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INTRODUCTION 

The axial-flow turbomachine has, during the last two decades, become 

a strong competitor in the field of compression of gases. It has 

demonstrated higher values of peak efficiency than other compressor types 

and the ability to handle large volumes of working fluid without undue 

increase in dimensions. Also, during this period important gains have 

been made in the attainment of high pressure ratios per stage and in the 

reliability of the machine. The preeminence of the axial compressor in 

gas turbine applications and its increased use in steel manufacture, wind 

tunnels and chemical processes are based on these developments. 

A great deal of analytical and experimental research has provided the 

foundation for the performance improvements which have been obtained. The 

demand by designers for improved information and techniques led to primary 

emphasis on the so-called "inverse" compressor problem. In this problem, 

the conditions of compressor operation or performance are given at a 

"design point", and the results required are the flow passage dimensions 

and a blading arrangement which will yield these performance conditions. 

In order to obtain the required performance with a minimum number of 

stages, and with minimum over-all compressor dimensions, studies directed 

toward determining the optimum flow pattern through the machine were 

conducted. To provide blading to produce the desired flow pattern, blade 

section information was obtained by analytical means and by experimental 

investigation in two-dimensional cascades, annular cascades, and in 

single-stage compressor tests. 

In the early phases of the development of solutions for the "inverse" 
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or design problem, performance requirements were necessarily not severe. 

Multistage compressors which provided moderate compressor performance were 

built and tested. When these compressors failed to achieve the design 

point, the failure was often attributed to "three-dimensional effects" and 

to "boundary layer effects". As time went on increased confidence on the 

part of designers led to more stringent design point values. Unfortunately, 

it soon became obvious that higher design point pressure ratios were, in 

general, accompanied by poor performance at flows and rotative speeds 

other than design. The reasons for poor off-design performance and the 

nature of the flow phenomena which occur under off-design operation became 

the objects of intensive study. 

As the investigation of the items which determine the compressor 

over-all performance map has progressed, the "direct" compressor problem 

has been recognized as being at least equal in importance to the "inverse" 

problem. In the "direct" problem, in contrast to the "inverse" problem, 

the compressor blading and flow passage dimensions are completely defined; 

and it is required that the performance be computed not only at design 

conditions but over the entire expected range of compressor operation. 

Most of the early off-design performance studies resulted from a 

problem encountered with a particular multi-stage compressor design, and 

methods for analysis of operating difficulties were largely semi-empirical 

in nature. Successful procedures were developed, and are still frequently 

used, in which individual stage performance curves were assumed and 

assembled into a calculated performance map by a "stage-stacking" 

technique. These methods are in seme respects not completely satisfactory. 
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One important reason for this is that such methods require a set of 

assumed stage performance curves. The selection of appropriate curves is 

not easy, particularly for the unusual or advanced stage design. A 

second objection to "stage-stacking" methods arises because of the limited 

extent of off-design performance improvement that results from their use. 

Also, there is no possibility of discovering new stage designs; i. e., 

new velocity diagram and blading arrangements within individual stages 

that may offer improvement. 

It may be concluded then, that a reasonably simple solution of the 

"direct" or analysis problem for axial-flow compressors is highly 

desirable. Moreover, such a solution is necessary before a complete study 

of the off-design performance problem can be made. If the solution could 

be considered as sufficiently accurate, costly multi-stage compressor 

tests would be at least partially eliminated. The present investigation 

was begun to determine whether present-day knowledge of blade-element 

performance and current techniques and assumptions for the simplification 

of the equations governing the three-dimensional flow through axial-flow 

compressors are adequate for the development of a reasonably accurate 

solution to the "direct" problem. An additional object was the study of 

possible improvement of off-design performance by proper velocity 

diagram selection. 



HISTORICAL BACKGROUND OF AXIAL-FLCW COMPRESSOR THEORY AND EXPERIMENT 

Early Development of the Axial-Flow Compressor—to 1930 

The axial-flow compressor is one of a group of machine types which in 

fairly recent times has been classed under the broad designation of 

turbomachinery. As a member of this group, it must look back toward the 

reaction turbine of Hero for its earliest historical background. This 

phase of turbomachinery development has been recorded in detail elsewhere 

and will not be explored herein. 

In the construction of the earlist forms of turbomachinery there 

was undoubtedly some "design" involved. It is, however, necessary to look 

to the 18th century for the appearance of the first ideas which led toward 

the methods which we now employ in turbomachinery design. These ideas 

were presented in the papers of Euler, and consisted of the application 

of the laws of motion to the transfer of energy between a rotor and a 

fluid (1). 

It is difficult to determine by the examination of published 

information exactly when the use of a form of gas compression device 

similar to the axial-flow compressor was first suggested, but in 1847 a 

French engineer, Burdin, proposed the construction of a gas turbine in 

which air was to be compressed by "a series of blowers" arranged in a 

manner similar to a turbine (2). Later, in 1872, Dr. F. Stolze, of 

Charlotteriburg, near Berlin, applied for a patent on a gas turbine similar 

to that of Burdin, and drawings of this scheme show a "multiple turbine 

compressor" of 10 stages (3). The Stolze machine was actually built and 
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tested with little success, but not until the period 1900 - 1904. Prior 

to this time, however, Sir C. A. Parsons (4, 5) had become interested in 

axial-flow compressor possibilities. In his earliest steam turbine 

patent (1884) he stated, "-and if such an apparatus be driven, it becomes 

a pump and can be used for actuating a fluid column or producing pressure 

in a fluid." In a 1901 patent titled "Improvements in Compressors and 

Pumps of the Turbine Type", Parsons wrote, "My invention consists in a 

compressor or pump of the turbine type, operating by the motion of sets 

of movable vanes or blades between sets of fixed blades, the movable 

blades being more widely spaced than in my steam turbines, and constructed 

with curved surfaces on the delivery side and set at a suitable angle to 

the axis of rotation. The fixed blades may have a similar configuration 

and be similarly arranged on the containing casing at any suitable angle." 

About 30 compressors were built by Parsons during the period 1901 - 1907. 

The first, which was completed in 1901, had a delivery pressure of about 

1.75 psig. with a capacity of 3000 cfm free air at 4000 rpm. This 

compressor had 19 stages. The remaining compressors were of larger 

capacity and were built to produce pressures up to 15 psig. An experi

mental unit was built in which two compressors were placed in tandem with 

an intercooler between to produce 80 psig. The blades in all of 

Parsons' early compressors were of "plano-convex section" with the rotor 

blades "set in rows at an angle similar to that of a ship's propeller." 

The stationary or guide blades were "set with their plane surfaces 

parallel to the axis" and their purpose was "to stop the rotation of the 

air after being acted on by the moving blades." It may be noted that 
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these blades were of very short span. Parsons, himself, in 1906 gave the 

tip velocity of the rotating blades as "about 400 feet per second." 

The Parsons compressors of this era had an efficiency of about 55 per 

cent. This disappointing performance along with the necessity for rapid 

development of other products caused Parsons to drop the axial compressor 

as a commercial product. 

During this period Parsons' organization was not the only one to 

build and test axial-flow compressors. References to work of Rateau and 

to experiments run by the General Electric Company appeared in the 

literature, and the Westinghouse Machine Company in 1905-7 (6) built an 

experimental unit to Parsons' patents. This compressor had an efficiency 

similar to those of the other Parsons compressors. There can be no doubt 

that the reason for the failure of these machines to be commercially 

successful was the lack of application of the principles of aerodynamics 

to their design. This cannot be considered a criticism of those 

responsible, because much of the aerodynamic knowledge now in use was 

non-existent or in its earliest, stages of development in the early 1900's. 

