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In their book, Dimension Theory, Hurewicz and Wallman (7) define an
€ -mapping of a compact metric space X into a metric space Y as follows.

Definition 1.1: A mepping £, i.e. a continuous function, of a compact

metric space X into a metric space Y is an € -mapping if and only if the
inverse image of every point of f (X) has diameter less than €.

This concept of € -mapping is then used to prove that a compact sep-
arable metric space having dimension < n is homeomorphic to a subset of
Io,41 However, to prove that an arbitrary separable metric space of
dimension < n is homeomorphic to a subset of 12n+1’ € -mappings are inade-
quate. Thus the following generalization arises.

Definition 1.2: Let O be an open covering of a space X and f a mapping

of X into a space Y. Then f is an @~ mapping if and only if there is an
open cover u of Y such that f-l(u) refines @. Equivalently, f is an Q-
mapping if and only if every point of Y has a neighborhood in Y whose
inverse image is entirely contained in some member of Q.

This definition is applicable not only to metric spaces, but to more
general topological spaces as well, and it is this definition that forms
the basis for this paper.

Maxwell (10) defines a partizl ordering on topological spaces in
terms of Q-mappings as given in the following definitionm.

Definition 1.3: Let X and Y be topological spaces. We say X< Y if and

only if for every open cover ¢ of X there is an Q-mapping f of X onto Y.
It is easy to see that this relation is tramsitive.

Maxwell investigates certain properties of spaces which are
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Theorem 1.4: If X< Y, then:

(1) If X or Y is compact, both are.

(2) If X or Y is connected, both are.

(3) If Y is paracompact, then X is paracompact.

(4) If Y is Lindeldf, then X is Lindelof.

(5) dim X < dim Y.

(6) If X is Tj and Y is Ty, then X is T,.

(7) 1£ X is T and Y is regular, then X is regular.

(8) If X is Ty and Y is completely regular, then X is cs;pletely

regular.

(9) If Y is normal, then X is normal.

A question asked by Ulam in his problem bock (14) concerns the invari-
ance of the fixed point property under this order relation. Maxwell
proves the following theorem.

Theorem 1.5: If X and Y are metric absolute neighborhood retracts with
X< Y, and Y has the fixed point property, then X has the fixed point
property.

esults, Maxwell gives examples to show that X <Y
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does not imply that X have the same homotopy type nor the same dimension
as Y.

Another of Ulam's questions is the following: Does there exist for
every € > 0 an €-map of the disk onto the torus? M. K. Fort, Jr. (3)

and T. Ganea (4) have both given negative answers to this question using



di fferent methods. Ganea used Cech conomology and also proves that if V
is a compact n-dimensional manifold and X is an absolute neighborhood
retract with X < Y, then X has the same homotopy type as an n-manifold.
Fort uses arcs to obtain his results, and it seems worthy of mention that
he shows for £ < 1/6 there is no € -mapping of a unit disk onto a torus.

A third question asked by Ulam with regard to (t-maps and the order
relation < involves £ < Y and Y < X. He asks whether X and Y are then
homeomory : if they are n-manifoids. 1In addition to his result noted
above, Fort shows that if X < Y and Y < X where X and Y are closed, orient-
able, 2-manifolds, then X and Y are homeomorphic. Somewhat along this same
line, Borsuk (2) has given an example of compact spaces X and Y such that
for every & > O there is an € -mapping of X into Y and vice versa. X and
Y are both subsets of E3 with X being homeomorphic to a subspace of the
plane while Y is not.

In this paper we will consider the more general concept of a-mappings
and the relation < as given in Definition 1.3. In Chapter II the signifi-
cance of f being an (~mapping for every open cover ¢ of X is investigated.
In the process it is found that if X is a T; space and f an Q-mapping of
¥ onto Y for 21l ¢, then £ is a homeomorphism, while if X is not Tl’ then
the topology of Y is not determined by the topology of X.

Chapter III is a study of covering properties of spaces and their
inheritance under the relation <. The results of Theorem 1.4 are extended
to include metacompactness, countable paraccmpactness, compactness of de-
gree 7y, and y-reducibility.

Results similar to those of Chapter III and some of those of Theorem

1.4 can be obtained. Thus if ® represents one of the properties of being
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Q-mapping £, of X onto a space Y, having property (°, then X has property
Q.

The chief results of Chapter IV are 11,X, < T1,Y, if for each a£A X,

aeA @ —acghA

is compact and X, < Y,, and a partial converse of this.

Chapter V is divided intc two parts, the first dealing with metriza-
tion, generalizations, and the countability axioms, and the second with an
embedding theorem. In the first part it is shown that if X < Y the

property of being 2 uniform space is inherited when X is T,, but metri-

1’
zability, developability, and the countability axioms are not. The chief
result of the second part is that the G-mappings of a T; space induce an
embedding of the domain space into the product of the range spaces. When
'applied to theorems of Ponomarev (12), this embedding gives rise to neces-
sary and sufficient conditions for 2 T; space to be paracompact ox
Lindelof.

Chapter VI has an application of the embedding of Chapter V which
gives an isomorphism of a compact topological group onto the inverse
limit of an inverse system of factor groups. This is done after proving
that if G is & compact group with arbitrarily small invariant subgroups
{Ga} a¢A- then for each open cover @ of G there is an a €A such that the
natural ma2ppirg of G onto G/Ga is an -mapping. The first part of Chapter
VI deals with quotient spaces, and a method is given for constructing
spaces X and Y such that X< Y and Y < X but X and Y are not homeomorphic.

Most of the definitions will be stated as they are needed. The

terminology and notation are similar to what is used in most topology



hooks.
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For example. see Hocking and Young (6) or Kelley (8). An exceptio

to the terminology of Kelley is that the term ''neighborhood" as used here

is an "open neighborhood" in his book.



Let X be a topological space and let Z(X) be the family of open
covers of ¥. For Q,u & Z(&) we will write yRa if and only if | refines
Q. Then R is a partial ordering in the terminology of Kelley (8, p. 13),
for he only requires R to be a transitive relation. Other authors have a
slightly more restrictive definition of partial ordering (5, p. 275). They
require that pRx and GRu imply p = ¢, but of course this does not follow
for refinements.

Let (X, 7) and (Y,0) be topological spaces and f a mapping of (X, T°)
onto (Y,o). Then since f'l(c)c T, it follows that £71 induces an order
preserving function, also denoted by f'l, of Z(Y,0) into Z(X, 7). Thus
if a,u € Z(Y,0) such that Ry, then f'lﬁz)Rf'l(u). f'l also preserves such
properties as local finiteness, a concept that will be encountered in
Chapter III.

We also note that if f maps a space X onto a cpace Y and p € Z(Y),
then f‘l(p)s.z(x). If @ is a subcover of f_l(p), then we construct a
subcover ' of p by letting Ucyu’® if and only if f'l\U)€<2. Since £ is
onto, f(f-l(U)) = U for each U€y and hence cardinal p' < cardinal @. This
is used in the proofs of some of the theorems of Chapter III.

Let X< Y and @& £(X). Then if pu€ Z(X) such that pRO, a p-mapping £
of X onto Y is also an O-mapping. Under this particular relation R, if
a,p Z(X), then there is a A€ Z(X) such that AR and ARy; i.e. (Z(X),R) is
a directed se;. Hence it follows that for each Q,u& Z{X) there is a
mapping £ of X onto Y which is both an -map and a2 p-map. It is easily

seen that this can be extended to any finite collection of elements of



&{X). Hence if {Ch > Gys +=+ > Op C Z(X), there is a mapping f of X

onto Y such that £ is an a;-mapping for all i < n.

