. He found a value of 3.8 Bohr magnetons/ion along the field direction. This is somewhat lower than the value of 4.1  $\mu_{\rm B}$  found by Cable et al. (13) by neutron diffraction for the basal plane component in zero applied field. This observation, together with the larger variation of the magnetostrain measured perpendicular to the field direction mentioned above, lead to the postulate shown in Figure 41 about the effect of an applied field on the Er magnetic structure. It is conjectured that the application of a basal plane field above about 18 kOe partially overcomes the exchange field and breaks the conical magnetic moment distribution (a) down into a "fan-like" configuration (b) about the field direction. The relatively larger variation of magnetostrain

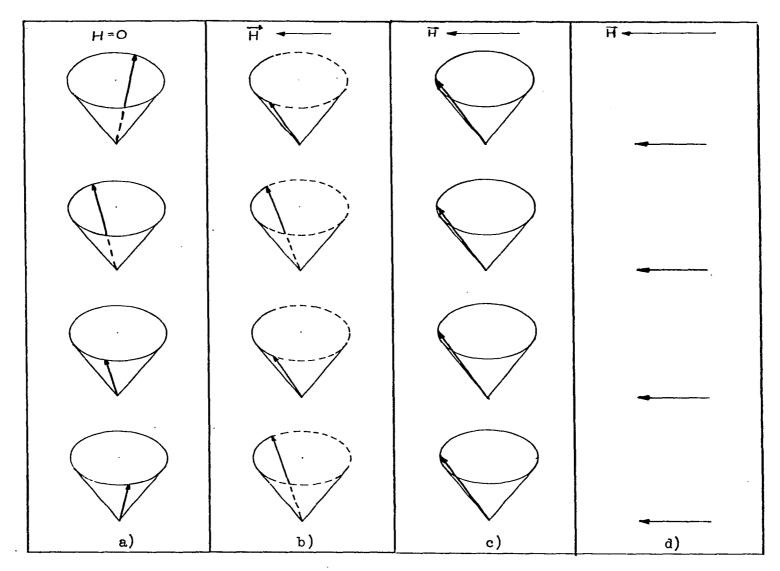



Figure 41. Influence of progressively larger magnetic fields applied in the basal plane of Er below 20 oK.

perpendicular to the field direction suggests that the spread of the fan may be smoothly decreased by increased fields in opposition to the exchange force. At fields higher than present measurements extend, the fan may disappear in favor of ferromagnetic alignment in the plane containing the c axis and the applied field direction (c). Conceivably this could also be accompanied by some modification in the apex angle of the cone in opposition to the large axial anisotropy energy. Eventually fields large enough to overcome the anisotropy would produce ferromagnetic alignment in the basal plane along the field direction (d).

The magnetostriction resulting from application of a basal plane field is shown in Figures 42 and 43 in the quasi-antiphase-domain region. The figures indicate considerable modification of the magnetic state is induced by the field. An initial expansion is observed along the field direction accompanied by a transverse contraction. This initial behavior is proportional to H<sup>2</sup> indicating no ordering has occurred. A reversal in slope occurs at higher fields. From Figure 43 the parallel magnetostrictions along either the a or b axis are seen to be equivalent after correcting for the difference in measurement temperature.

The results of the magnetostriction measurements in the sinusoidal c-component temperature range are shown in Figure 44. The strain is proportional to the square of the applied field, showing that no change in the state of magnetic order is produced by the application of a

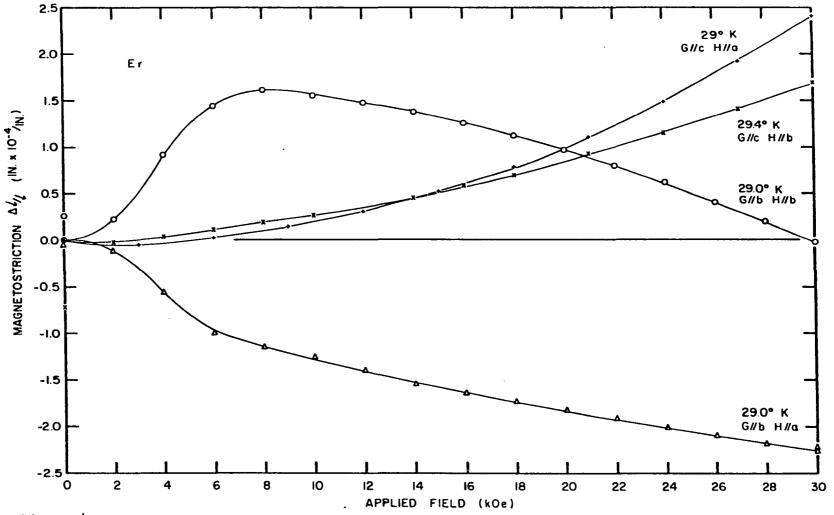



Figure 42. Magnetostriction of Er as a function of applied field in the quasi-antiphase-domain temperature region. The field was applied in the basal plane.

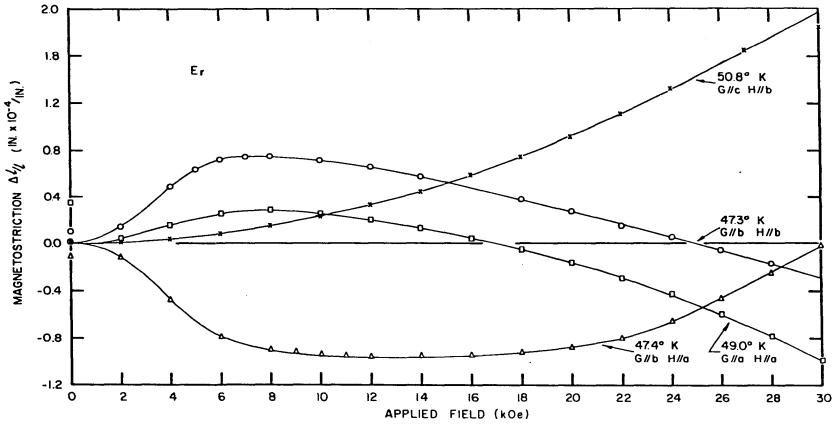



Figure 43. Magnetostriction of Er as a function of applied field in the quasi-antiphase-domain temperature range. The field was applied in the basal plane.

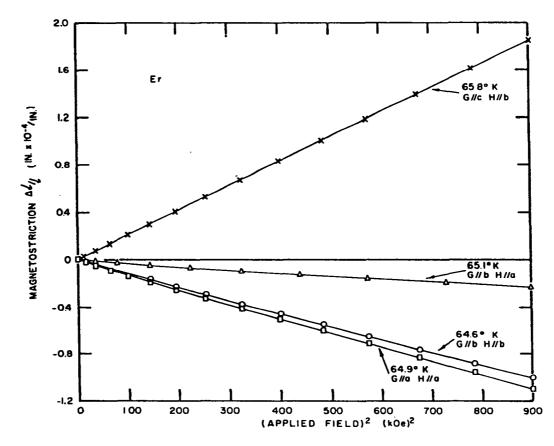



Figure 44. Magnetostriction of Er as a function of H<sup>2</sup> applied in the basal plane. The curves shown are in the modulated moment temperature range. G indicates the strain gage direction.

field in the basal plane at this temperature.

In the paramagnetic temperature range ( $T > 85^{\circ}K$ ), the magnetostriction is again proportional to  $H^2$  as shown in Figure 45 for the field applied along the c axis. Similar  $H^2$  dependence was obtained for the magnetic field along the b axis.

#### B. Erbium Field Rotation Measurements

## 1. Constants--second order theory

As is indicated later in this section, the basal plane (six fold) anisotropy of Er is sufficiently small that a second order theory is sufficient to describe the magnetostriction. Retaining only terms up through second order ( $\ell$  = 0 and 2) the magnetostriction expression (Equation 13) becomes:

$$\frac{\Delta \ell}{\ell} = [\lambda_{1}^{\alpha,0} + \lambda_{1}^{\alpha,2} (\alpha_{z}^{2} - \frac{1}{3})] (\beta_{x}^{2} + \beta_{y}^{2}) + [\lambda_{2}^{\alpha,0} + \lambda_{2}^{\alpha,2} (\alpha_{z}^{2} - \frac{1}{3})] \beta_{z}^{2} 
+ \frac{1}{2} \lambda^{\gamma,2} [(\alpha_{x}\beta_{x} + \alpha_{y}\beta_{y})^{2} - (\alpha_{x}\beta_{y} - \alpha_{y}\beta_{x})^{2}] 
+ 2 \lambda^{\epsilon,2} (\beta_{x}\alpha_{x} + \beta_{y}\alpha_{y}) \beta_{z}\alpha_{z}$$
(59)

This expression corresponds to cylindrical symmetry.

In rotation measurements on Er at low temperatures with the field applied in the basal plane, the magnetization will be constrained by the anisotropy energy to move on the surface of a cone of half apex angle  $\phi$ . If the angle of the applied field (or of the projection of the magnetic

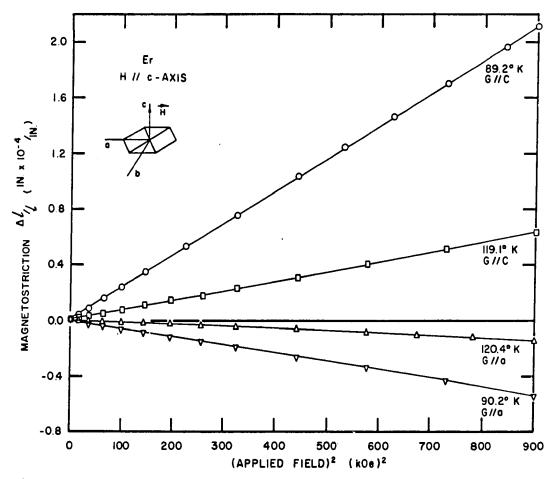



Figure 45. Magnetostriction of Er in the paramagnetic temperature range as a function of the square of the applied field. G refers to the strain gage direction. The field was applied along the c axis.

moment on the basal plane) relative to the a axis is  $\theta_a$ , then the angle dependence of the anisotropic constant  $\lambda^{\gamma,2}$  can be written,

$$\frac{1}{2} \lambda^{\gamma,2} \sin^2 \phi \left[ (\beta_x \cos \theta_a + \beta_y \sin \theta_a)^2 - (\beta_x \sin \theta_a - \beta_y \cos \theta_a)^2 \right]. \tag{60}$$

On subtracting the reference strain in the state  $\theta = 0^{\circ}$ , the second order expression for the rotation magnetostriction appropriate to Er becomes:

$$\frac{\Delta \ell}{\ell} \Big|_{a,b}^{\theta'a} = \frac{1}{2} \lambda^{\gamma,2} \sin^2 \phi \sin^2 \theta'_a = \frac{1}{2} 2C \sin^2 \phi \sin^2 \theta'_a$$
 (61)

The + signs pertain to the a- and b-axis strains respectively. The constant C may thus be calculated in the conical magnetic states if the cone angle is known.

Below 19°K the neutron diffraction results indicate a c-axis component of the moment of 7.2  $\mu_B$  and a basal plane component of 4.1  $\mu_B$ . This corresponds to a cone angle  $\phi$  = 30°. In a 56 kOe applied field, Flippen (27) measured an a-axis moment of 3.8  $\mu_B$ . Thus, within experimental uncertainty, one can assert that the cone angle is not changed by a-axis fields of this magnitude.

### 2. Field rotation results

The results of the measurement of the b-axis strain versus angle  $\theta_a^i$  in Er at 15°K and 4.6°K in a 30 kOe field are shown in Figure 46. The reasonably close fit to the  $\sin^2\theta$  curve indicates a small six fold

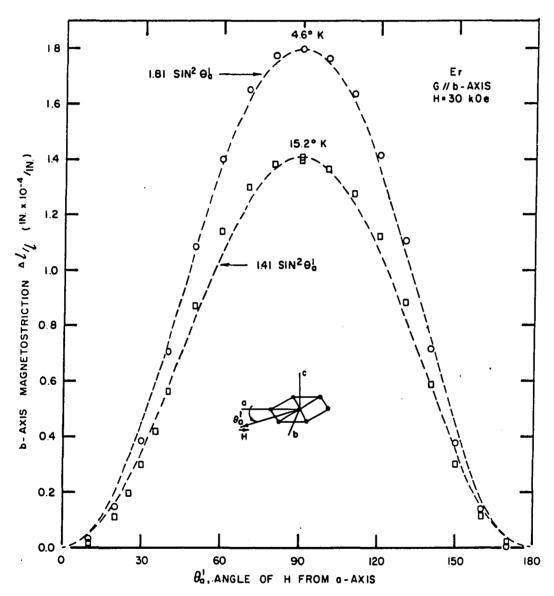



Figure 46. Second order theoretical fit and experimental results for the b-axis magnetostriction of Er as a function of the angle of the applied field relative to the a axis.

The 30 kOe field was applied in the basal plane. The zero external field state is one of conical ferromagnetism at these temperatures.

anisotropy. From these measurements and assuming  $\phi = 30^{\circ}$ , a value C = 362 micro-inches/inch is obtained at  $4.6^{\circ}$ K and a value C = 282 micro-inches/inch at  $15.2^{\circ}$ K.

Figure 47 shows the magnetostrain versus applied field angle in the quasi-antiphase-domain temperature range. In the temperature range shown, the strain magnitude and signare a function of field strength as seen from the 47°K curves here or from the isothermal data of Figures 42 and 43. Due to the lack of knowledge about the exact details of the field-induced modifications of the quasi-antiphase-domain structure values of the constant C cannot be precisely calculated. If the moment remains in a conical configuration, then the  $\theta_a^i = 90^\circ$  strain is proportional to C. Under this assumption, C becomes negative at higher fields in the  $47^\circ$ K measurements. The results of rotation measurements in the modulated moment region above the  $53^\circ$ K transition and in the paramagnetic range above  $85^\circ$ K are shown in Figure 48. The values of C above  $53^\circ$ K are

# 3. Theoretical value of C at T=0 K

From these data and the a-axis magnetic moment data of Green (29), the anticipated value of the constant C at T=0 may be calculated using the Callen theory (Equation 44 with  $\ell=2$ ). The value of the magnetic moment at T = 0 was taken to be the theoretical value of 300 emu/gm. A value of C(T=0) = -2600 micro-inches/inch was calculated by the

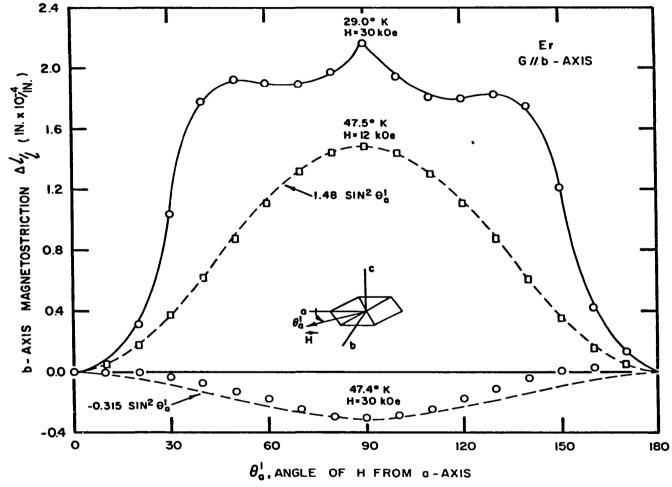



Figure 47. The b-axis magnetostriction of Er as a function of applied angle relative to the a axis. The field was applied in the basal plane. Note the opposite signs of the 47°K curves at the two fields shown. These temperatures correspond to the quasi-antiphase-domain structure in zero applied field.

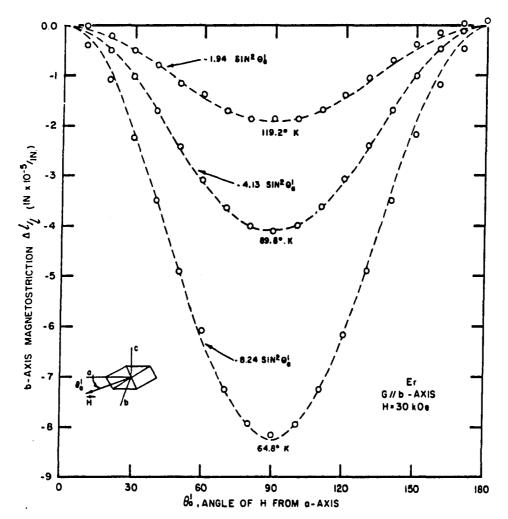



Figure 48. Second order theoretical fit and experimental results for the b-axis magnetostriction of Er as a function of applied field angle relative to the a axis. The 30 kOe field was applied in the basal plane. At 64.80K in zero external field Er has the modulated moment magnetic state. At the other temperatures Er is paramagnetic.

method using the data shown in Figure 48.

Tsuya, Clark and Bozorth (65) have calculated the one ion magnetoelastic coupling coefficients in the rare earths considering the effects
of the distortion of the crystal field by the nearest neighbor positive
ions and the field arising from the strained charge distribution of the
conduction electrons. Their theory predicts negative values for the
constant C in Er due to the prolate form of the 4f electron charge cloud
in contrast to the oblate nature of the distribution in Dy, Tb, and Ho
which gives rise to a positive magnetostriction. The positive values of
C found in Er at low temperatures are thus not in accord with this theory.
The discrepancy may be due to a large contribution from the exchange
energy which is not properly accounted for by the one ion terms used in
the theory of Tsuya et al.

#### C. Temperature Dependence of Er Strain

Figure 49 shows the temperature dependence of the a-, b-, and c-axis strains as a function of temperature. Curves are shown for zero field and for a 30 kOe field applied along the c axis. The a- and c-axis curves also show the strain resulting from application of a 30 kOe field along the a axis. The zero field curves show inflection points at about 55° and 85°K corresponding to changes in the states of magnetic order. The similarity between the a- and b-axis curves again demonstrates the essential absence of basal plane anisotropy in Er. At

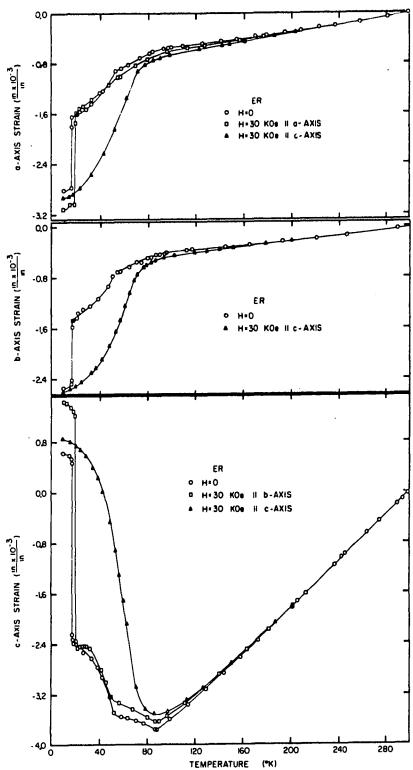



Figure 49. The a-, b-, and c-axis strain of Er as a function of temperature in zero field and in a 30 kOe field applied along the c axis. Results are also given for the a- and c-axis strain with the field applied in the basal plane.

the lowest transition temperature, large discontinuities are observed in the zero field strain corresponding to the large change in exchange energy as the axial anisotropy annihilates the quasi-antiphase-domain in favor of the conical ferromagnetic structure. As opposed to Dy and Tb, this change is not accompanied by an orthorhombic distortion of the hexagonal lattice as shown from the X-ray studies of Darnell (20). The conical ferromagnetic transition occurs spontaneously at 17.5°K and can be induced by a 30 kOe field applied in the basal plane at 20°K. It is noted that from 20°K to 17.5°K two states are stable in a field--the fan-ferro state formed by application of the field in the basal plane and c-axis conical ferromagnetic alignment produced by the c-axis field. This situation, resulting from a metastable anisotropy energy near the spontaneous transition, is shown in Figure 50.

As indicated above, the cone angle is not significantly modified by the application of a 30 kOe c-axis field below 18°K. Figure 49 shows that the strain measured in a c-axis field is a continuous function of the temperature across the 20°K transition. This lends support to the earlier statement that at 20°K there is no discontinuous change from conical ferromagnetism to c-axis ferromagnetic alignment. Presumably a conical structure is stable in a field well into the quasi-antiphase-domain region.



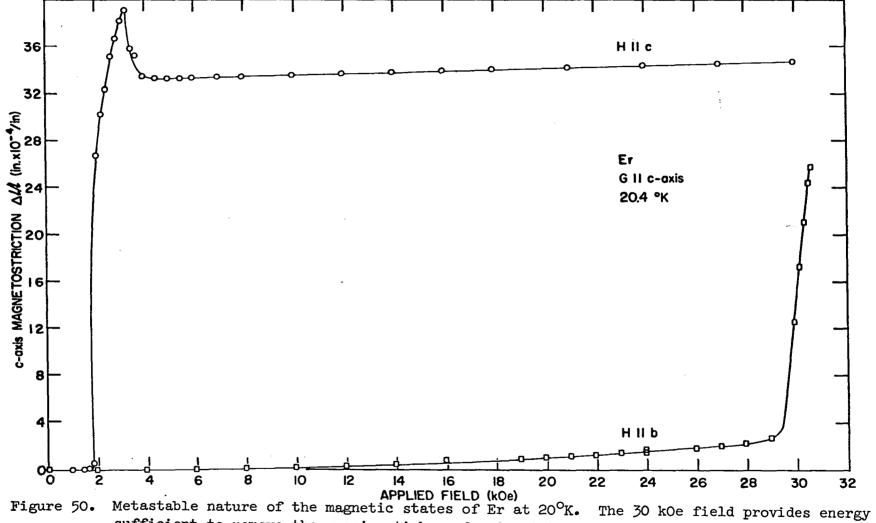



Figure 50. Metastable nature of the magnetic states of Er at 20°K. The 30 kOe field provides energy sufficient to remove the quasi-antiphase-domain state when applied along the c axis, or to produce the fan-ferromagnetic phase when applied in the basal plane.

No attempt was made to calculate the remaining constants in Equation 59 due to uncertainties about the nature of the field induced magnetic states. As is seen from the results presented here, the effect of a magnetic field on the magnetic structure of Er is quite pronounced.

Neutron diffraction experiments performed in high fields (> 50 kilogauss) should provide considerable insight into the exact nature of these field induced modifications.

### XI. BIBLIOGRAPHY

- 1. Alstad, J., The magnetostriction of gadolinium and holmium single crystals, unpublished Ph.D. thesis, Ames, Iowa, Library, Iowa State University of Science and Technology, 1963.
- 2. Alstad, J. and S. Legvold, J. Appl. Phys., 35, 1752 (1964).
- 3. Beenakker, J.J.M. and C. A. Swenson, Rev. Sci. Instrum., 26, 1204 (1955).
- 4. Behrendt, D. R., S. Legvold and F. H. Spedding, Phys. Rev., 109, 1544 (1958).
- 5. Belov, K. P., R. Z. Levitin and S. A. Nikitin, Soviet Physics Uspekhi, 7, 179 (1964).
- 6. Belov, K. P., R. Z. Levitin, S. A. Nikitin and A. V. Ped'ko, Soviet Physics-JETP, 13, 1096 (1961).
- 7. Birss, R. R., Advances in Physics 8, 252 (1959).
- 8. Bitter, F., Introduction to ferromagnetism, New York, McGraw-Hill Book Company, 1937.
- 9. Bozorth, R. M., Ferromagnetism, New York, D. Van Nostrand, Inc., 1951.
- 10. Bozorth, R. M., Phys. Rev., 96, 311 (1954).
- 11. Bozorth, R. M. and T. Wakiyama, J. Phys. Soc. Japan, 17, 1669 (1962).
- 12. Bozorth, R. M. and T. Wakiyama, J. Phys. Soc. Japan, 18, 97 (1963).
- 13. Cable, J. W., E. O. Wollan, W. C. Koehler and M. K. Wilkinson, J. Appl. Phys., 32, 498 (1961).
- 14. Callen, E. R. and H. B. Callen, Phys. Rev., 129, 578 (1963).
- 15. Callen, E. R., A. E. Clark, B. F. DeSavage and W. Coleman, Phys. Rev., 130, 1735 (1963).
- 16. Clark, A. E., R. M. Bozorth and B. F. DeSavage, Phys. Letters 5, 100 (1963).

- 17. Clark, A. E., B. F. DeSavage and R. M. Bozorth, Phys. Rev., <u>138</u>, A216 (1965).
- 18. Corner, W. D. and F. Hutchinson, Proc. of the Royal Society, 75, 781 (1960).
- 19. Darnell, F. J., Phys. Rev., 132, 128 (1963).
- 20. Darnell, F. J., Phys. Rev., 132 1098 (1963).
- 21. deGennes, P. G. and J. Friedel, J. Phys. Chem. Solids, 4, 71 (1958).
- 22. Elliott, J., J. Phys. Soc. Japan, 17, Suppl. Bl, 1 (1962).
- 23. Elliott, J., Phys. Rev., <u>124</u>, 346 (1961).
- 24. Enz, U., J. Appl. Phys., 32S, 22 (1961).
- 25. Enz, U., Physica, 26, 698 (1960).
- 26. Finnemore, D. K., J. E. Ostenson and T. F. Stromberg, U.S. Atomic Energy Commission Report <u>IS-1046</u> [Iowa State Univ. of Science and Technology, Ames. Inst. for Atomic Research] (1964).
- 27. Flippen, R. B., J. Appl. Phys., 7, 2026 (1963).
- 28. Goldman, J. E. and R. Smoluchowski, Phys. Rev., 75, 140 (1949).
- 29. Green, R. W., S. Legvold and F. H. Spedding, Phys. Rev., <u>122</u>, 827 (1961).
- 30. Greninger, A. B., Trans. Am. Inst. Mining, Met. Engrs., 117, 61 (1963).
- 31. Hegland, D. E., S. Legvold and F. H. Spedding, Phys. Rev., <u>131</u>, 158 (1963).
- 32. Herpin, A., J. Phys. Radium, 23, 453 (1962).
- 33. Herpin, A., P. Meriel and J. Villain, C. R. Acad. Sci., Paris, 249, 1334 (1959).
- 34. Jew, T. T., Magnetic anisotropy in dysprosium single crystals, Unpublished M.S. thesis, Ames, Iowa, Library, Iowa State University of Science and Technology, 1963.

- 35. Kasuya, T., Prog. Theoret. Phys. (Kyoto), 16, 45 (1956).
- 36. Kaufman, A., Investigation of strain gages for use at cryogenic temperatures, unpublished paper, Society for Experimental Stress Analysis Spring Meeting, Seattle, Washington, 1963, Cleveland, Ohio, Library, National Aeronautics and Space Administration, 1963.
- 37. Koehler, W. C., J. Appl. Phys., 36, 1078 (1965).
- 38. Koehler, W. C., J. W. Cable, E. O. Wollan and M. K. Wilkinson, J. Phys. Soc. Japan, 17, Suppl. B3, 32 (1962).
- 39. Koehler, W. C., H. R. Child, E. O. Wollan and J. W. Cable, J. Appl. Phys., 34, 1335 (1963).
- 40. Kornetzki, M., Z. Physik, 98, 289 (1935).
- 41. Landolt, H. H. and R. Bornstein, Landolt-Bornstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Tecknik, Berlin, Verlag J. Springer, 1923.
- 42. Lee, E. W., Proc. Phys. Soc. (London), 84, 693 (1964).
- 43. Lee, E. W., Rept. on Prog. in Phys., 18, 184 (1955).
- 44. Lee, E. W. and L. Alperts, Proc. Phys. Soc. (London), 79, 997 (1962).
- 45. Legvold, S., J. Alstad and J. Rhyne, Phys. Rev. Letters, <u>10</u>, 509 (1963).
- 46. Liu, S. H., D. R. Behrendt, S. Legvold and R. H. Good, Jr., Phys. Rev., 116, 1464 (1959).
- 47. Mason, W. P., Phys. Rev., <u>96</u>, 302 (1954).
- 48. Mason, W. P. and J. A. Lewis, Phys. Rev., <u>94</u>, 1439 (1954).
- 49. McClintock, R. M., Rev. Sci. Instrum., 30, 715 (1959).
- 50. Miwa, H. and K. Yosida, Prog. Theoret. Phys. (Kyoto), 26, 693 (1961).
- 51. Nagamiya, T., J. Appl. Phys., 33, 1029S (1962).