Bauersfeld (7), in 1922, reported the first published work on the 

application of airfoil theory to the design of turbomachinery. This paper 

was probably not responsible for the subsequent renewal of interest in 

the axial compressor but its existence provided the basis for the 

practical design of such machines. 

In 1926, an unpublished proposal was made by Dr. A. A. Griffith 

(8, 9, 10) to representatives of the British Aeronautical Research 

Committee. He had worked out a method for the aerodynamic design of 
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compressors and turbines which was based on airfoil theory. As a result 

of his proposal the first British cascade experiments were begun (11) and 

Griffith himself designed a single-stage compressor and single-stage 

turbine on the same shaft for testing. The blading was of free-vortex 

type and tests on the unit run in 1929 showed compressor efficiency of 

91 per cent. Unfortunately, proposals to continue and extend Griffith's 

work were not carried out and a lapse of six years followed in British 

government research efforts. 

For test purposes the Swiss firm of Brown-Boveri built in 1927 a 

small 4-stage axial-flow compressor, and during the following years, 

several single- and two-stage fans were built and tested (12). 

Also, just prior to 1930, several other industrial organizations had 

built successful single- and two-stage blowers for the ventilation of 

turbo-generators. These machines were in general of very low pressure 

ratio and were not built as compressors. In addition, extensive work was 

proceeding in many countries on the design of axial-flow or propeller 

pumps and turbines (13-16). These developments cannot be discounted as 

contributors to the background of ideas and logic relating to axial-

compressor design. 

Attempts to achieve solutions to the design problem, which would 

provide satisfactory performance at the design point, occupied the 

attention of nearly all of the investigators of this period. Off-design 

performance was not considered as critical and was probably regarded as 

something about which little could be done. 
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Development during the Period 1930-45 

The years between 1930 and 1945 were marked by the development of two 

distinct schools of thought concerning axial-flow compressor blade design. 

One group proceeded by basing their approach on isolated airfoil theory, 

with appropriate methods of correction for the presence of adjacent blades 

in compressor blade rows. The other proceeded by using a more experimental 

approach. Investigations of two-dimensional cascades of blade sections 

were made, and correlations of these data were made for use by designers. 

Although differences did exist in other aspects of the approach to the 

design problem, the principal division was in the method used for blade 

selection. 

During the early 1930's, the Swiss turbomachinery manufacturers, 

Brown-Boveri and Escher-Wyss, were both particularly active in compressor 

work. Design of the Velox steam generator, construction of a supersonic 

•wind tunnel, and stationary gas-turbine research at Brown-Boveri required 

a highly compact, reliable compressor (12). A systematic investigation of 

the axial-flow machine followed. This led to some very efficient 

multistage units with, however, a very low pressure ratio per stage. In 

the Escher-Wyss organization a similar program of development was 

undertaken in which numerous cascade investigations and single-stage 

tests accompanied the analytical work reported by Keller (17, 18). -

Although cascade tests were performed by both Swiss groups, the corrected 

isolated airfoil approach was developed at this time. It should be 

mentioned that the strict adherance of most Continental designers to the 

so-called free-vortex design stems from this beginning. It should also be 
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noted that the pioneer work of Keller was first reported in his Doctoral 

thesis directed by Prof. Ackeret of the Swiss Federal Institute of 

Technology, Zurich. 

German development programs prior to and during the Second World War 

were influenced greatly by the Swiss findings and procedures. The Gennan 

efforts were, of course, aimed primarily at the production of workable 

turbo-jet aircraft engines. The most effective German work was probably 

performed at the Aerodynamic Research Institute (AVA) of Goettingen. The 

general course of this work and the concurrent industrial program is 

discussed by Schlaifer and Heron (9), and important results are reported 

in several NACA translations (19-26). 

An examination of British efforts between 1930 and 1945 indicates 

that British study and development were essentially independent of work on 

the European continent. Research begun in 1936 produced a workable 

framework of design equations based largely on incompressible flow and 

backed by a comprehensive cascade testing program. These equations 

yielded multistage compressors which were efficient and reliable (8). 

The British were aware of the Swiss techniques and results, but the 

design procedure set forth by Howell in 1945 (27, 28) introduced many new 

and different ideas and provided a guide for British and many American 

designers. Recognition and pioneer analysis of many basic problems must 

be credited to Constant, Howell, and their associates. 

In the United States, during the early 1930's, papers dealing with 

the design and performance of fans showed little original design work 

(29, 30). The influence of Keller's publications and the existence of a 
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licensing agreement between Brown-Boveri and the Allis-Chalmers Company-

resulted in a more organized approach after 1936. 

The first systematic investigation of axial-flow compressor problems 

in the United States was begun in 1938 by Jacobs and Wasielewski of the 

National Advisory Committee for Aeronautics (N. A. C. A.). Their work 

resulted in the construction and testing of an 8-stage axial-flow 

compressor which produced a pressure ratio of 3*4:1 with an efficiency 

of 87 per cent. The detailed procedure used for design and the test 

results were published in 1943 (31)» Even before final publication of 

the N. A. C. A. results work was begun by several manufacturers on 

axial-flow units, probably encouraged by the favorable performance of the 

8-stage machine. The design philosophies of this period, including that 

of Jacobs, were undoubtedly affected by the earlier Keller results. 

Although many satisfactory axial-flow compressors were designed and 

constructed prior to 1945, their performance at off-design operating 

points was often not critical in the specific application. However, both 

German and British gas-turbine designers had encountered situations in 

which engines could not be started. This indication of possible inferior 

off-design compressor performance, or of poor compressor-turbine matching, 

was obviously not fully understood. Some unpublished work on compressor 

stage matching done during World War II in Germany was the only attempt 

at detailed analysis of the problem during this time. 

Recent Advances in Axial-Flow Compressor Design Methods 

At the conclusion of the European phase of World War II an 
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accelerated rate of research began which has continued until the present. 

There was a general realization that extensive cascade, single-stage, and 

multi-stage compressor testing was necessary in order to reveal the 

relative importance of the major design variables, and that the experimental 

studies must be accompanied by the systematic analysis and correlation 

of available data. With the progress made in all parts of the world in 

the compressor area, workers tended toward a more nearly common approach. 

The uniformity of approach was, of course, influenced by the availability 

of funds and research equipment. 

Numerous investigations have been made of the effects of velocity 

diagram variation on compressor design performance. The free-vortex flow 

patterns used in successful early compressors were limited in usefulness 

as increased performance was demanded. The limitations imposed by high 

blade-element losses at high relative Mach numbers and for high diffusion 

rates made the use of other types of flow distribution necessary. 

Experimental results, showing that good efficiencies could be 

obtained with a wide variety of velocity diagrams, prompted optimization 

studies, which attempted, for example, to show which diagram types 

offered maximum power input, pressure ratio, or flow per unit area within 

the limitations imposed by Mach number and diffusion (32-38). Also 

accompanying the trend away from the "two-dimensional" free-vortex flow 

pattern were the problems associated with radial flows, and streamline 

curvature effects, both manifestations of the existence of "three-

dimensional" flow. 

