
INFORMATION TO USERS 

This reproduction was made from a copy of a document sent to us for microfilming. 
While the most advanced technology has been used to photograph and reproduce 
this document, the quality of the reproduction is heavily dependent upon the 
quality of the material submitted. 

The following explanation of techniques is provided to help clarify markings or 
notations which may appear on this reproduction. 

1. The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. This 
may have necessitated cutting through an image and duplicating adjacent pages 
to assure complete continuity. 

2. When an image on the film is obliterated with a round black mark, it is an 
indication of either blurred copy because of movement during exposure, 
duplicate copy, or copyrighted materials that should not have been filmed. For 
blurred pages, a good image of the page can be found in the adjacent frame. If 
copyrighted materials were deleted, a target note will appear listing the pages in 
the adjacent frame. 

3. When a map, drawing or chart, etc., is part of the material being photographed, 
a definite method of "sectioning" the material has been followed. It is 
customary to begin filming at the upper left hand comer of a large sheet and to 
continue from left to right in equal sections with small overlaps. If necessary, 
sectioning is continued again-beginning below the first row and continuing on 
until complete. 

4. For illustrations that cannot be satisfactorily reproduced by xerographic 
means, photographic prints can be purchased at additional cost and inserted 
into your xerographic copy. These prints are available upon request from the 
Dissertations Customer Services Department. 

5. Some pages in any document may have indistinct print. In all cases the best 
available copy has been filmed. 

Universî  
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DECISION THEORY AND EDUCATIONAL TESTING 

Measurement tools are widely used for the assessment and 

monitoring of learning and teaching. The value of concise, 

if not mathematical, means of communicating information is 

apparent. Being able to specify the achievement level of a 

student ("He is an A student"), even more precise information 

("She answered 20 of 25 items correctly"), or information 

about the measurement tool itself ("Ten problems involving 

addition of two digits") is important in the ongoing process 

of student learning. 

It is hardly arguable that a measurement instrument must 

be well-standardized and yield information that is valid, 

reliable, and useful. The values of standardization, though 

often overlooked, are many. Standardization provides ob

jective, independent and repeatedly verifiable information. 

In addition, it offers detailed, quantifiable information, 

which can be subjected to mathematical scrutiny and analyses. 

Communication and economic benefits are also apparent, in

formation can be passed along to others with a common agree

ment about its interpretation, and, once instruments are fully 

developed and standardized, useful information can often be 

collected and used with minimal expenditure of time and 

money (Nunnally, 1978). 

Testing in education takes many forms, some well-
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standardized and others less so: the Friday afternoon spelling 

bee in third grade, vocational interest inventories in the 

guidance office, annual achievement test batteries, the senior 

high final examination. The role that testing plays in edu

cation also varies. It can be descriptive in nature, or 

designed to assess specific goals or objectives (Brown, 1983). 

However, the common element in all educational testing is 

its role in decision-making processes. 

Decision-making in education occurs in daily instruction 

(e.g., composition of reading groups, choosing today's in

structional modes or curricula for a given student), as 

well as in more formal contexts such as promotion or re

tention policies or ability grouping. While teacher-made 

tests play a major role in daily classroom decisions, stan

dardized tests are an increasingly common facet of educa

tional policies affecting large numbers of students. 

Decision theory offers a paradigm for looking at educa

tional testing in this light. Figure 1 provides a graphic 

representation of the decision-making process. 

"Information", in the above figure, refers to any data 

which is used in decision-making, while a "strategy" is a 

formalized rule for using the information to arrive at a 

"decision" or course of action. 

This schema is easily translated into an educational 
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Data Decision Outcome Utility 

Strategy Information 

U, 

U, 

U. 

U, 

Figure 1. Representation of the decision-making process 

testing context. Test scores provide the information 

component, either in concert with other information or alone. 

The strategy refers to a rule applied to the information, 

e.g., a grading scheme ("90%+ for an A, 80%+ for B". . .), 

a standard ("70 points is passing"), or an interpretation 

scheme ("a score of 10 on scale L indicates high math 

anxiety"). A decision can be based on the application of 

the strategy to the information, for example, "Jan earned 

75 points; the passing standard was 70 points; Jan passed the 
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test and can, thereby, move on to the next level". 