- 52. Nagamiya, T., K. Nagata and Y. Kitano, Prog. Theoret. Phys. (Kyoto), 27, 1253 (1962).
- 53. High, H. E., J. Appl. Phys., 34, 3323 (1963).
- 54. Nigh, H. E., Magnetization and electrical resistivity of gadolinium single crystals, unpublished Ph.D. thesis, Ames, Iowa, Library, Iowa State University of Science and Technology, 1963.
- 55. Nikitin, S. A., Soviet Physics-JETP, <u>16</u>, 21 (1963).
- 56. Rhyne, J. J. and S. Legvold, Phys. Rev., 138, A507 (1965).
- 57. Ruderman, M. A. and C. Kittel, Phys. Rev., 96, 99 (1954).
- 58. Sato, H., Phys. Rev., 109, 802 (1958).
- 59. Spedding, F. H. and A. H. Daane, J. Metals, 6, 504 (1954).
- 60. Spedding, F. H. and A. H. Daane, Met. Rev., 5, 297 (1960).
- 61. Spedding, F. H., S. Legvold, A. H. Daane and L. D. Jennings, Prog. in Low Temp. Phys., 2, 368 (1957).
- 62. Spedding, F. H. and J. E. Powell, J. Metals, 6, 1131 (1954).
- 63. Strandburg, D. L., Electrical and magnetic properties of holmium single crystals, unpublished Ph.D. thesis, Ames, Iowa, Library, Iowa State University of Science and Technology, 1961.
- 64. Strauss, H. E., J. Appl. Phys., 30, 698 (1959).
- 65. Tsuya, N., A. E. Clark and R. M. Bozorth, Magnetostriction in heavy rare earth metals, unpublished paper, American Physical Society April Meeting, Washington, D.C., 1965, Silver Spring, Maryland, Library, Naval Ordnance Laboratory, 1964.
- 66. Wilkinson, M. K., W. C. Koehler, E. O. Wollan and J. W. Cable, J. Appl. Phys., 32, 48s (1961).
- 67. Yoshimori, A., J. Phys. Soc. Japan, 14, 807 (1959).
- 68. Yosida, K., Phys. Rev., 106, 893 (1957).

- 69. Yosida, K. and H. Miwa, J. Appl. Phys., 32, 8s (1961).
- 70. Yosida, K. and H. Miwa, Prog. Theoret. Phys. (Kyoto), <u>26</u>, 693 (1961).
- 71. Zener, C., Phys. Rev., <u>96</u>, 1335 (1954).

## XII. ACKNOWLEDGEMENTS

The author wishes to express sincere appreciation to Dr. Sam Legvold, for suggesting this problem and for his advice and assistance throughout the investigation in the dual capacity of group leader and friend.

The assistance of Dr. J. K. Alstad who developed many of the experimental techniques used for magnetostriction measurements is gratefully acknowledged.

Special credit is extended to Mr. P. Palmer and Mr. B. J. Beaudry for the preparation of the rare earth metal; to the Ames Laboratory graphics department for the preparation of the figures and to the maintenance department for help in installation of the Harvey Wells magnet system; and to Mr. W. Sylvester and Mr. R. Brown for aid in constructing the experimental apparatus.

It is a pleasure to acknowledge the help of many of the author's

Ames Laboratory colleagues: Dr. L. R. Sill for growing the single

crystals and for many helpful discussions; Mr. G. McClellan and Mr. E. T.

Rodine for performing the strain gage calibrations; Mr. T. Erskine, Mr.

M. Knotek and Mr. B. Carpenter for aid in constructing equipment for the

magnet system and for preparation of graphs and data calculations.

Dr. A. E. Clark, Dr. E. R. Callen, Mr. H. H. Sample, Mr. T. F. Stromberg, Mr. R. S. Lee, and others are thanked for numerous helpful discussions.

Certainly not least was the assistance of the author's wife,

Marilyn, for many suggestions in the writing of the computer programs,

for her help in preparation of the manuscript, and for her encouragement
during this investigation.

#### XIII. APPENDIX

# A. Errors in Strain Gage Measurements

The absolute errors inherent in the magnetostriction measurements are difficult to calculate due to the rather large number of unknown parameters. These include the reliability of the strain gage bond to both dummy quartz disk and sample, variation in the linearity of strain between individual gages, etc.

The systematic errors in the strain gage measurement are dominated by the variability of the strain gage factor. The manufacturer asserts that the gage factor remains constant from gage to gage within ± 0.5 per cent. From the calibration performed, the temperature variation of the gage factor was known within about ± 1.0 per cent. On the basis of copper thermal expansion comparison measurements and other reproducibility checks, the over-all accuracy of the strain gage measurements is estimated to be five per cent for isothermal measurements and about ten per cent for measurements as a function of temperature. It should be pointed out that the relative accuracy and precision of the strain measurement is considerably better than indicated by these values. Relative strains as small as 0.5 micro-inch/inch can be reliably measured throughout the

B. Errors in the Magnetostriction Constants A and C of Dy and Tb Produced by the Magnetic Anisotropy

The effect of the six fold magnetic anisotropy in Tb and Dy is to prevent the magnetization from aligning with the field applied in hard magnetic directions.

In the determination of the constant C from the expression  $\frac{\Delta l}{l} = \frac{1}{4} \text{ A } \sin^2 2\theta + 2\text{C } \sin^2 \theta \text{ the strain measured at an applied field}$  angle of  $\theta = 90^{\circ}$  was used. Correctly this should be the strain measured when the magnetization angle  $\phi = 90^{\circ}$ . This number is not obtainable at low temperatures due to the anisotropy. It should be pointed out that errors in C due to this misalignment are not as serious as might at first appear, due to the small value of the first derivative of the dominant  $\sin^2 \theta$  term in the neighborhood of  $\theta = 90^{\circ}$ .

The degree of misalignment between the magnetization and applied field for  $\theta = 90^{\circ}$  may be calculated from the equilibrium expression for the angular dependent magnetic energy, Equation 50:

$$0 = M_{s} H \sin (90^{\circ} - \phi_{o}) - 6K_{6}^{6} \sin 6\phi_{o}.$$
 (50)

Using the values of the saturation magnetization  $M_s$ , approximate internal field H, and values of  $K_6^6$  found previously, this equation was solved for the magnetization angle  $\phi_o$  corresponding to a field angle  $\theta = 90^\circ$  using an iteration technique on the computer. Values of  $\phi_o$  were evaluated for several temperatures in Dy and Tb.

The effect of the misalignment on the constants A and C was calculated from the fourth order rotation expression above and the measured strains at  $\theta = 60^{\circ}$  and  $\theta = 90^{\circ}$ . The equations obtained for the corrected values of C and A are: (algebraic signs of A and C chosen correspond to a-axis strains with  $\theta$ ,  $\phi$  relative to the b-axis)

$$C_{cor} = \frac{\frac{\Delta \ell}{\ell}|_{\theta=90^{\circ}} - \frac{4}{3} \frac{\Delta \ell}{\ell}|_{\theta=60^{\circ}} \sin^{2} 2\phi_{o}}{2 \left(\sin^{2}\phi_{o} - \sin^{2} 2\phi_{o}\right)}$$
(62)

and 
$$A_{cor} = \frac{4}{3} \frac{\Delta l}{l} \Big|_{\theta = 60} \circ - 2C_{cor}. \tag{63}$$

Values of the magnetization angle  $\phi_0$  for an applied field angle  $\theta = 90^{\circ}$  in Dy and Tb at low temperatures are given in Table 6 along with the experimental and corrected values of C and A found by this method. It is noted that the errors encountered in Tb are negligible above  $20^{\circ}$ K. In Dy the effect of the anisotropy is more severe as shown.

### C. Tabulation of Experimental Data

Magnetostriction data appearing in this thesis are tabulated in the following figures. All strains  $\Delta l/l$  are given in units of (inches x  $10^{-6}$ / inch); applied fields, H, in kOe; applied field angles,  $\theta$ , in degrees; and temperatures T, in degrees Kelvin. Due to the precision of the strain measurement, data are given to the nearest micro-inch/inch; however, for large strains, these numbers must be considered in light of the over-all

Table 6. Effect of six fold anisotropy on the experimental values of the magnetostriction constants C and A

| o <sub>K</sub>               | фа<br>degrees                | φ <sup>b</sup><br>degrees    | C <sub>exp</sub> C <sub>cor</sub> μ in/in                | % Error<br>in C <sub>exp</sub> | A <sup>b</sup> Alexp Alexp Alexp μ in/in   | o<br>cor % Error<br>in A <sub>exp</sub>              |
|------------------------------|------------------------------|------------------------------|----------------------------------------------------------|--------------------------------|--------------------------------------------|------------------------------------------------------|
| 11.5<br>20.9<br>59.3<br>69.7 | 70.4<br>71.0<br>89.4<br>90.0 | 67.4<br>68.0<br>78.3<br>89.5 | 4249. 4498.<br>4232. 4472.<br>3794. 3834.<br>3926. 3926. | 5•3<br>1•1                     | -2148169<br>-2086169<br>-1566148<br>-19319 | 51. 30.1<br>56. 29.9<br>85. 5.5                      |
| o <sub>K</sub>               | φ <sup>b</sup><br>degree     | C <sub>e.</sub>              | Tt<br>xp <sup>C</sup> cor<br>μ in/in                     | % Error<br>in C <sub>exp</sub> | A <sub>exp</sub><br>μ ir                   | A <sub>cor</sub> % Error<br>n/in in A <sub>exp</sub> |
| 5.3<br>10.2<br>20.5<br>39.5  | 78.6<br>78.6<br>79.1<br>89.5 | 425.<br>396                  | 4. 4270.<br>6. 3967.                                     | 0.0<br>0.4<br>0.0<br>0.0       | 2042•<br>2034•<br>2044•<br>1858•           | 2041. 0.0<br>2001. 1.6<br>2042. 0.1<br>1858. 0.0     |

Magnetization angle  $\phi$  obtained from the anisotropy constants of Liu et al. (46). Applied field angle  $\theta = 90^{\circ}$ .

accuracies discussed above. Dysprosium data are given in Figures 51 through 56, erbium data in Figures 57 through 62, and terbium data in Figures 63 through 69. Table 7 gives the magnetic field dependence of the constants A and C for Tb.

Magnetization angle  $\phi$  obtained from the anisotropy constants found from the magnetostriction data of this study.

|                |                  | <u></u>        |                  |                |                  | AIN VERSU      |                  | _              |                |                |                  |              |                  |
|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|----------------|----------------|------------------|--------------|------------------|
|                |                  |                |                  |                | EXCEPT *         | APPLIED        | ALONG b-         | AXIS           |                |                |                  |              |                  |
| a-             | .\xis            |                | -/xis            | <b>!</b>       | wis              | b-A            |                  | ľ              | xis            | c-Ax           |                  | c-Ax         |                  |
| , ,            | i=()             | i              | 1=30             | 11-            | 1 1              | -              |                  |                | 26*            | •(1<br>        |                  | 11=3         |                  |
| 1              | \f\z             | T              | 16/5             | T              | Δ1/L             | T              | Δε/ε             | T              | -973.          | T<br>299.3     | ∆t/t<br>-10.     | T<br>255.7   | Δt/t<br>-650.    |
| 297.0°         | -15.<br>-22.     | 302.7<br>302.7 | 15.              | 304.2<br>297.7 | 15.<br>-8.       | 295.4<br>295.4 | -20.<br>-46.     | 150.6          | -794.          | 287.3          | -189.            | 255.7        | -575.            |
| 289.C          |                  | 290.7<br>281.8 | -56.<br>-104.    | 286.2<br>277.6 |                  | 282.9<br>270.1 | -114.<br>-190.   | 138.4          | -573.<br>-432. | 273.8<br>262.2 | -388.<br>-553.   | 218.4        | -680.<br>-904.   |
| 275.0<br>268.4 | -133.            | 267.7<br>257.3 | -187.<br>-243.   | 266.7<br>257.7 | -131.            | 259.1<br>247.9 | -258.<br>-333.   | 119.8<br>110.0 | -200.<br>9.    | 250.4<br>237.9 | -719.<br>-885.   |              | -843.<br>-835.   |
| 261.5          | -208.            | 244.9          | -317.            | 254.4          | -181.            | 235.9          | -420.<br>-493.   | 10C.6          | 219.<br>437.   |                | -1009.<br>-1265. |              | -727.<br>-432.   |
| 251.6<br>243.9 | -296.            | 230.8          | -38R.<br>-439.   | 748.1<br>242.5 | -205.<br>-228.   | 227.5          | -636.            | 88.6           | 456.           | 196.3          | -1309.           | 181.9        | 69.<br>778.      |
| 243.0          |                  | 202.8<br>195.2 | -578.<br>-657.   | 239.5<br>232.2 | -240.<br>-271.   | 222.4          | -546.<br>-741.   | 87.6<br>86.0   | 485.<br>524.   | 186.5          | -1329.<br>-1349. | 167.9        | 1660.            |
| 234.7<br>228.1 |                  | 187.1          | -785.<br>-916.   | 225.8<br>220.9 | - 300 ·          | 198.3<br>192.8 | -941.<br>-1117.  | 84.6           | 549.<br>585.   | 182.5          | -1349.<br>-1341. | 153.2        | 2393.<br>2804.   |
| 220.3          | -400.            | 167.2          | -104C.           | 216.1<br>208.8 | - 147.<br>- 386. | 188.0          | -1327.<br>-1832. | 80.7<br>77.8   | 642.           | 176.0<br>169.6 | -1047.           | 145.4        | 3170.<br>3373.   |
| 214.9          | -463.            | 190.0          | -743.            | 202.0          | -426.            | 172.5          | -2476.           | 76.8<br>80.7   | 694.           | 163.4<br>159.0 | -296.            | 133.1        | 3555.<br>3683.   |
| 193.4          | -543.            | 179.5          | -938.<br>-985.   | 195.5          | -469.<br>-510.   | 161.4          | -2764.<br>-3314. | 79.2           | 671.           | 153.9          | 161.             | 121.7        | 3755.            |
| 188.C          |                  |                | -1027.<br>-1032. | 184.6          | -558.<br>-589.   | 144.6          | -3696.<br>-4247. | 76.9<br>75.6   | 674.           | 148.7<br>139.2 | 378.<br>710.     | 107.5        | 3846.<br>3879.   |
| 172.7          | -866.            | 162.2<br>155.6 | -1016.<br>-952.  | 180.0<br>177.2 | -612.<br>-684.   | 153.5          | -3777.<br>-4015. | 73.7<br>66.4   | 615.<br>44R.   | 126.4<br>115.3 | 1095.            | 98.3<br>92.8 | 3901.<br>3912.   |
| 177.4          | -741.            | 148.4          | -858.            | 173.9          | -783.            | 141.3          | -4393.<br>-4688. | 60.0<br>50.0   | 336.<br>227.   | 106.1<br>95.1  | 1461.<br>1596.   | 86.0<br>79.4 | 3908.<br>3896.   |
| 156.5          | -1090.           | 131.6          | -709.<br>-583.   |                | -883.<br>-1065.  | 127.6          | -4989.           | 40.0           | 173.           | 89.1           | 1655.<br>1673.   | 293.7        | -9C.             |
|                | -1430.<br>-1549. |                | -474.<br>-175.   |                | -1182.<br>-1263. | 111.3          | -5343.<br>-5641. | 20.0           | 151.           | 88.0<br>87.5   | 1681.            | 293.6        | -54.             |
| 137.5          | -1641.<br>-1749. | 9P.3           | 72.<br>242.      |                | -1389.<br>-1516. |                | -5936.<br>-6256. | 20.0           | -829.          | 87.2<br>87.1   | 1678.            |              | -270.<br>-394.   |
| 121.5          | -1887.           | 80.8           | 451.             | 135.6          | -1672.<br>-1811. | 87.9           | -6583.<br>-6897. |                |                | 86.8<br>86.5   | 1705.            |              | -556.<br>  -733. |
| 98.4           | -2029.<br>-2185. | 79.3           | 480-             | 117.8          | -1957.           | 79.4           | -6933.           |                |                | 86.3           | 1778.<br>1859.   | 230.5        | -8C8.            |
|                | -2285.<br>-2310. | 69.6           | 805.<br>894.     | 101.6          | -2074.<br>-2144. | 74.9           | -6972.<br>-7119. |                |                | 86.0<br>85.7   | 1997.            | 213.0        | -907.            |
|                | -2327.<br>-2338. | 62.4           | 1016.            |                | -2216.<br>-2272. |                | -7426.<br>-7610. |                |                | 85.4<br>85.0   | 2232.<br>257C.   | 79.7<br>82.2 | 3954.<br>3959.   |
| 86.5           | -2420.           | 51.8           | 1339.            | 88.0           | -2289.<br>-2300. | 55.0           | -7913.<br>-8004. |                | - 1            | 84.7<br>84.4   | 2743.<br>2952.   | 67.4<br>60.8 | 3887.<br>3873.   |
|                | -2732.<br>-2773. | 64.7           | 950.             | 86.4           | -2296.           | 44.4           | -8285.           |                |                | 84.0<br>83.7   | 3188.<br>3330.   | 73.2<br>62.2 | 3921.<br>3874.   |
|                | -2143.<br>-2169. | 59.3<br>51.2   | 1131.            |                | -2736.<br>-2782. | 32.9           | -8479.<br>-8628. |                | 1              | 83.4           | 3422.            | 55.3         | 3844.            |
|                | -2835.<br>-2712. | 45.0           | 1554.<br>1687.   |                | -2798.<br>-2872. | 26.4<br>20.4   | -8897.<br>-9000. |                | - 1            | 87.0<br>87.4   | 3497.<br>3585.   | 47.B         | 3700.            |
| 68.6           | -7685.<br>-2716. | 30.9<br>24.2   | 1888.<br>2001.   | 80.3           | -2884.           | 14.3           | -9067.<br>-9084. |                |                | 82.0<br>81.5   | 3643.<br>3727.   | 61.2<br>56.4 | 3830.<br>3410.   |
| 64.2           | -2738.           | 20.9           | 2038.            | 200.9          | -390.            |                |                  |                |                | 81.0<br>80.5   | 3785.<br>3834.   | 51.0<br>45.0 | 3788.<br>3765.   |
|                |                  | 14.6           | 2086.            | 18R.9          | -490.<br>-911.   |                |                  |                |                | 80.0           | 3898.            | 37.8         | 3737.            |
|                |                  |                |                  |                | -1219.<br>-1594. |                |                  |                |                | 78.9<br>77.8   | 3967.<br>3996.   | 31.7<br>24.7 | 3718.<br>3702.   |
|                | •                |                |                  | 111.5          | -1987.<br>-2247. |                |                  |                |                | 75.3<br>69.5   | 4004.<br>3998.   | 20.5         | 3696.<br>3687.   |
|                |                  |                |                  | 88.0           | -2281.           |                |                  |                | .              | 65.0<br>60.5   | 3989.            | 10.1         | 3690.<br>3538.   |
|                |                  |                |                  |                | -2300.<br>-231C. |                |                  | İ              | , ,            | 260.2          |                  | 10.1         | 3770.            |
|                |                  |                |                  |                | -2319.<br>-2660. |                |                  |                |                | 301.0          | '                |              |                  |
|                |                  |                |                  |                | -2688.<br>-2638. |                |                  |                |                | 281.4<br>267.3 | -475.            |              |                  |
|                |                  | Ì              |                  | 83.2           | -2665.           |                |                  |                |                | 254.8<br>243.7 | -650.<br>-800.   |              |                  |
|                |                  |                |                  | 73.1           | -2685.<br>-274A. |                |                  |                |                | 222.7          | -1060.<br>-1163. |              |                  |
|                |                  |                |                  | 61.4           | -2842.<br>-2860. |                |                  |                |                | 196.5          | -1301.<br>-1315. |              |                  |
|                |                  |                |                  | 293.1          | 103.             |                |                  |                |                | 174.4          | -939.            |              |                  |
|                |                  |                |                  |                |                  |                |                  |                |                | 165.0<br>154.7 |                  |              |                  |
|                |                  |                |                  |                | ļ                |                |                  |                |                | 147.7          |                  |              |                  |
|                |                  |                |                  | į į            | İ                |                |                  |                |                | 119.9          | 1248.            |              |                  |
|                |                  | ļ              |                  |                |                  |                |                  |                |                | 108.0<br>295.2 | 1441.<br>-48.    |              |                  |

Figure 51. Dy a-, b-, and c-axis strain (in x 10<sup>-6</sup>/in) as a function of temperature. The horizontal lines separate data runs.

| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>.</u>                                                                                                                                                                                            |                                                                                                              |                                                                                                                                                                          | Dy                                                                                                         | a-AXIS S                                                                                                                                                                     | TRAIN V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ERSUS FI                                                                                                                                                                                                                   | ELD APPI                                                                                             | JED ALON                                                                                                                            | iG a-AXI | s .   |                                                                                   |                                                                   |                                                                                                                                                |                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1 : 0.00 c.cq 1.3 c.cq 1.0 c.cq 1.3 c.cq 1.2 c.cq 1.3 c.cq 1.2 c.cq 1.3 c.cq 1.2 c.cq 1.3 c.cq 1.2 c.cq 1.3 c.cq 1.2 c.cq 1.3 c.cq 1.2 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.cq 1.3 c.c | 22.1  AL/S4.1 359. 375. 846. 977. 1188. 1244. 1455. 1570. 1739. 2354. 2412. 2614. 2932. 3156. 3266. 3266. 3266. 3266. 4126. 4281. 4563. 4681. 4716. 4786. 4839. 4824. 4839. 4874. 4894. 4892. 1518. | T = II                                                                                                       | 49.8  AL/t 0. 8813. 975. 1992. 1327. 1574. 1941. 2378. 2534. 3044. 3352. 3684. 3710. 3724. 3733. 3744. 3759. 939.                                                        | T II 0 0 0 0 0 1 1 . 8 1 . 9 1 2 2 . 2 4 4 2 2 . 8 2 . 9 1 3 . 4 4 . 4 7 1 5 . 9 7 8 1 1 6 . 5 5 . 5 0 . 0 | 79.8  A1/2  -264.  0.  119. 255. 436. 602. 716. 813. 978. 1097. 1231. 1328. 1440. 1628. 1800. 2057. 2297. 2452. 2255. 2624. 2711. 27415. 2814. 2837. 2897. 2897. 29905. 886. | 1 10.00<br>0.09<br>1.69<br>2.69<br>3.26<br>2.99<br>4.26<br>5.69<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03<br>10.03 | 85.0<br>At/t<br>-162.<br>0.<br>56.<br>121.<br>227.<br>341.<br>1170.<br>1455.<br>2151.<br>2418.<br>2819.<br>2974.<br>3028.<br>3094.<br>3119.<br>3182.<br>3196.<br>3211.<br>3223.<br>3242.<br>3261.<br>3277.<br>394.<br>370. | 1 0.0 0 0.0 8 0.9 1.3 1.6 8 1.9 2.12 2.4 2.6 8 2.9 3.1 3.4 4.4 7.4 6.1 6.7 3.1 1.6 6.5 21.3 25.0 0.0 | 89.9  At/t  14.0  01213.1  14.0  205. 204. 294. 469. 576. 827. 1280. 1420. 1420. 1420. 2237. 2236. 2237. 2237. 22412. 2430. 244031. |          | 114.4 | T = 11 0.00 0.00 0.07 8.3 9.20 10.5 11.6 12.5 13.3 14.9 16.6 22.5 8 25.8 0.00 0.0 | 144.0<br>0.0<br>-66.<br>17778.<br>183273464.<br>5015685605681211. | T = 11 0.00 0.09 1.8 2.6 13.8 4.2 4.6 7 10.0 10.3 11.6 12.0 11.6 12.0 11.6 12.0 11.6 12.0 12.6 13.3 14.1 18.8 19.8 19.8 19.8 19.8 19.8 19.8 19 | 152.0<br>At/t<br>2.0<br>-13555557076716375118159022223922528902943. |
| 1 = :1<br>0.04<br>6.7<br>10.8<br>11.3<br>11.5<br>11.6<br>11.8<br>12.2<br>12.5<br>13.3<br>14.1<br>14.9<br>16.6<br>18.1<br>19.3<br>20.3<br>21.5<br>22.6<br>23.4<br>24.3<br>25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 161.4  Δ1/1  0.  2.  -1.  -11.  -31.  -57.  -119.  -147.  -174.  -179.  -171.  -154.  -28.  -5.  17.  26.  29.  36.  42.                                                                            | 1 = 11 0.0 0.0 3.4 5.1 6.7 8.3 10.0 10.8 13.3 14.9 16.6 18.1 19.3 20.9 21.5 22.0 22.8 23.3 24.3 25.8 0.0 0.0 | 184.3<br>At/L<br>C.<br>-4.<br>-9.<br>-16.<br>-25.<br>-35.<br>-41.<br>-60.<br>-75.<br>-90.<br>-105.<br>-118.<br>-135.<br>-141.<br>-146.<br>-153.<br>-159.<br>-187.<br>-5. | T = 11 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 22.0 24.0 24.0 26.0 30.0 0.0                                | 200.5<br>Δ1/1<br>0.<br>-1.<br>-2.<br>-5.<br>-20.<br>-28.<br>-35.<br>-44.<br>-55.<br>-65.<br>-76.<br>-89.<br>-101.<br>-114.                                                   | T =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210.0<br>0.<br>-1.<br>-2.<br>-3.<br>-6.<br>-9.<br>-13.<br>-17.<br>-22.<br>-28.<br>-35.<br>-41.<br>-57.<br>-65.<br>-74.<br>0.                                                                                               | -6,.                                                                                                 |                                                                                                                                     |          |       |                                                                                   |                                                                   |                                                                                                                                                |                                                                     |

Figure 52. Dy a-axis strain (in  $\times$  10<sup>-6</sup>/in) versus field, H, applied along the a axis of the a-b plane specimen.

| <u></u>       |                                                                                                                                                        | Dy b-AXIS               | STRAIN VERSUS FI                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELD APPLIED ALO | NG a-AXIS      |               |             |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|-------------|
| T = 20.0  il  | T = 50.0  II                                                                                                                                           | T = 77.5  ii   0.2  0.5 | T = 85.1<br>0.2 0.0<br>0.3 -68.<br>1.2 -169.<br>1.5 -189.<br>1.7 -491.<br>2.3 -745.<br>2.5 -951.<br>2.9 -1147.<br>3.3 -1391.<br>3.6 -1730.<br>4.0 -2172.<br>4.3 -2541.<br>4.7 -2718.<br>5.0 -2783.<br>5.5 -2852.<br>6.1 -2873.<br>6.9 -2908.<br>7.9 -2933.<br>8.6 -2908.<br>7.9 -2935.<br>10.2 -2975.<br>11.9 -2994.<br>13.5 -3009.<br>10.9 -3037.<br>19.9 -3058.<br>22.0 -3071.<br>23.8 -3101.<br>25.8 -3101.<br>25.8 -3101.<br>25.8 -3134.<br>0.2 -725. | T = 89.7 H      | T = 113.7<br>H | T = 143.9  ii | T = 150.2 H |
| T = 162.2  ii | T = 189-1  il 0.0 2.0 4.0 -13. 6.0 -29. 8.0 -51. 10.0 -80. 12.0 -115. 14.0 -155. 16.0 -252. 20.0 -309. 22.0 -309. 22.0 -366. 28.0 -578. 30.0 -652. 0.0 | T = 198.8  ii           | T = 209.2  II                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                |               |             |