Formulations of the equations of motion, continuity, and of the 
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applicable laws of thermodynamics were introduced (39-41) to describe the 

flow in compressors. These equations in their most general form have 

proved impractical to solve, and for the average compressor designer are 

useless unless simplified by assumption of a more easily treated flow 

model. The assumptions used in nearly all design methods are those of 

axisymmetric, time-steady flow. These assumptions are applied to the flow 

at stations between blade rows where blade forces are not present, and 

have proved adequate for the design of numerous high-performance 

compressors. 

The selection of compressor blading has been an area in which a 

division of opinion exists between investigators in different geographical 

regions. The airfoil theory school of thought, for which an able 

spokesman has been Schlichting (42), has attacked the problem of blade 

selection by first stating that theoretical methods must be developed 

because of the infinite possible variation in compressor blade-row 

geometry. The need for verification by experiment is recognized. 

However, the majority of reported British and American design philosophy 

is based on the correlation of the available two- and three-dimensional 

cascade data (43-45)» The large amount of systematic two-dimensional 

cascade data which has been obtained has been analyzed and used as the 

basis for the formulation of empirical design rules. These rules have 

been used in the design of many good compressors. 

Experimental test programs have, since 1945» been used as a means for 

verification of design methods. Single stage tests under conditions 

approaching incompressible flow have verified and extended two-dimensional 
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cascade test results (46). In addition high-speed single-stage results 

have been obtained to provide design limit information and to check the 

trends indicated by velocity diagram analysis. 

Recently, the availability of equipment for full-range testing of 

multistage compressors having high pressure ratios and weight flows has 

not only made possible an increased confidence in design procedures 

but has also brought about the realization that a family of off-design 

problems remained to be understood and investigated. 
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RESEARCH RELATED TO OFF-DESIGN PERFORMANCE PROBLEMS 

Off-design performance problems occurring in axial-flow compressors 

were not investigated in detail until the early 19501 s. The effects of 

the deterioration of compressor performance at speeds and flow rates 

different from the design values were noted by German investigators (9), 

and by the British (8) as they developed the first turbojet aircraft 

engines using axial-flow compressors. The phenomenon known as surge 

or pumping was well-known to every experimenter who had been able to test 

a compressor over its operating range. 

The attention of investigators was first drawn by the lack of 

understanding of compressor surge. The typical multistage compressor 

performance map of Figure 1 shows that surging occurs when a compressor 

operating at constant speed is throttled so that a sufficiently low 

weight flow is obtained. Studies of the surge phenomenon were made by 

Pearson and Bowmer (47), Bullock et al. (4S) and others prior to 

1950. However, these papers give only a qualitative description of the 

nature of surging, although quantitative information was presented 

relating to the surge characteristics of seme specific machines. After 

1950, the use of appropriate instrumentation enabled personnel of 

several research groups to study in detail the nature of the surge 

phenomenon. As a result the second important manifestation of 

deterioration of off-design performance was discovered and attacked 

intensively by several investigators (49-54). This phenomenon was 

called "rotating" or "propagating" stall. 

The most important single fact which may be noted in connection with 
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compressor surging and stall propagation is that they only occur in a 

blade row or in a multistage compressor when some of the blade elements 

have been forced to operate at angles of incidence which are far from 

optimum values. The realization that this was true was the basis for 

increased study of compressor stage matching and the nature of stage 

performance curves (55-57). These stage matching studies provided the 

first means by which a compressor with poor off-design performance 

might be improved. At this same time the improvement of off-design 

compressor performance by blade adjustment was revived (58, 59), 

although it had been available for several years due to the pioneer 

work of Sinnette (60). It should also be noted that the blade adjustment 

technique had been in use for many years by manufacturers of pumps 

and blowers. 

In connection with stage-matching studies it is obvious that the 

success of the method requires that the nature of the performance of 

individual stages must be known before the stages may be "stacked" in 

a matching analysis. This requires either an extensive single-stage 

testing program or the construction and testing of numerous multistage 

compressors. Neither procedure is economically desirable. The ideal 

approach to the off-design performance problem would be one in which an 

accurate and complete solution of the "direct" compressor problem was 

available. Such a method would mean that most costly construction and 

testing of multistage compressor prototypes would be avoided. However, 

the lack of sufficient background information makes this approach so 

difficult that few investigators have seriously attempted to use it. 
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The work of Louis and Horlock on the "direct" problem has been 

published recently (61, 62). The assumptions used by Louis and Horlock 

are such (incompressible flow, validity of the actuator disc solution) 

that although the investigations make a valuable contribution, there is 

still much room for improvement. Experimental checks (62) of the 

method point this out rather well. 

The current investigation then was begun with two principal objectives. 

First, it was hoped that a framework of equations could be set up and used 

with a correlation of blade-element performance based on the best 

available two-dimensional and annular cascade data to yield a more 

satisfactory solution to the compressor analysis or direct problem. 

Second, if the direct problem solution was sufficiently good, it was 

believed that specific stage designs should be investigated to determine 

whether significant improvement in off-design performance of a multistage 

compressor would result from proper selection of design velocity diagrams 

within the individual stages. 
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ANALYSIS 

Preliminary Study of the Off-Design Performance Problem 

As stated in the previous section, compressor surging and stall 

propagation can only occur in a multistage compressor when some of the 

blade elements are forced to operate at angles of incidence which are far 

from the optimum values. Although these phenomena, which occur in a 

compressor stage when the angles of incidence on certain blade elements 

become excessive in a positive sense, are obviously important, performance 

also deteriorates in a very objectionable manner when blade elements 

operate at excessive negative incidence angles or when flow velocities in 

the blade passages are so high that "choking" occurs. Finger and Dugan 

(56) and Benser (57) demonstrate the existence of both types of off-design 

performance problem in their stage-matching studies. 

Considering for the moment only the situation in which blade-element 

operation at excessive positive angles of incidence results in stalling 

and flow separation, a simple analysis seems possible. As pointed out 

by Louis and Horlock (61), the occurrence of blade-element stall is 

governed by, first, the loading of the various blade elements assigned 

for the design operating condition and, second, the rate at which the 

angle of incidence changes on each blade element when changes in the flow 

rate take place. In considering the first condition, it should be 

remembered that the limiting blade loading is set by the amount of 

diffusion and turning "which occur in a cascade of blade elements and 

also by the flow conditions at the inlet to the cascade, such as relative 
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Mach number and Reynolds number. Conditions which are conducive to the 

attainment of high pressure ratios in compressor stages, i. e. high 

relative inlet Mach numbers, combined with high blade cambers, will, in 

general, place the design blade-element operation at a condition where 

only a small change in angle of incidence may be sufficient to increase 

losses considerably. A study of the second factor affecting the 

occurrence of blade-element stall, the rate of change of angle of incidence 

with flow rate, indicates that it is also dependent on the velocity and 

angle distribution at the blade-row inlet. Because of this dependency 

on the inlet flow conditions, a study of the two factors was made on the 

basis of the blade-element inlet velocity diagram. The trigonometric 

relationships among certain important velocity diagram variables were 

set up and used in the preparation of Figures 2, 3> and 4» Reference 

should be made to APPENDIX B - SYMBOLS AND NOTATION as use is made of 

these figures. In a compressor rotor blade row each blade element 

operates at a varying incidence angle as the flow rate through the row 

chang e s .  T o  ill u s t r a t e  t h i s ,  i t  i s  kno w n  t h e  abs o l u t e  f l o w  an g l e  ( 3  

entering a rotating blade row remains nearly constant as flow rate 

changes over a reasonable range. Assuming a constant blade-element speed 

U the ratio V%/U will change as the flow rate changes. Accompanying the 

chang e  i n  7%/ U ,  a  vari a t i o n  i n  th e  ro t o r  re l a t i v e  i n l e t  a n g l e  ( 3  

occurs, changing the incidence angle by the same amount. The nature of 

this variation is shown in Figure 2. It would appear from this figure 

that for a given (3 » the value of V%/U should be as high as possible 

at the design point. Furthermore absolute flow angles which are negative 
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appear to be most desirable because there is a tendency for the rate of 

change of to be reduced as Q is reduced. 