We actually get some slightly stronger statements than that mentioned
in the last sentence of the preceding paragraph. These are stated as a
theorem, but the easy proof will be omitted.

Theorem 2.1: Let X< Y and ;5 Q> --+ > @ be any finite subcollection
of Z(X) with f1,£95--05 £, corresponding ai-mappings of X onto Y,
i=1,2,...,n. If His+-+,i, are cpen covers of Y such that f;l(ui)Bai,
then there exists a p £ Z(Y) and a mapping f of X onto Y such that HRH
and f'l(u)}ziti for each i < n.

In this hierarchy of refinements and Q-mappings there is one important
question that will be examined closely. Thus we ask, '"What is the signif-
icance of the existence of a A in Z(X) such that ARy for every ¢ in
Z(X), or @ mapping £ which is an g-map for all ¢ in Z(X)?" Of course if
the former condition is satisfied, then the latter condition will also be
satisfied. The converse is not true, however. We will consider a theorem
and some examples involving specific questions applied to the domain and
range spaces, and functions which are q-mappings for all ¢ in Z(X).
Theorem 2.2: Let X < Y where X is Tl, and let f be an (-mapping for all
¢ €Z(X). Then £ is 2 homeomorphism.

Procf: To show that £ is one to one, suppose there are distinct
points xl,xzax such that jf(Xl) = f(xz). X is T; and hence there is a
neighborhood U of x; such that xp £U. Letas= {U,X- §x1}’; . Then

a £€Z(X) and hence there is a p €Z(Y) such that f’l(u)Ra. If V is any

member of p that contains £(x;), then £l cu, for x; £ X- $x;% . But
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since ©I{x1) = f(xg),x2 Ef'l{'v’), hence x9€ U. This is 2 contra
it follows that f is one to one.

Let U be an open set in X. We will show that £(U) is open. Let x
be any point of U. Then @ = {U,X- fx}} is in £(X) and hence there is a
g € £2(¥) such that f'l(p)Ra. If V is any member of ; that contains f(x),
then f'l(V)C.U, and since f(f"l(V)) = V,V is a subset of f(U). Hence there
is a neighborhood V of f(x) that is contained in £(U). Hence f(U) is open
and since U is arbitrary, f is an open mapping. Therefore, simnce £ is omne

to one, onto, and open, it is a homeomorphism.

Corollary 2.3: 1f <Y and X is discrete, then Y is discrete.

Proof: If ¢ is the member of Z(X) consisting of singleton sets, then
aRy for all pe€Z(X). The proof then follows from Theorem 2.2.

If X< Y and Y is discrete, then it doesn't follow that X need be
discrete, however. Tor let X be & two point indiscrete space, Y a
singleton set, and f the mapping of X onto Y.

In view of Theorem 2.2, we are led to the following: Let X<y where
X is not T;, and let f be an -mapping for every @ €Z(X). Is f necessarily
open, or closed, or one to one?

A simple example shows thét f need not have any of these properties.
iet X = {a,b,c?; with open sets &, fat , {a,b} , and X. Let Y = {d,e}
with open sets ¢ and Y. Then since X&€o for every @ £ Z(X), every mapping
f of X onto Y is an (-mapping for 2ll € Z(X). It is easily seen that
each such mapping £ satisfies none of the properties of being open, or
closed, or one to one.

Along this same line we consider another question: Let X < Y where



X is not T1. and let £ be an G-mapping for every QEZ(X). Suppese that

in addition there is a y € X(Y) such that f'l(u)Ra for every € 2(X). What
is the significance of this latter property?
From the above example we see that thi§ additional condition does
not force the mapping f to be open, closed, or one to cne. However, we
can say that Z(X) has an element which is "minimal® in a certain way,
namely f‘l(u)Ra for every ¢ £€Z(X). This minimal element may not be the
open cover which contains the most elements, &s is zlso seen in the above
example, nor does it have to be the open cover with the fewest elements.
If f is a function on a space X onto a set Y, there are topologies
which can be put on Y to make the function f continuous. The largest such

topology is called the quotient topology. Thus U is open in the quotient

topclogy if and only if f'l(U) is open in X. If f is a one to one function
then the set Y with the quotient topology relative to X and £ is just a
homeomorphic copy of X.

We have shown in Theorem 2.2 that if X< Y, X is Ty, and f an Q-map-
ping for all ¢ € Z(X), then the topology on Y is directly determined by £
and X. If X< Y, X is not Ty and f is an Q-mapping for all @ €Z(X), then
by the above example the torology on Y is in general not determined
directly by £ and X since f need not be a homeomorphism. The question
remains, nowever, whether the topology cn Y is indirectly determined via
the quotient topoiogy of f amd X.

Since the quotient topology is the largest topology for which f is
continuous, it is true, of course, that every member of the given topology

is also a member of the quotient topology. The following example shows
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that this is nmearly &ll that can be said abcut them in general.

Example 2.4: Let X be the reals with a basis for X the family of all
closed right rays, i.e. U = {x:x 2 b for some b} . Let Y be the reals
with a basis the family of all open right rays.

The identity mapping i of X onto Y is an q-mapping for all @ in Z(X).
Furthermore, the family p of all open right rays is a refinement of each
a in Z(X). As we observed above, the set Y with the quotient topology of
i is just X since i is one to cne. However, since clecsed right rays are
not open in the given topology on Y, the given topology and the quotient

topology are not equivalent.
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I1i. COVERING FROFERTIES

As we have seen in Theorem 1.4, when X< Y and Y is compact, paracom-
pact or Lindelof, then X has the same property. These three concepts are
defined in terms of subcovers or refinements of open covers. There are
other properties which are somewhat similar to the three listed above,
and these are quite easily shown to be inherited under the relation <.

While countable compactness is not defined explicitly in terms of
open covers, we will begin with a theorem on countable compactness. By
definition a subset A of 2 space X is countably compact if and only if

every infinite subset of A has at least one limit point in A (5, p. 66).

Theorem 3.1: Let Y be T; and countably compact. Suppose Y has the

additional property that the intersection of each local base contains at
most two points. Then if X < ¥, X is also countably compact.
Remark: An example of a space Y which is not T; but has this local base
restriction is obtained by considering a three point space Y = {a,b,c}
with open sets @, {a,b} , {b,ct , {b} , and Y.

Proof of Theorem: Let A be an infinite subset of X and suppose that
A has no limit point in X. Then A is closed and X - A is an open set
which contains no points of A. Since A has no limit point, then in
particular no point of A is a2 limit point of A. Thus if x£€ A, there is
a neighborhood U(x) of x such that U(x)NA = §x} . let g =
{X—A, {U(x)} xéA} . Then ¢ £ Z(X) and there is a mapping f of X onto Y
and 2 p € Z(Y) such that lwra.

We now show that fIA is one to one. From the above observations A

as a subspace of X is discrete and @' = QNA =§U:U=VI\A for some Véa}



is the discrete cover of A. Hence f is an &'-map of A onto £{A) for all
o' € Z(A) and by Theorem 2.2, A and f£(A) are homeomorphic. Therefore,

B; = f(A) is an infinite subset of Y and from the above remarks it follows
that no point of By is a limit point of Bl’ and that no member of u com-
tains more than one point of B;.

To complete the proof we will show that there is a sequence of
distinct limit points of B; which does not itself have a limit point in
Y, and hence have a contradiction of the assumption that Y is countably
compact.