Figure 53. Dy b-axis strain (in  $\times$  10<sup>-6</sup>/in) versus field, H, applied along the a axis of the a-b plane specimen.

| 0.7 -5. 1.1 -6.0 -28. 0.4 -59. 0.6 0.2 -4.2 324. 4.4 -1.1 7.9 47.  1.6 -69. 2.9 -74. 1.6 -65. 2.1 -187. 1.1 343. 4.6 929. 6.2 165. 8.2 97.  2.1 -127. 3.2 -291. 1.8 -89. 2.4 -240. 1.3 671. 4.7 1145. 0.6 65. 8.2 97.  2.4 -206. 3.5 -160. 1.9 -116. 2.8 -262. 1.4 693. 4.9 1442. 6.9 671. 8.8 57.  2.8 -256. 3.8 -446. 2.1 -143. 3.1 -251. 1.6 1170. 51 1842. 7.2 1119. 9. 972.  3.1 -308. 4.2 -413. 2.2 -169. 3.4 -212. 1.8 1294. 5.3 2124. 7.5 1432. 9. 972.  3.4 -327. 4.5 -394. 2.4 -182. 3.8 -185. 1.9 1573. 5.5 2348. 6.9 671. 8.8 57.  3.6 -349. 5.3 -366. 2.6 -199. 4.2 -173. 2.2 1693. 6.0 2349. 8.9 2.9 199. 10.2 1756.  4.4 -123. 7.0 -378. 2.0 -205. 5.1 -186. 2.1 -184. 2.9 1477. 6.0 2349. 8.9 2109. 10.3 1878.  4.7 -311. 11. 6.9 3. 3366. 2.6 -199. 4.2 -173. 2.2 1693. 6.0 2349. 8.9 2109. 10.8 1878.  4.7 -311. 11. 6.9 3. 3366. 3.1 -223. 1.8 -333. 1697. 6.0 2349. 8.9 2109. 10.8 1878.  5.7 -3102. 2.2 -350. 3.4 -186. 2.3 -138. 3.2 1697. 6.0 2349. 8.9 2109. 10.8 1878.  5.7 -3102. 2.2 -350. 3.4 -186. 2.3 -138. 3.2 1697. 6.0 2349. 8.9 2109. 10.8 1878.  5.8 -3 -291. 2.3 -8 359. 3.6 -186. 2.5 -8 111. 5.1 1772. 134. 2346. 11.0 1286. 13.3 2203.  1.6 -2 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |      |       | Dy-  | - c-AXIS | STRAIN | VERSUS F | IELD AP | PLIED AL | ONG a-A | XIS      |      |       |      |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------|-------|------|----------|--------|----------|---------|----------|---------|----------|------|-------|------|----------------|
| 0 ii 31/2 ii 0 0, 7 0, 0 0 0, 7 0, 0 0 0, 0 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T =  | 20.0   | Τ =  |       | T =  | 77.4     | T =    | 85.0     | 7 -     | 90.0     | T =     | 114.0    |      |       |      |                |
| 0.0 0.0 0.0 0.0 7. 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |        |      |       |      |          |        |          |         |          | 0.0     | 0.       | 0.0  | 5.    | 0.0  | -1.            |
| 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0  | 0.     | 0.9  | 7.    | 0.0  |          |        |          |         |          |         |          |      |       |      | 2.             |
| 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | -12.   | 2.1  | -31.  | 1.1  | -28.     | 1.4    | -59.     | 0.6     | 82.      | 4.2     | 324.     | 4.4  | -1.   | 7.5  | 42.            |
| 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |      |       |      |          |        |          |         |          |         |          |      | 165.  | 8.2  | 97.            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1  | -127.  | 3.2  | -291. | 1.8  | -89.     | 2.4    |          |         |          |         |          |      |       |      |                |
| 3.4   -308.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |        |      |       |      | -110.    |        |          |         | 1170.    | 5.1     | 1842.    | 7.2  | 1119. | 9.2  | 972.           |
| 1-40,   5.3   -366,   2.6   -199,   4.2   -173,   2.2   1643,   6.0   2348,   8.2   1971,   10.2   1756,     4.1   -343,   5.9   -3199,   2.8   -2071,   5.1   -155,   2.6   1627,   6.3   2358,   8.5   2042,   10.5   1756,     4.1   -343,   5.9   -378,   2.9   -2918,   6.7   -144,   2.9   1647,   6.3   2358,   8.5   2042,   10.5   1764,     4.7   -311,   11.8   -361,   3.1   -233,   3.1   -338,   3.2   1677,   8.6   2379,   9.2   2142,   11.6   1804,     4.7   -311,   11.8   -3750,   3.2   -214,   16.6   -123,   3.8   1732,   16.2   2366,   9.5   2160,   12.5   2096,     5.9   -302,   22.0   -350,   3.4   -186,   23.3   -115,   4.2   1772,   13.4   2346,   11.6   2226,   14.1   2286,     6.6   -280,   0.0   -367,   3.9   -160,   -37,   -406,     11.6   -280,   2.5   8   -349,   3.8   -172,   -37,   -101,     12.5   -279,   0.0   0.   4.4   -147,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   -111,   - | 3.1  |        |      |       |      |          |        |          |         |          |         |          |      |       |      | 1690.          |
| 4.4 - 3-3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.8  | - 349. | 5.3  | -366. | 2.6  | -199.    | 4.2    | -173.    | 2.2     | 1643.    | 6.0     | 2348.    | 8.2  |       |      |                |
| 4.7   -311.   11.8   -361.   3.1   -233.   8.3   -136.   3.2   1697.   8.6   2357.   9.2   2160.   12.5     5.9   -302.   22.0   -350.   3.4   -186.   23.3   -115.   4.2   1754.   11.8   2375.   10.0   2188.   13.3   2203.     11.6   -286.   25.8   -349.   3.8   -172.   0.0   -37.   3.9   172.   13.4   2286.   11.6   2286.   0.0   -367.   3.9   -160.   12.5   -116.   -280.   0.0   -367.   3.9   -160.   -280.   0.0   -367.   3.9   -160.   -280.   0.0   -367.   3.9   -160.   -280.   0.0   -367.   3.9   -160.   -280.   0.0   -367.   3.9   -160.   -280.   0.0   -37.   -3.9   -160.   -280.   0.0   -264.   -186.   -237.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264.   -264 |      |        |      |       |      |          |        |          |         |          |         | 2349.    | 8.9  | 2109. | 10.8 | 1878.          |
| 1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.7  | -311.  | 11.8 | -361. | 3.1  | -233.    | 8.3    |          |         |          |         |          |      |       |      | 1989.<br>2095. |
| 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |        | 22.0 | -350. | 3.4  | -186.    | 23.3   | -115.    | 4.2     | 1754.    | 11.8    | 2375.    | 10.0 | 2188. | 13.3 | 2203.          |
| 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.3  |        |      |       |      |          |        |          |         |          |         |          |      |       | 14.9 | 2 338.         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.6 | -280.  | 0.0  | -367. | 3.9  | -160.    |        |          | 8.3     |          |         |          |      |       |      |                |
| 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |        |      |       |      |          |        | 1        |         | 1810.    | 23.8    | 2428.    | 20.3 | 2323. | 23.3 | 2520.          |
| T = 151.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.8 | -278.  | 4.2  | -119. |      |          |        |          |         |          |         |          |      |       |      |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0  | -/4.   |      |       | 8.3  | -121.    |        |          | 25.8    | 1825.    | "       |          |      |       | 0.0  | 11.            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |        |      |       |      |          |        | Ì        | 0.0     | 57.      |         | }        |      |       |      |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |        |      |       | 16.6 | -105.    |        | Ì        |         |          |         |          |      |       |      |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |        |      |       |      |          |        |          |         |          |         |          |      | İ     |      |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |        |      |       | 25.8 |          |        | }        |         |          |         |          |      |       |      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | L      |      |       |      |          |        |          |         |          |         |          |      |       |      |                |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı    |        |      |       | t .  |          |        |          |         |          |         |          |      |       |      |                |
| 9.5 71. 6.7 30. 5.3 44. 9.8 134. 7.5 33. 6.1 60. 10.0 397. 8.3 35. 6.9 80. 10.4 815. 9.2 41. 7.8 103. 10.7 1278. 10.0 59. 8.7 123. 11.1 1529. 10.8 92. 9.5 149. 11.4 1605. 11.2 249. 10.2 179. 11.7 1648. 11.5 442. 11.0 208. 12.0 1691. 11.8 877. 11.9 241. 12.5 1769. 12.2 1109. 12.5 275. 13.9 1911. 12.5 1169. 13.4 309. 15.1 2036. 12.8 1211. 14.3 351. 16.9 2200. 13.3 1288. 15.1 395. 19.8 2356. 14.1 1388. 16.9 485. 21.5 2464. 14.9 1475. 18.5 571. 22.5 2428. 16.6 1630. 20.8 708. 23.8 2461. 19.3 1928. 21.9 789. 25.8 2517. 21.5 2102. 22.9 846. 0.0 9. 23.3 2195. 23.8 908. 25.8 2519. 25.8 2306. 25.8 1085. 0.0 13. 0.0 42. 0.0 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0  | Δ£/t   | 0.0  | -2.   | 0.0  | 0.       |        |          |         |          |         |          |      |       |      |                |
| 9.8       134.       7.5       33.       6.1       60.         10.0       397.       8.3       35.       6.9       80.         10.7       1278.       10.0       59.       6.7       123.         11.1       1529.       10.8       92.       9.5       149.         11.4       1605.       11.2       249.       10.2       179.         11.7       1648.       11.5       442.       11.0       208.         12.0       1691.       11.8       877.       11.9       241.         12.5       1769.       12.2       1109.       12.5       275.         13.9       1911.       12.5       1169.       13.4       309.         15.1       2036.       12.8       1211.       14.3       351.         16.9       2200.       13.3       1288.       15.1       395.         19.8       2356.       14.1       1388.       16.9       485.         21.5       2428.       16.6       16.30.       20.8       708.         23.8       2461.       19.3       1928.       21.9       789.         25.8       2517.       21.5       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |      |       |      |          |        | }        |         |          |         |          |      |       |      |                |
| 10.4 815. 9.2 41. 7.8 103. 10.7 1278. 10.0 59. 8.7 123. 11.1 1529. 10.8 92. 9.5 149. 11.4 1605. 11.2 249. 10.2 179. 11.7 1648. 11.5 442. 11.0 208. 12.0 1691. 11.8 877. 11.9 241. 12.5 1769. 12.2 1109. 12.5 275. 13.9 1911. 12.5 1169. 13.4 309. 15.1 2036. 12.8 1211. 14.3 351. 16.9 2200. 13.3 1288. 15.1 395. 19.8 2356. 14.1 1388. 16.9 485. 11.5 2428. 14.9 1475. 18.5 571. 22.5 2428. 16.6 1630. 20.8 708. 22.5 2428. 16.6 1630. 20.8 708. 22.8 2461. 19.3 1928. 21.9 789. 25.8 2517. 21.5 2102. 22.9 846. 900. 25.8 2517. 21.5 2102. 22.9 846. 900. 25.8 2519. 25.8 2306. 25.8 1085. 000 13. 0.0 42. 0.0 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.8  | 134.   | 7.5  | 33.   | 6.1  | 60.      |        |          |         |          |         |          |      |       |      |                |
| 11.1   1529.   10.8   92.   9.5   149.   11.4   1605.   11.2   249.   10.2   179.   11.7   1648.   11.5   442.   11.0   208.   12.0   1691.   11.8   877.   11.9   241.   12.5   1769.   12.2   1109.   12.5   275.   13.9   1911.   12.5   1169.   13.4   309.   15.1   2036.   12.8   1211.   14.3   351.   16.9   2200.   13.3   1288.   15.1   395.   19.8   2356.   14.1   1388.   16.9   485.   19.8   2356.   14.1   1388.   16.9   485.   21.5   2424.   14.9   1475.   18.5   571.   22.5   2428.   16.6   1630.   20.8   708.   23.8   2461.   19.3   1928.   21.9   789.   25.8   2517.   21.5   2102.   22.9   846.   908.   25.8   2517.   21.5   23.8   908.   25.8   2519.   25.8   2306.   25.8   1085.   0.0   13.   0.0   42.   0.0   6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |        |      |       |      |          |        |          |         |          |         |          |      |       |      |                |
| 11.4 1605. 11.2 249. 10.2 179. 11.7 1648. 11.5 442. 11.0 208. 12.0 1691. 11.8 877. 11.9 241. 12.5 1769. 12.2 1109. 12.5 275. 13.9 1911. 12.5 1169. 13.4 309. 15.1 2036. 12.8 1211. 14.3 351. 16.9 2200. 13.3 1288. 15.1 395. 19.8 2356. 14.1 1388. 16.9 485. 21.5 2404. 14.9 1475. 18.5 571. 22.5 2428. 16.6 1630. 20.8 708. 23.8 2461. 19.3 1928. 21.9 789. 25.8 2517. 21.5 2102. 22.9 846. 0.0 9. 23.3 2195. 23.8 908. 25.8 2519. 25.8 2306. 25.8 1085. 0.0 13. 0.0 42. 0.0 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.7 | 1278.  | 10.0 | 59.   | 8.7  |          |        |          |         |          |         |          |      |       |      |                |
| 12.0   1691.   11.8   877.   11.9   241.   12.5   1769.   12.5   275.   13.9   1911.   12.5   1169.   13.4   351.   16.9   2200.   13.3   1288.   15.1   395.   19.8   2356.   14.1   1388.   16.9   485.   21.5   2424.   14.9   1475.   18.5   571.   22.5   2428.   16.6   1630.   20.8   708.   23.8   2461.   19.3   1928.   21.9   789.   25.8   2517.   21.5   2102.   22.9   846.   0.0   9.   23.3   2195.   23.8   908.   25.8   2519.   25.8   2306.   25.8   1085.   0.0   13.   0.0   42.   0.0   6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.4 | 1605.  | 11.2 | 249.  | 10.2 | 179.     |        |          |         |          |         | ĺ        |      |       |      | 1              |
| 12.5     1769.     12.2     1109.     12.5     275.       13.9     1911.     12.5     1169.     13.4     309.       15.1     2036.     12.8     1211.     14.3     351.       16.9     2200.     13.3     1288.     15.1     395.       19.8     2356.     14.1     1388.     16.9     485.       21.5     2404.     14.9     1475.     18.5     571.       22.5     2428.     16.6     1630.     20.8     708.       23.8     2461.     19.3     1928.     21.9     789.       25.8     2517.     21.5     2102.     22.9     846.       0.0     9.     23.3     2195.     23.8     908.       25.8     2519.     25.8     2306.     25.8     1085.       0.0     13.     0.0     42.     0.0     6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |        |      |       |      |          |        | 1        |         |          |         |          |      |       |      |                |
| 15.1 2036. 12.8 1211. 14.3 351. 16.9 2200. 13.3 1288. 15.1 395. 19.8 2356. 14.1 1388. 16.9 485. 21.5 2404. 14.9 1475. 18.5 571. 22.5 2428. 16.6 1630. 20.8 708. 23.8 2461. 19.3 1928. 21.9 789. 25.8 2517. 21.5 2102. 22.9 846. 25.8 2517. 21.5 2102. 22.9 846. 25.8 2519. 25.8 2519. 25.8 2519. 25.8 2306. 25.8 1085. 0.0 13. 0.0 42. 0.0 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.5 | 1769.  | 12.2 | 1109. | 12.5 | 275.     |        |          |         |          |         |          |      |       |      |                |
| 19.8   2356.   14.1   1388.   16.9   485.   21.5   2404.   14.9   1475.   18.5   571.   22.5   2428.   16.6   1630.   20.8   708.   23.8   2461.   19.3   1928.   21.9   789.   25.8   2517.   21.5   2102.   22.9   846.   908.   25.8   2517.   21.5   2102.   23.8   908.   25.8   2519.   25.8   2306.   25.8   1085.   0.0   13.   0.0   42.   0.0   6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.1 | 2036.  | 12.8 | 1211. | 14.3 | 351.     |        |          |         |          |         |          |      |       |      |                |
| 21.5   2404.   14.9   1475.   18.5   571.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |      |       |      |          |        |          |         |          |         |          |      |       |      |                |
| 23.8   2461.   19.3   1928.   21.9   789.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.5 | 2404.  | 14.9 | 1475. | 18.5 | 571.     | }      | }        |         | 1        |         | 1        | }    |       |      |                |
| 25.8   2517.   21.5   2102.   22.9   846.   908.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |      |       |      |          |        |          |         |          |         |          |      |       |      |                |
| 25.8   2519.   25.8   2306.   25.8   1085.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.8 | 2517.  | 21.5 |       |      |          |        | i        |         |          |         | ]        |      |       |      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.8 | 2519.  | 25.8 | 2306. | 25.8 | 1085.    |        |          |         | ]        | [       |          | ŀ    |       |      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0  | 13.    |      |       | 0.0  | 6.       |        |          |         |          |         | <u> </u> |      |       |      |                |

Figure 54. Dy c-axis strain (in x  $10^{-6}$ /in) versus field, H, applied along the a axis.

| 7.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                   | N N N N O C C N N C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.8<br>-3.79<br>-4.96<br>-1.30<br>-1.30<br>-1.30                                    | - 13045.<br>- 13045.<br>- 144818.<br>- 144818.<br>- 144818.<br>- 1561.<br>- 1561.<br>- 1780.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280.1<br>0.0<br>1.0<br>0.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| # 00000000                                                                           | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 98.6<br>52/8<br>-4706<br>-6098<br>-127<br>-127<br>-127<br>-1045<br>-2317             | 1224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.7.<br>26.7.<br>27.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.6.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7.<br>13.7 |
| 1 # 1 000 000 000 000 000 000 000 000 00                                             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ## BO.8                                                                              | - 2468<br>- 3173<br>- 48451<br>- 6106<br>- 6552<br>- 6652<br>- 6652<br>- 7733<br>- 1733<br>- 1733<br>- 1733<br>- 1733<br>- 1733<br>- 1733<br>- 1733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ==   x 000000000                                                                     | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 6000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7/2<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2              | 1 1 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220.1<br>2.72.6.1<br>2.72.6.1<br>102.6.2<br>102.6.2<br>102.6.2<br>102.6.2<br>102.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103.6.2<br>103                                                                                                                                   |
| T # 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                      | - 55165.<br>- 65360.<br>- 65360.<br>- 65360.<br>- 77175.<br>- 7 | 200.2<br>0 4.0/2<br>- 177.<br>- 177.<br>- 230.<br>- 230.<br>- 230.<br>- 220.<br>- 139.<br>- 199.<br>- 199.<br>- 199.<br>- 199.<br>- 199.<br>- 199.<br>- 199.<br>- 199.<br>- 220.<br>- 220.                                                                           |
| NALE<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                        | 33.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37.00<br>37                                                                                                  | 90000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 40.2<br>21/2<br>-534.<br>-7128.<br>-8297.<br>-576.<br>-726.                          | 153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118<br>153118                                                                                                                                                                            | 180.2 4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STRAIN  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                        | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.9<br>20.9<br>20.9<br>20.12<br>-7912<br>-8464<br>-15<br>-15<br>-13<br>-13<br>-13   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| k                                                                                    | 80000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11.5<br>12.5<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 86 1 1 1 1 1 1 1 2 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1,00000000                                                                           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Dy z-axis strain (in x  $10^{-6}/in$ ) versus angle of applied field,  $\theta$ , relative to a axis. The 30 kOe field was applied in the basal plane. Figure 55.

|       |                | 10     | / b-AXI        | IS STRAI | N VERSUS       | ANGLE (          | OF APPLIE       | D FIELD | IN a-b         | PLANE RE         | LATIVE 1        | m a-4XI! |                 |                  |                  |
|-------|----------------|--------|----------------|----------|----------------|------------------|-----------------|---------|----------------|------------------|-----------------|----------|-----------------|------------------|------------------|
| T =   | 4.9            | T #    | 15.5           | Τ=       | 29.6           | 1 =              | 49.5            | T *     | 69.7           | Т =              | 91.2            | T =      | 111.8           |                  | 130.0            |
| : 1   | 52/1           | n      | DE/E           | 0        | AL/L           | _0_              | 41/L            | 0       | AL/L           | 0.0              | Δ1/1<br>0.      | 0.0      | Δε/ε<br>0.      | 0.0              | 71/5             |
| 0.0   | 0.             | 0.0    | 0.             | 0.0      | 7007           | 0.0              | 7005            | 60.0    | 6034.          | 60.0             | 4971            | 60.0     | 4012.           | 60.0             | 3236.            |
| 60.0  | 8096 -         | 60.0   | 8086.<br>9019. | 90.0     | 7807.<br>8809. | 90.0             | 8282            | 90.0    | 7846.          | 90.0             | 6632.           | 90.0     | 5384.           | 90.0             | 4345.            |
| 90.0  | 9040.          | 90.0   | 7017.          | 0.0      | -3.            | 0.0              | -38.            | 0.0     | -12.           | 0.0              | -44.            | 0.0      | -23.            | 0.0              | -6.              |
| 10.0  | 7.             | 10.0   | 13.            | 10.0     | 13.            | 10.0             | -9.             | 10.0    | 51.            | 60.0             | 4911.           | 10.0     | 100.            | 10.0             | 109.             |
| 20.0  | 43.            | 20.0   | 53.            | 20.0     | 67.            | 20.0             | 107.            | 20.0    | 320.           | 90.0             | 6600.           | 20.0     | 541.            | 20.0             | 473.             |
| 25.0  | 252            | 25.0   | 295.           | 25.0     | 261.           | 25.0             | 275.            | 25.0    | 671.           | 0.0              | -44.            | 30.0     | 1349.           | 25.0             | 727.             |
| 28.0  | 2676.          | 28.0   | 2751.          | 28.0     | 2533.          | 28.0             | 2122.           | 30.0    | 3100.          | 10.0             | 65.             | 40.0     | 2315.           | 30.0             | 1062 -           |
| 30.0  | 4542.          | 30.0   | 4827.          | 30.0     | 4732.          | 30.0             | 3934.           | 35.0    | 4225.          | 20.0             | 519.            | 50.0     | 3207.           | 35.0             | 1406.            |
| 32.0  | 6493.          | 32.0   | 6558.          | 32.0     | 6393.          | 32.0             | 5446.           | 40.0    | 4751.          | 25.0             | 995.            | 60.0     | 4002.           | 40.0             | 1776.            |
| 35.0  | 7524.          | 35.0   | 7497.          | 35.0     | 7118.          | 35.0             | 5935.           | 50.0    | 5456.          | 28.0             | 1448.           | 70.0     | 4666.           | 50.0             | 2530 ·<br>3240 · |
| 40.0  | 7608.          | 40.0   | 7587.          | 40.0     | 7239.          | 40.0             | 6171.           | 60.0    | 6041           | 30.0             | 1762.           | 80.0     | 5182.<br>5383.  | 70.0             | 3805.            |
| 50.0  | 7845.          | 50.0   | 7825.          | 50.0     | 7517.          | 50.0             | 6592            | 70.0    | 6564.          | 32.0             | 2108.           | 100.0    | 5161.           | 80.0             | 4207.            |
| 60.0  | 8120.          | 60.0   | 8093.          | 60.0     | 7815.          | 60.0<br>70.0     | 6997.<br>7370.  | 90.0    | 7140.<br>7852. | 35.0<br>40.0     | 3181.           | 110.0    | 4653.           | 90.0             | 4343.            |
| 70.0  | 8375.          | 70.0   | 8351.          | 70.0     | 8091.          | 80.0             | 7764.           | 100.0   | 7140.          | 50.0             |                 | 120.0    | 3987.           | 100.0            | 4187.            |
| 80.0  | 8638.          | 80.0   | 8623.          | 90.0     | 8813.          | 90.0             |                 | 110.0   | 6634           | 60.0             | 4920.           | 130.0    |                 | 110.0            | 3778.            |
| 90.0  | 9047.<br>8815. | 90.0   | 9023.<br>8769. | 100.0    |                | 100.0            | 7870.           |         | 6113.          | 70.0             | 5584.           | 140.0    |                 | 120.0            | 3192.            |
| 100.0 |                | 110.0  |                | 110.0    |                | 110.0            | 7515.           |         | 5542.          | 80.0             | 6230.           | 150.0    |                 | 130.0            | 2505             |
| 120.0 |                | 120.0  |                | 120.0    |                | 120.0            |                 | 140.0   | 4786.          | 90.0             | 6599.           | 160.0    |                 | 140.0            | 1761.            |
| 130.0 |                | 130.0  |                | 130.0    | 7684.          | 130.0            | 6749.           | 145.0   |                | 100.0            | 6198.           | 170.0    | 110.            | 145.0            | 1384.            |
| 140.0 |                | 140.0  |                | 140.0    |                | 140.0            |                 | 150.0   |                | 110.0            | 5611.           | 180.0    | -23.            | 150.0            | 1042.            |
| 145.0 |                | 145.0  | 7587.          | 145.0    |                | 145.0            |                 | 155.0   |                | 120.0            | 4958.           |          |                 | 155.0            | 126.             |
| 148.0 | 5132.          | 148.0  | 5143.          | 148.0    | 4982.          |                  | 52C8.           |         |                | 130.0            | 4221.           |          |                 | 160.0            | 473.             |
| 150.0 | 3465.          | 150.0  |                | 150.0    | 3172.          |                  | 1               | 170.0   |                | 140.0            | 3223.           |          |                 | 170.0            | -4.              |
| 152.0 |                | 152.0  |                | 152.0    | 1358.          |                  |                 | 180.0   | -20.           | 150.0            | 1668.           |          |                 | 100.0            | 1•               |
| 155.0 |                | 155.0  |                | 155.0    |                | 170.0            | 3.              | i       |                | 160.0            | 533.            |          | 1               |                  | 1                |
| 160.0 |                | 160.0  |                | 160.0    |                | 180.0            | -38.            |         |                | 180.0            | -49.            |          |                 | i                |                  |
| 170.0 |                | 170.0  |                | 170.0    | 52.            |                  |                 |         |                | 100.0            | -47.            |          |                 |                  |                  |
| 180.0 | 17.            | 180.0  | 13.            | 180.0    | -3.            | ļ                | l               | ļ       |                | ļ                | L               | ļ        |                 | <u> </u>         | L                |
|       | 150.1          | T_=    | 170,1          |          | 189.1          | T <sub>0</sub> = | 209,4<br>  Δ1/1 | T =     | 228.3<br>Δ1/1  | T <sub>0</sub> = | 249,3<br>  41/L | T =      | 270.9<br>  Δt/t | r <sub>0</sub> = | 291.5<br>  Δ1/2  |
| 0     | 28/8           | 0      | 10 E/E         | Θ        | Δ1/L           | 1 -              | 1               |         |                | 0.0              | 0.              | 0.0      | 0.              | 0.0              | 0.               |
| 0.0   | 0.             | 0.0    | 0.             | 0.0      | 330            | 60.0             | 117.            | 60.0    | 60.            | 60.0             | 35.             | 60.0     | 23.             | 60.0             | 16.              |
| 60.0  | 2764.          | 60.0   | 1182.          | 60.0     | 339.<br>451.   | 90.0             | 155.            | 90.0    | 80.            | 90.0             | 46.             | 90.0     | 31.             | 90.0             | 21.              |
| 90.0  | 3047           | 90.0   | 1584.          | 90.0     | 771.           | 0.0              | 1               | 0.0     | 1.             | 70.0             | 0.              | 0.0      | 0.              | 0.0              | 0.               |
| 10.0  | 78.            | 10.0   | 45.            | 10.0     | 15.            | 10-0             | 6.              | 10.0    | 3.             | 10.0             | 1.              | 10.0     | 1.              | 10.0             | 1.               |
| 20.0  | 329.           | 20.0   | 179.           | 20.0     | 54.            | 20.0             | 20.             | 20.0    | 10.            | 20.0             | 6.              | 20.0     | 4.              | 20.0             | 3.               |
| 30.0  | 727.           | 30.0   | 408            | 30.0     | 115.           | 30.0             | 41.             | 30.0    | 21.            | 30.0             | 12.             | 30.0     | 8.              | 30.0             | 6.               |
| 40.0  | 1208           | 40.0   | 640.           | 40.0     | 187.           | 40.0             | 66.             | 40.0    | 34.            | 40.0             | 19.             | 40.0     | 13.             | 40.0             | 9.               |
| 50.0  | 1756.          | 50.0   | 918.           | 50.0     | 266.           | 50.0             | 93.             | 50.0    | 47.            | 50.0             | 27.             | 50.0     | 19.             | 50.0             | 13.              |
| 60.0  | 2264.          | 60.0   | 1179.          | 60.0     | 339.           | 60.0             | 118.            | 60.0    | 60.            | 60.0             | 35.             | 60.0     | 24.             | 70.0             | 16.              |
| 70.0  | 2675.          | 70.0   | 1397.          | 70.0     | 399.           | 70.0             | 139.            | 70.0    | 71.            | 70.0             | 41.             | 70-0     | 27.<br>30.      | 80.0             | 21.              |
| 80.0  | 2957.          | 80.0   | 1536.          | 80.0     | 438.           | 80.0             | 152.            | 80.0    | 78.            | 80.0             | 45.             | 90.0     | 31.             | 90.0             | 21.              |
| 90.0  | 3048.          | 90.0   | 1584.          | 90.0     | 451.           | 90.0             | 156-            | 90.0    | 80.            | 90.0             | 45.             | 100.0    | 30.             | 100.0            | 21.              |
| 100.0 | 2947.          | 100.0  | 1532.          | 100.0    |                | 100.0            |                 | 100.0   |                | 110.0            | 41.             | 110.0    |                 | 110.0            | 19.              |
| 110.0 |                | 110.0  | 1386-          | 110.0    |                | 110.0            |                 | 120.0   |                | 120.0            | 34.             | 120.0    | 23.             | 120.0            | 16.              |
| 120.0 | 2236.          | 120.0  |                | 120.0    |                | 130.0            |                 | 130.0   |                | 130.0            |                 | 130.0    | 18.             | 130.0            | 12.              |
| 130.0 | 1737.          | 130.0  |                | 130.0    |                | 140.0            |                 | 140.0   |                | 140.0            |                 | 140.0    | 13.             | 140.0            | 9.               |
| 140.0 | 1208.          | 150.0  |                | 150.0    |                | 150.0            |                 | 150.0   |                | 150.0            | l ii.           | 150.0    | 8.              | 150.0            | 5.               |
| 150.0 | 331.           | 160.0  | 177.           | 160.0    |                | 160.0            |                 | 160.0   |                | 160.0            | 5.              | 160.0    | 4.              | 160.0            | 2.               |
| 170.0 | 70.            | 170.0  |                | 170.0    | l ii.          | 170.0            |                 | 170.0   | 2.             | 170.0            | 1.              | 170.0    | 2.              | 170.0            | 1.               |
| 180.0 | -15.           | 180.0  |                | 180.0    |                | 180.0            |                 | 180.0   | o.             | 180.0            | -0.             | 180.0    | 1.              | 180.0            | 0.               |
|       |                | 12.2.2 | <u> </u>       |          |                |                  |                 |         |                |                  | •               |          |                 |                  |                  |