Figures 3 and 4 demonstrate that for operating conditions which 

appear to be desirable from the point of view of Figure 2, serious 

disadvantages may occur if design velocities are established in the 

ranges ordinarily used to obtain high flow rates per unit passage area 

and high pressure ratios. If the value of axial velocity and the flow 

angles are known at any station in the compressor where the flow is 

about to enter a rotor, Figures 3 and 4 permit the rapid determination of 

the relative inlet Mach number to the blade row. In this procedure, the 

ratio of the axial velocity component to the velocity of sound based on 

the local stagnation conditions and the absolute flow angle are used with 

Figure 3 to determine the local absolute Mach number. Then the values of 

absolute flow angle and the flow angle relative to the rotating blades 

are used with Figure 4 to find the ratio of the relative inlet Mach number 

to the absolute Mach number. The conclusion may be drawn from Figures 

2, 3, and 4 that the conditions which lead to minimum rate of change of 

angle of incidence with flow (negative absolute flow angles and high 

Vz/U ratios) are also the conditions which lead to increased relative Mach 

numbers. Inasmuch as high relative inlet Mach numbers are invariably 

accompanied by reduction in the efficient operating incidence angle range 

of a blade row, a careful analysis for each proposed design may be 

necessary to balance reductions in incidence angle change rate against 

possible reductions in the available range for the blade type to be used. 

It is apparent that although the charts presented give a preliminary 



21 

90 

80 
to 
<D 
<D 

o *  7 0  
<D 
"O 

N m 
^ 60 -

<D 

c n  
c  5 0  
o  

0) 

C 40 

o  3 0 -

0) 

^ 20 -

<D 
cr 

io -

A b s o l u t e  a i r  
i n l e t  a n g l e ,  

P - 3 0 °  

20° -

- I 0 ° _  

0° 

+ 10° 

+ 40' 

+  3 0 '  + 20' 

1 

0 0.5 0 1.5 2.0 2.5 

A x i a l  v e l o c i t y  /  b l a d  e — e  l e m e n t  s p e e d ,  V z / U  
F i g u r e  2 .  V a r i a t i o n  o f  r e l a t i v e  a i r  i n l e t  a n g l e  
w i t h  r a t i o  o f  a x i a l  v e l o c i t y  t o  b l a d e  —  e l  e m e n t  
s p e e d  f o r  a  r a n g e  o f  v a l u e s  o f  a b s o l u t e  a i r  
a n g l e  



22 

1.00 

0.901-

o 

> 0.80 

0) 
-Q 

E  
3 

0.70 -

-5 0 60 

o 

0) 
0.50 -

v) 0.40 

0.30 -

0.20 

A b s o l u t e  o i r  
i n l e t  o n g l e ,  

0.20 0.80 1.00 

A x i a l  v e l o c i t y / a a ,  V z / Q a  

F i g u r e  3 .  V a r i a t i o n  o f  a b s o l u t e  M a c h  
n u m b e r  w i t h  r a t i o  o f  a x i a l  v e l o c i t y  
t o  s t a g n a t i o n  s p e e d  o f  s o u n d  f o r  a  
r a n g e  o f  v a l u e s  o f  a b s o l u t e  o i r  a n g l e  



23 

2.30 

2.20 

R e l a t i v e ,  a i r  i n l e t  \ ? 0  
a n g l e , j 6  / d e g r e e s  \  _  

2.00 

60' 

1.8 0 -

1.60 _ 

1.40 -

1.20 -

1.00 
0  ± 1 0  ± 2 0  ± 3 0  ± 4 0  

A b s o l u t e  a i r  i n l e t  a n g l e , / 6 ,  d e g r e e s  
F i g u r e  4 .  V a r i a t i o n  o f  r a t i o  o f  r e l a t i v e  
i n l e t  M a c h  n u m b e r  t o  a b s o l u t e  i n l e t  
M a c h  n u m b e r  w i t h  a b s o l u t e  o i r  i n l e t  
a n g l e  f o r  a  r a n g e  o f  v a l u e s  o f  
r e l a t i v e  a i r  i n l e t  a n g l e  



24 

view of some phases of the off-design performance problem, there is a need 

to know what will occur on the downstream side of a blade row which is 

being studied. For example, radial-equilibrium conditions dictate the 

distribution of axial velocity that exists at any axial station in a 

compressor. It is possible that even though conditions favorable to the 

off-design performance may exist upstream of a rotor-blade row, the energy 

addition distribution through the rotors-blade row might set up extremely 

undesirable conditions at the entrance to the stators downstream. 

Therefore, it is believed that the only really satisfactory means for 

studying the improvement of compressor off-design performance must be 

based on the availability of a method for solution of the "direct" 

compressor problem. That is, it must be possible to calculate with 

reasonable accuracy the performance of a series of compressor blade rows 

over at least a limited range of flows, 

Basic Equations for Performance Computation 

A method for performance computation must be consistent with 

satisfactory design procedures. In addition, it must- be possible to 

perform any numerical work in a reasonable time, because a number of 

solutions corresponding to various rotative speeds and flow rates are 

necessary for each compressor studied. 

The purpose of this section is to present a framework of equations 

basic to the method used herein, emphasizing the assumptions made and 

limitations which may exist. Reference should again be made to the 

section entitled SYMBOLS AND NOTATION, in which the terminology used is 
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defined. 

At the inlet to the first blade row, it was believed appropriate to 

assume uniform flow throughout the annulus. For cases where inlet flow 

distortions exist because of upstream struts, excessive wall boundary-

layer thicknesses, and irregularities in the flow through the engine 

inlet configuration, it is extremely difficult to assess the effect on 

compressor blade-row performance. However where the inlet is well 

designed it has been found that under normal operating conditions the flow 

is in fact quite uniform, but that for inlet stages having very low 

hub-tip diameter ratios (on the order of 0.4), streamline curvature may-

produce a non-uniform radial distribution of axial velocity which should 

be considered (63). 

A complete solution to the "direct" compressor problem would permit 

the calculation of flow conditions at any point in the machine. The 

equations which would permit this type of solution are available (40, 41). 

However, the limited nature of the background data available for 

performing the solution indicates that a more simple flow model must be 

provided for present purposes. In this analysis, provision was made for 

the calculation of flow conditions at axial stations located at the exit 

of each blade row. The radial distribution of velocities, flow angles, 

pressures, and temperatures was determined in the meridional plane at each 

station assuming steady, axisymmetric flow at each station. Blade-element 

performance in the circumferential or blade-to-blade plane was used in the 

determination; and because the data used were circumferentially-averaged 

experimental information, it was considered that some of the effects of 
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lack of axial symmetry may be accounted for. 

The general outline of the performance calculation procedure for any 

blade row is as follows: 

A. It was assumed that the flow at the entrance to the blade row 

was given and that the velocity (magnitude and direction), stagnation 

pressure, and stagnation temperature at each of eleven equally spaced 

radial positions were known. At .the inlet to the first blade row the 

flow was defined as discussed above. For all other blade rows these 

conditions were available from computations for the preceding row. 