Since B; is infinite and Y is countably compact, there is a point
bg; in Y which is a limit point of B;. Then every neighborhood of bgy
contains at least onme point b; € By such that bpy # b;. From our observa-
tions above we have that by; £ By, and it also follows that bp; is a
limit point of a singleton set {b1§ . Since Y is Ty there is 2 neighbor-
hood V(by) of bl which does not contain bOl’ and hence b1 is not a limit
point of the singleton set {bOI} . This will be used in showing that no
point of B; is a limit point of the sequence to be constructed.

Now consider the set B2 = By - gbl§ - By is infinite and hence has
at least one limit point, call it bgyy. bgp £ By, and bgy # by; because
in any element of p that contains
bgy- 1t 2lso follows that Byp is 2 limit point of a singleton set {bzg
in By, while b2 is not a limit point of the singleton set fb02§ .

Having obtained the distinct limit points bo1 and b02 of {b1§ and

{bz} , respectively, we proceed inductively to obtain B+l = Bp- {bn% s

and the point by,y; which is a limit point of Bnyy. By the induction
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pTccezz we che2in 2 sequence nf digtinct noints ;bsnf n=i" each of which
is a limit point of a singleton set {bni which is a point of B, (but not
of B, for k > n). The infinite set §b0n§ :;1 must have a limit point
also, but we will show that this is impossible and hence have our contra-
diction.
x

Let bO be a limit point of §b0n§ n=1" Either bO is in Bl’ or it is

not in B; but is a limit point of B;. Suppose first that boé B;. Every
3 - - 3 w - -

neighborhood of bo contains a point bg, in 5b0n2 n=1’ and because of the
form of u, by must be a limit point of a singleton set {bOk} . From our
previous observations by # b, and hence there is an element of u that

contains the points by and bk of Bl which is a contradiction.

Next we assume that by is a limit point of Bl in addition to being

[o

a limit point of {bOni n=1

- Since by is a limit point of a singleton set
{b0m§ for some m, then given any neighborhood V(by) of by the point bgy
in {bon} :;1 and the corresponding point in By, by, are in V(bp). However,
by hypothesis there is a neighborhood of each of these three points which
contains at most one of the other two. Hence we have a contradiction.
Thus we have shown that the infinite set of distinct points
{bOn% :;1 does not have a limit point in Y which contradicts the assump-
tion that Y is countably compact. Therefore A has & limit point in X, and
since A is arbitrary, X is countably compact.
Two results arise due to Theorem 3.1, one from the separation
hypcthesis and the other from the proof of the theorem. We state them

both in the following corollary.

Corollary 3.2: 1f X< Y, Y is countably compact and either T, or
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mit point of a subset is an accumuia-
tion point of that subset, then X is countably compact.

The restrictions placed on Y in Theorem 3.1 are sufficient to prove
the theorem. It appears that if Y is Ty and there is an integer n such
that the intersection of each local base in Y contains at most n points,
then the theorem is still true. We have been unable to construct either
a proof or a counterexample for Y only Ty. The following example shows,
however, that if Y satisfies the local base condition but is not TO’ then
the theorem is false.

Example 3.3: Let Y be the set of positive integers with a basis for Y

the sets of the form {Zn-l,Zn} for n any positive integer. Let X be

the positive integers with a basis for X the sets of the form {2n-1,2nz

or {Zn} for n any positive integer. Define £ on X onto Y by letting

f(x) = x for all x€X. Then f is an (-mapping for all ge Z(X), for each

set on-1,2n§ is contained in some member of @. Hence X < Y. Clearly

Y is countably compact, for the point 2n is a limit point of the singleton

set {Zn-lz and conversely 2n - 1 is a2 limit point of the singieton set
an} . However, the infinite set of odd integers, §2n - l§ 2;1’ has

no limit point in X and thus X is not countably compact.

Definition 3.4: A family of subsets of a space X is point finite if and

only if no point of X belongs to more than a finite number of members of
the family. A space is metacompact if and only if each open cover of X
has 2 peint finite refinement (8, p. 171).

Theorem 3.5: Let X< Y and let Y be metacompact. Then X is metacompact.

Proof: Let @€ Z(X). Then there is a mapping £ of X onto Y and a
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u € Z(Y) such that £ (F)RX. Since Y is metacompact i has a poin
refinement p'. But then f'l(u') is a point finite refinement of @. « is
arbitrary and hence X is metacompact.

Definition 3.6: A family of subsets of a space X is called locally finite

if and only if for each x€X there is a neighborhood U(x) of x such that
U(x) intersects only a finite number of members of the family. A space
X is (countably) paracompact if and only if each (countable) open cover
of X has a locally finite refinement.

Before stating a theorem on countable compactness, it appears con-

venient to introduce some further concepts involving open covers.

'Definition 3.7: Let @ £x(X) and let x€X be any point. Then a*(x), the

star of o with respect to x, is defined by o* x) = ggea. Then a*, the
a star cover of X, is defined by Cz* = {U: for some x E.U,U=a*(x)§ . If
f is 2n Q-mapping of X onto Y for some @ £XZ{X), and if € Z(Y) is such that
-l(p)m, we define the Q-restricted p star cover, pa by pa =
fU: for some At q, U=f(A)gVEp.§ .
Theorem 3.8: Let X< Y and Y be countably paracompact. Then X is count-
ably paracompact.
Proof: Let O be any countable open cover of X. There is a mapping
f of X onto Y and 2 p€ Z(Y) such that f'l(u)Ra. a is countable and it
R - . * < ~1, *
foilows from its comstruction that Hy 1S also countable and £ (pa JRX.
Since p is an open cover cof Y and f'l(v,;)Ra, it follows that “a* is
an open cover of Y. Y is countably paracompact and so the countable open

cover l-‘a* of Y has a locally finite refinement, call it p'. £~ ' preserves

refinement, openness, and local finiteness, and since @ is arbitrary X is



countably paracompact.
A slight variation of the above proof is used to obtain the corres-
ponding theorem for paracompactness.

Definition 3.9: A subset A of a space X is compact of degree -y if and

only if every open cover of A contains a subcovering of cardinal < vy
(9, p. 24).

Definition 3.10: A space X is <y-reducible if and only if every o € Z(X)

of cardinal -y has a subcover of cardinal < 7.

We observe that Lindelof spaces coincide with spaces which are com-
pact of degree ¥,;, and which are <y-reducible for every uncountable cardinal
Y- It is also true that a T; space is countably compact if and only if it
is y-reducible for every countably infinite cardinal -y. Furthermore, a
space is compact if and only if it is <y-reducible for every infinite
cardinal -y, or compact of degree <y for 7y finite.

Theorem 3.11: Let X < Y. Then if either X or Y is compact of degree 7y,

both of them are.

Proof: Suppose first that Y is compact of degree 7y and let g €3(X).
Then there is a mapping f of X onto Y and a p € £(Y) such that f'l(u)Ra.
Since Y is compact of degree 7y, u has a subcover p' of cardimal < 7y.
Since 'Ry, f’l(p')m.

We construct a subcover &' of & by extracting elements from O in the
following manner. For each element V of ', select exactly one element U
from @ such that f-l(V)C U. The subcover &' thus obtained has cardinal

< cardinal p' < y. @ is arbitrary and hence X is compact of degree 7.