Figure 56. Dy b-axis strain (in x  $10^{-6}$ /in) versus angle of applied field,  $\theta$ , relative to a axis. The 30 kOe field was applied in the basal plane.

|                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                           |                                                                                                            |                                                                                                              |                                                                                                                                                                                | Er                                                                                                                                                                           | STRAIN V                                                                                               | ersus ti                                                                                                        | PERATU                                                                                                                                             | RE                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                             |                                                                             |                                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                 |                                                                                                                                                                 | 1 ii A                                                                                                    | PPLIED A                                                                                                   | LONG a-/                                                                                                     | XIS                                                                                                                                                                            |                                                                                                                                                                              | APPLIED                                                                                                |                                                                                                                 |                                                                                                                                                    |                                                                                                                                  | II APPL                                                                                                                                                 | IED ALO                                                                                                                                                                     | NG C-AXI                                                                    | s                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a\                                                                                                                                                                              |                                                                                                                                                                 | 1                                                                                                         | x15 <sub>1</sub>                                                                                           | a-A                                                                                                          |                                                                                                                                                                                | b-AXI                                                                                                                                                                        | IS                                                                                                     |                                                                                                                 | KIS <sub>3</sub>                                                                                                                                   | 1                                                                                                                                | AXIS                                                                                                                                                    |                                                                                                                                                                             | XIS <sub>2</sub>                                                            |                                                                                                                                     | XIS <sub>3</sub><br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| l                                                                                                                                                                               | •                                                                                                                                                               | , ,                                                                                                       | 1                                                                                                          |                                                                                                              |                                                                                                                                                                                | •                                                                                                                                                                            | L A # / #                                                                                              | ľ                                                                                                               | 1                                                                                                                                                  | lk .                                                                                                                             |                                                                                                                                                         |                                                                                                                                                                             |                                                                             | Т                                                                                                                                   | 41/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TT<br>100 - 2<br>81 - 3<br>73 - 8<br>63 - 5<br>58 - 0<br>53 - 5<br>34 - 5<br>29 - 2<br>20 - 5<br>17 - 7<br>17 - 3<br>17 - 0<br>16 - 1<br>15 - 2<br>10 - 3<br>298 - 4<br>280 - 9 | 3 4/4<br>-550.<br>-618.<br>-710.<br>-833.<br>-888.<br>-927.<br>-1237.<br>-1533.<br>-1559.<br>-1634.<br>-1639.<br>-1639.<br>-2768.<br>-2768.<br>-2768.<br>-2815. | T 200.1 200.2 176.7 156.8 142.8 142.5 113.5 96.6 79.4 100.3 55.3 550.2 47.7 39.9 33.7 26.2 73.3 23.3 23.3 | 300  AL/L  -3053133734345965466147395506476708421102111011421211138114851518.                              | 193 T 203.9 203.7 186.3 160.6 148.9 142.7 124.5 98.9 90.9 99.6 99.7 84.8 77.9 162.8 53.1 44.1 33.4 24.1 20.2 | -300.<br>-303.<br>-357.<br>-501.<br>-515.<br>-580.<br>-626.<br>-660.<br>-727.<br>-648.<br>-626.<br>-132.<br>-1345.<br>-1842.<br>-2229.<br>-2572.<br>-2782.<br>-2846.<br>-2876. | 95.2<br>90.6<br>87.0<br>85.0<br>83.0<br>72.2<br>65.7<br>58.5<br>55.0<br>50.1<br>48.1                                                                                         | -139190234289322362371413419436479513509.                                                              | Heir T 201.1 201.1 179.5 166.4 152.8 141.3 129.9 120.5 103.2 94.5 76.9 76.9 169.4 65.3 61.8 57.7 53.8 48.8 57.7 | 30<br>A1/L<br>-220.<br>-23.<br>-260.<br>-289.<br>-321.<br>-346.<br>-373.<br>-440.<br>-473.<br>-513.<br>-527.<br>-732.<br>-627.<br>-1030.<br>-1234. | 212.3<br>205.7<br>173.1<br>144.6<br>114.3<br>87.8<br>298.4<br>274.3<br>236.5<br>214.9<br>187.2<br>157.9<br>201.2<br>98.4<br>68.4 | 46/6<br>-195.<br>-651.<br>-983.<br>-1040.<br>-1608.<br>-1734.<br>-2363.<br>-2363.<br>-3366.<br>-3757.<br>-120.                                          | 201-8<br>201-8<br>161-5<br>162-8<br>139-9<br>134-2<br>111-2<br>89-7<br>96-5<br>96-5<br>86-0<br>79-8<br>67-4<br>41-4<br>41-4<br>41-4<br>41-4<br>41-4<br>41-2<br>27-2<br>27-2 | A4/4 -18151801217725062892298933403635354836143567343734372814275824282428- | 201.3<br>201.4<br>186.9<br>163.4<br>150.4<br>127.0<br>113.3<br>97.8<br>85.0<br>64.7<br>98.4<br>89.1<br>85.8<br>83.3<br>78.6<br>70.9 | AL/L<br>-1815.<br>-1804.<br>-2069.<br>-2482.<br>-2715.<br>-3103.<br>-3291.<br>-3479.<br>-35753.<br>-3605.<br>-3482.<br>-3494.<br>-3500.<br>-3494.<br>-3502.<br>-3494.<br>-3502.<br>-3103.<br>-3002.<br>-3103.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003.<br>-3003. |
| 257.3<br>237.7<br>223.1<br>208.1<br>179.0<br>179.0<br>154.8<br>141.3<br>125.4<br>110.0<br>93.8<br>97.4<br>83.2                                                                  | -199.<br>-233.<br>-278.<br>-307.<br>-353.<br>-370.<br>-408.<br>-443.<br>-480.<br>-521.<br>-565.<br>-557.                                                        | 21.2<br>20.3<br>20.1<br>19.6<br>19.2<br>18.6<br>15.2<br>12.0<br>10.0<br>11.2                              | -1562.<br>-1571.<br>-1582.<br>-1743.<br>-3036.<br>-3032.<br>-3024.<br>-3053.<br>-3108.<br>-3112.<br>-2845. | 13.0<br>10.0                                                                                                 | -2907.<br>-2922.<br>-2934.<br>-2891.                                                                                                                                           | 97.9<br>80.2<br>71.7<br>64.9<br>57.4<br>55.0<br>51.7<br>47.3<br>39.4<br>26.8<br>22.4<br>21.2<br>21.2<br>21.2<br>21.2<br>18.3<br>17.7<br>17.6<br>17.3<br>16.6<br>15.9<br>15.9 | -4795606397006397737898461006120212911315137114311519152415321594165725042577256425772564257226122629. | 33.4<br>30.6<br>24.2<br>33.4<br>29.0<br>25.3<br>20.6<br>15.9<br>14.5<br>14.2                                    | -2281.<br>-2341.<br>-2513.<br>-2281.<br>-2371.<br>-2432.<br>-2506.<br>-2577.<br>-2568.<br>-2573.<br>-2592.                                         | 76.4<br>70.2<br>63.0<br>58.5<br>52.2<br>48.3<br>42.6<br>38.5<br>26.6<br>20.2<br>18.6                                             | -3617.<br>-3617.<br>-3563.<br>-3563.<br>-3490.<br>-2773.<br>-2625.<br>-2538.<br>-2399.<br>-2389.<br>-2399.<br>-2389.<br>-2399.<br>-618.<br>618.<br>624. | 23.3<br>21.3<br>20.7                                                                                                                                                        | -24412459246424322355. 1212. 1247. 1277. 1373. 1410. 1433. 1435. 602.       | 39.4<br>35.0<br>34.1<br>29.5<br>25.0<br>23.3<br>21.4<br>20.9<br>18.6<br>16.7<br>14.7<br>12.3<br>10.0<br>29.1                        | 241. 386. 426. 583. 672. 704. 737. 796. 810. 819. 825. 5862149.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Figure 57. Er a-, b-, and c-axis strain (in x 10<sup>-6</sup>/in) as a function of temperature in zero field and in 30 kOe fields. The horizontal lines separate data runs.

|                                                                                    |                                                                                                        | ·····  |                                                                                                                                                                | Er a-AXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S STRAI                                                                                        | N VERSUS                                                                                                                                                                               | FIELD /                                                                                      | rrlied A                                                                                                                                                                                           | LONG c-/                                                                                                                            | XIS                                                                                                                                                                              | <del></del>                                                        |                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T =<br>0.0 2.0 4.0 6.0 10.0 12.0 14.0 16.0 18.0 27.0 30.0                          | 11.0<br>21/2<br>0.<br>-1.<br>-6.<br>-15.<br>-21.<br>-23.<br>-28.<br>-31.<br>-35.<br>-39.<br>-47.<br>0. | T = 11 | 15.2<br>15.2<br>10.<br>-2.<br>-1.<br>-12.<br>-15.<br>-18.<br>-20.<br>-22.<br>-23.<br>-25.<br>-34.<br>-37.<br>-39.<br>-42.<br>-45.<br>-48.<br>-5.<br>-55.<br>2. | T = 20.4 !!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                        | 27.0<br>AL/L<br>0 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                             | T = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                    | 49.1<br>0.<br>-2.<br>-10.<br>-15.<br>-16.<br>-15.<br>-19.<br>-100.                                                                                                                                 | T = !! 0.0 2.0 4.0 6.0 10.0 12.0 14.0 12.0 12.0 12.0 12.0 12.0 22.0 23.5 23.7 23.9 24.1 24.3 24.5 25.0 26.5 27.0 28.0 29.0 30.0 0.0 |                                                                                                                                                                                  | T = UI                                                             | 79.8 At/1 0.0. 012361423354660731.                                                          | I = 10 0.0 2.0 4.0 6.0 12.0 14.0 21.0 27.0 30.0 0.0 12.0 14.0 18.0 12.0 14.0 16.0 18.0 21.0 24.0 28.0 30.0 0.0                                                                                                                         | 90.2<br>61/1<br>0.<br>-1.<br>-2.<br>-4.<br>-6.<br>-8.<br>-12.<br>-19.<br>-26.<br>-34.<br>-54.<br>0.<br>120.4<br>62/1<br>0.<br>0.<br>0.<br>-1.<br>-2.<br>-3.<br>-4.<br>-54.<br>0.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1 |
| T = 11<br>0.0<br>3.0<br>6.0<br>9.0<br>12.0<br>18.0<br>21.0<br>24.0<br>27.0<br>30.0 | 10.0<br>22/2<br>0213.<br>-1821.<br>-2428.<br>-3134.<br>-3841.<br>1.                                    | T =    | 15.2 Δ2/1 C315212532374049. 2.                                                                                                                                 | ET b-AXIS  T = 20.6  II   0.0   0.1.0   0.1.0   0.1.5   24.1   14.2.0   -1049.3   1.075.2   1.08   1.075.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049.3   1.049 | T = 91 0.0 2.0 3.0 4.0 4.0 5.5 5.6 0 6.3 6.5 6.8 7.0 7.5 8.0 9.0 10.0 12.0 14.0 18.0 21.0 27.0 | 29.0  \$\text{\Lambda}(VERSUS) i  29.0  \$\text{\Lambda}(\text{\Lambda}(\text{\Lambda}) \\ 6.  8.  11.  20.  -92.  -202.  -885.  -987103610511015991994101010101023103110381046105557. | T * 11 0.0 6.0 3.0 6.0 12.0 17.0 17.3 17.5 17.7 18.3 18.5 18.7 19.5 20.0 22.0 23.0 24.0 28.0 | 50.2<br>0.2<br>-3.<br>-15.<br>-19.<br>-21.<br>-35.<br>-237.<br>-510.<br>-899.<br>-926.<br>-917.<br>-899.<br>-921.<br>-931.<br>-936.<br>-942.<br>-942.<br>-951.<br>-959.<br>-968.<br>-998.<br>-998. | T = 11                                                                                                                              | 64.8<br>61/2<br>0.<br>-0.<br>-1.<br>-4.<br>-6.<br>-11.<br>-17.<br>-20.<br>-27.<br>-172.<br>-122.<br>-233.<br>-285.<br>-294.<br>-311.<br>-322.<br>-348.<br>-344.<br>-403.<br>-14. | T = 11 0.0 3.0 6.0 9.0 12.0 15.0 20.0 22.0 24.0 26.0 28.0 30.0 0.0 | 80.7<br>Δ1/1<br>0.<br>0.<br>-1.<br>-1.<br>-1.<br>-27.<br>-27.<br>-49.<br>-62.<br>-77.<br>0. | T = 1<br>0.0<br>3.0<br>6.0<br>9.0<br>12.0<br>15.0<br>21.0<br>24.0<br>27.0<br>30.0<br>0.0<br>12.0<br>15.0<br>12.0<br>15.0<br>12.0<br>15.0<br>12.0<br>17.0<br>17.0<br>18.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17 | 91,0<br>32/8<br>0.<br>-0.<br>-2.<br>-5.<br>-9.<br>-14.<br>-57.<br>1.<br>20.7<br>Δ2/1<br>0.<br>0.<br>-1.<br>-2.<br>-35.<br>-46.<br>-57.<br>1.                                                                                            |

Figure 58. Er a- and b-axis strain (in  $\times$  10<sup>-6</sup>/in) versus field, H, applied along c axis.

| <u> </u>                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Er                                                                                                                                                                            | c-AXIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STRAIN 1                                                                                                  | versus fi                                                                                        | ELD APP                                                                                         | LIED ALON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ic c-AXI                                                                                              | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                                |                                                                               |                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 6.0 2<br>8.0 3<br>10.0 4<br>12.0 5<br>14.0 6<br>16.0 6<br>18.0 7<br>20.0 8<br>22.0 9<br>24.0 10<br>26.0 11<br>28.0 12<br>30.7 13 | 15.2<br>  De/t   0.8.18.38.50.58.68.78.68.78.14.126.144.159.16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0<br>1.0<br>1.0<br>1.7<br>1.7<br>1.9<br>2.1<br>2.3<br>2.7<br>2.9<br>3.1<br>3.3<br>3.5<br>5.0<br>6.0<br>12.0<br>14.0<br>16.0<br>12.0<br>16.0<br>12.0<br>21.0<br>24.0<br>27.0 | 20,4<br>20,4<br>0.<br>1.<br>2.<br>11.<br>52.<br>2672.<br>3021.<br>3222.<br>3507.<br>3600.<br>3897.<br>3573.<br>3518.<br>3341.<br>3322.<br>3328.<br>3335.<br>3428.<br>3377.<br>3888.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>3418.<br>341 | T # 0.0 0 1.0 1.0 1.0 2.5 3.0 4.5 5.0 7.0 7.5 8.5 7.0 11.0 112.0 112.0 112.0 112.0 121.0 221.0 227.0 30.0 | 29,1<br>29,1<br>0,-4,-8<br>-12,-19,-24,-33,-56,-66,-20,-27,27,27,27,27,27,27,27,27,27,27,27,27,2 | T = 0.0 2.0 3.0 4.0 5.0 6.0 7.0 11.0 12.0 14.0 17.7 18.5 19.0 22.0 24.0 22.0 24.0 26.0 30.0 0.0 | 49.8   AL/L   0.   11.   12.   12.   12.   13.   -6.   -10.   -11.   5.   2520.   3086.   2770.   2643.   2656.   2779.   2830.   2830.   2930.   111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T = 11 0.0 2.0 4.0 4.0 10.0 11.0 11.0 11.0 11.0 12.0 12.0 12                                          | 5 65,4 0.1 1.1 0.1 1.1 2.2 2.4 1.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0<br>2.0<br>4.0<br>4.0<br>10.0<br>10.0<br>14.0<br>14.0<br>18.0<br>21.0<br>22.5<br>23.0<br>23.5<br>24.5<br>25.5<br>26.5<br>27.0<br>28.0<br>29.0 | 78.9<br>Δ1/1<br>0.<br>0.<br>0.<br>-1.<br>-2.<br>-2.<br>-2.<br>-2.<br>-2.<br>-3.<br>16.<br>27.<br>37.<br>47.<br>58.<br>69.<br>81.<br>93.<br>117.<br>130.<br>152.<br>210.<br>-2. | 11<br>0.0<br>2.0<br>4.0<br>6.0<br>8.0<br>10.0<br>12.0<br>14.0<br>16.0<br>21.0 | 89.2  At/t  0.  1.  4.  9.  16.  24.  53.  75.  124.  146.  170.  196.  211.  3.  119.1  At/t  14.  14.  14.  14.  14.  14.  14.  14 |
| 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6                                                                                        | 10.7<br>\[ \Delta L / L \] \[ \text{10.} \] \[ \text{2.} \] \[ \text{5.} \] \[ \text{6.} \] \[ \text{7.} \] \[ \text{7.} \] \[ \ | 30.0<br>0.0<br>Er                                                                                                                                                             | 3472.<br>-105.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.0                                                                                                      | 2775.<br>-17.                                                                                    | T = If 0.0 2.0 4.0 6.0 8.0 10.0 14.0 21.0 27.0 30.0 30.7 0.0                                    | 29.4   \( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texitext{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex | T =    0.0    2.0    6.0    6.0    12.0    14.0    16.0    22.0    24.0    27.0    30.0    C.0    T = | 50.8   \( \Delta L/t \)   0.   1.   3.   44.   59.   74.   92.   111.   133.   166.   186.   -1.   141/t   0.   0.   1.   3.   44.   20.   27.   34.   43.   53.   -1.   16.   16.   16.   16.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17.   17. | 0.0<br>2.0<br>6.0<br>8.0<br>10.0<br>12.0<br>14.0<br>16.0<br>20.0<br>22.0<br>24.0<br>24.0<br>26.0<br>30.0<br>0.0                                   | 65.8  Δt/t 0. 1. 3. 7. 13. 21. 30. 41. 53. 67. 84. 101. 120. 140. 1854.  150.4  Δt/t 0. 00123457. 0.                                                                           | 24.0<br>27.0<br>30.0<br>0.0                                                   | 78.9<br>bl/t<br>0.<br>1.<br>2.<br>9.<br>15.<br>21.<br>29.<br>37.<br>47.<br>59.<br>106.<br>114.<br>122.<br>131.<br>137.<br>-2.        |

Figure 59. Er c-axis strain (in x 10 -6/in) versus field, H, applied along c and b axes of a-c and b-c planes respectively.

|           |                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Er                                                                                       | a. AXIS                                                                                                                                       | STRAIN                                                                                    | VERSUS                                                                                                    | FIELD AT                            | PLIED AL                                                                                                                   | ONG a-A)                                                       | cis                                       |                                                                    |                                                                                                            |                                                                                                  |                                                                                                                    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| T =       | 10.6  M/C  0.  0.  -1.  -2.  -3.  -2.  -1.  -1.  -19.  -42.  -81.  -197.  -296.  -275.  -270.  -268.  -266.  -274.  -274.  -3.                                            | 1                                                                                                               | 15.0<br>15.0<br>0.0<br>0.0<br>0.0<br>0.1<br>-1.1<br>-2.1<br>-3.1<br>-3.1<br>-1.1<br>-3.1<br>-10.1<br>-30.1<br>-60.1<br>-174.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-247.1<br>-248.1<br>-249.1<br>-252.1<br>-252.1<br>-258.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259.1<br>-259. | T = 11 0.0 1.0 2.0 3.0 4.0 5.0 6.0 10.0 12.0 14.0 16.0 21.0 27.0 29.5 30.0 30.3 30.7 0.0 | 20.4<br>At /t<br>0.5<br>22.<br>28.<br>28.<br>26.<br>21.<br>16.<br>12.<br>7.<br>-12.<br>-28.<br>-33.<br>-37.<br>-459.<br>-132.<br>-215.<br>16. | T = 0.0 2.0 4.0 6.0 10.0 12.0 14.0 16.0 22.0 24.0 28.0 30.0 0.0                           | 49.0<br>At /L<br>0.<br>4.<br>15.<br>26.<br>20.<br>13.<br>4.<br>-5.<br>-16.<br>-29.<br>-77.<br>-99.<br>34. | T = 11                              | 64.9  Δt/t  0.  0.  -3.  -5.  -19.  -25.  -32.  -41.  -50.  -60.  -71.  -83.  -95.  -109.  -4.                             | T = 0.0                                                        | 79.6  At /t 0. 0135121621263239466272. 0. | 1 = 11 0.0 2.0 4.0 12.0 14.0 12.0 14.0 12.0 22.0 24.0 0.0 20.0 0.0 | 90.2<br>0.<br>0.<br>0.<br>-1.<br>-5.<br>-7.<br>-10.<br>-31.<br>-31.<br>-37.<br>-43.<br>-51.<br>-58.<br>-2. | T =                                                                                              | 120.4<br>0.<br>0.<br>-1.<br>-2.<br>-3.<br>-6.<br>-8.<br>-10.<br>-12.<br>-14.<br>-17.<br>-20.<br>-23.<br>-26.<br>1. |
|           |                                                                                                                                                                           |                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Er                                                                                       | b-AXIS S                                                                                                                                      | TRAIN V                                                                                   | ERSUS FT                                                                                                  | ELD APPL                            | TEU ALON                                                                                                                   | G a-AXIS                                                       | 5                                         |                                                                    |                                                                                                            |                                                                                                  |                                                                                                                    |
| T i = 0.0 | 999<br>000<br>-100<br>-200<br>-100<br>-100<br>-100<br>-100<br>-100<br>-200<br>-201<br>-211<br>-216<br>-224<br>-236<br>-247<br>-275<br>-275<br>-275<br>-319<br>-344<br>-33 | T = il 0.00 4.00 6.00 10.00 17.00 16.00 17.00 18.3 18.5 18.7 19.1 19.3 19.5 22.00 22.00 22.00 23.00 26.00 30.00 | 152<br>0.1<br>1.1<br>-1.2<br>-2.2<br>-3.3<br>-3.3<br>-6.112.112.112.112.112.112.112.112.112.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Er                                                                                       | b-AXIS S  20,3                                                                                                                                | TRAIN V  7 = 1! 0.00 4.00 6.00 10.00 12.00 14.00 22.00 24.00 24.00 26.00 28.00 30.00 0.00 | 29.0<br>Δt/t<br>0.<br>-11.<br>-56.<br>-99.<br>-115.<br>-125.<br>-139.<br>-154.                            | T = ii 0.0 2.0 4.0 6.0 8.0 9.0 10.0 | 47,4<br>al/E<br>0.<br>-12.<br>-47.<br>-79.<br>-92.<br>-93.<br>-94.<br>-95.<br>-94.<br>-95.<br>-80.<br>-65.<br>-46.<br>-11. | G a-AXIS  T =  11  0.0  3.0  4.0  12.0  15.0  18.0  27.0  30.0 | 65.1 0123469121523.                       | T = 11 0.0 3.0 6.0 9.0 12.0 15.0 21.0 21.0 27.0 30.0 0.0           | 79.0<br>Δt/t<br>0.<br>0.<br>-1.<br>-2.<br>-3.<br>-5.<br>-8.<br>-11.<br>-14.<br>0.                          | T = 0.0 0 0.0 12.0 15.0 12.0 0.0 21.0 0.0 15.0 15.0 12.0 15.0 12.0 15.0 12.0 15.0 12.0 27.0 30.0 | 89.8   52/t   0.   0.   -0.   -1.   -2.   -3.   0.   119.1   Δt/b.   0.   -1.   -2.   -2.   -3.   -4.   -6.   -7.  |

Figure 60. Er a- and b-axis strain (in x 10<sup>-6</sup>/in) versus field, H, applied along the a axis of the a-c and a-b plane specimens respectively.