B. From the given inlet conditions, parameters essential to the 

determination of blade-element turning and loss characteristics were 

obtained. For rotating blade rows, relative entrance conditions were 

calculated, using the given absolute flow conditions and the blade-element 

speed. For stationary blade rows the absolute quantities and relative 

quantities are identical. The entrance parameters necessary for 

blade-element performance determination were: (3' and M for 

rotating blade rows and (3 and M for stationary rows. 

C. With the passage dimensions known at the exit from the given 

blade row, eleven equally spaced radial positions were established at the 

exit calculation station, and the relative flow angles at the exit station 

were estimated assuming flow through cascades of blade elements intersected 

by assumed conical stream surfaces connecting corresponding radial 

positions at blade inlet and exit. The required cascade geometry was 

assumed known (y® <f> ,<T", blade section) • 

D. The velocity distribution at any point in an axial-flow 
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compressor must satisfy the condition of radial equilibrium which, as 

derived by Wu and Wolfenstein (39) for steady, adiabatic, axially 

symmetric flow, where H is the stagnation enthalpy in Btu/lb%, is 

*§5 - A • .»ss • • 7. (1) 

As presented, the equation neglects the local effects of viscosity 

(shearing stress at the designated point in the fluid) but does account 

for the cumulative effects of viscosity upstream from the calculation 

station by means of the entropy gradient term gJt(9S/9r). 

Because calculation stations for this analysis were located between 

blade rows, the radial component of blade force Fr was zero. To further 

simplify the analysis the axial component of velocity was assumed equal 

to the complete meridional velocity (>/ Vz2 + 7p2 ) and the term 

Vz9Vj/9z was neglected. This term represents the effect of streamline 

curvature in the meridional plane and is ordinarily neglected in design 

and analysis of compressor stages with hub-tip diameter ratios greater 

than about 0.5 (63). On the basis of these assumptions and conditions 

the radial-equilibrium equation becomes 

•45 - •* If • ^ i£ (:) 

This equation, although simplified from the complete radial-

equilibrium condition, remained difficult to use in a practical analysis 

because of the presence of the entropy gradient term. The isentropie 

simple-radial-equilibrium equation as used in this step was then (assuming 
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isentropie flow through the blade row) 

(3) 

A first approximation to the exit flow conditions (velocity, 

stagnation pressure, stagnation temperature) was made using the isentropie 

simple-radial-equilibrium equation and the continuity equation. The 

continuity equation was set up on the basis of the previously assumed 

steady, axially symmetric flow. An empirical boundary layer correction 

or "blockage" factor was used as a means for including hub and outer 

casing boundary effects in the continuity equation. 

E. The velocity distributions obtained from the first approximation 

to the outlet conditions were used to estimate blade-element losses. The 

blade-element geometry and the flow parameters used in step B and C and 

a blade-element diffusion rate parameter Dref were necessary for this 

estimation. 

F. The exit velocity, pressure, and temperature distributions were 

determined by a second approximation using the non-isentropic simple-

radial-equilibrium equation and the continuity equation. The blade-

element losses from step E were used in estimating the radial distribution 

of entropy at the blade exit station for solution of the equilibrium 

equation. 

G. Additional improvements in exit condition values were made as 

necessary by continued iteration of the loss, equilibrium, and continuity 

equations. 

The method used for the blade-row performance calculation was made 
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consistent insofar as possible with the axial-flcw compressor design 

procedures outlined in reference 63. 

Determination of Blade-Element Performance 
for NACA 65-(Aiq) Sections 

A great deal of experimental performance data has been obtained for 

NACA 65-(Ajo) compressor-blade sections operating in both two-dimensional 

cascades and in single-stage axial-flow compressors (three-dimensional 

cascades). Typical of the extensive information available is that 

reported in references 43 and 44» The primary objective of recent 

investigators has been to put the available data in a form useful to 

compressor designers. Probably the most comprehensive of such efforts 

were reported by Lieblein (45) and by Bobbins, Jackson, and Lieblein 

(46). These references present methods for the determination for 

65-series blades at given entrance conditions of a reference incidence 

angle and of deviation angle and blade-element loss corresponding to 

the reference incidence conditions. Values are obtained from curves 

constructed from two-dimensional cascade data and are corrected on the 

basis of three-dimensional cascade results. 

In the solution of the "direct" compressor problem, it is not 

sufficient to know how the blade elements will operate at the reference 

incidence. It must be possible to approximate with reasonable accuracy 

the deviation angles and losses which occur over a wide range of 

incidence. Reference 45 suggests a procedure for the calculation of 

off-design deviation angles based on the slope d S°/di° of the 

deviation-incidence curve at the reference incidence. The methods allow 
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a reasonable value of deviation angle to be estimated for incidence 

values when the blade element is not stalled. There is, however, no 

suggested method for approximation of the blade-element losses. 

For this investigation, two-dimensional low speed cascade loss data 

for 65-series compressor blade sections originally reported in reference 

43 were correlated on the basis of a single curve using as parameters 

ti)/c5ref and (i - iref)/(ipg - iMS). This curve is shown in Figure 5. 

The values of the angles of incidence for positive stall and for 

negative stall were defined for a given cascade as suggested by 

Lieblein (45) as the incidence angles for which the measured blade-element 

loss reached twice the minimum or reference value. The difference 

between the positive and negative stalling incidence angles ipg - ijjg was 

then considered to define the most effective operating range of the 

given cascade. It was necessary next to devise a method for finding the 

effective operating range (ipg - %g)^g for a cascade as a function of 

its geometry and operating conditions. For the low speed data a reasonably 

good correlation of values of (ipg - %g)^g was obtained by plotting 

(ipg - ifljg)Tt. against the blade-element diffusion parameter, Dref, with 

relative inlet angle (3 and solidity, <T, as parameters. This 

correlation is shown in Figure 6. Although very limited data were 

available for determining the effect of relative inlet Mach number Mz 

on operating range Figure 7 was prepared on the basis of references 

45 and 64. In this figure the ratio (ipg - i^g)/(ipg - iNS)js is shown 

as a function of inlet Mach number. Although the data which were used 

in the preparation of Figure 7 were not obtained in studies of NACA 
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65-series sections, the sections were of similar geometry and show 

similar operating characteristics in other respects to those of 65-series 

section. Figures 5, 6 and 7, then, provide a method for estimation of 

blade-element losses for NACA 65-(A]_q) or similar compressor blade 

sections when inlet conditions and the blade-element diffusion rate for 

the given application are known. 
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APPLICATION OF ANALYTICAL PROCEDURE—CALCULATION 
OF THE PERFORMANCE OF A ROTCR-BLADE ROW 

Computation of the Rotor Entrance Conditions 

In order to determine the accuracy of the proposed performance 

computation method, and to define any areas in which improvements were 

necessary, it was decided to apply the procedure first to a single 

rotating blade row. The experimental performance of such a blade row 

was reported for a range of rotative speeds and flow rates in references 

65 and 66. The 29 blades used employed NACA 65-(Aio)-series compressor 

sections and were designed for a rotor inlet hub-tip ratio of O.S. 

Details on the design of the stage are given in reference 65, and 

Table 1 gives blade design information pertinent to the current 

investigation. This conservative stage was selected for study because 

the relatively high hub-tip ratio would minimize streamline curvature 

effects on the computations and because the stage performance had been 

reasonably well defined experimentally. Figure 8 shows a meridional 

cross-section through the stage and the calculation stations referred to 

in the following paragraphs. 