Suppose now that X is compact of degree y and let p& Z(Y) be
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arhitrarv. Then if f is anv mapping of X onto ¥, £ (W& xX). Since X
-1

is compact of degree <y, there is a subcovering o of £ “(;) of cardinal < 7.
But then, as was observed in Chapter II, the subcover ;' of |, consisting
of elements U such that f'l(U)Ea has cardinal ¢ -y. Therefore, since pn is

arbitrary, Y is compact of degree 7.

Theorem 3.12: Let X« Y. Then if either X or Y is <y-reducible, they both

are.
Proof: Suppose first that Y is y-reducible, and iet & be any member
of £(X) of cardinal -y. Then there is a mapping f of X onto Y and a
p € Z(Y) such that f'l(p,)Ra. Then “a* has cardinal < ¥ and f‘l(pa*)Ra.
Suppose first that the cardinal of Pa* is y. Y is <y-reducible and
hence the open cover p,a* has a subcover ;;' of cardinal < y. Then also
f-l(u')m. We construct a subcover @' of g by selecting for each member
of f-l(p.') exactly one element from @ which contains it. Since the cardin-
ality of f'l(p.') < 7Y, the cardinality of @' is also < y. If the cardinal-
ity of pa* < 7Y, then for u' as above we will write p' = i-‘a*' In either
case a subcover of @ of cardinal < y is obtained and, since ¢ is arbitrary,
Z is y-reducible.
Suppose next that X is <y-reducibie, and let y be a member of Z(Y)
of cardinal -y. Then if f is any mepping of X onto Y, f'l(n,-,) E Z(X) has
cardinal y. X is -y-reducible and hence there is 2 subcover q of £-1(u) of
cardinal < y. Then let p' be the subcover of p such that Uep' if and only
if f'l(U)E . Thus the cardinal of u' < <y and, since p is arbitrary, Y is

y-reducible.
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T? TIDATI I/
IV. TRODUCT SPACES

Definition 4.1l: Let f be a function on a set X onto a2 topological space

Y. Then the product topology of f is the smallest topology on X such that
f is continuous.
Definition 4.2: Let TT X; be a product of spaces and let ACA. Define

asA
the projection P, of a_ErAxa onto aTETAXa by PA( {x,t a €A) = {xa§

agA
1IfA= {a}, then Pa( gxa} aEA) = X,. The product aTETAXa is given the

smallest topology which includes the product topology of all the P,'s, mak-

ing each P open and continuous. Then if ¢ is an open cover of a; E; Axa,

the projection of & onto a-T;TXa is an open cover Q, of a'l:);)xa defined by

aA = PA(a) = gU: for some VEOQ, U = PA(V) } . If A= {a }, then
@y = P,(@) is an open cover of Xj;.

Definition 4.3: Let A be an index set and suppose that for each a&A, £,

is a mapping of a space X, onto a space Y,. The product mapping F of

aTETAxa onto aTgI'AYa is defined by F({x,¢ 2¢4) = {fa(xa)} ag A and we
write F = —T_r fa.

ath

The following lemma gives a property of the inverse of a product
mapping that is used in the proofs of some theorems on product spaces.
Lemma 4.4: Let A be an index set, f; a mapping of X, onto Y, for each
a A, and let F = a‘i;TAfa. Then if UyC ¥, for each a&A,

FL(TT,0a) = Jdafa (U2
Proof: We will prove the lemma by showing that

FL(TTa) € T, a0 and T2 wa) C ¥ (Tma) -

These two inclusions will be obtained by writing a series of equivalent
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c+ratamonta.

{xa? 2ea & F-l(a—’;&Ua)

if and only if F({xa} aga) = $fa®a)t a.a € Llala
if and only if £,(x;) € U, for each a&A
if and only if x3 & f;l(Ua) for each agA

if and only if {xaf zep € “‘FfAfgl(Ua).

Definition 4.5: Let ¢; be an open cover of X for i = 1,2. Then ;X
is an open cover of Xlx X, defined by Xy = {UXV:UEal,Véazf .

We observe that if aiRal and a:'zkaz, then (] xaé)R(alx (12).

Theorem 4.6: Let X; < Y; a2nd Xy < ¥p, where Xl and X, are compact. Then
KX X, S 17X YZ’ and each @-map may be chosen to be a2 product map with the
corresponding p a product cover.

Proof: Let & be an open cover of X, XX,. Without loss of generality
we make the following assumptions about @:(i). No member of @@ is a subset
of any other member of &, since the removal of such a set leaves a refine-
ment of €. (ii)a = {Uax Va§ a EA where A is some index set, for each
open cover can be refined by a cover consisting entirely of basis elements.
(iii) o may be chosen to be finite since Xy XXy is compact. Thus
a= {levl, UpX V2, ..., UyX Vn§ for some integer n with each Ui open
in X and V; open in X,.

We wish to find z refinement of @ of the form a; X a2 where ali Z(X1)

= 5 Ui% and

and 0y € Z(Xy). We do this starting with the families Q i<n

[N

aé = fvii i<n of sets which appear as first or second elements of

members of Q. a]'_ and @) are, of course, open covers of X; and X5



respectively.
For each x) € X; take the intersection of all members of a; which
contain x;. ai is finite and hence this intersection is an open set U(xl)
containing x;. The family of open sets formed in this way is a finite
collection @ = z(U(xh-_):i < n'for some n'and xlis x1§ which is an open
cover of X;. 1In a similar manner we obtain a finite open cover of X,y =
SV(XZ]‘.) :i < m for some m and xziE X2§ . For i = 1,2, we have aimi'
Clearly a1¥a2 is an open cover of Xlx Ry. Also, if U(xl)aal and
V(xy) € Qy, then U(x1) X V(%2) is contained in some member of @. For
(x1,%p) € U(x;) X V(x3), and U(x;)c U; for every U; & Qj which contains xj;
and V(xj)c V; for every V; € a:.,_ which contains x;. Now (x1,%xy) €U; X V; for
some i, and since U(x;)CU;, V(xy)CV;, it follows that U(xl)x V(x)CU;XV; .
Since X; < ¥; and X, < ¥y, corresponding to a and Q, are mappings
f; end f2 and open covers iy E,Z‘.(Yl), p2€2(Y2) such that £ <Xi) =Y
and f;_l(pi)gai for i = 1,2. Then form an open cover pu of ¥ XY, by
letting K = X iy, 2 “product cover", and the product map F=f;X fj of
xlxxz onto Y1><Y2. It follows from Lemma 4.4 that fil(pl)xfil(p,z) =
F-l(u), and since fEl(pi)Rai for i = l,Z,F'l(”)R(alx CLZ) as we observed
prior to the theorem. Therefore, since (@ is arbitrary xlx Xz < le Yz.

Coroilary 4.6: Let X, Y:; for i = 1,...,n, where n is any positive
1 1

n

n
integer and each Xl is compact. Then 1’= ’1"- < i._’. 'lYi, and each o-map may

be chosen to be 2 product map with the corresponding p & product ccver.
Proof: Each open cover @ of ,ﬁ:_x,. may be chosen to be a finite col-
1=i =«

lection of basis elements and has a refinement of the form i_ZIIai’ where

aiéz(xi) is also finite. The proof then follows by induction.
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Tacorio 4.7: Lat A b oo indey car with X V. for each a£A and each

a

IA

X, is compact. Then aTgTAXa < a'I;TAYa and each -map may be chosen to be
& product map with the corresponding p a product cover.