Once a decision is reached, an "outcome" occurs. For 

example, in the situation where Jan earned a passing score, 

let us presume that the test taken was designed to determine 

admission to an advanced class in algebra. Two decisions 

were possible; (Dp) Jan passed or (D̂ ), Jan failed. Two 

possible states of nature are also possible: Jan does or 

does not perform adequately in the class. Four combinations 

of decisions and states are, thus, possible: Jan passes 

the test and does well in class (0̂ ); Jan passes the test and 

fails in class (Og); Jan does not pass the test but would 

have done well in class (0̂ ); Jan does not pass the test but 

would have failed the class (0̂ ). 

In most contexts, not all outcomes are equally desirable. 

Certain combinations of decisions and states of nature are 

preferable to others; utility functions specify the rela

tive degree of desirability for each outcome. In our example, 

Jan passing and performing adequately is most likely the 

preferred outcome, both by Jan and the school. Utility func

tions specify the degree of acceptability or preference for 

all four outcomes, including "false positives" (Og) and 

"false negatives" (Ô ). The goal of the process is, clearly, 

to maximize preferable outcomes; we want to reach the "best" 

decision regarding Jan's admission to the algebra class. 

More generally, the goal in any decision process is the 
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maximizing of utility functions by reaching the "right" deci

sions. 

The use of tests in making "best" decisions in education 

has greatly expanded in recent years. Educational tests and 

their uses have received increased attention, as issues of 

test validity, accountability, and centralization of control 

have been in the spotlight (Haney, 1981). Controversies 

involving the role of tests in decisions regarding promotion 

and retention (e.g., Beckham, 1980), placement of students 

in special education (e.g., Reschly, 1981), and minimum 

competency testing (e.g., Resnick, 1980) are prevalent. 

With this changing and increasing role of testing in 

educational decision-making, technical concerns have also 

surfaced. Tests used for decision-making are increasingly 

those designed for that specific purpose and the use of 

criterion-referenced tests has greatly increased. Theoreti

cal and psychometric progress has had to keep pace with the 

changing use of tests, and, indeed, one can cite volumes of 

research on such issues (e.g.. Berk, 1980; Shepard, 1980). 

Wiggins (1973) has cogently and emphatically stated a 

major philosophical and psychometric concern of criterion-

referenced tests: 

From a practical standpoint, the number of correct 
decisions made by a . . . test or assessment, is a 
more important piece of information than the degree 
of association that exists between predicted and 
obtained scores (p. 230). 
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In this light, the current investigation focuses on the issue 

of consistency of decisions. Given specific information and a 

strategy, how can we index the degree of consistency with 

which we reach a decision? The concern is with indices esti

mating the degree of consistent classification of students 

from scores on criterion-referenced tests. 
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CRITERION-REFERENCED TESTS 

Criterion-referenced tests are not a new phenomenon in 

education. In 1864, Rev. G. Fisher developed a proficiency 

scale (l=best, 5=poorest) for academic performance in 

writing, spelling, grammar, composition and mathematics 

(Chadwick, 1864, in DuBois, 1970). A "graphometer" was 

published by E. L. Thorndike in 1910 to measure handwriting 

with equal unit scaling and a level deemed to be minimum 

proficiency (DuBois, 1970). 

Tests with a criterion of proficiency have long been 

used in the classroom - a teacher decides that a score of 

65 is needed to pass an arithmetic test, or students must 

spell 8 out of the 10 new words correctly to be awarded the 

Good Speller of the Week award. Use of tests with set 

standards for passing or failing, or specified degrees of 

proficiency, have been and are a common occurrence in Ameri

can education. 