|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Er-                                                                                                      | - b-AXIS                                                                                                                                                                    | STRAIN | VERSUS I | IELD A                                                                             | rlied AL                                                                                                                                  | NC P-VX                                                                        | is                                                                                                    |        |                                                                                                                                                    |                                                           |                                                                                         |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------|
| T = 11 0.0 7.0 4.0 8.0 12.0 14.0 18.3 18.5 18.7 18.9 19.1 19.3 19.5 20.0 21.0 22.0 24.0 28.0 30.0 0.0 | 4.6<br>Δ1/2<br>0.<br>-7.<br>-6.<br>-6.<br>-6.<br>-1.<br>-0.<br>-4.<br>-10.<br>-35.<br>-87.<br>-170.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177.<br>-177 | T = il 0.0 3.0 6.0 12.0 15.0 17.5 18.0 18.3 18.5 18.7 18.9 1 19.3 19.5 20.0 24.0 26.0 28.0 0.0 0.0 | 9.9<br>\$\text{\text{\$\lambda}\$} \text{\$\lambda\$} \$\la | T = iil 0.0 2.0 4.0 10.0 12.0 14.0 18.3 18.5 18.7 18.9 19.1 19.3 19.5 21.0 20.5 21.0 23.0 24.0 26.0 30.0 | 15.2<br>Δ1/1<br>0.<br>0.<br>0.<br>-1.<br>-2.<br>-5.<br>-7.<br>-12.<br>-16.<br>-28.<br>-74.<br>-118.<br>-109.<br>-177.<br>-186.<br>-189.<br>-197.<br>-197.<br>-206.<br>-209. | T = 11 | 20.4     | T = II                                                                             | 29.0<br>0.21.<br>92.<br>144.<br>161.<br>155.<br>148.<br>120.<br>113.<br>90.<br>80.<br>62.<br>41.<br>19.<br>-3.<br>25.                     | T = 11 0.0 2.0 4.0 5.0 6.0 7.0 10.0 12.0 14.0 18.0 20.0 24.0 26.0 26.0 20.0    | 47.3<br>\$\delta L/t\$  0.  14.  48.  64.  72.  75.  71.  65.  58.  86.  39.  27.  15.  6.  -5.  -16. | T = II | 64.6  Δt/t  0.  -0.  -2.  -4.  -12.  -16.  -22.  -37.  -45.  -54.  -65.  -76.  -88.  -100.  0.                                                     | T = 1!                                                    | 79.3<br>Δ1/1<br>0.<br>-1.<br>-3.<br>-7.<br>-12.<br>-18.<br>-25.<br>-35.<br>-45.<br>-70. |
| T = ii                                                                                                | 89.8  Δt/t  0.  -0.  -2.  -5.  -9.  -14.  -20.  -27.  -35.  -44.  -55.  0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T = 11 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 0.0                                      | 119.4<br>Δt/t<br>C.<br>-C.<br>-1.<br>-3.<br>-7.<br>-10.<br>-13.<br>-17.<br>-22.<br>-27.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0  T =                                                                                                 | 2.  150.2  00123468101215. 0.                                                                                                                                               |        |          | Er 1: 0.0 3.0 6.0 12.0 15.0 17.0 18.3 18.5 18.7 19.0 21.0 22.0 24.0 24.0 26.0 30.0 | - C-AXIS  10.5  Δ1/1  0.  2.  7.  11.  13.  9.  9.  17.  44.  91.  151.  306.  578.  652.  7147.  798.  626.  827.  925.  972.  1018.  0. | T = ii 0.0 3.0 6.0 12.0 15.0 17.0 18.3 18.5 19.3 19.5 20.0 21.0 22.0 28.0 30.0 | VERSIS F  14.2 0. 3. 8. 15. 20. 21. 21. 28. 50. 88. 131. 565. 633. 771. 779. 7852. 906. 948. 997.     | T =    | 20.5<br>ΔI/1<br>091.<br>11.<br>27.<br>47.<br>75.<br>110.<br>154.<br>213.<br>249.<br>300.<br>373.<br>419.<br>904.<br>1446.<br>1739.<br>2680.<br>-7. | NG a-AX  T = il 0.0 3.0 6.0 12.0 15.0 12.0 21.0 24.0 27.0 | 29.0  Δt/t  0.  -5.  30.  53.  14.  30.  53.  79.  111.  149.  192.  241.  -0.          |

Figure 61. Er b- and c-axis strain (in x  $10^{-6}$ /in) versus field, H. Specimens were the a-b and a-c planes respectively.

i 7

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 70000<br>70000<br>70000<br>70000<br>70000<br>70000<br>70000<br>70000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 980000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 79.0<br>ALC: 0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 14.6<br>14.6<br>14.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40<br>40.00<br>40<br>40.00<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 |
| ΔL/ε ΔL/ε -3141101111141414141414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 - 1<br>10.0<br>20.0<br>30.0<br>40.0<br>70.0<br>90.0<br>90.0<br>110.0<br>1150.0<br>1170.0<br>1170.0<br>1170.0<br>1170.0<br>1170.0<br>1170.0<br>1170.0<br>1170.0<br>1170.0<br>1170.0<br>1170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D-AXIS STRAIN VERSUS ANGLE OF  9.9   T = 15.2   T =  0.0   0.0   0.0    170   20.0   11.1   10.0    0.25.0   19.0   22.0    185   10.0   2.0    19.0   25.0   19.0    25.0   19.0   25.0    15.1   35.0   42.1    16.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1    17.1   10.0   113.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11 11 11111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VERSUS A 15.2 At/t 0. 11. 19. 30. 11. 19. 30. 11. 19. 30. 11. 19. 30. 11. 10. 11. 11. 11. 11. 11. 11. 11. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 70000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 - 90.00 110.00 250.00 350.00 400.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AL/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NPILIED 20.4 AL/1 - 30.2 0 0 0 - 1.90 2.94 2.94 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mynified Field IN a-b PLANE RELATIVE TO a-AXIS  20.4 T = 29.0 4T = 47.5 T = AXIS  0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ν α-b PI<br>29, 0<br>4 Δε/ε<br>6 . 31<br>103<br>176<br>197<br>197<br>197<br>197<br>197<br>189<br>189<br>189<br>189<br>189<br>189<br>189<br>189<br>189<br>189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL/. 5 AL/. 6 1.7.5 AL/. 6 1.7.5 1.7.5 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7.6 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-AXIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A7. 4<br>A7. 4<br>-010101010101010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Δα/ε<br>-61.<br>-71.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.<br>-73.                                                                                                                                                                                                                                                                                                                                                                           |

Figure 62. Er b-axis strain (in x  $10^{-6}/in$ ) versus angle of applied field,  $\theta$ , relative to a axis. The 30 kOe field was applied in the basal plane.

|                |                                  |                |                  |                |                | VLRSUS TE      |                |                |                  |                |              |
|----------------|----------------------------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|--------------|
| d°/            | W15                              | a-             | Axis             | b-A            |                | b ALONG b      | XIS            | c-A            |                  | C-A            |              |
| :19            |                                  |                | -30              | []=(           |                | -              | ١ .            | 11=(           | 1                | lie<br>T       | δt/t         |
| 1              | /1                               | 1              | 31/1             | T<br>300.0     | 31/L           | 7<br>300-1     | 0.             | 7<br>364.6     | ΔL/L<br>563.     | 350.0          | 462          |
| 360.6          | - 3/0.                           | 241.4<br>240.4 | -144.            | 296.7          | -25.           | 300. i         | 10.            | 151.2          | 463.             | 350.0          | 493          |
| 232.4          | - 371.                           | 272.5          | -266.            | 289.5          | -57.           | 296.8          | -5.            | 350.0          | 456.             | 340.7<br>329.6 | 430<br>340   |
| 229-1          | -447.                            | 259.2          | -466.            | 277.8          | -118.          | 280.8          | -70.<br>-108.  | 327.4          | 278.             | 118.9          | 259          |
| 274.F<br>221.4 | - 554.                           | 759.0<br>266.1 | -485.<br>-363.   | 251.0          | -255.          | 265.6          | -128.          | 316.5          | 170.             | 791.7          | 88           |
| 219.4          | -712.                            | 252.0          | -652.            | 242.7          | - 309 •        | 258.0          | -150.          | 303.0<br>290.5 | 29.<br>-95.      | 280.1          | 44           |
| 716.B          | - Ac1.                           | 245.5          | -851.            | 238.3          | -343.<br>-384. | 249.7<br>242.9 | -157.<br>-142. | 289.7          | -102.            | 267.8          | ii           |
| 213.6<br>210.4 | -966.<br>-1051.                  | 215.9          | -1014.           | 232.3          | -476.          | 231.5          | -85.           | 273.3          | -242.            | 260.7          | 176          |
| 205.9          | -1174.                           | 232.4          | -1322.           | 726.4          | -543.<br>-668. | 224.3<br>211.5 | 181.           | 258.0<br>252.3 | - 335.<br>- 356. | 251.3          | 29L          |
|                | -1761.<br>-1370.                 |                | -1555.<br>-1851. | 222.0<br>219.7 | - 727.         | 205.0          | 281.           | 248.5          | -360.            | 234.9          | 1182         |
| 214.4          | - 9H5.                           | 217.0          | -1869.           | 217.7          | -751.          | 195.9          | 428.           | 238.6          | -326 •           | 227.7          | 1540<br>2115 |
| 217.H          | - P84.                           |                | -2054-           | 215.0          | -774.<br>-794. | 179.6          | 698.<br>985.   | 211.1          | 1717.            | 213.1<br>200.8 | 2427         |
| 719.7          | -837.                            |                | -2076.<br>-2366. | 204.5          | -815.          | 147.2          | 1272.          | 225.0          | 346.             | 190.6          | 2595         |
| 225.3          | -550.                            | 197.6          | -2657.           | 195.0          | -814.          | 132.5          | 1524 .         | 228.0          | -13.             | 180.7          | 7696<br>2746 |
| 729.7          | -432.                            |                | -26/1.           | 185.0          | -796.<br>-773. | 123.2          | 1678.          | 230.0          | -155.<br>-252.   | 145.4          | 2710         |
| 735.0          | - 358.<br>- 301.                 |                | -2948.<br>-3226. | 160.0          | -732.          | 95.0           | 2188.          | 235.8          | -301.            | 129.9          | 2614         |
| 244.8          | - 2H2.                           | 163.4          | -3522.           | 136.8          | -669.          | 79.3           | 2404.          | 244.1          | -359.            | 112.7          | 2412         |
| 51.4           | -240.                            | 154.3          | - 3740.          | 123.3          | -647.          | 65.0           | 2584.          | 254.9<br>268.1 | -349.<br>-280.   | 93.7           | 2284         |
| 5A.7           | -179.                            |                | -4038.<br>-4358. | 10A.0<br>92.7  | -666.          | 50.0<br>35.0   | 2775.          | 280-4          | -186.            | 79.3           | 2141         |
| 71.6           | - 132.                           |                | -4672.           | 74.7           | -684.          | 20.5           | 2782.          | 291.5          | -85.             | 62.3           | 1945         |
| 777.6          | - 10%                            | 104.6          | -5125.           | 63.4           | -752.          | 70.1           | 2406.          | 284.6          | -150.<br>-41.    | 55.7           | 1890         |
| 84.R           | -69.                             | 49.9           | -5264.<br>-4863. | 59.0           | - 165.         | 79.1<br>70.6   | 2527.          | 306.8          | 69.              | 43.0           | 1759         |
| 45.A           | -44.                             | 120.4          | -4845.           | 300.0          | ٥.             | 60.5           | 2654.          | 311.0          | 126.             | 34.4           | 1707         |
| 97.R           | -10.                             | 115.3          | -4995.           | 171.6          | -720.          | 49.8           | 2777.          | 323.1          | 233.<br>356.     | 26.0<br>17.4   | 1675         |
| 107.3          | 31.                              | 98.4           | -5492.<br>-5686. | 167.7          | -708.<br>-657. | 39.2           | 2869.          | 350.0          | 463.             | 10.0           | 1662         |
| 113.6          | 59.                              | 111.0          | -5123.           | 132.7          | -609.          | 359.8          | 220.           |                |                  | 5.1            | 1684         |
| 170.4          | A7.                              |                | -5090.           | 121.8          | -586           | 359.8          | 223.           | 239.4          | -403.<br>-167.   | 6. fl          | 1673         |
| 176.9          | 117.                             |                | -5279.<br>-5888. | 106.6          | -535.<br>-518. | 350.2<br>340.8 | 203.           | 229.2          | -161.            | 13.3           | 1659         |
| 115.A          | 166.                             |                | -6058.           | 76.6           | -525.          | 327.0          | 96.            | 229.1          | -132.            | 21.0           | 1666         |
| 340-0          | 186.                             |                | -6300.           | 64.2           | -537.          | 315.6          | 41.            | 228.0          | -13.<br>332.     | 5.0<br>20.1    | 1685         |
| 346.4          | 221.                             |                | -6485.<br>-6495. | 301.2<br>300.5 | 4.             | 302.0<br>287.8 | 7.<br>-47.     | 224.0          | 433.             | 49.7           | 1816         |
| 170.0          | - 7761                           |                | -6152.           | 284.6          | -73.           | 272.9          | -84.           | 223.0          | 527.             | 165.0          | 2739         |
| 25.7           | -531.                            | 54 . A         | -6754.           | 275-3          | -118.          | 256.9          | -131.          | 222.0          | 622.             | 164.2          | 2740<br>2718 |
| 27.2           | -542.                            | 52 - 1         | -6834.           | 266.6          | -159.<br>-175. | 246.8          | -131.<br>-92.  | 221.8          | 642.             | 221.6          | 1778         |
| 25.1<br>24.8   | -553.                            |                | -7065.           | 244.1          | -292.          | 216.0          | 123.           | 221.7          | 652.             | 220.0          | 1859         |
| 24.5           | -559.                            | 40.7           | -7080.           | 237.0          | -346.          | 206.7          | 250.           | 221.6          | 661.             |                |              |
| 24-1           | -569.                            |                | -7149.<br>-7212. | 220.7          | -699.<br>-795. | 182.6          | 820.           | 221.5          | 681.             |                |              |
| 271.5          | -585.                            |                | -7301.           | 195.7          | -789.          | 156.8          | 1109.          | 221.3          | 691.             |                |              |
| 222.0          | -601.                            | 27.4           | -7323.           | 185.0          | -767.          | 138.3          | 1433.          | 221.2          | 702.<br>711.     |                |              |
| 122.1          | -6150                            |                | -7362.<br>-7380. | 358.6          | 247.           | 126.2          | 1638.<br>2008. | 221.0          | 721.             |                |              |
| 222.0<br>271.8 | -624                             | 7.5            | -7381.           | 348.5          | 224.           | 88.0           | 2215.          | 220.8          | 742.             |                |              |
| 221.0          | -635.                            | 5.2            | -7369.           | 339.3          | 195.           |                |                | 220.6<br>220.4 | 763.<br>785.     |                |              |
| 21.4           | -646.                            | 5.1            | -7374.           | 376.7<br>315.5 | 142.           | 32.6           | 2796.<br>2894. | 220.2          | 808.             |                |              |
| ??1•3<br>??1•7 | -644.                            | 4.7<br>3.3     | -7371.<br>-7362. | 303.9          | 15.            | 9.5            | 2951.          | 220.0          | 830.             |                |              |
| 21.1           | -651.                            |                |                  | 287.7          | -53.           | 5.3            | 2981.          | 219.8<br>219.6 | 854 · :          |                |              |
| 21.0           | -659.                            | 30C.0          | -48.             | }              |                | 6.9<br>9.6     | 2990.<br>2974. | 219.4          | 901.             |                |              |
| 20.9<br>20.8   | -664                             | 305 - 4        |                  |                |                | 15.1           | 2974.          | 219.2          | 925.             |                | İ            |
| 20.7           | -664.                            | 306.7          | -10-             |                |                | 25.0           | 2959.          | 219.0          | 951.             | •              |              |
| 20.6           | -674.                            | 314.3          | 31.<br>59.       |                |                | 36.1<br>37.4   | 2905.<br>2894. | 217.1          | 1317.            |                | -            |
| 270.5          | -681.                            | 324 . B        | 64.              | {              |                | 49.2           | 2174.          | 209.9          | 1682.            |                |              |
| 20.3           | -691.                            | 324.9          | ica.             |                |                | 60.0           | 2612.          | 207.0          | 1820.            |                |              |
| 550.5          | -705.                            | 334.8<br>34C.7 | 133.             |                |                |                | 1              | 197.8          | 2165.            |                |              |
| 50.0           | -722.                            | 345.6          | 183.             |                |                |                |                |                |                  |                |              |
| 19.9           | -732.                            | 350.4          | 2CM •            |                |                |                |                | 1              |                  |                |              |
| 14.A           | -74G.<br>-741.                   |                |                  |                |                |                |                | li l           |                  |                |              |
| 214.6          | -754.                            |                |                  |                |                |                |                |                |                  |                | }            |
| 219.5          | - 759.                           |                |                  |                |                |                |                |                |                  |                |              |
| 217.4          | - 765.                           |                |                  |                |                |                |                |                |                  |                |              |
| 219.3<br>219.2 | -771.                            |                |                  |                |                |                |                |                |                  |                |              |
| 214.1          | -7AC.                            |                |                  |                |                |                |                |                |                  |                |              |
| 219.0          | -784.                            |                |                  |                |                |                |                | ]              |                  | ĺ              |              |
| 218.9          | -78%.<br>-792.                   |                |                  | [              |                |                |                |                |                  |                |              |
| 218.6          | - 749.                           |                |                  |                |                |                |                |                |                  |                |              |
| 218.4          | -806.                            |                |                  |                |                |                |                | ]              |                  |                |              |
|                |                                  |                |                  | 1 1            |                | 1              | ſ              | 11             |                  |                |              |
| 214.2          | -813.<br>-824.                   |                |                  |                |                |                |                | 11             |                  |                |              |
|                | -813.<br>-824.<br>-837.<br>-853. |                |                  |                |                |                |                |                |                  |                |              |

Figure 63. To a-, b-, and c-axis strain (in x 10<sup>-6</sup>/in) as a function of temperature in zero field and in a 30 kOe field applied along the b axis. The horizontal lines separate data runs.

|          |                  |            |                  | Tb-        | - a-AXIS         | STRAIN | VERSUS F         | IELD AN    | LIED b-A         | XIS        |                  |            |                  |            |                  |
|----------|------------------|------------|------------------|------------|------------------|--------|------------------|------------|------------------|------------|------------------|------------|------------------|------------|------------------|
| 1 •      | 20.5             | T *        | 60.3             | 1 =        | 79.6             | T =    | 99.3             | T =        | 120.2<br>Δ1/L    | 1 =        | 140.0<br>ΔL/L    | T =        | 160.4<br>  ΔL/L  | T *        | 179.6<br>Δt/t    |
| اارا     | 26/2             | i،<br>0•0  | AL/E<br>C.       | 0.0        | 51/L<br>0.       | 0.0    | Δ1/L<br>0.       | 0.0        | 0.               | 0.0        | 0.               | 0.0        | 0.               | 0.0        | 0.               |
| 0.5      | 0.<br>89.        | 0.5        | 19.              | 0.5        | 28.              | 0.5    | -1.              | 0.5        | 0.               | 0.5        | 15.              | 0.5        | -25.             | 0.5        | -8.              |
| 1.0      | 84.              | 1.0        | 14.              | 1.0        | 17.              | 1.0    | -10.             | 1.0        | -17.             | 1.0        | -2•              | 1.0        | -43.             | 1.0        | -28.             |
| 1.5      | 64.              | 1.5        | -22.             | 1.5        | -71.             | 1.5    | -52•             | 1.5        | -57.             | 1.5        | -42-             | 1.5        | -92.             | 1.5        | -92.             |
| 2.0      | 19.              | 2.0        | -97.             | 2.0        | -98.             | 2.0    | -135.            | 2.0        | -138.            | 2.0        | -124.<br>-290.   | 2.0        | -184.<br>-365.   | 2.0        | -205 ·           |
| 2.5      | -65.             | 2.5        | -724.            | 2.5<br>3.0 | -230.<br>-437.   | 2.5    | -281.<br>-496.   | 3.0        | -295.<br>-527.   | 3.0        | -535.            | 3.0        | ~609.            | 3.0        | -589             |
| 3.0      | -206.<br>-432.   | 3.5        | -428.<br>-706.   | 3.5        | -734.            | 3.5    | -800.            | 3.5        | -857.            | 3.5        | -839.            | 3.5        | -873.            | 3.5        | -152             |
| 4.0      | -728.            |            | -1083.           |            | -1144.           |        | -1194.           |            | -1240.           |            | -1170.           |            | -1087.           | 4.0        | -889.            |
| 4.5      | -1147.           |            | -1656.           |            | -1717.           |        | -1741.           |            | -1717.           |            | -1470-           |            | -1212.<br>-1248. | 5.0        | -942.<br>-971.   |
|          | -1740.           |            | -2347.           |            | -2367.           |        | -2289.           |            | -1964.<br>-2037. |            | -1562.<br>-1592. |            | -1270.           |            | -1009            |
|          | -2343.           |            | -2959.<br>-3162. |            | -2785.<br>-2896. |        | -2478.<br>-2530. |            | -2056.           |            | -1606.           |            | -1288.           |            | -1033            |
| 6.5      | -2540.<br>-2603. |            | -3229.           |            | -2935.           |        | -2549.           |            | -2070.           | 7.0        | -1634.           |            | -1313.           |            | -1052.           |
|          | -2632            |            | -3259.           | 7.0        | -2952.           | 7.0    | -2561.           | 7.0        | -2082•           |            | -1653-           |            | -1333.           |            | -1069            |
|          | -2657.           | P.0        | -3290.           | 8.0        | -2975.           |        | -2579.           |            | -2101.           |            | -1668.           |            | -1349.           |            | -1083.<br>-1097. |
|          | -2666.           |            | -3309.           |            | -2989.           |        | -2593.           |            | -2116.           |            | -1681.<br>-1693. |            | -1363.<br>-1375. |            | -1110.           |
|          | -2676.           |            | -3321.           | 10.0       | -3000.<br>-3008. |        | -2604.<br>-2608. |            | -2127.<br>-2138. |            | -1704.           |            | -1387.           |            | -1133            |
|          | -2684.<br>-2688. |            | -3335.<br>-3342. | 12.0       | -3013.           | 12.0   | -2616.           |            | -2148.           |            | -1724.           | 14.0       | -1408.           | 16.0       | -1155.           |
|          | -2693.           |            | -3350.           |            | -3024.           |        | -2631.           | 14.0       | -2161.           |            | -1743.           |            | -1427.           |            | -1175            |
|          | -2696.           |            | -3359.           |            | -3035.           | 16.0   | -2646.           |            | -2178.           |            | -1759.           |            | -1446.           |            | -1201.<br>-1226. |
|          | -2701.           |            | -3370.           |            | -3046.           |        | -2659.           |            | -2193.           |            | -1782.<br>-1803. |            | -1470.<br>-1493. |            | -1251.           |
|          | -2 706 •         |            | -3381.           |            | -3061.           |        | -2677.<br>-2694. |            | -2214.<br>-2233. |            | -1824.           |            | -1514.           |            | -1275.           |
|          | -2713.<br>-2718. |            | -3391.<br>-3400. |            | -3075.<br>-3088. |        | -2710.           |            | -2252.           |            | -1842 -          |            | -1534.           | 0.0        | -302.            |
|          | -2723.           | 0.0        | -845.            |            | -3100.           |        | -2726.           |            | -2269.           | 0.0        |                  | 0.0        | -381.            | l          |                  |
| 0.0      | 33.              |            |                  | 0.0        | -787.            | 0.0    | -637.            | 0.0        | -550.            |            |                  |            |                  |            |                  |
| <b>—</b> | 199.0            | 7.         | 214.7            | T =        | 225.4            | T =    | 232.4            | T =        | 240.3            | T *        | 250.5            | T =        | 259.7            | T =        | 280.0            |
| 1,1      | 76/6             | 11         | Δ1/2             | ıı.        | DE/L             | 1 11   | AL/L             | 11         | AL/L             | 11         | AL/L             | н          | 41/1             | .!!        | AL/L             |
| 0.0      | 0.               | 0.0        | 0.               | 0.0        | 0.               | 0.0    | 0.               | 0.0        | 0.               | 0.0        | 0.               | 1.0        | 0.<br>-0.        | 1.0        | 0.               |
| 0.5      | -10.             | 0.5        | -62.             | 0.5        | -33.             | 0.5    | -6.<br>-24.      | 2.0        | -4.<br>-15.      | 1.0        | -1.<br>-3.       | 2.0        | -1.              | 2.0        | -ŏ.              |
| 1.0      | -39.<br>-115.    | 1.0        | -87.<br>-150.    | 1.0        | -101.<br>-192.   | 1.0    | -50.             | 3.0        | -33.             | 2.0        | -4.              | 3.0        | -4.              | 3.0        | -1.              |
| 1.5      | -235.            | 2.0        | -238.            | 2.0        | -281.            | 2.0    | -81.             | 4.0        | -57.             | 3.0        | -10.             | 4.0        | -7.              | 4.0        | -2.              |
| 2.5      | -375.            | 2.5        | -338.            | 2.5        | -352.            | 2.5    | -114.            | 5.0        | -84.             | 4.0        | -16.             | 5.0        | -11.             | 5.0        | -3.              |
| 3.0      | -488.            | 3.0        | -441.            | 3.0        | -393.            | 3.0    | -150.            | 6.0        | -114.            | 5.0        | -25.             | 6.0<br>7.0 | -16.<br>-22.     | 6.0<br>8.0 | -5.              |
| 3.5      | -604.            | 3.5        | -495.            | 3.5        | -428.            | 3.5    | -184.<br>-216.   | 7.0<br>8.0 | -147.<br>-180.   | 6.0<br>7.0 | -35.<br>-47.     | 8.0        | -28.             | 10.0       | -14.             |
| 4.0      | -665.<br>-698.   | 4.0<br>5.0 | -521.<br>-550.   | 4.0        | -456.<br>-483.   | 4.0    | -210·<br>-249·   | 9.0        | -215.            | 8.0        | -61.             | 9.0        | -36.             | 12.0       | -21.             |
| 5.0      | -720.            | 5.5        | -582.            | 5.0        | -505             | 5.0    | -274.            | 10.0       | -247.            | 9.0        | -76.             | 10.0       | -44.             | 14.0       | -28•             |
| 5.5      | -738.            | 6.0        | -598.            | 6.0        | -544.            | 6.0    | -328.            | 11.0       | -280.            | 10-0       | -92.             | 11.0       | -52.             | 16.0       | -36.             |
| 6.0      | -753.            | 7.0        | -626.            | 7.0        | -582+            | 7.0    | -376.            | 12.0       | -312.            | 12-0       | -125.            | 12.0       | -62.<br>-82.     | 18.0       | -46.<br>-56.     |
| 7.0      | -777.            | 8.0        | -649.            | 8.0        | -618.            | 8.0    | -422.<br>-465.   | 14.0       | -373.<br>-431.   | 14.0       | -161.<br>-201.   | 14.0       | -105.            | 22.0       | -67.             |
| 8.0      | -798.<br>-818.   | 10.0       | -673.<br>-693.   | 10.0       | -651.<br>-678.   | 10.0   | -498.            | 18.0       | -487.            | 18.0       | -242.            | 18.0       | -129.            | 24.0       | -79.             |
| 9.0      | -836.            | 11.0       | -713.            | 12.0       | -733.            | 12.0   | -567.            | 21.0       | -561.            | 21.0       | -303.            | 20.0       | -155.            | 27.0       | -99.             |
| 12.0     | -867.            | 12.0       | -732.            | 14.0       | -780.            | 14.0   | -628.            | 24.0       | -627.            | 24.0       | -363.            | 22.0       | -182.            | 30.0       | -120.            |
| 14.0     | -896             | 14.0       | -770.            | 16.0       | -873.            | 16.0   | -682•            | 27.0       | -691.            | 27.0       | -422•            | 24.0       | -210.<br>-253.   | 0.0        | 1.               |
| 16.0     | -923.            | 16-0       | -802-            | 18.0       | -865.            | 18-0   | -733.            | 30.0       | -747.            | 30.0       | -479.<br>-4.     | 27.0       | -297.            |            |                  |
| 18.0     | -950.            | 18.0       | -833.<br>-874.   | 21.0       | -920.<br>-971.   | 21.0   | -802.<br>-863.   |            |                  | ""         | -70              | 0.0        | 2.               |            |                  |
| 21.0     | -982.<br>-1014.  | 21.0       | -912             | 27.0       | -1022.           | 27.0   | -919.            | 1          |                  |            |                  |            |                  | 1          |                  |
|          | -1045.           | 27.0       | -952.            | 30.0       | -1068.           | 30.0   | -969.            |            |                  |            |                  | l '        |                  |            |                  |
|          | -1076.           | 30.0       | -990.            | 0.0        | -7.              | 0.0    | -4.              |            |                  |            |                  | '          |                  |            |                  |
|          |                  |            | -994.            | I          | 1                | 1      | I                | 1          | 1                | 1          | i                |            | 1                | 1          | I                |
| 0.0      | -233.            | 30.0       | -99.             | i .        |                  | l      | 1                | l I        |                  |            |                  |            | l                | 1          |                  |