It was necessary to establish operating points for which performance 

was desired. Five rotative speeds were selected to provide information 

on the value of the methods for including the effect of relative inlet 

Mach number on rotor performance. Weight flows were selected at each 

speed to cover approximately the same range for which experimentally 

determined performance was available. The selected speeds and flow 

rates are tabulated in Table 2. The first step in the calculation of 



Table 1 - Blade design data for rotor-blade row 

Percent of 

passage 

from tip 

Equivalent circular-arc 

camber angle, ̂  

degrees 

Thickness/chord 

ratio 

Blade-element 

solidity, <J~~ 

Blade-chord 

a n g l e ,  T °  

degrees 

10 19.4 .082 1.20 49.1 

30 21.4 .086 1.20 47.2 

50 24.2 .090 1.20 44.8 

70 27.5 .094 1.20 41.9 

90 31.7 .098 1.20 38.9 
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Table 2 - Operating points for performance computation 

Point Corrected rotor Corrected flow 

number tip speed, ]%//"©" rate, W/ g 

ft/sec lb/sec 

1 600 12.0 

2 600 11.0 

3 600 10.0 

4 600 9.0 

5 600 8.0 

6 600 7.0 

7 798 14.0 

8 798 13.0 

9 798 12.0 

10 798 11.0 

11 798 10.0 

12 798 9.0 

13 915 14.5 

14 915 13.5 

15 915 12.5 

16 915 11.5 

17 915 10.5 

18 736 11.0 

19 736 13.5 



Table 2 (Continued) 
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Point Corrected rotor Corrected flow 

number tip speed, iUq/Vô* rate, W ^©7 g 

ft/sec lb/sec 

20 736 13.0 

21 736 12.0 

22 736 10.0 

23 736 9.0 

24 450 10.0 

25 450 9.0 

26 450 8.0 

27 450 7.0 

28 450 6.0 

29 450 5.0 

performance was the determination of rotor entrance conditions. As 

mentioned in the previous section, it was assumed that uniform flow 

existed in the annulus at the rotor entrance. No correction was made for 

boundary-layer blockage in velocity calculation at this station. This 

was done because the convergent passage shape would produce an accelerating 

flow which would not permit the development of thick wall boundary 

layers. Inlet stagnation (total) temperature and pressure were assumed 

equal to NACA standard sea-level values (29.92 in. Hg absolute and 



518.7 °R) so that computed performance would be equivalent to corrected 

values ordinarily used as a basis for performance comparison. Figure 9 

was prepared to show the variation of inlet axial velocity with flow per 

unit annulus area for standard entrance conditions. Once this velocity 

was known, the absolute entrance conditions were completely determined. 

The next step in the procedure was the calculation of relative flow 

angles and velocities at the entrance station. The typical velocity 

diagram of Figure 10 shows both the relative and absolute entrance 

quantities. Similar velocity diagrams were calculated for five equal!y 

spaced radial positions at station 1. 

Use of the Blade-Element Performance Correlation 

From the known blade-row geometry and the correlations of references 

45 and 46, the reference values of incidence angle and deviation angle 
t 

were found for the relative entrance flow conditions corresponding to 

each radial position at each flow rate. From the same references, it was 

possible to find the predicted deviation angle for each case and from this 

to calculate a relative exit angle. For these calculations it was 

assumed that flow would proceed along conical streamlines through the 

blade row so that the flow angles at blade exit were determined for the 

same number of equally spaced radial stations as used at the inlet. 

This is the basis for compressor design and analysis whenever cascade 

data rather than a general through-flow method are used for determining 

blade-element performance. With the relative exit angle distribution 

known for the rotor blades, a first approximation to the velocity 
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distribution at the exit calculation station was computed assuming 

isentropic flow through the blade row with simple radial equilibrium of 

static pressure at the calculation station. This computation is 

discussed in detail in the following section. Using the above-mentioned 

radial distribution of axial velocity at the exit station, an 

approximation to the losses through the blade row was made in the following 

manner. Values of the blade-element diffusion factor D (6?) were computed 

for each radial position at each flow rate. Then, for a given speed, D 

was plotted against i - iref for each radial position and the value of 

D for i = iref was determined. This value was designated at Dref and 

was used with Figure 23 of reference 46 to estimate Q)ref for each blade 

element. It was then possible to calculate values of W for the range 

of incidence covered by each blade element at a given speed using the 

method discussed under ANALYSIS. 

Numerical Solution of the Isentropic 
Simple-Radial-Equilibrium Equation 

In the previous section the first approximation to the axial 

velocity distribution at the exit calculation station was mentioned. 

The isentropic simple-radial-equilibrium equation as developed for 

numerical solution is presented in APPENDIX A as equation A-3. To permit 

the numerical solution it was necessary to assume that certain quantities 

varied linearly between adjacent radial stations. This was believed 

justified by the close spacing of the radial stations. For the first 

approximation it was assumed that at any station between blade rows the 

flow distribution must satisfy this equation and the equation of 
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continuity (equation A-6). The numerical solution of these equations 

was set up for the International Business Machine Model 650 digital 

computing machine. Using the program written for the solution in the 

Bell Laboratories interpretive routine reported in reference 68, it was 

possible to perform the simultaneous solution of the equations in less 

than 15 minutes for each flow rate. A block diagram showing the 

essentials of the program is shown in Figure 11. Eleven equally spaced 

radial stations were employed as shown in Figure 8 and a boundary 

layer blockage factor of 0.98 was used for all flow rates as 

suggested in reference 63* 

Numerical Solution of the Non-Isentropic 
Simple-Radial-Equilibrium Equation 

With the radial distribution of losses for the rotor blade elements 

obtained on the basis of the first approximation of the velocity 

distribution at the exit station, it was possible to calculate the 

radial entropy distribution required for a solution of the non-i s entropie 

simple-radial-equilibrium equation using equations A-10 through A-13* 

Inclusion of this entropy distribution in the equation permitted a 

second and improved approximation to the velocity pattern existing at the 

exit calculation station. Again it seemed necessary to assume a linear 

variation of certain terms between adjacent radii for integration 

purposes. The simultaneous solution of the non-isentropic simple-

radial-equilibrium equation and the continuity equation was again 

programmed for the IBM 650 machine in a similar fashion to the solution 

of the isentropic simple-radial-equilibrium equation. 
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Computation of Over-All Performance from Blade-Element Results 

The results of the simultaneous solution of the non-isentropic 

radial-equilibrium equation and the continuity equation for the blade-row 

outlet station make up the basic output for the performance computation 

method. The flow angles, velocities and temperatures determined would 

be the input for the following blade row; and a row-by-row solution could 

give the performance for a compressor consisting of any desired number 

of stages. 

For the blade row under study in the current investigation, however, 

the only available experimental performance data were not in the form of 

blade-element results but were published in reference 66 as curves 

showing the variation of mass-weighted average total-pressure ratio and 

adiabatic efficiency with corrected weight flow at several rotor-blade 

tip speeds. For comparison with these results, the calculated blade-

element performance was used to estimate the mass-weighted average 

performance parameters. The equations used were equation A-16 and A-18 

presented in APPENDIX A. The indicated integrations were performed by 

plotting the various functions and determining the magnitude of the 

integrals by means of a polar planimeter. The correction factors Ke 

and Kp were both assigned values of 1.0 as indicated in reference 63. 
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RESULTS AND DISCUSSION 

As indicated in the previous section, the performance of the 

rotor-blade row of reference 66 was predicted for a range of flow rates 

at several rotative speeds. A calculation method was used which was 

based on a framework of equations similar to those used currently in 

compressor design and on correlations of experimental two- and three-

dimensional blade-element performance. The results of these calculations 

are presented for comparison with experimental results in Figure 12. 