Glaser and Klaus (1962) first used the term criterion-

referenced test in connection with tests setting standards 

of proficiency in industrial training. The following 

year, Glaser (1963) expanded the concept; 

Underlying the concept of achievement measurement 
is the notion of a continuum of knowledge aquisition 
ranging from no proficiency at all to perfect per
formance. An individual's achievement level falls 
at some point on the continuum as indicated by the 
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behaviors he displays during testing. The degree to 
which his achievement resembles desired performance at 
any specified level is assessed by criterion-referenced 
measures of achievement or proficiency. . . . Measures 
which assess student achievement in terms of a cri
terion standard thus provide information as to the 
degree of competence attained by a particular student 
which is independent of reference to the performance 
of others (p. 519). 

In the two decades since this seminal article, criterion-

referenced tests have come out of the classroom and into the 

spotlight in educational testing. Hundreds of references to 

criterion-referenced tests are seen in the literature (see, 

for example, Hambleton, Swaminathan, Algina & Coulson, 1978) . 

The popularity of objectives-based education (e.g., Popham 

& Baker, 1970); Mager, 1972), mastery learning (e.g.. Bloom, 

1971), and the minimum competency movement (see Resnick, 

1980; Lerner, 1981) have been factors in the increased use 

of criterion-referenced tests. 

Although there is no one prototypical criterion-

referenced test (Nitko, 1980), a criterion-referenced test 

is distinguishable from other tests in that it is "one that 

is deliberately constructed to yield measurements that are 

directly interpretable in terms of specified performance 

standards" (Glaser & Nitko, 1971, p. 653) . This is re

iterated in Popham's (1975) statement that "a criterion-

referenced test is used to ascertain an individual's status 

(referred to as a domain score) with respect to a well-defined 
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behavior domain" (p. 130). A large literature has been 

generated with respect to the definition and delineation of 

the term "criterion-referenced" (see, for example, Millman, 

1974, or Hambleton & Novick, 1973). The term used herein 

is in keeping with the above cited definitions of Glaser 

& Nitko (1971) and Popham (1975). 

Psychometric Issues 

The psychometric issues of validity and reliability 

must be taken into account in judging the worth and value of a 

criterion-referenced test as well as other types of tests 

(Standards for educational and psychological tests, 1974) . 

Validity 

Berk (1980) discusses the concerns regarding validity 

of criterion-referenced tests: content validity, the 

validity of scores for intended use, and validity of classifi

cation. The first, content validity, refers to the match 

between the test content and the objectives of the test, 

i.e., does the test contain items which measure the ob

jective (s) it intended to measure? The second concern re

fers to questions regarding use or interpretation of scores 

for their intended use. Messick (1975) and Linn (1979) 

argue cogently for the construct validity of criterion-

referenced tests, for the necessity for evidence about their 
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proper interpretation and use. 

Berk's last concern, validity of classification, involves 

the match between test scores and classification of examinees 

based on their scores, i.e., is the standard set at a score 

which truly distinguishes between classifications of examinees? 

A large and controversial literature surrounding the standard 

setting question has developed (e.g., Zieky & Livingston, 

1977; Glass, 1978; Skakun & Kling, 1980) in this regard. 

Reliability 

Reliability is a generic term referring to the consistency 

of performance over samples of items and testing occasions 

(Brown, 1980). The classical definition of reliability is 

"the measure of the degree of the true-score variation rela

tive to the observed-score variation" (Lord & Novick, 1968, 

p. 61). Coefficients of reliability have been developed to 

indicate this ratio of true to observed variance according 

to the desired or prescribed comparison (e.g., coefficient 

alpha for inter-item comparisons, coefficients of stability 

for time comparisons, or coefficients of equivalence for 

comparing forms); the commonality of coefficients lies in 

their indication of the degree of consistency of scores, 

whether across items, time or forms. • 

The calculation of the reliability of a test, in the 

classical sense, is based on the variability of scores. This 
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is true for criterion-referenced tests as well as others, and 

a single coefficient or index of consistency•can be calcu

lated. Hambleton, Swaminathan, Algina & Coulson (1978) 

discuss the various methods for estimation of a true score 

or, in the case of criterion-referenced tests, domain score. 