Figure 64. To a-axis strain (in x  $10^{-6}$ /in) versus field, H, applied along the b axis.

| 7        |              |                | <del></del> |                | ть           | b-AXIS         | STRAIN     | VERSUS         | FIELD A | PPLIED AL   | ONG b-A | XIS           |      |            |              |                 |
|----------|--------------|----------------|-------------|----------------|--------------|----------------|------------|----------------|---------|-------------|---------|---------------|------|------------|--------------|-----------------|
| -        | T =          | 20.5           | 1 =         | 62.5           | T =          | 78.7           | 1 =        | 99.5           |         | 120.3       | T       | 139-6         |      | 160.4      |              | 180.8           |
| 1.       | ١,           | Δ£/L           | 11          | Δ1 /L          | 11           | ΔL/L<br>0.     | 0.0        | Δε/L<br>0.     | 0.0     | Δ1/1<br>0.  | 0.0     | Δ£/L<br>0.    | 0.0  | Δ1/1<br>0. | 0.0          | Δt /t           |
|          | 0.0          | 0.<br>-5.      | 0.0         | -5.            | 0.0          | -9.            | 0.5        | 0.             | 0.5     | 0.          | 0.5     | 19.           | 0.5  | 36.        | 0.5          | 11.             |
| 1        | 1.0          | 31.            | 1.0         | 39.            | 1.0          | 28.            | 1.0        | 47.            | 1.0     | 21.         | 1.0     | 156.          | 1.0  | 82.        | 1.0          | 164.            |
|          | 1.5<br>2.0   | 90.<br>183.    | 7.0         | 233.           | 2.0          | 215.           | 2.0        | 128.<br>259.   | 2.0     | 273.        | 2.0     | 306.          | 2.0  | 359.       | 2.0          | 341-            |
|          | 2.5          | 353.           | 2.5         | 429.           | 2.5          | 467.           | 2.5        | 480.           | 2.5     | 533.        | 2.5     | 569.          | 2.5  | 647.       | 2.5          | 600             |
| 1 -      | 3.0          | 594.           | 3.0         | 731.           | 3.0          | B00.           | 3.0        | 800.           | 3.0     | 903.        | 3.0     | 917.          | 3.0  | 1328.      | 3.5          | 1 C60 -         |
|          | 3.5          | 994.           | 3.5         | 1152.          | 4.0          | 1254.          | 4.0        | 1250.          | . 4.0   | 1846.       | 4.0     | 1629.         | 4.0  | 1584.      | 4.0          | 1 207 -         |
|          | 4.5          | 2143.          | 4.5         | 2311.          | 4.5          | 2397.          | 4.5        | 2244.          | 4.5     | 2293.       | 4.5     | 1891.         | 4.5  | 1740.      | 5.0          | 1267.           |
|          | 5.0          | 2935.          | 4.7         | 2553.          | 5.0          | 2975.<br>3293. | 5.0        | 2653.<br>2780. | 5.0     | 2604 •      | 5.0     | 2015.         | 5.0  | 1788.      | 5.5          | 1311.           |
|          | 5.5          | 3588.<br>3866. | 5.0         | 3298.          | 6.0          | 3323.          | 6.0        | 2793.          | 6.0     | 2678.       | 6.0     | 2033.         | 6.0  | 1829.      | 6.0          | 1321-           |
| 1 6      | 5.5          | 3897.          | 5.5         | 3422.          | 6.5          | 3325.          | 6.5        | 2805.          | 7.0     | 2704.       | 7.0     | 2045.         | 7.0  | 1839.      | 7.0          | 1327.           |
|          | 7.0  <br>7.5 | 3885.<br>3880. | 6.0         | 3509.          | 8.0          | 3331.          | 7.0        | 2813.          | 9.0     | 2714.       | 7.5     | 2060.         | 8.0  | 1854.      | 7.5          | 1336.           |
|          | 8.0          | 3879.          | 6.5         | 3520.          | 9.0          | 3339.          | 8.0        | 2821.          | 10.0    | 2722.       | 8.0     | 2064.         | 9.0  | 1861.      | R.O          | 1340 -          |
|          | A.5          | 3878.          | 7.0         | 3521.          | 10.0         | 3337.          | 8.5        | 2823.          | 12.0    | 2726.       | 9.0     | 2070          | 10.0 | 1866.      | 10.0         | 1348 •          |
|          | 9.0<br>9.5   | 3877.<br>3874. | 7.5<br>8.0  | 3523.          | 11.0         | 3334.          | 9.0        | 2824.          | 17.0    | 2745        | 12.0    | 2082          | 14.0 | 1889.      | 12.0         | 1368.           |
|          | 0.0          | 3871.          | 8.5         | 3525.          | 13.0         | 3329.          | 10.0       | 2824.          | 20.0    | 2755.       | 14.0    | 2091 -        | 17.0 | 1906.      | 14.0         | 1381            |
| 10       | 0.5          | 3868.          | 9.0         | 3524.          | 14.0         | 3329.<br>3331. | 11.0       | 2824.          | 23.0    | 2767.       | 20.0    | 2103.         | 20.0 | 1922.      | 20.0         | 1401.           |
|          | 1.0          | 3865.<br>3861. | 9.5         | 3523•<br>3522• | 15.0         | 3333.          | 13.0       | 2825.          | 30.0    | 2791.       | 23.0    | 2130.         | 26.0 | 1956.      | 23.0         | 1439.           |
| 11       | 2.0          | 3857.          | 10.5        | 3520.          | 18.0         | 3338.          | 14.0       | 2827.          | 0.0     | 972.        | 26.0    | 2143.         | 30.0 | 1977.      | 26.0<br>30.0 | 1457.           |
|          | 2.5<br>3.0   | 3854.<br>3851. | 11.0        | 3517.          | 20.0         | 3342.<br>3347. | 17.0       | 2830.<br>2836. |         | i           | 30.0    | 2159.<br>693. | 0.0  | ,,,,,      | 0.0          | 470-            |
|          | 3.5          | 3847.          | 12.5        | 3513.          | 24.0         | 3352.          | 20.0       | 2845.          | i       | 1           | ""      | 1             | 1    | 1          | ł            | 1 1             |
| 14       | 4.0          | 3845.          | 13.0        | 3511.          | 26.0         | 3357.          | 23.0       | 2854.          |         |             | l       | ĺ             |      |            |              | l i             |
|          | 5.0          | 3840.          | 15.0        | 3509.          | 28.0<br>30.0 | 3361.<br>3366. | 30.0       | 2862.          | ţ       | į .         | Į .     | 1             | ł    | 1          | l            |                 |
|          | 7.0          | 3840.          | 16.0        | 3510.          | 0.0          | 1109.          | 0.0        | 863.           | 1       |             |         |               |      |            |              |                 |
| 16       | 8.O          | 3840.          | 17.0        | 3511.          |              |                | ļ          | ľ              | 1       |             | Ī       | ]             | i    | 1          | 1            |                 |
|          | 9.0<br>0.0   | 3841.<br>3842. | 18.0        | 3513.          |              | )              | 1          | }              | }       |             | }       | Ì             | )    | ]          | )<br>        | 1               |
|          | 1.0          | 3844.          | 22.0        | 3520.          |              |                | i          |                |         | i           |         | ļ             |      | i          |              |                 |
|          | 3.0          | 3846.          | 24.0        | 3524.          | 1            |                |            |                | 1       | <b>\</b>    |         | <b>\</b>      |      | 1          | ĺ            | 1               |
|          | 5.0<br>7.0   | 3848.<br>3850. | 30.0        | 3530.<br>3535. | ļ            |                |            | 1              |         | ł           | Ī       | !             |      | l          |              |                 |
|          | 9.0          | 3847.          | 0.0         | 1069.          |              |                | ļ          |                | l .     | ļ           | {       |               |      |            |              |                 |
| 30       | 7            | 3849.          |             |                |              |                |            | <u> </u>       |         | L           |         |               |      | <u></u>    |              | L               |
|          |              | 200.5          |             | 215.5          |              | 224.5          |            | 232-1          |         | 240.3       |         | 246.5         |      | 260.2      | T = .        | 279.5<br>  \L/L |
| 1        | أما          | 75/5           |             | Δ1/1<br>1 C-   | 0.0          | Δ£/£<br>0.     | 0.0        | Δ£ /£          | 0.0     | Δ1/L<br>0.  | 0.0     | 0.            | 0.0  | 0.         | 0.0          | 1.6.            |
|          | 0.0  <br>0.3 | 0.<br>5.       | 0.0         | C.             | 0.0          | 12.            | 1.0        | 6.             | 2.0     | 2.          | 3.0     | 4.            | 2.0  | 0.         | 2.0          | 1.              |
| 1        | 1.0          | 68.            | 1.0         | 104.           | 1.0          | 53.            | 1.5        | 12.            | 3.0     | 4.          | 5.0     | 10.           | 4.0  | 1.         | 4.0<br>6.0   | 1.              |
|          | 1.5  <br>2.0 | 200.<br>379.   | 2.0         | 218.           | 2.0          | 111.           | 2.5        | 19.            | 5.0     | 7.          | 7.0     | 27.           | 8.0  | 2.         | 8.0          | 1:1             |
|          | 2.0<br>3.0   | 728.           | 2.5         | 465.           | 2.5          | 231.           | 3.0        | 38.            | 6.0     | 16.         | 11.0    | 37.           | 10.0 | 5.         | 10.0         | 2.              |
| 4        | 4.0          | 913.           | 3.0         | 566.           | 3.0          | 258.           | 3.5        | 47.            | 8.0     | 30.<br>45.  | 13.0    | 62.           | 12.0 | 12.        | 12.0         | 2.              |
|          | 5.0<br>5.0   | 946.           | 4.0         | 622.           | 3.5<br>4.0   | 275.           | 5.0        | 58.<br>76.     | 10.0    | 59.         | 17.0    | 75.           | 18.0 | 17.        | 18.0         | 5.              |
| 1 7      | 7.0          | 970.           | 4.5         | 633.           | 5.0          | 307.           | 6.0        | 96.            | 14.0    | 74.         | 19.0    | 90.           | 21.0 | 23.        | 21.0         | · [-]           |
|          | 0.8          | 981.           | 5.0         | 647.           | 6.0<br>7.0   | 328.<br>343.   | 7.0<br>8.0 | 112.           | 20.0    | 95.<br>115. | 21.0    | 103.          | 24.0 | 30.<br>38. | 24.0         | 12.             |
|          | 9.0          | 991.           | 7.0         | 650.           | 8.0          | 349.           | 9.0        | 145.           | 23.0    | 135.        | 25.0    | 134.          | 30.0 | 47.        | 30.0         | 15.             |
| 112      | 2.0          | 1017.          | 8.0         | 682.           | 8.0          | 358.           | 10.0       | 159.           | 26.0    | 154.        | 27.0    | 148.          | 0.0  | 1.         | 0.0          | -1.             |
|          | 4.0          | 1034.          | 10.0        | 708.           | 9.0          | 367.<br>371.   | 11.0       | 174.           | 30.0    | 178.        | 30.0    | 172.          |      |            |              | 1               |
|          | 5.0<br>B.0   | 1066.          | 17.0        | 728.           | 10.0         | 384.           | 14.0       | 212.           | ]       | 1           | 10.0    | 32.           |      |            |              | [ ]             |
| 20       | 0.0          | 1080.          | 15.0        | 758.           | 12.0         | 399.           | 16.0       | 237.           | 1       | [ .         | 0.0     | 1.            |      |            |              |                 |
|          | 3.0<br>5.0   | 1103.          | 18.0        | 786.           | 12.0         | 406.           | 20.0       | 259.<br>281.   |         |             | l       | [             |      |            |              | [ [             |
|          | 0.0          | 1151.          | 27.0        | 860.           | 17.0         | 447.           | 22.0       | 303.           | 1       | <u> </u>    |         |               |      |            |              |                 |
| 0        | 0.0          | 252.           | 30.0        | 884.           | 17.0         | 456.           | 25.0       | 335.<br>381.   | 1       |             |         |               |      |            |              |                 |
|          | 7.0<br>0.0   | 1153.<br>255.  | 0.0         | 109.           | 20.0         | 486.<br>503.   | 30.0       | -3.            | l '     | ·           | 1       | <b>i</b>      |      |            |              | )               |
| Ι,       |              |                | 1           |                | 23.0         | 513.           | 1          |                |         |             |         | ]             |      | l i        |              |                 |
| 1        |              | 1              |             |                | 30.0         | 543.<br>566.   | 1          | ļ              | ļ       | ļ           |         | 1             |      |            |              |                 |
|          |              |                |             |                | 30.0         | 576.           |            | l              |         |             |         |               |      |            |              |                 |
| <u>L</u> |              | L              |             | <u> </u>       | 0.0          | -9.            | <u> </u>   | <u> </u>       | <u></u> |             |         | <u> </u>      |      |            |              |                 |

Figure 65. The b-axis strain (in x 10<sup>-6</sup>/in) versus field, H, applied along the b axis of the a-b plane specimen.

| į.           |                |            |                | Tb-  | - c-/XIS       | STRAIN     | VERSUS 1       | TELD A       | PLIED AL        | ONG b-     | AXIS           |              |                      |              |                |
|--------------|----------------|------------|----------------|------|----------------|------------|----------------|--------------|-----------------|------------|----------------|--------------|----------------------|--------------|----------------|
| 1 -          | 63.6           | T =        | 79.7           | T =  | 99.9           | T =        | 120.8          |              | 140.3           |            | 159.4          |              | 180.0                |              | 199.5          |
| 11           | 21/2           | Н          | 41/1           | H    | Δ1/1<br>O.     | 0.0        | 0.             | 0.0          | ΔL/2<br>0.      | H<br>  0.0 | Δ1/L<br>0.     | 0.0          | Δ1/1 <sub>0</sub> .  | 0.0          | Δ1/1<br>0.     |
| 0.0          | 0.<br>1.       | 0.0        | -6.            | 0.0  | -3.            | 0.5        | -1.            | 0.5          | 1.              | 0.5        | 1.             | 0.5          | 1.                   | 0.5          | 1.             |
| 1.0          | -3.            | 1.0        | -28.           | 1.0  | -19.           | 1.0        | -16.           | 1.0          | -8.             | 1.0        | -4.            | 1.0          | -7.<br>-24.          | 1.0          | -6.<br>-23.    |
| 1.5          | -17.           | 1.5        | -64.           | 1.5  | -46•           | 2.0        | -41.           | 2.0          | -28.            | 2.0        | -25.<br>-59.   | 2.0          | -53.                 | 2.0          | -47.           |
| 2.5          | -37.<br>-63.   | 2.5        | -95.<br>-138.  | 2.0  | -76.<br>-124.  | 2.5        | -109.          | 2.5          | -88.            | 2.5        | -102.          | 2.5          | -87.                 | 2.5          | -72.           |
|              | -124.          | 3.0        | -189.          | 3.0  | -173.          | 3.0        | -139.          | 3.0          | -123.           | 3.0        | -136•          | 3.0          | -116.                | 3.0          | -65.           |
| 3.5          | -185.          | 3.5        | -215.          | 3.5  | -200•          | 3.5        | -151.          | 3.5          | -154.           | 3.5        | -167.<br>-164. | 3.5          | -113.<br>-91.        | 3.5          | -40.<br>-26.   |
|              | -239.          | 4.0        | -247.          | 4.0  | -223.<br>-253. | 4.0        | -178.          | 4.0          | -182.<br>-173.  | 4.0        | -144           | 4.5          | -77.                 | 4.5          | -15.           |
|              | -275.<br>-303. | 4.5<br>5.0 | -288.          | 5.0  | -266.          | 5.0        | -208.          | 5.0          | -159.           | 5.0        | -131.          | 5.0          | -68.                 | 5.0          | -8-            |
|              | -300.          | 5.5        | -304.          | 5.5  | -255.          | 5.5        | -192.          | 5.5          | -150.           | 5.5        | -123.          | 5.5          | -62.                 | 7.0          | 20.            |
|              | -305.          | 6.0        | -290.          | 6.0  | -238.          | 6.0        | -181.<br>-175. | 6.5          | -145.<br> -142. | 7.0        | -118.          | 7.0          | -57 <b>.</b><br>-49. | 8.0          | 32.            |
|              | -297.<br>-288. | 6.5<br>7.0 | -270.<br>-258. | 7.0  | -228.<br>-221. | 7.0        | -170.          | 7.0          | -140.           | 8.0        | -107.          | 8.0          | -43.                 | 10.0         | 55.            |
|              | -280.          | 7.5        | -249.          | 7.5  | -222.          | 8,0        | -166.          | 8.0          | -136.           | 9.0        | -104.          | 9.0          | -37.                 | 12.0         | 78.            |
| 8.0          | -275.          | 8.0        | -244.          | 8.0  | -220.          | 9.0        | -164.          | 9.0          | -134.<br>-133.  | 10.0       | -101.<br>-96.  | 10.0         | -32.<br>-21.         | 17.0         | 101.           |
|              | -271.          | 9.0        | -240.          | 9.0  | -217.<br>-216. | 10.0       | -163.<br>-161. | 10.0         | -132.           | 15.0       | -89.           | 14.0         | -12.                 | 18.0         | 141.           |
|              | -269.<br>-268. | 10.0       | -238.          | 11.0 | -216.          | 14.0       | -160.          | 12.0         | -130.           | 18.0       | -83.           | 16.0         | -2.                  | 21.0         | 171.           |
|              | -268.          | 14.0       | -238.          | 12.0 | -215.          | 16.0       | -159.          | 14.0         | -128.           | 21.0       | -76.           | 18.0         | 7.                   | 24.0         | 198.<br>223.   |
| 14.0         | -268.          | 16.0       | -239.          | 14.0 | -215.          | 18.0       | -158.<br>-157. | 16.0         | -126.<br>-124.  | 24.0       | -70.<br>-64.   | 21.0         | 33.                  | 30.0         | 248.           |
|              | -269.<br>-268. | 18.0       | -240.<br>-240. | 16.0 | -215.<br>-215. | 21.0       | -155.          | 21.0         | -120.           | 30.0       | -59.           | 27.0         | 45.                  | 0.0          | -10.           |
|              | -268.          | 24.0       | -24C.          | 21.0 | -214.          | 27.0       | -154.          | 24.0         | -117.           | 0.0        | -50.           | 30.0         | 57.                  |              |                |
| 24.0         | -261.          | 27.0       | -240.          | 24.0 | -214.          | 30.0       | -152.          | 27.0         | -114.           |            | İ              | 0.0          | -32.                 |              |                |
|              | -267.          | 30.0       | -240-          | 27.0 | -213.<br>-212. | 0.0        | -142.          | 30.0         | -110.<br>-91.   |            |                |              |                      |              |                |
| 30.0         | -266.<br>-9â.  | 0.0        | -177-          | 30.0 | -153.          |            | i              | ""           | , ···           |            |                | l            | l                    |              |                |
|              | ,,,,           |            |                |      |                |            | <u> </u>       | <b></b>      | <u> </u>        |            | <u> </u>       |              | 1                    |              |                |
| T = 2        | 215.9          | Τ=         | 218.3          | T =  | 221.2          | 7 = 1      | 224.3          | τ -          | 229.7           | Τ=         | 232.8          | τ =          | 240.4                | T = 3        | 248.5          |
| 1 11 1       | Δ1/1           | н          | 41/1           | iI.  | 42/2           | 11         | A2/2           | Н            | AL/L            | ii<br>0.0  | AL/L           | H<br>0.0     | Δ1/L<br>0.           | 0.0          | Δ£/£<br>0.     |
| 0.0          | 0.             | 0.0        | -3.            | 0.0  | 0.             | 0.0        | 13.            | 1.0          | 49.             | 1.0        | 23.            | 0.5          | 1.                   | 1.0          | 2.             |
| 1.0          | 9.<br>11.      | 0.5        | 7.             | 1.0  | 88.            | 1.0        | 59.            | 1.5          | 96.             | 1.5        | 50.            | 1.0          | 4.                   | 1.5          | 4.             |
| 1.5          | 3.             | 1.5        | 31.            | 1.5  | 170.           | 2.0        | 193.           | 2.0          | 142.            | 2.0        | 81.            | 2.0          | 19.                  | 2.0          |                |
| 2.0          | -1.            | 2.0        | 50.            | 2.0  | 222.           | 3.0        | 285.           | 3.0          | 196.            | 2.5<br>3.0 | 117.           | 3.0<br>4.0   | 42.                  | 3.0          | 11.            |
| 3.0          | 30.<br>59.     | 2.5<br>3.0 | 81.            | 3.0  | 259.<br>293.   | 5.0        | 359.<br>422.   | 3.5          | 285.            | 3.5        | 196.           | 5.0          | 112.                 | 4.0          | 26.            |
| 3.5          | 84.            | 3.5        | 131.           | 3.5  | 322.           | 6.0        | 483.           | 4.0          | 326.            | 4.0        | 234.           | 6.0          | 156.                 | 5.0          | 41.            |
| 4.0          | 105.           | 4.0        | 152.           | 4.0  | 349.           | 7.0        | 537.           | 4.5          | 362.            | 4.5        | 267.           | 8.0          | 256.<br>361.         | 7.0          | 58 ·<br>78 ·   |
| 5.0          | 139.           | 4.5        | 172.           | 4.5  | 374.<br>396.   | 10.0       | 583.           | 5.0          | 396.<br>428.    | 5.0<br>5.5 | 299.<br>334.   | 12.0         | 464.                 | 8.0          | 99.            |
| 6.0<br>7.0   | 173.<br>204.   | 5.0<br>5.5 | 210.           | 5.5  | 420.           | 12.0       | 743.           | 6.0          | 459.            | 6.0        | 367.           | 14.0         | 569.                 | 9.0          | 123.           |
| 8.0          | 233.           | 6.0        | 228.           | 6.0  | 442.           | 14.0       | 816.           | 7.0          | 515.            | 7.0        | 426.           | 17.0         | 718.                 | 10.0         | 147.           |
| 10.0         | 287.           | 7.0        | 262.           | 6.5  | 463.           | 16.0       | 877.           | 8.0          | 564.            | 9.0        | 482.<br>533.   | 20.0         | 857.<br>977.         | 11.0         | 200.           |
| 12.0         | 336.           | 8.0<br>9.0 | 294.<br>326.   | 7.0  | 484.<br>504.   | 18.0       | 933.           | 9.0          | 610.            | 10.0       | 581.           | 26.0         | 1088.                | 13.0         | 226.           |
| 14.0         | 380.<br>442.   | 10.0       | 356.           | 8.0  | 523.           | 24.0       | 1084.          | 11.0         | 691.            | 11.0       | 626.           | 30.0         | 1222.                | 14.0         | 253.           |
| 20.0         | 498.           | 11.0       | 384.           | 9.0  | 558.           | 27.0       | 1152.          | 12.0         | 728.            | 12.0       | 669.           | 0.0          | -1.                  | 15.0         | 281 •<br>309 • |
| 23.0         | 550.           | 12.0       | 412.           | 10.0 | 592.<br>624.   | 30.0       | 1214.          | 13.0         | 796.            | 13.0       | 708.           | 7 -          | 279.2                | 17.0         | 338.           |
| 26.0<br>30.0 | 599.<br>660.   | 14.0       | 462.           | 11.0 | 656.           |            |                | 16.0         | 856.            | 15.0       | 780.           | l ' -        | 1                    | 18.0         | 366.           |
| 0.0          | 31.            | 18.0       | 555.           | 13.0 | 685.           | T = 1      | 259.8          | 18.0         | 911.            | 16.0       | 816.           | 0.0          | 0.                   | 19.0         | 396.           |
| ( I          |                | 21.0       | 616.           | 14.0 | 714.           |            | 1 _            | 20.0         | 963.            | 17.0       | 846.           | 3.0          | ļ <u>?</u> .         | 20.0         | 424.           |
| 1            |                | 24.0       | 674.           | 16.0 | 768.<br>817.   | 0.0        | 0.             | 22.0<br>24.0 | 1010.           | 19.0       | 907.           | 7.0          | 140                  | 22.0         | 480.           |
| 1            | ·              | 30.0       | 778.           | 21.0 | 888.           | 2.0        | 2.             | 26.0         | 1096.           | 20.0       | 935.           | 9.0          | 23.                  | 23.0         | 511.           |
|              |                | 0.0        | -4.            | 24.0 | 952.           | 3.0        | 7.             | 28.0         | 1136.           | 21.0       | 963.           | 11.0         | 34.                  | 24.0         | 538.           |
|              |                |            | ]              | 27.0 | 1010.          | 4.0        | 12.            | 30.0         | 1173.           | 22.0       | 989.           | 13.0         | 47.                  | 25.0         | 565.<br>592.   |
|              |                |            | 1              | 30.0 | 1066.          | 5.0<br>6.0 | 19.            | 0.0          | -42.            | 26.0       | 1085.          | 17.0         | 62.                  | 27.0         | 619.           |
|              |                |            | i              | ***  | ''             | 8.0        | 48.            | }            |                 | 28.0       | 1129.          | 19.0         | 96.                  | 28.0         | 645.           |
|              |                |            | !              |      |                | 10.0       | 74.            |              |                 | 30.0       | 1170.          | 21.0         | 117.                 | 29.0<br>30.0 | 672.           |
|              |                |            |                | ]    |                | 12.0       | 106.           |              |                 | 0.0        | -19.           | 23.0         | 138.                 | 0.0          | -17.           |
|              |                |            | i              | 1    |                | 14.0       | 141.           |              |                 |            | 1              | 25.0<br>27.0 | 161.                 |              |                |
| 1 1          |                |            |                |      |                | 18.0       | 222.           |              |                 |            | i              | 30.0         | 225.                 |              | Ì              |
| į l          |                |            | l              | l    | [              | 21.0       | 290.           | l I          |                 |            | l              | 0.0          | 0.                   |              |                |
|              |                |            | [              | 1    | 1              | 24.0       | 364.           |              |                 |            | 1              | I            |                      |              |                |
|              | l              | l          | 1              | 1    | i              |            |                | l :          | ŀ               | 1          | l              | I            | I :                  | 1 i          | 1              |
|              |                |            |                |      |                | 30.0       | 522.           |              |                 |            |                | 1            |                      |              | ı              |