Proof: If ¢ is an open cover of ;);I'Axa, then o can be taken to be a
finite collection of basis elements since aﬂ;];xa is compact. If U is any
member of g, then U = Eua, where U, = X; for all agA - A' with A' a
finite subset of A and for all a€A', Uy is an open subset of X,. Hence
there is a finite subset A of A such that P,(3) = aa = §Xa§ , the trivial
open cover of X,, for all a€A - A; and for ag A, P,(@) = @3 is a non-
trivial open cover of X, and the proof is thus reduced to working with this
finite subset of A. Corollary 4.6 will be used to obtain the result.

We first consider the set A. Using Corollary 4.6 we have

1T . =
ald Fa < I \Ya- Thus for the open cover P,(Q) @, of aTéTI;Xa there is

agh
- £ Py
an open cover w. ;I;rAp.a of aEYa and a product mapping F, of aTg;Xa
..1 . _ - .
onto a‘s’AYa such that F (uA)RaA. That is, Fp = alElAfa for ot -mappings

f4 of X, onto Y,. For a€A - A we have o5 = {Xa§ > and any map f_ of X,
onto Y, is an ¢z-map for a€ A - A. Then let F be defined by F = ;TZA.fa’
where f, is as described above. Form an open cover p of aTETAYa by letting
Veu if and only if PA(V) £upp, and for a€A - Awe need not be particular
about Pa(V) as we have observed. It follows from this construction that
F'l(u)m- @ is arbitrary and hence ;;Axa < ;‘ZTAYa'

The last theorem on product spaces is a partial converse of Theorem
4.7. Compactness of the coordinate spaces is not necessary for this theo-

rem, but some other restrictioms are necessary.

Thc::grem 4.8: Let A be an index set and azngXa < aZ IAY . Suppose that for
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each oven cover @ of _‘_/.X,. there is an -map which is & product map

Lo R > e

F = llafa. Then X, <Y, for all a€A.
Proof: Let a'¢ A be arbitrary and @' be an open cover of X,'. The
collection of open sets a-,g-AUa’ where Ug'€ Q' and U, = X, for a # a',
is an open cover ¢ of QETAXa. By hypothesis there is a product map F on
a_IETAxa onto ;ET AYa and an open cover p of JJAYa such that F-1(p)Ra.
Furthermore, the component f' of F which maps Z5' onto Y,r is continuous.
If P+ is the projection mapping of ;i?:gYa onto Y,', then Pa!{(p) is an
open cover p' of Y, since P,* is an open mapping. We may assume that p
consists of basis elements for there is always a- refinement of p of this
form. Then since V£u implies F'l(V) is contained in some member of Q,
f;]r'(Pa'(V)) is contained in some element of ¢'. This follows from Lemma

4.4. Thus f;}(u')Ra, and since @' and a' are arbitrary, X,« < Y,' for all

a'c A.
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V. METIRIZATION AND EMBDEDDING
A. Metrization and Generalizations and the Countability Axioms

If Xis T; and X < Y where Y is regular, then, as we have seen, X is
regular. Since a regular second countable T1 space is metrizable, we might
ask whether metrizability itself is inherited. Perhaps just as interesting
is the same question with regard to the countability axioms and some of
the generalizations of metric spaces.

We will examine two generalizations of metric spaces, uniform spaces
and developable spaces. We first look at the relation between uniform
spaces and metrizable spaces, and obtain our only positive result with
regard to the questions in the preceding paragraph. The discussion below
on uniform spaces is taken from Kelley(8), Chapter 6.

Definition 5.1: A uniformity for a2 set X is a non-empty family 7 of sub-

sets of XXX such that
(1) each member of U contains the diagonal A = g(x,x) :xéx} ;
(2) if UEL , then U'l = {(x,y):(y,x) U € U;
(3) if UEU , then VoVCU for some VEU; (VoV = {(x, z): for some
y> (x,3) €V and (y, 2) £V{)

(4) if U, Ve W, then UNVEYW ; and

7€ and UCVC XXX, then VEU .

|}

3G) 1

The pair (X,%) is a uniform space; and the topology ¢ of the uniformity

9/, or the uniform topology, is the family of all subsets T of X such that

for each x €T there is a Ue U such that U[x] = {y:(x,y) EU}C T.

Uniform spaces can be obtained in the following manner. A uniformity
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is assigned to each famiiy of pseudo-metrics for & set X, and every
uniformity is derived in this fashion from the family of uniformly con-
tinuous pseudo-metrics. A uniformity camn be derived from a single pseudo-
metric if and only if the uniformity has a2 countable base. Since a T;
pseudo-metrizable space is metrizable, it follows that a T; uniform space
is metrizable if and only if the uniformity has a countable base.

Each uniform space is homeomorphic to a subspace of a product of
pseudo-metric spaces. Then since a space is completely reguiar if and
only if it is homeomorphic to a subspace of & product of pseudo-metric
spaces, it follows that uniform spaces coincide with completely regular
spaces. Thus we have the following theorem.

Theorem 5.2: If X is Tl’ Y is a uniform space, and X< Y, then X is a
uniform space.

Next we look briefly at developable spaces.

Definition 5.3: A topological space X is developable if and only if there

exists a sequence {an ;;1 of open coverings of X such that the following
+ ‘s

conditions are satisfied: (i) for each n€1I ,6,,1RG,; (ii) for each x&X

and each open set U containing x, there exists an integer N = N(x,U) € il

*
such that Gy (x)C U. The sequence an% :;l is called a development for

X. A space X will be called uniformly developable if and only if X has

m - -
a develiopment {Gn’s a=1 such that for each ¢WEZ(X) there exists an integer

%
n(x) € IV such that Gn(a) (x) Ca®{x) for 211 x£X.
Bing (1) proves that if a regular developable T; space is collection-
wise normal then it is metrizable. He also proves that paracompactness

implies collectionwise normality, and hence a regular developable T; space
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which igc naracompact is metrizable. An unanswered question is whether or
not each normal developable T; space is metrizable.

The following theorem exhibits an important property of the space
that will be used in getting a negative answer to the question of the in-
heritance of developability.

Theorem 5.4: Let X be the set of real numbers, and let a basis for X be
the collection of all half-open intervals, closed on the left. If

a € Z(X), then there is a countable refinement of O consisting of disjoint
basis members.

Proof: If @€&€Z(X), then there is a refinement Q' of & consisting

entirely of basis elements. X is Lindelof and hence there is a countable
subcollection of Q', {In7$ :=1, which covers X and each I, is of the form
[an,bn) . From §I.n} :__:1 we will construct the desired open cover.
| We begin by teking I; and noting that then Ip - Ij is empiy or com-
tains at most two disjoint basis elements of X. We can also observe that
for each m, I - k§11k is a finite collection of disjoint basis elements,
at most m of them, which we indicate by Iml’ I, -« Imk(m)' Then the
collection éL_,m:m £I+, n=1, ..., k(m)} is a countable collection of
disjoint basis elements which covers X and is a refinement of Q.
Exampie 5.5: Let X be the space described in Theorem 5.4. We observe
that X is first countabie, since for each x£ X 2 countable neighborhood
system can be defined by N,{(x) = (x,x + I/n) for n £I+. We also note that
X is T,, separable, normal, and p:;tracompact as well as being Lindelof.

Let Y be the positive integers with the discrete topology and let

@ €Z(X). By Theorem 5.4, there is a countable refinement Q' of @
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consisting of 2izicint boziz meomhere nF ¥ {Tf o is finite. then we can
always get an infinite refinement @' from some member of @.) Let f be a2
one to one function between members of ' and points of Y. That is, the
members of @' can be ordered by Ii, Ié, .+, and let £(I;) = n for each
rlaI+Z Clearly f is continuous and if p is the discrete cover of ¥,
f'l(u)Ra' and hence f'l(g)Ra. Q is arbitrary and so X< Y.