In this figure, the experimentally-determined performance of the 

rotor-blade row is shown for corrected tip speeds of 450, 600, and 736 

feet per second. The points plotted represent the performance measured 

for three different blade trailing-edge thicknesses, 0.045-inch, 

0.030-inch, and 0.015-inch. In these tests the same set of blades was 

modified in successive steps by hand-finishing the aft section of the 

blades on both the suction and pressure surfaces to decrease the 

trailing-edge thickness. To minimize experimental discrepencies, extreme 

precautions were taken to eliminate differences in blade-row geometry 

other than trailing-edge thickness amongst the three series of tests. 

The results of the tests showed that blade trailing-edge thickness was 

essentially a minor factor in its effect on performance. For this reason 

no differentiation is made amongst the three trailing-edge thicknesses in 

plotting the data in Figure 12. 

Three sets of calculated performance values are shown in Figure 12. 

At corrected tip speeds of 450, 600, and 736 feet per second, the 

mass-averaged total-pressure ratio and adiabatic efficiency are plotted 
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as calculated from the results of the second approximation calculations. 

At an equivalent tip speed of 600 feet per second, the results of the 

first and third approximations are also shown. It should be remembered 

that the difference amongst the various approximations lies primarily in 

the treatment of and the values estimated for the radial distribution of 

the losses occurring in flow through the blade row. In the first 

approximation, isentropie flow was assumed as a means for obtaining an 

approximate distribution of velocities, pressures and temperatures along 

the radius at the blade-row outlet. This, of course, led to adiabatic 

efficiencies of 1.00 for all points. In the second approximation, an 

improvement in these radial distributions was attempted by estimating the 

blade-element losses on the basis of the previously obtained first trial 

values of velocities, pressures and temperatures. This permitted the 

inclusion of the radial entropy gradient terms in the simple-radial-

equilibrium equation. The improved distributions obtained from the 

second approximation were used as the basis for another loss estimation 

step and a third approximation of the blade-row performance. 

At an equivalent tip speed of 450 fps, calculated performance for 

points 24 through 28 (Table 2) is shown. The computed total-pressure 

ratios and efficiencies are both slightly below experimental values, 

indicating the possibility that losses in the rotor tests were slightly 

below those predicted by the techniques used herein. Because blade-element 

total-pressure ratios and efficiencies were both weighted by the flow 

rate through the respective blade elements in the mass-averaging process, 

it was also considered possible that radial distributions of flow were 
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present in the calculations which would tend to overemphasize high-loss 

regions near the hub and outer casing. Experimental blade-element 

performance was not available to permit further investigation of this 

possibility. In general, however, the calculated performance at this 

speed was in good agreement with experimental data. It may be noted that 

point 29 was not calculated because of the extremely high losses indicated 

to exist at the assigned flow rate, particularly at the rotor tip sections. 

The magnitude of these losses may be indicated by the fact that the 

correlation of Figure 5 was not of sufficient range to permit accurate 

prediction. The decrease in performance which would occur because of 

these losses is confirmed by the trend in the experimental data toward 

lower efficiency below a corrected weight flow of about six pounds per 

second. The magnitude of the decrease, as measured experimentally, was, 

however, not as great as would have been obtained had it been possible 

to complete the calculation of performance at this point. 

At equivalent tip speeds of 600 and 736 feet per second, similar 

trends in the calculated performance existed for values of flow rate 

where incidence angles were near the reference values. Slightly lower 

values of total-pressure ratio and efficiency were calculated than had 

been previously measured. It became apparent at these speeds, however, 

that the performance calculated for low and very high flow rates was 

significantly lower than measured, indicating the prediction of high 

losses due to positive and negative angle of incidence before such losses 

actually occurred in the rotor performance. This in turn is an indication 

that the prediction of the variation of operating range ipg - i^S on the 
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basis of the two-dimensional low- and high-speed cascade data is not too 

satisfactory. It should be noted that the discrepencies between 

experimental and calculated performance increased with the equivalent 

tip speed. Although only speeds up to 736 feet per second are shown in 

the plots, the differences continued to increase at higher speeds, 

making it impossible to satisfactorily calculate performance for points 7 

through 17 (793 and 915 feet per second). The major difference amongst 

flow conditions in the rotor for the various tip speeds lies in the fact 

that the absolute and relative Mach numbers increase as tip speed 

increases. For example, at an equivalent tip speed of 450 feet per 

second, the rotor relative inlet Mach number at radial station 5 for 

reference (minimum loss) conditions was about 0.44. The corresponding 

Mach number at a tip speed of 915 feet per second was 0.91. This fact 

makes it likely that largest errors in operating range prediction were 

not in the curves of Figure 6 used for range estimation at low speed but 

in Figure 7, which permitted the correction of operating range for 

increased relative Mach numbers. Further verification of this indication 

is provided by the fact that the calculated third approximation to the 

rotor performance, although slightly improved over the second trial, 

still showed the operating incidence angle range error. 
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CONCLUDING REMARKS 

The analytical method for prediction of the performance of axial-flow 

compressor blade rows has been demonstrated to be quite satisfactory 

for low-speed performance of a simple axial-inlet rotor-blade row. This 

represents a necessary first step in a rather complicated sequence of 

applications which will be required before the generality of the procedure 

is clearly shown. 

The rotor-blade row to which the method was first applied was 

selected because of the availability of design and experimental 

performance information. The principal difficulty encountered was the 

lack of a satisfactory method for estimating the effect of high relative 

Mach numbers on the low-loss operating range of a compressor blade 

element. The availability of more complete high-speed two-dimensional 

cascade data or a study of blade-element performance in rotating blade 

rows (three-dimensional annular cascades) will be required to provide the 

necessary method. An approach to this problem might be made by 

correlating the operating range variation with relative inlet Mach 

number as measured in rotating compressor cascades (single-stage tests) 

instead of on the basis of two-dimensional stationary cascades. Such a 

study should emphasize the determination of those factors existing in 

compressor flow situations which cause the discrepencies in operating 

range prediction noted in the present investigation. 

It was also found that the lack of experimentally measured velocity, 

angle, pressure, and temperature distributions both upstream and 

downstream from the blade row left seme doubt as to the accuracy of 
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performance prediction. This is true because of the necessity for 

accurate radial distributions as a means for computing inlet conditions 

to downstream blade rows. The next compressor geometry considered 

should be one for which the required radial distributions have been 

published. Examination of the results reported herein, however, shows 

that the trends and magnitudes in the distributions calculated are 

correct arid that with no more than three approximations, good values may 

be obtained. It is likely that the third approximation makes a 

worthwhile improvement in radial distributions, even for flows where the 

mass-weighted average performance is not significantly improved. The 

simple-radial-equilibrium and continuity equations programmed for the 

IBM 650 digital computer may be used without alteration for the computation 

of the radial distribution of velocities and gas properties at any station 

located between blade rows in an axial-flow compressor where streamline-

curvature is not a major consideration in determining the flow pattern. 