Figure 66. To c-axis strain (in x 10 -6/in) versus field, H, applied along the b axis.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            | Τb·                                                                                                                                                                   | - a-AXIS                                                                                                                                                                                              | STRAIN                                                                                                                                                                                              | VERSUS                                                                                                                                                                             | ANCLI: O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F APPLIE                                                                                                                                                                                       | FTELD                                                                                                                                                                       | IN a-b Pi                                                                                                                                                                    | LANE REL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATIVE TO                                                                                                                             | b-AXIS                                                                                                                                |                                                                                                                                                           | <del>,</del>                                                                                                                               |                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| T = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.2                                                                                                                                                                                       | T =                                                                                                                                                                   | 20,6                                                                                                                                                                                                  | T .                                                                                                                                                                                                 | 39.5<br>Δ1/L                                                                                                                                                                       | T <sub>0</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63,1                                                                                                                                                                                           | <b>7</b> -                                                                                                                                                                  | 79.1<br>6[/i                                                                                                                                                                 | <b>T</b> 0=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99,8<br>  41/1                                                                                                                       | T <sub>0</sub> =                                                                                                                      | 11878                                                                                                                                                     | 70 -                                                                                                                                       | 140.6                                                                                                                     |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.                                                                                                                                                                                         | 0.0                                                                                                                                                                   | 0.                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                 | 0.                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                                                                                                                                                                             | 0.0                                                                                                                                                                         | -112.                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.                                                                                                                                   | 0.0                                                                                                                                   | 0.                                                                                                                                                        | 0.0                                                                                                                                        | 0.                                                                                                                        |
| 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7907.                                                                                                                                                                                      | 60.0                                                                                                                                                                  | 7953.                                                                                                                                                                                                 | 60.0                                                                                                                                                                                                | 7629.                                                                                                                                                                              | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7028.                                                                                                                                                                                          | 10.0                                                                                                                                                                        | 70.                                                                                                                                                                          | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5725.                                                                                                                                | 60.0                                                                                                                                  | 5962.                                                                                                                                                     | 90.0                                                                                                                                       | 4223<br>5128                                                                                                              |
| 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8508.                                                                                                                                                                                      | 90.0                                                                                                                                                                  | 8563.                                                                                                                                                                                                 | 90.0                                                                                                                                                                                                | 8314.                                                                                                                                                                              | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7841.                                                                                                                                                                                          | 20.0                                                                                                                                                                        | 766.                                                                                                                                                                         | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6663.                                                                                                                                | 90.0                                                                                                                                  | 11.                                                                                                                                                       | 0.0                                                                                                                                        | 6.                                                                                                                        |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.                                                                                                                                                                                        | 0.0                                                                                                                                                                   | 62.                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                 | 21.                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.                                                                                                                                                                                            | 30.0                                                                                                                                                                        | 2664.                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 213.                                                                                                                                 | 10.0                                                                                                                                  | 224.                                                                                                                                                      | 10.0                                                                                                                                       | 196                                                                                                                       |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 168.<br>731.                                                                                                                                                                               | 20.0                                                                                                                                                                  | 215.<br>785.                                                                                                                                                                                          | 20.0                                                                                                                                                                                                | 181.                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 839.                                                                                                                                                                                           | 35.0                                                                                                                                                                        | 3973.                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 931.                                                                                                                                 | 20.0                                                                                                                                  | 890.                                                                                                                                                      | 20.0                                                                                                                                       | 768                                                                                                                       |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1308.                                                                                                                                                                                      | 25.0                                                                                                                                                                  | 1370.                                                                                                                                                                                                 | 25.0                                                                                                                                                                                                | 1383.                                                                                                                                                                              | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1534.                                                                                                                                                                                          | 40.0                                                                                                                                                                        | 4833.                                                                                                                                                                        | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1564.                                                                                                                                | 25.0                                                                                                                                  | 1428,                                                                                                                                                     | 25.0                                                                                                                                       | 1196                                                                                                                      |
| 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2020.                                                                                                                                                                                      | 28.0                                                                                                                                                                  | 2120.                                                                                                                                                                                                 | 28.0                                                                                                                                                                                                | 2199.                                                                                                                                                                              | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2350.                                                                                                                                                                                          | 50.0                                                                                                                                                                        | 5820.                                                                                                                                                                        | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2447.                                                                                                                                | 30.0                                                                                                                                  | 2101.                                                                                                                                                     | 30.0                                                                                                                                       | 1693                                                                                                                      |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3649.                                                                                                                                                                                      | 30.0                                                                                                                                                                  | 3627.                                                                                                                                                                                                 | 30.0                                                                                                                                                                                                | 3411.                                                                                                                                                                              | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3204.                                                                                                                                                                                          | 60.0                                                                                                                                                                        | 6433.                                                                                                                                                                        | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3317-                                                                                                                                | 35.0                                                                                                                                  | 2788.                                                                                                                                                     | 35.0                                                                                                                                       | 2210                                                                                                                      |
| 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5585.                                                                                                                                                                                      | 32.0                                                                                                                                                                  | 5523.                                                                                                                                                                                                 | 32.0                                                                                                                                                                                                | 5020.                                                                                                                                                                              | 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3963.                                                                                                                                                                                          | 70.0                                                                                                                                                                        | 6855.                                                                                                                                                                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5070.                                                                                                                                | 50.0                                                                                                                                  | 3400.<br>4360.                                                                                                                                            | 50.0                                                                                                                                       | 2710.<br>3568.                                                                                                            |
| 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6319.                                                                                                                                                                                      | 35.0                                                                                                                                                                  | 6287.                                                                                                                                                                                                 | 35.0                                                                                                                                                                                                | 5840.<br>6491.                                                                                                                                                                     | 35.0<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4864.<br>5665.                                                                                                                                                                                 | 90.0                                                                                                                                                                        | 7178.                                                                                                                                                                        | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5731.                                                                                                                                | 60.0                                                                                                                                  | 5041.                                                                                                                                                     | 60.0                                                                                                                                       | 4237                                                                                                                      |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6867.                                                                                                                                                                                      | 40.0<br>50.0                                                                                                                                                          | 6889.<br>7551.                                                                                                                                                                                        | 50.0                                                                                                                                                                                                | 7200.                                                                                                                                                                              | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                | 100.0                                                                                                                                                                       | 7083.                                                                                                                                                                        | 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6184.                                                                                                                                | 70.0                                                                                                                                  | 5528.                                                                                                                                                     | 70.0                                                                                                                                       | 4714.                                                                                                                     |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7510.<br>7913.                                                                                                                                                                             | 60.0                                                                                                                                                                  | 7958.                                                                                                                                                                                                 | 60.0                                                                                                                                                                                                | 7635.                                                                                                                                                                              | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                | 110.0                                                                                                                                                                       | 6709.                                                                                                                                                                        | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6523.                                                                                                                                | 80.0                                                                                                                                  | 5865.                                                                                                                                                     | 80.0                                                                                                                                       | 5028                                                                                                                      |
| 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8177.                                                                                                                                                                                      | 70.0                                                                                                                                                                  | 8226.                                                                                                                                                                                                 | 70.0                                                                                                                                                                                                | 7927.                                                                                                                                                                              | 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7381.                                                                                                                                                                                          | 120.0                                                                                                                                                                       | 6278.                                                                                                                                                                        | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6661.                                                                                                                                | 90.0                                                                                                                                  | 5984.                                                                                                                                                     | 90.0                                                                                                                                       | 5127                                                                                                                      |
| 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8365.                                                                                                                                                                                      | 80.0                                                                                                                                                                  | 8417.                                                                                                                                                                                                 | 80.0                                                                                                                                                                                                | 8140.                                                                                                                                                                              | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                | 130.0                                                                                                                                                                       | 5715.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6437.                                                                                                                                | 100.0                                                                                                                                 | 5796.                                                                                                                                                     | 100.0                                                                                                                                      | 4976.                                                                                                                     |
| 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8508.                                                                                                                                                                                      | 90.0                                                                                                                                                                  | 8562.                                                                                                                                                                                                 | 90.0                                                                                                                                                                                                | 8314.                                                                                                                                                                              | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                | 140.0                                                                                                                                                                       | 4817-                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6041.                                                                                                                                | 110.0                                                                                                                                 | 5407.<br>4885.                                                                                                                                            |                                                                                                                                            | 4613                                                                                                                      |
| 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8161.                                                                                                                                                                                      | 100.0                                                                                                                                                                 | 8209.                                                                                                                                                                                                 | 100.0                                                                                                                                                                                               | 7952.                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                | 145.0                                                                                                                                                                       | 2832.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4916.                                                                                                                                | 130.0                                                                                                                                 | 4215.                                                                                                                                                     |                                                                                                                                            | 3445                                                                                                                      |
| 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7933.                                                                                                                                                                                      | 110.0                                                                                                                                                                 |                                                                                                                                                                                                       | 110.0                                                                                                                                                                                               |                                                                                                                                                                                    | 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                | 150.0                                                                                                                                                                       | 1331.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3968.                                                                                                                                |                                                                                                                                       | 3284.                                                                                                                                                     |                                                                                                                                            | 2613                                                                                                                      |
| 120.0<br>130.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                            | 120.0                                                                                                                                                                 | 7691.<br>7296.                                                                                                                                                                                        | 120.0                                                                                                                                                                                               | 7386.                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 160.0                                                                                                                                                                       |                                                                                                                                                                              | 145.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      | 145.0                                                                                                                                 | 2684.                                                                                                                                                     |                                                                                                                                            | 2115.                                                                                                                     |
| 140.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6651.                                                                                                                                                                                      | 140.0                                                                                                                                                                 |                                                                                                                                                                                                       | 140.0                                                                                                                                                                                               | 6292.                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 170.0                                                                                                                                                                       |                                                                                                                                                                              | 150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2401.                                                                                                                                |                                                                                                                                       | 2029.                                                                                                                                                     | 150.0                                                                                                                                      | 1615.                                                                                                                     |
| 145.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6137.                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                                                       | 145.0                                                                                                                                                                                               | 5692.                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 180.0                                                                                                                                                                       |                                                                                                                                                                              | 155.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1537.                                                                                                                                |                                                                                                                                       | 1383.                                                                                                                                                     |                                                                                                                                            | 1139.                                                                                                                     |
| 150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4163.                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                                                       | 150.0                                                                                                                                                                                               | 3836.                                                                                                                                                                              | 150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3188.                                                                                                                                                                                          | 90.0                                                                                                                                                                        | 7368.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      | 160.0                                                                                                                                 |                                                                                                                                                           | 160.0                                                                                                                                      | 736                                                                                                                       |
| 155.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1274.                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                                                       | 155.0                                                                                                                                                                                               | 1221-                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1511.                                                                                                                                                                                          | 0.0                                                                                                                                                                         |                                                                                                                                                                              | 165.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      | 165.0                                                                                                                                 |                                                                                                                                                           | 165.0                                                                                                                                      | 181                                                                                                                       |
| 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            | 160.0                                                                                                                                                                 |                                                                                                                                                                                                       | 160.0                                                                                                                                                                                               |                                                                                                                                                                                    | 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 824.                                                                                                                                                                                           | 60.0                                                                                                                                                                        | 6469.<br>7368.                                                                                                                                                               | 180.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      | 170.0                                                                                                                                 |                                                                                                                                                           | 180.0                                                                                                                                      | 14.                                                                                                                       |
| 165.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            | 170.0                                                                                                                                                                 |                                                                                                                                                                                                       | 165.0                                                                                                                                                                                               |                                                                                                                                                                                    | 165.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180.                                                                                                                                                                                           | 90.0                                                                                                                                                                        | 6476.                                                                                                                                                                        | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      | 90.0                                                                                                                                  | 5985.                                                                                                                                                     | 0.0                                                                                                                                        | 9.                                                                                                                        |
| 170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 166.<br>27.                                                                                                                                                                                | 180.0                                                                                                                                                                 | 87.                                                                                                                                                                                                   | 180.0                                                                                                                                                                                               |                                                                                                                                                                                    | 180.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.                                                                                                                                                                                            | 0.0                                                                                                                                                                         | 2.                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      | 0.0                                                                                                                                   | 34.                                                                                                                                                       |                                                                                                                                            |                                                                                                                           |
| 180.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.                                                                                                                                                                                        |                                                                                                                                                                       | 1                                                                                                                                                                                                     |                                                                                                                                                                                                     | , ,,,                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 60.0                                                                                                                                                                        | 6472.                                                                                                                                                                        | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |                                                                                                                                       |                                                                                                                                                           | į                                                                                                                                          |                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 90.0                                                                                                                                                                        | 7365.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      | •                                                                                                                                     |                                                                                                                                                           |                                                                                                                                            | ļ                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 0.0                                                                                                                                                                         | 4.                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                       |                                                                                                                                                           |                                                                                                                                            | L                                                                                                                         |
| t =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150.5                                                                                                                                                                                      | 1 =                                                                                                                                                                   | 160.4                                                                                                                                                                                                 | τ =                                                                                                                                                                                                 | 176.4                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200-4                                                                                                                                                                                          |                                                                                                                                                                             | 215.5                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 219.4                                                                                                                                |                                                                                                                                       | 224.2                                                                                                                                                     |                                                                                                                                            | 230.2                                                                                                                     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DE/E                                                                                                                                                                                       | 0                                                                                                                                                                     | 1 25/5                                                                                                                                                                                                | 0                                                                                                                                                                                                   | ΔL/L                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 42/2                                                                                                                                                                                         | 0                                                                                                                                                                           | Δt/L                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Δ1/L<br>0.                                                                                                                           | 0.0                                                                                                                                   | ΔL/L<br>0.                                                                                                                                                | 0.0                                                                                                                                        | 0.                                                                                                                        |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.                                                                                                                                                                                         | 0.0                                                                                                                                                                   | l 0.                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                 | 0.                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2125.                                                                                                                                                                                          | 0.0                                                                                                                                                                         | 1591.                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51.                                                                                                                                  | 10.0                                                                                                                                  | 44.                                                                                                                                                       | 60.0                                                                                                                                       | 1061                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            | 1                                                                                                                                                                     |                                                                                                                                                                                                       | 100                                                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 1 40.0                                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                       |                                                                                                                                                           |                                                                                                                                            |                                                                                                                           |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.                                                                                                                                                                                       | 60.0                                                                                                                                                                  | 3538.                                                                                                                                                                                                 | 10.0                                                                                                                                                                                                | 108.                                                                                                                                                                               | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                | 90.0                                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      | 20.0                                                                                                                                  | 195.                                                                                                                                                      | 90.0                                                                                                                                       | 1375.                                                                                                                     |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.<br>618.                                                                                                                                                                               | 60.0<br>90.0                                                                                                                                                          | 3538.<br>4370.                                                                                                                                                                                        | 20.0                                                                                                                                                                                                | 481.                                                                                                                                                                               | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2705.                                                                                                                                                                                          | 90.0                                                                                                                                                                        | 2043.                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222.                                                                                                                                 | 20.0.<br>25.0                                                                                                                         | 195.<br>296.                                                                                                                                              |                                                                                                                                            |                                                                                                                           |
| 20.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.                                                                                                                                                                                       | 60.0                                                                                                                                                                  | 3538.                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 90.0<br>0.0<br>10.0                                                                                                                                                         | 2043.<br>-1.<br>72.                                                                                                                                                          | 20.0<br>25.0<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222.<br>342.<br>476.                                                                                                                 | 25.0<br>30.0                                                                                                                          | 296.<br>417.                                                                                                                                              | 90.0<br>0.0<br>10.0                                                                                                                        | -2.<br>46.                                                                                                                |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.<br>618.<br>975.                                                                                                                                                                       | 60.0<br>90.0<br>0.0                                                                                                                                                   | 3538.<br>4370.<br>17.                                                                                                                                                                                 | 20.0<br>25.0                                                                                                                                                                                        | 481.<br>739.<br>1036.<br>1354.                                                                                                                                                     | 90.0<br>0.0<br>10.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2705.<br>-1.<br>99.<br>370.                                                                                                                                                                    | 90.0<br>0.0<br>10.0<br>20.0                                                                                                                                                 | 2043.<br>-1.<br>72.<br>271.                                                                                                                                                  | 20.0<br>25.0<br>30.0<br>35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222.<br>342.<br>476.<br>621.                                                                                                         | 25.0<br>30.0<br>35.0                                                                                                                  | 296.<br>417.<br>544.                                                                                                                                      | 90.0<br>0.0<br>10.0<br>20.0                                                                                                                | -2.<br>46.<br>177.                                                                                                        |
| 20.0<br>25.0<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.                                                                                                                                            | 60.0<br>90.0<br>0.0<br>10.0<br>20.0<br>25.0                                                                                                                           | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.                                                                                                                                                         | 20.0<br>25.0<br>30.0<br>35.0<br>40.0                                                                                                                                                                | 481.<br>739.<br>1036.<br>1354.<br>1679.                                                                                                                                            | 90.0<br>0.0<br>10.0<br>20.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2705.<br>-1.<br>99.<br>370.<br>559.                                                                                                                                                            | 90.0<br>0.0<br>10.0<br>20.0<br>25.0                                                                                                                                         | 2043.<br>-1.<br>72.<br>271.<br>411.                                                                                                                                          | 20.0<br>25.0<br>30.0<br>35.0<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222.<br>342.<br>476.<br>621.<br>776.                                                                                                 | 25.0<br>30.0<br>35.0<br>40.0                                                                                                          | 296.<br>417.<br>544.<br>680.                                                                                                                              | 90.0<br>0.0<br>10.0<br>20.0<br>30.0                                                                                                        | 1375.<br>-2.<br>46.<br>177.<br>374.                                                                                       |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.                                                                                                                                   | 60.0<br>90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0                                                                                                                   | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.                                                                                                                                                | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                                                                        | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.                                                                                                                                   | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.                                                                                                                                                    | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0                                                                                                                                 | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.                                                                                                                                  | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222.<br>342.<br>476.<br>621.<br>776.<br>1098.                                                                                        | 25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                  | 296.<br>417.<br>544.<br>680.<br>963.                                                                                                                      | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0                                                                                                | -2.<br>46.<br>177.<br>374.<br>601.                                                                                        |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.                                                                                                                          | 60.0<br>90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0                                                                                                           | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.                                                                                                                                       | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                                                                        | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.                                                                                                                          | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.                                                                                                                                           | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0                                                                                                                         | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.                                                                                                                          | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222.<br>342.<br>476.<br>621.<br>776.<br>1098.                                                                                        | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0                                                                                          | 296.<br>417.<br>544.<br>680.                                                                                                                              | 90.0<br>0.0<br>10.0<br>20.0<br>30.0                                                                                                        | -2.<br>46.<br>177.<br>374.<br>601.<br>841.                                                                                |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.                                                                                                                 | 60.0<br>90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0                                                                                                   | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.                                                                                                                              | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0                                                                                                                                                | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3303.                                                                                                                 | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.                                                                                                                                  | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0                                                                                                                 | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.                                                                                                                  | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222.<br>342.<br>476.<br>621.<br>776.<br>1098.                                                                                        | 25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                  | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.                                                                                                             | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0                                                                                        | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.                                                                       |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.                                                                                                        | 60.0<br>90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                           | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.                                                                                                                                       | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                                                                        | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.                                                                                                                          | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.                                                                                                                                           | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0                                                                                                                         | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1591.                                                                                                | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222.<br>342.<br>476.<br>621.<br>776.<br>1098.<br>1398.<br>1631.<br>1789.<br>1847.                                                    | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                                  | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.                                                                                  | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0                                                                        | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.<br>1732.                                                              |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.                                                                                                                 | 60.0<br>90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0                                                                                                   | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.                                                                                                                     | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0                                                                                                                                | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3303.<br>3583.                                                                                                        | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>1711.<br>2128.<br>2445.                                                                                                       | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0                                                                                         | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1591.<br>1839.                                                                                       | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222.<br>342.<br>476.<br>621.<br>776.<br>1098.<br>1398.<br>1631.<br>1789.<br>1847.<br>1803.                                           | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                                  | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1591.                                                                         | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0                                                                | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.<br>1232.<br>1342.                                                     |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.<br>4683.                                                                                               | 60.0<br>90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0                                                                                   | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.                                                                                          | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0                                                                                                               | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3303.<br>3583.<br>3685.<br>3600.                                                                                      | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2705-<br>-1-<br>99.<br>370.<br>559.<br>776-<br>1007.<br>1248.<br>1711.<br>2128.<br>2445.<br>2645.                                                                                              | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0                                                                                         | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1591.<br>1839.<br>1995.                                                                              | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 222.<br>342.<br>476.<br>621.<br>776.<br>1098.<br>1398.<br>1631.<br>1789.<br>1847.<br>1803.<br>1655.                                  | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0                                                         | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1591.<br>1460.                                                                | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                        | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.<br>1232.<br>1342.<br>1375.                                            |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>90.0<br>100.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.<br>4683.<br>4572.<br>4572.<br>4571.                                                                    | 60.0<br>90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0                                                                           | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.                                                                                          | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0                                                                                                      | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3303.<br>3583.<br>3685.<br>3600.<br>3331.<br>2939.                                                                    | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2705-<br>-1-<br>99.<br>370-<br>559.<br>776-<br>1007-<br>1248.<br>1711-<br>2128-<br>2445-<br>2645-<br>2706-                                                                                     | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0                                                                                 | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1591.<br>1839.<br>1995.<br>2043.                                                                     | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 222.<br>342.<br>476.<br>621.<br>776.<br>1098.<br>1398.<br>1631.<br>1789.<br>1847.<br>1803.<br>1655.<br>1436.                         | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0                                                | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1577.<br>1577.<br>1629.<br>1591.<br>1460.<br>1260.                                                       | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0                                               | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.<br>1232.<br>1342.<br>1375.<br>1331.                                   |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.<br>4683.<br>4572.<br>3791.<br>3210.                                                                    | 60.0<br>90.0<br>0.0<br>10.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>90.0                                                                           | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.<br>4370.                                                                                 | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0                                                                                                      | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3303.<br>3583.<br>3685.<br>3600.<br>3331.<br>2939.<br>2444.                                                           | 90.0<br>0.0<br>10.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2705-<br>-1-<br>99.<br>370.<br>559.<br>776-<br>1007.<br>1248.<br>1711.<br>2128.<br>2445.<br>2645.<br>2706.<br>2622.                                                                            | 90.0<br>10.0<br>20.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                                                        | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1591.<br>1839.<br>1995.<br>2043.<br>1978.                                                            | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0<br>120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 222.<br>342.<br>476.<br>621.<br>776.<br>1098.<br>1398.<br>1631.<br>1789.<br>1847.<br>1803.<br>1655.<br>1436.<br>1162.                | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0                                               | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1591.<br>1460.<br>1260.<br>1021.                                              | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0                                      | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.<br>1732.<br>1342.<br>1375.<br>1331.<br>1711.                          |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>110.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130.<br>618.<br>975.<br>1386.<br>1321.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.<br>4683.<br>4572.<br>4751.<br>3791.<br>3210.<br>2460.                                                  | 60.0<br>90.0<br>10.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0                                                         | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.<br>4370.<br>4241.<br>3915.                                                               | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>130.0<br>140.0                                                                                             | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3583.<br>3685.<br>3600.<br>3331.<br>2939.<br>2444.<br>1826.                                                           | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>100.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>1711.<br>2128.<br>2445.<br>2645.<br>2706.<br>2622.                                                                            | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0                                                                | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1591.<br>1839.<br>1995.<br>2043.<br>1978.                                                            | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0<br>130.0<br>140.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 222-<br>342-<br>476-<br>621-<br>776-<br>1098-<br>1398-<br>1631-<br>1789-<br>1847-<br>1803-<br>1655-<br>1436-<br>1162-<br>842-        | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0                                                | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1591.<br>1460.<br>1260.<br>1021.<br>739.                                      | 90.0<br>0.0<br>10.0<br>20.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0                                     | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.<br>1732.<br>1375.<br>1311.<br>1211.<br>1029.<br>813.                  |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>110.0<br>1130.0<br>140.0<br>145.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>4233.<br>4559.<br>4683.<br>4572.<br>4572.<br>4751.<br>3210.<br>2460.                                                           | 60.0<br>90.0<br>10.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0                                                         | 3538.<br>4370.<br>177.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.<br>4370.<br>4241.<br>3915.<br>3438.                                                     | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>100.0<br>110.0<br>120.0<br>140.0                                                                                            | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3303.<br>3583.<br>3685.<br>3600.<br>3331.<br>2939.<br>2444.<br>1826.<br>1172.                                         | 90.0<br>0.0<br>10.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>1711.<br>2128.<br>2445.<br>2645.<br>2706.<br>2622.<br>2401.                                                                   | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0                                                                       | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1839.<br>1995.<br>2043.<br>1978.                                                                     | 20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>100.0<br>110.0<br>120.0<br>130.0<br>150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222-<br>342-<br>476-<br>1098-<br>1398-<br>1631-<br>1789-<br>1847-<br>1805-<br>1436-<br>1162-<br>842-<br>524-<br>257-                 | 25.0<br>30.0<br>35.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>140.0                                      | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1591.<br>1460.<br>1260.<br>1021.<br>739.<br>225.                              | 90.0<br>0.0<br>10.0<br>20.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>110.0<br>110.0<br>120.0<br>130.0<br>140.0                           | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.<br>1732.<br>1342.<br>1375.<br>1331.<br>1211.<br>1029.<br>813.<br>576. |
| 20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>110.0<br>110.0<br>110.0<br>1140.0<br>1140.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130.<br>618.<br>1386.<br>1386.<br>1821.<br>2267.<br>33762.<br>4233.<br>4559.<br>4683.<br>4572.<br>4751.<br>3210.<br>2460.<br>2011.<br>1579.                                                | 60.0<br>90.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>50.0<br>60.0<br>70.0<br>90.0<br>100.0<br>110.0<br>130.0                                                       | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.<br>4370.<br>4241.<br>3915.                                                               | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0<br>150.0                                                                           | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3303.<br>3583.<br>3685.<br>3600.<br>3331.<br>2939.<br>2444.<br>1826.<br>1172.<br>591.                                 | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>100.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>2128.<br>2445.<br>2645.<br>2706.<br>2622.<br>2401.<br>2068.<br>1650.<br>1190.                                                 | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>100.0<br>110.0<br>120.0<br>130.0                                                     | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>1271.<br>1591.<br>1839.<br>1995.<br>2043.<br>1978.<br>1806.<br>1543.                                                  | 20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>90.0<br>100.0<br>110.0<br>120.0<br>140.0<br>150.0<br>170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 222-<br>342-<br>476-<br>1098-<br>1398-<br>1631-<br>1789-<br>1847-<br>1803-<br>1655-<br>1436-<br>1162-<br>842-<br>524-<br>257-<br>74- | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>110.0<br>150.0<br>160.0                     | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1591.<br>1460.<br>1260.<br>1201.<br>739.<br>459.<br>225.<br>64.               | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>140.0<br>150.0  | -2. 46. 177. 374. 601. 841. 1060. 1232. 1342. 1375. 1331. 1211. 1029. 813. 576. 346.                                      |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.<br>4683.<br>4572.<br>4251.<br>3791.<br>3210.<br>2460.<br>2011.<br>1579.                                | 60.0<br>90.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>50.0<br>60.0<br>70.0<br>90.0<br>100.0<br>110.0<br>130.0                                                       | 3538.<br>4370.<br>177.<br>179.<br>655.<br>992.<br>1380.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.<br>4370.<br>4241.<br>3915.<br>3438.<br>2843.<br>2105.                                            | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>150.0<br>160.0<br>170.0                                                                          | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3303.<br>3583.<br>3685.<br>3600.<br>3331.<br>2939.<br>2444.<br>1826.<br>1172.<br>591.<br>180.                         | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0<br>145.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2705-<br>-1-<br>99.<br>370-<br>559.<br>776-<br>1007-<br>1248.<br>1711-<br>2128-<br>2445-<br>2645-<br>2706-<br>2622-<br>2401-<br>2068-<br>1190-<br>943-                                         | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>60.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0                                                     | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1591.<br>1839.<br>1995.<br>2043.<br>1978.<br>1806.<br>1543.                                          | 20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>150.0<br>160.0<br>170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 222- 342- 476- 621- 776- 1098- 1398- 1631- 1789- 1847- 1803- 1655- 1436- 1162- 524- 257- 74-                                         | 25.0<br>30.0<br>35.0<br>50.0<br>60.0<br>70.0<br>80.0<br>110.0<br>1120.0<br>1130.0<br>1150.0<br>150.0<br>160.0<br>180.0                | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1591.<br>1460.<br>1260.<br>1021.<br>739.<br>459.<br>225.<br>64.               | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0 | -2. 46. 177. 374. 601. 1060. 1732. 1342. 1375. 1311. 1711. 1029. 813. 576. 346. 162.                                      |
| 20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>90.0<br>110.0<br>1120.0<br>140.0<br>145.0<br>155.0<br>155.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.<br>4683.<br>4572.<br>4251.<br>3791.<br>3210.<br>2460.<br>2011.<br>1579.<br>1141.<br>771.               | 60.0<br>90.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>110.0<br>1120.0<br>1140.0<br>1140.0<br>1150.0                                 | 3538.<br>4370.<br>17.<br>179.<br>655.<br>992.<br>1380.<br>2194.<br>2938.<br>3549.<br>3948.<br>4284.<br>4370.<br>4241.<br>3915.<br>3438.<br>2843.<br>2105.<br>1697.                                    | 20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>100.0<br>110.0<br>120.0<br>130.0<br>140.0<br>170.0<br>160.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0 | 481.<br>739.<br>1036.<br>1354.<br>1679.<br>2331.<br>2893.<br>3583.<br>3583.<br>3685.<br>3600.<br>3331.<br>2939.<br>2444.<br>1826.<br>1172.<br>591.<br>180.<br>1158.                | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>35.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0<br>145.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>1711.<br>2128.<br>2445.<br>2645.<br>2706.<br>2622.<br>2401.<br>2068.<br>1650.<br>1190.<br>943.                                | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>110.0<br>110.0<br>145.0<br>150.0                                    | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>1271.<br>1591.<br>1839.<br>2043.<br>1978.<br>1806.<br>1543.<br>1227.<br>876.<br>696.<br>529.                          | 20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>120.0<br>130.0<br>150.0<br>160.0<br>170.0<br>180.0<br>150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222- 342- 476- 621- 776- 1098- 1398- 1651- 1789- 1847- 1803- 1655- 1436- 1162- 842- 257- 741- 519-                                   | 25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0          | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1591.<br>1460.<br>1260.<br>1021.<br>739.<br>225.<br>64.<br>1.                 | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>140.0<br>150.0  | -2. 46. 177. 374. 601. 841. 1060. 1732. 1342. 1375. 1311. 1029. 813. 576. 346. 162.                                       |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>110.0<br>1120.0<br>1140.0<br>1150.0<br>1150.0<br>1150.0<br>1150.0<br>1160.0<br>1160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.<br>4559.<br>4251.<br>3210.<br>2460.<br>2011.<br>1579.<br>1141.<br>771.                                 | 60.0<br>90.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>120.0<br>140.0<br>140.0<br>145.0<br>155.0                             | 3538.<br>4370.<br>177.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.<br>4370.<br>4241.<br>3915.<br>3438.<br>2105.<br>1697.<br>1311.<br>932.                  | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>110.0<br>1120.0<br>1140.0<br>1150.0<br>1160.0<br>1150.0                                                                             | 481-<br>739-<br>1036-<br>1354-<br>1679-<br>2331-<br>2893-<br>3303-<br>3583-<br>3685-<br>3600-<br>3331-<br>2939-<br>2444-<br>1826-<br>1172-<br>591-<br>160-<br>16-<br>158-<br>3690- | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>145.0<br>155.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2705-<br>-1-<br>99-<br>370-<br>559-<br>776-<br>1007-<br>1248-<br>1711-<br>2128-<br>2445-<br>2645-<br>2706-<br>2622-<br>2401-<br>2068-<br>1650-<br>1190-<br>943-<br>721-<br>511-                | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>145.0<br>155.0                                    | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>571.<br>139.<br>1271.<br>1839.<br>1995.<br>2043.<br>1978.<br>1806.<br>1543.<br>1227.<br>876.<br>696.<br>529.                  | 20.0<br>25.0<br>35.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>110.0<br>1120.0<br>140.0<br>150.0<br>170.0<br>180.0<br>150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222- 342- 476- 621- 776- 1098- 1398- 1631- 1789- 1847- 1803- 1655- 1436- 1162- 842- 524- 257- 741- 1868-                             | 25.0<br>30.0<br>35.0<br>50.0<br>60.0<br>70.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0                            | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1260.<br>1021.<br>739.<br>225.<br>64.<br>1.<br>454.                           | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0 | -2. 46. 177. 374. 601. 1060. 1732. 1342. 1375. 1311. 1711. 1029. 813. 576. 346. 162.                                      |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>1130.0<br>1140.0<br>1150.0<br>1150.0<br>1150.0<br>1150.0<br>1150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>3762.<br>4233.<br>4559.<br>4683.<br>4572.<br>4251.<br>3791.<br>3210.<br>2460.<br>2011.<br>1579.<br>1141.<br>771.<br>216.<br>0. | 60.0<br>90.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>140.0<br>150.0<br>150.0<br>160.0   | 3538.<br>4370.<br>177.<br>179.<br>655.<br>992.<br>1380.<br>1780.<br>2194.<br>2938.<br>3549.<br>3988.<br>4284.<br>4370.<br>4241.<br>3915.<br>3438.<br>2843.<br>2105.<br>1697.<br>1311.<br>932.<br>614. | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0<br>160.0                                                        | 481. 739. 1036. 1354. 1679. 2331. 2893. 3303. 3583. 3685. 3600. 3331. 2939. 2444. 1826. 1172. 591. 180. 166. 1158. 3690. 2895.                                                     | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>120.0<br>130.0<br>145.0<br>155.0<br>160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>1711.<br>2128.<br>2445.<br>2645.<br>2706.<br>2622.<br>2401.<br>2068.<br>1650.<br>1190.<br>943.<br>721.<br>511.                | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0<br>145.0<br>150.0<br>150.0                  | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1839.<br>1995.<br>2043.<br>1978.<br>1806.<br>1543.<br>1227.<br>876.<br>696.<br>529.<br>376.          | 20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0<br>150.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160 | 222- 342- 476- 621- 776- 1098- 1398- 1631- 1709- 1847- 1803- 1655- 1436- 1162- 524- 257- 741- 519- 18480-                            | 25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>80.0<br>90.0<br>110.0<br>120.0<br>1130.0<br>150.0<br>160.0<br>150.0<br>150.0<br>150.0<br>90.0 | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1591.<br>1460.<br>1290.<br>1021.<br>739.<br>459.<br>225.<br>64.<br>1.<br>454.<br>1630. | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0 | -2. 46. 177. 374. 601. 1060. 1732. 1342. 1375. 1311. 1711. 1029. 813. 576. 346. 162.                                      |
| 20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>70.0<br>80.0<br>100.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 130.<br>618.<br>975.<br>1386.<br>1821.<br>2267.<br>3097.<br>4233.<br>4559.<br>4683.<br>4572.<br>4251.<br>3791.<br>3210.<br>2011.<br>1579.<br>1141.<br>216.<br>0.<br>1565.                  | 60.0<br>90.0<br>10.0<br>20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0<br>145.0<br>155.0<br>165.0                           | 3538.<br>4370.<br>1779.<br>655.<br>992.<br>1380.<br>2194.<br>2938.<br>3549.<br>4284.<br>4370.<br>4241.<br>3915.<br>3438.<br>2843.<br>2105.<br>1697.<br>1311.<br>932.<br>614.                          | 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>110.0<br>1120.0<br>1140.0<br>1150.0<br>1160.0<br>1150.0                                                                             | 481. 739. 1036. 1354. 1679. 2331. 2893. 3303. 3583. 3685. 3600. 3331. 2939. 2444. 1826. 1172. 591. 180. 1158. 3690. 2895. 13.                                                      | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>145.0<br>155.0<br>160.0<br>170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>1711.<br>2128.<br>2645.<br>2706.<br>2622.<br>2401.<br>2068.<br>1650.<br>1190.<br>943.<br>721.<br>511.                         | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0<br>155.0<br>155.0<br>160.0<br>165.0 | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1591.<br>1839.<br>1995.<br>2043.<br>1978.<br>1806.<br>1543.<br>1227.<br>876.<br>529.<br>376.<br>249. | 20.0<br>25.0<br>35.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>110.0<br>1120.0<br>140.0<br>150.0<br>170.0<br>180.0<br>150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222- 342- 476- 621- 776- 1098- 1398- 1631- 1789- 1847- 1803- 1655- 1436- 1162- 842- 524- 257- 741- 1868-                             | 25.0<br>30.0<br>35.0<br>50.0<br>60.0<br>70.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0                            | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1629.<br>1260.<br>1021.<br>739.<br>225.<br>64.<br>1.<br>454.                           | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0 | -2.<br>46.<br>177.<br>374.<br>601.<br>841.<br>1060.<br>1232.<br>1342.<br>1375.<br>1331.<br>1211.<br>1029.<br>813.<br>576. |
| 20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>110.0<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130. 618. 975. 1386. 1821. 2267. 33097. 3762. 4233. 45572. 4251. 3210. 2460. 2011. 771. 216. 0. 1565. 4683.                                                                                | 60.0<br>90.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>110.0<br>1120.0<br>1140.0<br>1150.0<br>1150.0<br>1150.0<br>1150.0<br>1150.0<br>1150.0 | 3538. 4370. 17. 179. 655. 992. 1380. 1780. 2194. 2938. 3549. 3948. 4284. 4370. 4241. 3915. 3438. 2105. 1697. 1311. 932. 614. 3555.                                                                    | 20.0<br>25.0<br>30.0<br>30.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0<br>160.0<br>160.0                                               | 481. 739. 1036. 1354. 1679. 2331. 2893. 3303. 3583. 3685. 3600. 3331. 2939. 2444. 1826. 1172. 591. 180. 1158. 3690. 2895. 13.                                                      | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>30.0<br>50.0<br>60.0<br>90.0<br>100.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0<br>160.0<br>170.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0<br>180.0 | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>1711.<br>2128.<br>2445.<br>2645.<br>2706.<br>2622.<br>2401.<br>2068.<br>1650.<br>1190.<br>943.<br>721.<br>511.<br>337.<br>78. | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>90.0<br>110.0<br>120.0<br>130.0<br>145.0<br>155.0<br>165.0<br>170.0                          | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>919.<br>1271.<br>1839.<br>1995.<br>2043.<br>1978.<br>1806.<br>1543.<br>1227.<br>876.<br>696.<br>529.<br>376.          | 20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0<br>150.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160 | 222- 342- 476- 621- 776- 1098- 1398- 1631- 1709- 1847- 1803- 1655- 1436- 1162- 524- 257- 741- 519- 18480-                            | 25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>80.0<br>90.0<br>110.0<br>120.0<br>1130.0<br>150.0<br>160.0<br>150.0<br>150.0<br>150.0<br>90.0 | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1591.<br>1460.<br>1290.<br>1021.<br>739.<br>459.<br>225.<br>64.<br>1.<br>454.<br>1630. | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0 | -2. 46. 177. 374. 601. 1060. 1732. 1342. 1375. 1311. 1711. 1029. 813. 576. 346. 162.                                      |
| 20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>145.0<br>150.0<br>150.0<br>160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130. 618. 975. 1386. 1821. 2267. 33097. 3762. 4233. 45572. 4251. 3210. 2460. 2011. 771. 216. 0. 1565. 4683.                                                                                | 60.0<br>90.0<br>10.0<br>20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>90.0<br>110.0<br>120.0<br>130.0<br>140.0<br>145.0<br>155.0<br>165.0                           | 3538.<br>4370.<br>1779.<br>655.<br>992.<br>1380.<br>2194.<br>2938.<br>3549.<br>4284.<br>4370.<br>4241.<br>3915.<br>3438.<br>2843.<br>2105.<br>1697.<br>1311.<br>932.<br>614.                          | 20.0<br>25.0<br>30.0<br>30.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0<br>160.0<br>160.0                                               | 481. 739. 1036. 1354. 1679. 2331. 2893. 3303. 3583. 3685. 3600. 3331. 2939. 2444. 1826. 1172. 591. 180. 1158. 3690. 2895. 13.                                                      | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>50.0<br>80.0<br>90.0<br>110.0<br>120.0<br>130.0<br>145.0<br>155.0<br>160.0<br>170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2705.<br>-1.<br>99.<br>370.<br>559.<br>776.<br>1007.<br>1248.<br>1711.<br>2128.<br>2645.<br>2706.<br>2622.<br>2401.<br>2068.<br>1650.<br>1190.<br>943.<br>721.<br>511.                         | 90.0<br>0.0<br>10.0<br>20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>60.0<br>70.0<br>90.0<br>110.0<br>120.0<br>130.0<br>145.0<br>155.0<br>165.0<br>170.0                          | 2043.<br>-1.<br>72.<br>271.<br>411.<br>571.<br>739.<br>1271.<br>1591.<br>1839.<br>1995.<br>2043.<br>1978.<br>1806.<br>529.<br>376.<br>249.<br>140.                           | 20.0<br>25.0<br>35.0<br>40.0<br>50.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0<br>150.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160.0<br>160 | 222- 342- 476- 621- 776- 1098- 1398- 1631- 1709- 1847- 1803- 1655- 1436- 1162- 524- 257- 741- 519- 18480-                            | 25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>80.0<br>90.0<br>110.0<br>120.0<br>1130.0<br>140.0<br>150.0<br>160.0<br>150.0<br>150.0<br>90.0 | 296.<br>417.<br>544.<br>680.<br>963.<br>1227.<br>1437.<br>1577.<br>1591.<br>1460.<br>1290.<br>1021.<br>739.<br>459.<br>225.<br>64.<br>1.<br>454.<br>1630. | 90.0<br>0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>110.0<br>120.0<br>140.0<br>150.0<br>150.0<br>150.0 | -2, 46, 177, 374, 601, 841, 1060, 1232, 1342, 1375, 1331, 1211, 1029, 813, 576, 346, 162, 40,                             |