The space Y is metrizable. It also satisfied all the conditions of
Definition 5.3 and is hence uniformly developable. For the collection of
singleton sets of Y can be taken as a development. That is, Gy =Gy = """
However, X is not developable. For Sims (13) has shown that X is not
semi-metrizable and & Ty developable space is semi-metrizable.

Here, of course, the space X is not second countable, for every basis
contains sets of the form [a,b) for each real number a.

We will conclude this section with an example in which the first
axiom of countability is also not inherited under the relatiom < .

Example 5.6: Let X = [0,1] and let a basis for X consist of singleton
sets, § x‘§ s X % 0, and all sets containing zero, each of whose complement
is countable. Let Y be the positive integers with the discrete topology.
We note that both X and Y are Lindelof, Ty, and regular. Y is of course
both first and second countabie.

- rr

Let € Z(X) and let 0 Ue . Then X ~ U is countable. If X - U

is infinite, define a function f on X by letting f(U) = 1, and let £ be
any one to one functioz on X - U onto ¥ - 12 . Clearly f is continuous,

for each singleton set in X - U is open, and likewise the singleton sets

in Y. If X - U is finite, we extract a countably infinite set of points



27

-~ Sr e

I¥om U, oisfferont fzcm zers, oo that we have a new onen set UPC U which
contains zero and such that X - U' is countably infinite. Thus an
a' € Z(X) is obtained such that @'Rx and also a mapping f as described
above.

It is clear that the mapping f thus constructed is an ¢-mapping, and
since such a mapping can be constructed for each Q€ Z(X), X< Y. However,

X is not first countable, for there is no countable local base at zero.
B. An Embedding Theorem

Let F be a family of functions such that each £ EF is on a space X
onto a space Y. There is a natural mapping of X into the product f'l;TFYf
which is defined by mapping a point x of X into the member of the product

whose f-th coordinate is f(x). Thus we have the following definition.

Pefinition 5.7: The evaluation map e is defined by e(x) = {f(x)} fEF;

i.e. Pgoe(x) = £(x), where Pc is the projection of ;l;rFYf onto Yg.

Definition 5.8: A family F of functions on X distinguishes points if and

cnly if for each pair of distinct points X; and x, of X there is an f€F
such that £(z;) 74 f(xz). The family distinguishes points and closed sets

if and only if for each closed subset A of X and each point x of X - A

A\

there is an f£&F such that £(x) £ £{4).
The above brief discussion and definitions, and the following lemma

are found in Kelley (8, pp. 115-116).

Lemme 5.9: Let F be a family of continuous functions, each member being

on a topological space X to a space Yg. Then:

(1) The evaluation map e is a2 continuous function on X to the
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product spzzs fjg‘y?i'

(2) The function e is an open map of X onto e(X) if F distinguishes

points and closed sets.

(3) The function e is one to one if and only if F distinguishes

points.

We now return to (-mappings and their relation to the above discus-
sion.

Lemma 5.10: Let X be a T; space and suppose that for each @ £Z(X) there
is an O-map fa of X onto a space Yy. Then the family F of (-mappings of
X distinguishes points, aud points and closed sets.

Proof: Since X is T; we need only show that F distinguishes points
and closed sets. Thus let A be a closed subset of X and let x€X - A be
arbitrary. Since X is Ty, U; =X - Aand U, = X - {x{ are open sets con-
taining x and A, respectively, but ANU; = § and x £ Up. Leta = fUl,UZ,
X- (AU §x} )} . Then @€ Z(X) and by hypothesis there exists an Q-map

fq of X onto a space Y,, hence an open cover u of Yy such that f&l(u)m.

bt

et y & fa(A). Then every neighborhood of y contains a point of £y(A).
Hence if yeVeyg, then there is an a£A such that £,(a)€ V. But
f&l(V)C Uy, and since this is true of every yam, it follows that
£,(X) £ Ey(8).

Thus from Lemma 5.10 we have that any family F of mappings of a T;
space X which contains an Q-mapping for each @ €4(X) distinguishes points

and elsc points and closed sets.

Theorem 5.11: Let X be 2 '1‘1 space and suppose that for each a £Z(X) there

is an (-mep fa of X onto a space Ya. Then X is homeomorphic to a subspace



29

~L Al e Tiint memA~A T v

Ve vl pevoe=lo I pugatetel CZEE(X) "o
Proof: Define the evaluation map e by letting e(x) = {fa(x)i

at Z(X)
for each x£€X. By Lemma2 5.10 the family F of Q-maps distinguishes points,
and points and closed sets. Then by Lemma 5.9, e is one to one, open,
and continuous, hence a homeomorphism.

We note that this embedding is such that the projection to the
coordinates of e(X) is actually onto the spaces Yy- That is, Pa(e(x)) =Ya.

It is also worthy of note that Theorem 2.2 is actually a corollary of

Theorem 5.11. For in the earlier theorem f was amn -map for all ¢ € Z(X).

Ponomarev (12) proved the following two theorems.

Theorem 5.12: A necessary and sufficient condition that a Tz space X be

paracompact is that for each ¢ £Z(X) there is an 0-map fy of X onto a

metric space Yy.

Theorem 5.13: A necessary and sufficiceat comnditicn that-2 regular space

X be Lindeldf is that for every @ £ Z(X) there is an Q-map fa of X onto a
separable metric space Yy.

In view of our observations in Chapter I with regard to Maxwell's
results we may state the following variants of Ponomarev's theorems.

Theorem 5.12': A necessary and sufficient condition that a space X be

paracompact is that for each @ €Z(X) there is an G-map £, cf X onto a
paracompact space Ya.

=

Theorem 5.13': A necessary and sufficient condition that & space X be

Lindel6f is that for each @£ &(X) there is an Q-map f, of X onto 2

Lindelof space Yo-

Applying Theorem 5.11 to Theorems 5.12 and 5.13 yields the following



30

resulits.

Theorem 5.14: A necessary and sufficient condition that a T, space X be

paracompact is that there is & homecmorphism e of X into a product of
metric spaces 1] Y such that P ce is an Q~mapping of X onto Y .
P aEs(E) o o PpPing o
Proof: The existence of the homeomorphism of X if X is paracompact
follows from Theorems 5.11 and 5.12. If the homeomorphism e exists, then

X is paracompact by Theorem 5.12.

Theorem 5.15: A necessary and sufficient condition that a regular T; space

X be Lindelof is that there is a homeomcrphism e of X into a product of

a: 1 ce is an Q- i b t
separable metric spaces dT;é(x)Ya such faat Pa e is an -mapping of X onto

Y-
Proof: The existence of the homeomorphism when X is Lindelof follows
from Theorems 5.11 and 5.13. If the homeomorphism exists, them X is

Lindelof by Theorem 5.13.
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UT. ONOTTENT SPACES AND TOPOLOGICAL GROUPS

A. Quotient Spaces

Definition 6.1: If Q is an equivalence relation on a set X, then

X/Q is defined to be the family of equivalence classes. 1iIf ACX, then
Q[al = {y:(x,y) €Q for some x €A . The quotient map of X onto X/Q is
tﬁe function P whose value at x is the equivalence class [x] to which x
belongs. Thus if x£€X, then pi{x) = [x] (8, pp. 96-97). |

Definition 6.2: If X is a space with topology ¢; then the set X/Q is

given the quotient topology of P, which will be indicated by z.”/Q. (See
the discussion preceding EBxample 2.4.) Thus if &C X/Q, then P'l(a) =
A‘LEJCZ A, and (X is open (closed) relative to T/Q if and only if Ag‘z Ais
open (closed) in (X,T). The pair (X/Q, 7/Q) will be called a quotient
space.