All other procedures involved in the manual portion of the performance 

prediction calculations are general and may be applied to any blade row 

in which 65-(Ajq) series blade sections are used. An attempt to extend 

the calculation procedure to compressor configurations involving more than 

one stage should be made to establish the value of the method in the 

prediction of multistage compressor performance. 

A consideration of the factors involved in the use of the analytical 

performance prediction method, including the simplicity of application, 

the computation time required, and the accuracy of results achieved, 

indicates that the development of the method should be continued and 

extended as discussed above. 
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APPENDIX A - SUMMARY OF ANALYSIS EQUATIONS 

The following equations were used in the computation of compressor 

blade-row performance: 

1. Energy transfer between rotor and working fluid (reference 32) 

JgcpC.Tj-.Tj) = CGUjXXj-CUjX.Vj] (A-i) 

2. Isentropic simple-radial-equilibrium equation (references 39 and 63) 

iVz>j±, = iV2j + 2.gJcp (ilj±i — iTj) 

•(Vej±|-i Vej)-

f irj±l . .J. 
(A-2) 

r « 

d(,r) 
-.r 

-sirJ 

As programmed for numerical computation, assuming Vj^/r varies 

linearly between adjacent radial stations 

i Vzj±i = -, Vrj + 2. g Jcp (~Ij±,-iTj) 

~  ( i  V e ,  -  i V e * j  )  ~  +  ̂ ) ( i  O n  -  i  r J  )  
\ I'J±* iu / 

3. Non-isentropic simple-radial-equilibrium equation (reference 63) 

iVz^ii=,Vz, j+2.9 Jcp (jTj±l -Tj)- (i\4^J±i -jV6j ) 

- 2jV^d(.r)-2gJR t^SdCr) 
M >r M dfiO 

(A-3) 

(A-4) 
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As programmed for numerical computation assuming that Vg/r, T, 

and S/R vary linearly between the adjacent radii of integration 

iV**j±, = iV4j +2gJcp(i"Tj±i - ilj) - (iVeJti - iVej) 

_t& + j&)(,rj,l-1ij)-pgR(TJll+,TJ) 
\ ifJ±l irJ / _ 

4. Continuity equation 

XI rSj*. 
R R 

W=ZTTKI 
nro 

bk 
.r 
i'io 

GpjXVtJGijMr) 

5 .  Relationship between static and stagnation temperatures 

Jgcf(itj)=Jgcp(n3)- - Ĵ y-

6.  Density change along assumed streamline through blade row 

a. for isentropic flow 

•  p j  
itj 

I 

i "T— I 

j-'tj 

b. for non-isentropie flow 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 
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7. Relationships defining relative total-pressure loss coefficient for 

a blade element (reference 67) 

(A-10) 

8. 

' (i Pj )ideal ~(\ PjQacfuol 

J i-, Pj-i-,Pj 

in which all pressures are circumferential mass or area averages 

Entropy change equations for a perfect gas expressed in logarithmic 

form 

a. across a blade element 

(A-ll) 

b. from the reference state to the entrance to a blade row 

oS )-ln 
R 

(A-12) 

9. Equations relating entropy change across a blade element to relative 

total pressure loss coefficient (reference 67) 

'iTj 

1ÊL 

nPj 

_ /  
__ULL 

Pi 
V-iRj>Ndeal 

I 4-
Y-l 
W 

Y-l 

(A-13) 
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in which 

Rl 

Mi ideal 
£ rgR^ ( 

• r-__ i-i'j 

•rf 

Y  
Y-1 

(A-14) 

10. Blade-element diffusion parameter (reference 6?) 

D= I— iVj + i-MeJ * iVe.j (A-15) 

i-iVj 2.0"i.|Vj 

This parameter is one of several which have been developed to provide 

an indication of the rate of diffusion of the working fluid as it 

passes through an axial-flow compressor blade element. The parameter 

D has been found to give a good indication of the tendency toward 

flow separation from or stalling of blade elements operating at 

incidence angles near the reference values. 

11. Equations defining mass-weighted average total-pressure ratio and 

adiabatic efficiency for a rotor-blade row (reference 63) 

r 

KPKbk 

-< 

rlo 

I'10 

r-i 

,I-I 1 

m.a. K ik 
V» 

nra 

(iejXXjXrMr) 

-si'10 

Y (A-16) 
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rr 
i-iT 

m.a. 

Air< 

K.K e,xbk 
j 

r>r0 

K, bk GplyJ^dGr) 

i^lo 

f| (A-17) 

^ADL= 
m.q. 

m.q. 

(A-13) 

It should be noted that only the equations which are basic to the 

particular analytical procedure used in this dissertation are given here. 

The velocity diagram relationships, some compressible flow equations, and 

certain other items (e. g. equation of state for a perfect gas) used 

commonly in turbomachinery design and analysis are not included. 
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APPENDIX B - SYMBOLS AND NOTATION 

The following symbols are used in this dissertation: 

A cross-sectional area of annulus, ft% 

a speed of sound, ft/sec 

Cp specific heat at constant pressure, Btu/(lb)(°R) 

D blade-element diffusion parameter 

F blade force, lbf/lbm 

f 2gJcp(itj) 

g gravitational constant, 32.17 (ft)(lbm)/(lbf)(sec2) 

i incidence angle, angle between inlet-air direction and tangent 

to blade mean camber line at leading edge, deg 

J -mechanical equivalent of heat, 778,26 (ft)(lbf)/Btu 

Kbk weight-flow blockage factor 

Ke energy-addition correction factor 

Kp pressure-correction factor 

M Mach number 

P total or stagnation pressure, lbj/ft2 

p static pressure, lbf/ft2 

R gas constant, 53.35 (ft)(lbf)/(lbm)(°R) for air 

r radius, ft 

S entropy, Btu/(Ib^) (°R) 

T total or stagnation temperature, °R 

t static temperature, °R 

U blade element speed, ft/sec 
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V air velocity, ft/sec 

W weight flow rate, lb^/sec 

z axial distance, ft 

@ air angle, angle between air velocity and axial direction, deg 

Y  ratio of specific heats, 1.40 for air 

Y °  blade-chord angle, angle between blade chord and axial 

direction, deg 

S  ratio of compressor-inlet stagnation pressure to N. A. C. A. 

standard sea-level pressure of 2116 lbf/ft2 

c° 
o deviation angle, angle between outlet-air direction and tangent 

to blade mean camber line at trailing edge, deg 

efficiency 

0 ratio of compressor-inlet stagnation temperature to N. A. C. A. 

standard sea-level temperature of 518.7 °R 

density, lbm/ft3 

G~ blade-element solidity, ratio of chord to spacing 

r 2gJcp(iTj) 

(ft blade camber angle, difference between angles of tangents to mean 

camber line at leading and trailing edges, deg 

(jj blade-element total pressure - loss coefficient 

Presubscriptsi 

1 axial station (numerical values indicate various axial stations 

as in Figure 8) 
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Postsubscripts 

a based on stagnation conditions 

ad adiabatic 

j radial station (numerical values indicate various radial stations 

as in Figure 8) 

m.a. mass-weighted average 

PS value measured for stall due to positive incidence (see 

reference 45) 

NS value measured for stall due to negative incidence 

r radial direction 

ref reference 

z axial direction 

O circumferential direction 

Superscripts: 

» measured relative to a reference frame rotating at blade element 

velocity 

The notation used in defining blade-element and cascade performance 

is shown in Figure 13. 
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