Figure 67. To a-axis strain (in x  $10^{-6}/in$ ) versus angle of applied field,  $\theta$ , relative to b axis. The 30 kOe field was applied in the basal plane.

| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1776500000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At/1 136.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.5 1.10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -17435<br>-17437<br>-17437<br>-1843<br>-1843<br>-17436<br>-17435<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-17436<br>-174       |
| 96000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Δε/ε<br>-3490.<br>-14360.<br>-152.<br>-602.<br>-1723.<br>-17101.<br>-2871.<br>-2871.<br>-2871.<br>-2871.<br>-2871.<br>-2908.<br>-2908.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.<br>-17155.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2006<br>2007<br>2007<br>101<br>1-101<br>1-7482<br>-7932<br>-7932<br>-7932<br>-7948<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-77488<br>-7 |
| 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRAIN  7 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 180.0<br>Δ1/1<br>-108.0<br>-1569.<br>-2717.<br>-3115.<br>-3162.<br>-3162.<br>-1054.<br>-1054.<br>-1054.<br>-2778.<br>-2778.<br>-2778.<br>-2778.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VEISUS  40,2 40,2 40,2 40,2 40,2 40,2 40,2 40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ANGL: 0F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 199.8 109.8 1199.8 1-1299.1 1-2520.6 1-2549.7 1-2549.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-2606.7 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6007<br>6007<br>6744<br>67746<br>67746<br>67746<br>67746<br>67747<br>67747<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67743<br>67744<br>67744<br>67744<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745<br>67745                                                                                                                                                                                                                                                                                                           |
| 70.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 221.4<br>0.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IN a-b  79 26  6187  -6208  -6187  -159  -1267  -159  -159  -10868  -6868  -6868  -6868  -6868  -6868  -6868  -6868  -6868  -6868  -6868  -6868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 69000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLANI REI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 225.3 647.6 0.0 1-189.6 -391139.6 -391131.9 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -1113.1 -111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RELATIVE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$60.00<br>\$6 | To-AXIS  To-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 230.2<br>41/2<br>0.0<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>- 1005<br>-        |
| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 240.2<br>16/12<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17/16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Figure 68. basal plane. Th b-axis strain (in x 10  $^{-6}$ /in) versus angle of applied field,  $\theta_{j}$  relative to b axis. The 30 kOe field was applied in the

|              |                | Tb-            | - b-AXIS       | STRAIN | VERSUS / | WCLE OF | APPLIED | FIELD I | N a-b PL | ANE RELA | TIVE TO | b-AXIS | (סיאים) |
|--------------|----------------|----------------|----------------|--------|----------|---------|---------|---------|----------|----------|---------|--------|---------|
|              | 249.7          | 1 =            | 260.0          |        | 270.0    |         | 280.7   |         | 299.5    |          | 320.0   | 1 =    | 338,5   |
| ٥            | \ \L/2         | 1 "            | AL/L           | 0      | AL/L     | 0       | AL/L    | 0       | AL/L     | θ        | At/t    | 0      | AL/L    |
| 0.0          | 0.             | 0.0            | 0.             | 0.0    | 0.       | 0.0     | 0.      | 0.0     | 0.       | 0.0      | 0.      | 0.0    | 0       |
| 10.0         | -17.           | 10.0           | -9.            | 60.0   | -158.    | 10.0    | -4.     | 10.0    | -2.      | 10.0     | -1.     | 60.0   | -20     |
| 20.0         | -71.           | 20.0           | -40.           | 90.0   | -212-    | 20.0    | -16.    | 20.0    | -8•      | 20.0     | -4.     | 0.0    | 0       |
| 30.0         | -152.          | 30.0           | -85.           | 60.0   | -159.    | 30.0    | -34.    | 30.0    | -10.     | 30.0     | -10.    | 0.0    | -1      |
| 40.0         | - 248.         | 40.0           | -140-          | 0.0    | 0.       | 40.0    | -56.    | 40.0    | -29.     | 40.0     | -17.    | 10.0   | -2      |
| 50.0         |                | 50.0           | -199.          | 10.0   | -6.      | 50.0    | -80.    | 50.0    | -41.     | 50.0     | -23.    | 20.0   | -4      |
| 60.0<br>70.0 | -452.<br>-529. | 60.0           | -257.          | 20.0   | -25.     | 60.0    | -102.   | 60.0    | -53.     | 60.0     | -31.    | 30.0   | -7      |
| 80.0         | -581.          | 70.0           | -301-          | 30.0   | -54.     | 70.0    | -120.   | 70.0    | -63.     | 70.0     | -36.    | 40.0   | -11     |
| 90.0         | -601.          | 90.0           | -332.          | 40.0   | -87.     | 80.0    | -132.   | 80.0    | -69.     | 80.0     | -40-    | 50.0   | -16     |
| 00.0         | -585.          |                | -343.          | 50.0   | -124.    | 90.0    | -137.   | 90.0    | -72.     | 90.0     | -41-    | 60.0   | -20     |
| 10.0         | -535.          |                | -335.<br>-306. | 70.0   | -159.    |         |         | 100.0   |          | 100-0    | -40.    | 70.0   | -24     |
| 20.0         | -458.          |                | -262           | 80.0   | -187.    |         | -123.   |         |          | 110.0    | -36.    | 80.0   | -26     |
| 30.0         | - 365.         |                | -202.          |        | -206.    |         | -105.   |         |          | 120.0    | -31.    | 90.0   | -27     |
| 40.0         | -262.          |                |                | 90.0   | -212.    |         |         | 130.0   |          | 130.0    |         | 100.0  | -26     |
| 50.0         |                |                | -149.          |        | -206.    |         |         | 140.0   |          | 140.0    |         | 110.0  | -74     |
| 60.0         |                | 150.0<br>160.0 |                | 110.0  | -188.    |         | -38.    |         | -18.     |          |         | 120.0  | -20     |
| 70.0         |                | 170.0          |                | 120.0  | -161.    |         |         | 160.0   |          | 160.0    |         | 130-0  | -16     |
| 80.0         |                | 180.0          |                | 130.0  | ~127.    |         |         | 170.0   |          | 170.0    |         | 140.0  | -11     |
| ا ۵۰۰۵       | -5.            |                |                | 140.0  |          | 180.0   |         | 180.0   |          | 180.0    |         | 150.0  | -6.     |
|              |                | 120.0          | -264.          |        |          | 120.0   | -107.   |         | -55.     |          | -31.    |        | -3      |
| - 1          |                | 90.0           | -344.          |        | -27.     | 90.0    | -138.   | 90.0    | -71.     | 90.0     |         | 170.0  | -0      |
| i            |                | 60.0           | -257.          |        | -0.      | 60.0    | -105.   | 60.0    | -53.     | 60.0     |         | 180.0  | 1.      |
| - 1          |                | 0.0            | -1.            | 180.0  | -1.      | 0.0     | -1.     | 0.0     | 1. [     | 0.0      | 1.      | 120.0  | -20     |
| i            |                |                |                | 90.0   | -212.    |         |         |         |          | 1        |         | 90.0   | -26     |
| - 1          |                |                |                | 0.0    | -1.      |         |         |         |          | į        |         | 60.0   | -19.    |
| - 1          |                | 1              |                |        |          |         |         |         |          | ļ        |         | 0.0    | 1.      |
| 1            | 1              |                | i              |        | -        |         |         | ŀ       |          | }        |         | 60.0   | -19.    |
| - 1          | 1              |                | - 1            | - 1    |          |         | l i     | ı       |          | - 1      |         | 0.0    | 1.      |

Figure 69. To b-axis strain (in x 10 $^{-6}$ /in) versus angle of applied field,  $\theta$ , relative to b axis. The 30 kOe field was applied in the basal plane.

Table 7. Magnetic field dependence of constants A and C for  $\operatorname{\mathsf{Tb}}$ 

|                         | Gage par   | allel to b  | axis       |                         | age par | allel to a | axis     |
|-------------------------|------------|-------------|------------|-------------------------|---------|------------|----------|
| $\circ^{\tt K}_{\tt X}$ | H          | C           | Α .        | $\circ_{\rm K}^{\rm T}$ | H       | C          | A        |
| K                       | kOe        | μ in/in     | μ in/in    | K                       | kOe     | μ in/in    | μ in/in  |
| 240.6                   | 5          | 45•7        | -          | 61.1                    | 21/4    | 3887.      | 1484.    |
|                         | 10         | 141.9       | -          |                         | 26      | 3885.      | 1482.    |
|                         | 15         | 234.7       | -          |                         | 28      | 3883.      | 1497.    |
|                         | 20         | 315.9       | 1.3        |                         | 30      | 3880.      | 1497.    |
|                         | 25         | 387.8       | 3.2        |                         |         |            |          |
|                         | 30         | 451.9       | 4.3        |                         |         |            |          |
|                         |            |             |            | 68.0                    | 24      | 3787.      | 1367.    |
|                         |            |             |            |                         | 26      | 3786.      | 1377.    |
| 260.0                   | 5          | 6.6         | _          |                         | 28      | 3786.      | 1384.    |
|                         | 10         | 24.4        | _          |                         | 30      | 3786.      | 1394.    |
|                         | 15         | 42.5        | _          |                         | -       |            |          |
|                         | 20         | 87.0        | _          |                         |         |            |          |
|                         | 25         | 126.6       | -          | 79•7                    | 24      | 3610.      | 1182.    |
|                         | 30 -       | 169.4       | _          | ,,,,                    | 26      | 3608.      | 1201.    |
|                         |            |             |            |                         | 28      | 3610.      | 1208.    |
|                         |            |             |            |                         | 30      | 3611.      | 1207.    |
| 269.2                   | 5          | <b>3.</b> 7 | -          |                         |         |            | •        |
|                         | 10         | 13.6        | -          |                         | ٠       |            |          |
|                         | 15         | 30.9        | _          | 99•7                    | 24      | 3272.      | 904.     |
|                         | 20         | 53.5        | _          |                         | 26      | 3276.      | 906.     |
|                         | 25         | 80.7        | -          |                         | 28      | 3280.      | 923•     |
|                         | <b>3</b> 0 | 111.6       | -          |                         | 30      | 3284.      | 930•     |
|                         | -          |             |            |                         |         |            |          |
| 280.2                   | 5          | 2.5         | -          |                         |         |            | <b>4</b> |
|                         | 10         | 8.2         | -          | 120.5                   | 24      | 2897.      | 643.     |
|                         | 15         | 18.2        | <b>-</b> ' |                         | 26      | 2906.      | 658.     |
|                         | 20         | 31.7        | -          |                         | 28      | 2914.      | 664.     |
|                         | 25         | 48.7        | -          |                         | 30      | 2921.      | 662.     |
|                         | 30         | 68.4        | -          |                         |         |            |          |
|                         |            | _           |            | 139•7                   | 24      | 2526       | 455.     |
| 290.5                   | 5          | 1.6         | -          |                         | 26      | 2539•      | 465.     |
|                         | 10         | 5•3         | -          |                         | 28      | 2548.      | 467.     |
|                         | 15         | 12.0        | -          |                         | 30      | 2556.      | 473•     |
|                         | 20         | 20.8        | -          |                         |         |            |          |
|                         | 25         | 33.0        | -          |                         |         |            |          |
|                         | <b>3</b> 0 | 47.0        | -          | 160.0                   | 24      | 2131.      | 310.     |

Table 7 (Continued)

|      | _        | allel to b   |              | Gage parallel to a ax |          |                 |              |  |  |
|------|----------|--------------|--------------|-----------------------|----------|-----------------|--------------|--|--|
| °K   | H<br>kOe | C<br>μ in/in | A<br>μ in/in | °K                    | H<br>k0e | C<br>μ in/in    | A<br>μ in/in |  |  |
|      |          |              |              |                       | 26       | 2145.           | 315.         |  |  |
|      |          |              |              |                       | 28       | 2156.           | 321.         |  |  |
| 00.6 | 5        | 0.9          | -            |                       | 30       | ^ 2167 <b>.</b> | 322.         |  |  |
|      | 10       | 3.9          | -            |                       |          | ·               | •            |  |  |
|      | 15       | 8.8          | -            |                       |          |                 |              |  |  |
|      | 20       | 15.3         | -            | 179.1                 | 24       | 1745.           | 194•         |  |  |
|      | 25       | 24.2         | 67           |                       | 26       | 1760.           | 203.         |  |  |
|      | 30       | 34•7         | -            |                       | 28       | 1773•           | 202.         |  |  |
|      |          |              |              |                       | 30       | 1785.           | 209.         |  |  |
|      |          |              |              | 200•2                 | 24       | 1300•           | 106.         |  |  |
|      |          |              |              |                       | 26       | 1319.           | 110.         |  |  |
|      |          |              |              |                       | 28       | 1336.           | 114.         |  |  |
|      |          |              |              |                       | 30       | 1352.           | 114.         |  |  |
|      |          |              |              | 219.7                 | 24       | 858.            | 44.          |  |  |
|      |          |              |              |                       | 26       | 880.            | 54.          |  |  |
|      |          |              |              |                       | 28       | 902.            | 53•          |  |  |
|      |          |              |              |                       | 30       | 924.            | 52.          |  |  |
|      |          |              |              | 238.8                 | 24       | 401.            | 33•          |  |  |
|      |          |              |              | -                     | 26       | 443.            | 13.          |  |  |
|      |          |              |              |                       | 28       | 471.            | 16.          |  |  |
|      |          |              |              |                       | 30       | 498.            | 71.          |  |  |