1f (X/Q, 7/Q) is a quotient space, then there is another topology on

X which is obtained from the quotient space in the following manner. If

® is the quotient map of the set X onto X/Q, then the product topology of

o

on X will be indicated by Zb Thus U & ?Q if and only if U = 1w

for some Ve 7/Q.

There are instances in which there are equivalence relations {Q such

v

that (X, 7) < (X, Z'Q) and/or (X, Zé) < &, 7y, and we wist

this occurrence. Before proceeding with this, however, we should note

that each 7, as defined above is such that 7, ¢ Z. It also should be

Q Q

pointed out that if there is any nondegenerate element [x] in X/Q, then

X, Z’é) cannot be even a TO space. Hence the topologies 2‘6 have very



32

1248712 2o +hn crow Af camoratian nranarties
- - — — - ———— -~ - — e - - =T PO —_———="

The spaces (X, Z‘é) and (X/Q, Z/Q) are related by the following lemma.
Lemma 6.3: If (X/Q, 7/Q) is a quotient space, then (X, TQ) < (2/Q, 7/Q).

Proof: The quotient map P is an @-map of (X, Zb) onto (%/Q, Z/Q)
for all ¢ when Z’Q is the product topology of P. For U € Z’Q if and only
if there is a V £ 2/Q such that P 1(V) = U.

Thus for each equivalence relation Q the pair of spaces ((X, Zb),
(X/Q, Z‘/Q)) belongs to a class in which there is an ~mapping for ail ¢,
of the first space onto the second. (Compare this with the discussion
in Chapter II.)

The following thecrems give some conditions under which (X, Z‘Q) <
(X, 7)) andfor (X,7) < (X, Z'Q) .

Theorem 6.4: Let (X, 77) be a topological space and Q an equivalence
relation on X. If (%/Q, 7/Q) £ (X,7), then (X, Z'Q) < X, 7).

Proof: By Lemma 6.3, (X, {g) < (¥/Q; 7/Q). Then by the tramsitivity
of the relation < the theorem follows.

Remark: The hypothesis (X/Q, J/Q) < (%X,7) is not as restrictive as it
might seem in view of a theorem of R. L. Moore. Moore's theorem states
that if X/Q is any nontrivial upper semicontinuous decomposition of a
plane (X,7) into continua not separating X, thea (X,7) and (X/Q, Z/Q)
are in fact homeomorphic (15). Much interest is centered on the extemsion
of this theorem to higher dimensional spaces.

Theorem 6.5: Let (X,7) be a2 topological space., Q an equivalence relation
on X, and ¢ €Z(X,7). Then @ ¢ ?Q if and only if Q[U] = U for all U €aq,

and both of these imply that the identity map i: (X, ) —> (X, Z'Q) is an
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Proof: We will first show that ac ~Q if and only if Q[U] = U for
all Uex. Qbserve that ¢ C Z‘Q if and only if U€Q implies U‘s ’L‘Q; and
Ue Z‘Q if and only if U = P'l(v') for some V'€ Z/Q. Then U is a union
of equivalence classes and it follows that U = Q[U].

To prove the other half let Q[U] = U for ali UeQ. Then U is a union
of equivalence classes, and hence fhere is a U'c X/Q such that P'l(U') =U.
Then U'e Z/Q. Since ’Z‘Q is the product topology of P it follows that
Ueg fq. Therefore, a c Tq.

To prove the theorem, note that i is continuous because Z’QC T .

If ac Tq, then clearly i is an @-mapping, for i‘l(a)Ra.

Definition 6.6: If Z(X) is the family of open coverings of a space X,

then a subcollection Z'(X) is called a cofinal family of coverings of X
if and only if for every g €Z(X) there is an g'<c Z'(X) such that g'Ry.

Corollary 6.7: Let Z'(X,Z) be a cofinal family of open coverings of

(x, 7)) and suppose that for each ¢ €X' (X, ) there is an equivalence
relation @ = Q(Q@) such that acC Z‘Q. If each (X, Z’Q) < (Y,0), a fixed
space, then (X,7) < (¥,0).

Proof: Let @ €Z'(X,7) be given and Q the corresponding equivalence
relation such that gc Té Then by Theorem 6.5 the identity mapping
i: X, 7)) —> &, 2'22) is an g-mapping. Hence there is a p& (X, Z‘Q) such
that i'l(p.)Ra. By hypothesis there is a p-mapping f of (X, Z"Q) onto
{(¥,6). Then feoi is an ¢-map of (¥, 7) onto (¥,0). and since Q is
arbitrary, (X,7) < (¥,0).

To illustrate the use of Theorems 6.4 and 6.5, and Corollary 6.7,
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Example 6.8: Let X = [0,1] and define a topology 7 on X as follows.

Let §x} e if x#0. I£ 06U, then U£Z if and only if X - U is finite.
Define an equivalence relation Q on X by letting [x] = {x}- if x is
irrational. If r; and rp are any two distinct raéionals, then [r1] = [xs].
It is easily seen that the quotient space (X/Q, ?VQ) and (X,Z').are homeo-
morphic. Hence by Theorem 6.4, (X, ?'Q) < &, ).

To show that (X,7) < (X, TQ), let @' be any open cover of (X,Z ).
Then if 0 £UEQ', X - U is finite. Let @ be such that U« and if x£X -U,
§xt € @. Then 0Bx'. Define an equivalence relation Q(@) by letting [0]
contain the points of any countably infinite subset A of U such that OEEA,
and [x] = {x{ if x&X - A. Obtaining Zy(y) from &/Q@, Z/Q@), it
is ciear that @ C ?‘é(a). Hence by Theorem 6.5, the identity i: (X, Z‘);-—>

X, TQ(a)) is an -map.

For each '€ Z(X, Z) there is an @ as above such that cRx', and it
is clear that the corresponding space (X, qbﬁl)) is homeomorphic to
(X,‘ZQ). Hence (X, 25@3))-5 X, Z&), and it follows from Corollary 6.7

thet (X,7) £ &, {g)-
B. Topological Groups

Before proving a theorem on compact topoiogical groups, scme back-
ground on topological groups is necessary. The discussion that follows
is taken from Montgomery and Zippin (11).

Definition 6.9: A topological group G is a space in which G is a group,

and the functions f and g defined by f£(x) = x~1 and g(x,y) = xy are con-
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tinuous on G and GX G, respectively. Unless otherwise imdicate
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refer to a group it will be a topological group.

Definition 6.10: When a subset H of a group G is an abstract group, then

H will be called a (topological) subgroup of G, H being given the relative
topology.
Lemma 6.11l: Let G be a group, A an open subset of G, and b an element of

G. Then Ab and bA are open.

Theorem 6.12: Let G be a group and let A and B be subsets of G. Then

if A or B is open, AB is open.
If G is a group satisfying any of the T, axioms, then G is Ty and,
in fact, completely regular.

Definition 6.13: A homomorphism of a group G is a group homomorphism

which is continuous. An isomorphism is a group isomorphism and a space

homecmorphism.

Definition 6.14: If G is a2 group and ACG, let Al = {a‘lzaﬁA} . A set

A is called symmetric if and only if Al =4,

If U is a2 neighborhood of the identity e, then ulisa neighborhood

1

of e and UNU " is a symmetric neighborhood of e.

Theorem 6.15: Let G be a group and U & neighborhood of e. Then there

exists a s etric neighborhood W of e such that ch U.
ymm g

If B =~{V% is a local base at 2, then %V is an open set ccataining
x for each Ve B. Hence X3 = {xv} vep is @ local base at x for each
X EG.

let G be a group and H a subgroup of G. The sets xH and yH for

X,V € G either coincide or are disjoint. Each set xH is called a left
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rncot Af U, The notation G./'H is used to represent tne set of ail left
cosets of H. If H is an invariant subgroup, i.e. xH = Hx for all x€£G,
then G/H is an abstract group, the abstract factor group, with topology to

be specified below.

Definition 6.16: The natural mep T of a group G onto the abstract factor

group G/H is defined by T(x) = xH for x€G.

Pefinition 6.17: Let G be a group and H a subgroup of G. By an open set

in G/H is meant a set whose inverse image under the natural map is an
open set in G.

Thus the factor group G/H is given the quotient topology of T. Note
that for any subset U of G, T(U) = UH and hence T is open. It is also
true that T 1(T(U)) = UH.

The necessary machinery to prove the following theorem is now avail-
able.

Theorem 6.18: Let G be a group, and let {Ga} acp be a family of

arbitrarily small invariant subgroups of G for some index set A. Then if
@ £E(G), there is an a €A such that the natural mapping T:G —> G/G, is
an (-mapping.

Proof: Let ¢ &€X(G). Then if VE( and x€V, xUCV for some U in a

e
F

ioczal base at e. Furthermore, since s a neighborhood of e, there is a
symmetric neighborhood of e, call it W, sucii that %2C T, Then clearlvy
WCU and xWcxU. Let p be 2 refinement of @ consisting of open sets of
the form %W, where each W is as described above. G is compact, and hence

there is a finite subfamily of p, call it u', which covers G. The family

p' can be indicated by {xiﬁi§ i < p» Where n is a positive integer.
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n
such that GaC [\ W;. Let T5:G —> G/Ga be the natural map of G onto the

factor group G/Ga. Observe that Ta(xiwi) = %X;W;G,. Since {xiwi§

i<n
is an open cover of G, it follows that the family {xiWiGa} i<n = T;(u')
is an open cover of G/Ga. Furthermore, T;l(xiHiGa) = x;HW;,6,C xﬂ?c x; U,
so it follows that T;l(Ta(u'))Ra. Thus T, is an g-map, and since q is
arbitrary, the theorem is proved.

This theorem and Lemmas 5.9 and 5.10 are used in obtaining a group

G as the inverse limit of an inverse system of factor groups of G. A brief
discussion of inverse systems and inverse limits is given below (6, pp.

91-94).

Definition 6.19: An inverse system of sets {X,P} over a directed set A

is a function which attaches to each a€A a set X,, and to each pair s,b

such that a < b, a map

Pap 1 Xp —> X,
such that

P = identity, a£A,
PopPbec = Pac» @< b <c in A.

Definition 6.20: Let §X,P§ be an inverse system cf sets over the direct-

. . s - - =7 . - -
ed set A. The inverse limit X, of 52&,:‘5 is the subset of the product
azi,AXa consisting of those points x = Sxa} ach such that for each rela-
tiom 2 < b in A, Pop(x) = %X,.

1f the sets X, are groups, then the functions P, are assumed to be

homomorphisms as defined in Definition 6.5. X, is given the celative
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tonologv as a subset of the product space _[iJ,X,, and when each Xy is a

group then X, is a subgroup of a'I;I'AXa.

Let G be a compact group which is T, hence is a Tp space. Let
§Ga7§ agA be a family of arbitrarily small closed invariant subgroups of
G. Then A can be made into 2 directed set by writing a < b in A if and
only if GyC G,. Then the family {H,P{ , where Hy = G/G, and for a < b,
Pab:G/G-b —_ G/G‘a is the natural mapping, is an inverse system of groups.
Thus we have the following theorem.

Theorem 6.21: Let G be a compact group which is T, and {H,P} an inverse

system of factor groups of arbitrarily small closed invariant subgroups
G; of G. Then G is isomorphic to Ge, the inverse limit of {H,P} .
Proof: Consider the family fTa§ acA of natural mappings of G
onto H, = G/Ga. By Theorem 6.18, for each @ Z(G) there is a T, which
is an -map, and by Lemma 5.10 the family of @-maps distinguishes points,
and points and closed sets. Then by Lemma 5.9 the mapping on G defined
by £(g) = {Ta(g)f agA is an isomorphism of G into a-IZAGa' Using the
facts that all the subgroups G, are compact, and A is a directed set, it
can be shown that each {xaf aeA in Gy is of the form %gGa} acA for
some g€ G. Since these are precisely the elements of £(G), the theorem

is proved.



10.

11.

13.

14.

15.

Bing, R. H. Metrization of topological spaces. Canadian Journal
of Mathematics 3: 175-186. 1951.

Borsuk, K. Remarques sur las quasi-homeomorphie. Coliicquium
Mathematicum 6: 1-4. 1958.

Fort, M. K., Jr. Epsilon maps of 2 disk onto a torus. Bulietin de
L'Academie Polonaise des Sciences Serie des Sciences Mathé&matique,
Astronomiques et Physiques 7: 51-54. 1959.

Ganea, T. Epsilon mappings onto manifolds. Fundamenta Mathematicae
&7: 35-44. 1959,

Hall, D. W. and Spencer, G. L., II. Elementary topology. New York,
N. Y., John Wiley and Sons, Inc. 1955.

Hocking, J. G. and Young, G. S. Topology. Reading, Massachusetts,
Addison-Wesley Publishing Company, Inc. 1961.

Hurewicz, W. and Wallman, H. Dimension theory. Princeton, New
Jersey, Princeton University Press. 1941.

Kelley, J. L. General topolcgy. New York, ¥. Y., D. Van Nostrand,
Inc. 1955.

McGrath, F. J. Set properties induced by subsets of lesser cardinal-
ity. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State
University of Science and Techmology. 1962.

Maxwell, C. N. An order relation among topological spaces. Trans-
actions of the American Mathematical Society 29: 201-204. 1961.

Montgomery, D. and Zippin, L. Topological transformation groups.
New York, N. Y., Interscience Publishers, Inc. 1955.

Ponomarev, V. On paracompact and finally-compact spaces. Soviet
Mathematics 2: 1510-1512. 1961.

Sims, B. T. Some properties and generalizations of semi-metric spaces.
linpublished Ph.D. thesis. Amnes, Iowa, Library, Iowa State University
of Science and Technology. 1962.

Ulam, S. A collection of mathematical probliems. New York, N. Y.,
Interscience Publishers, Inc. 1960.

Whyburn, G. T. Decomposition spaces. In Fort, M. K., Jr., ed.
Topology of 3-manifolds and related topics. pp. 2-4. Englewood
Cliffs, New Jersey, Prentice-Hall, Inc. 1962.



40

VIII. ACKNOWLEDGMENT

The author would like to take this opportunity to express his
appreciation to Dr. D. E. Sanderson for suggesting the topic, and for his

invaluable criticisms and suggestions in the preparation of this thesis.