An obvious concern is simply the estimation of a domain score 

without regard to a standard(s). The standard error of 

measurement is a commonly found index in this regard, and is 

applicable to criterion-referenced tests as well as other 

types of tests. 

Popham & Husek (1969) commented that since criterion-

referenced tests are often used in situations where the 

instructional intention is to maximize the number of students 

in the mastery category, thus, minimizing variance, the use 

of the traditional concept of reliability - the ratio of 

true to observed score variance - in inappropriate. 

Criterion-referenced tests pose another unique consid

eration in terms of the classical concept of reliability: 

the major concern for consistency often lies not with the 

consistency of an individual's score itself, but with the 

consistency of classification of the individual with 

respect to a standard. To be specific, the question is "Is 

student X in the same mastery category on both forms/ 

administrations?" rather than "Does student X have the same 

score on both forms/administrations?" Although this form of 
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consistency clearly has a place under the rubric reliability, 

this distinction from the classical "ratio of true to ob

served variance" definition is important. The terras, re

liability, agreement, and consistency index have all been 

used in this regard (Berk, 1980). For the sake of clarity, 

the term "consistency" shall be hereafter used when referring 

to agreement of classification rather than agreement between 

test scores. 

Hambleton, Swaminathan, Algina & Coulson (1978) de

lineated three major categories of reliability to be con

sidered with criterion-referenced tests. One, within the 

classical framework, is the estimation of the domain (true) 

score. The authors refer to the other two types of relia-, 

bility as "reliability of criterion-referenced test scores" 

and "reliability of mastery classification decisions". Both 

are concepts of consistency in which the relationships between 

scores and standards are crucial. The topic to be explored 

herein is the latter, consistency of mastery classification 

decisions. The prior concept, reliability of criterion-

referenced test scores, refers to the consistency of squared 

deviations of individual scores from the standard and is 

analogous to deviations from the mean. 

The major distinction between the two standard-related 

concepts of consistency is the judged seriousness of classifi

cation errors for individual test-takers. For example. 
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suppose you have two forms of a 10 item test with a mastery 

standard of 8, and that student 1 scores 8 on form A and 7 

on form B while student 2 scores 9 on form A and 4 on form B. 

Both students were, thus, masters on form A and nonmasters 

on form B. The discrepancy for student 1, however, was be

tween scoring at standard versus 1 point below the standard, 

while for student 2 the discrepancy was 1 point above standard 

versus 4 points below. In the first sense of consistency, 

the size of the discrepancy between scores is a factor; 

the student with the greater discrepancy is regarded as a 

more serious inconsistency in classification. Indices which 

measure the latter concept of consistency of criterion-

referenced test scores (squared error loss) have been de

veloped by Brennan and Kane (1977) and Livingston (1972). 

In the latter concept of consistency, that of mastery classi

fication, both inconsistencies are judged to be of equal 

seriousness: the degree of discrepancy between scores is 

irrelevant. What is of concern is classification consistency 

alone. 

Current Focus 

The concept of mastery decision consistency is the focus 

of the current discussion and research. This concept fol

lows from the premise that all inconsistencies of classifica
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tion are of equal seriousness, whether resulting from a dis

crepancy of one or many points. Two coefficients have been 

developed as indicators of classification consistency, rho 

(0) and kappa (k). The development and current status of 

these coefficients and two estimation procedures for use 

with tests with only one form are discussed below. 



15 

CONSISTENCY INDICES; RHO AND KAPPA 

Carver (1970) proposed two procedures for indicating the 

consistency of decisions regarding mastery classification: 

(1)" a comparison of the percentage of students classified as 

masters/nonmasters on two parallel tests, and (2) a compari

son of the percentage of masters/nonmasters on the same test 

administered to two matched groups. While providing an over

all index of general consistency, neither of the procedures 

was sensitive to individual consistency. For example, 50% 

of the test-takers may be classified as masters on each form, 

but it is possible that every master on the first form was a 

nonmaster on the second form. In the second procedure, com

parability of the matched groups is questionable; while 

testing of the groups may result in 50% masters in each 

group, nothing is known regarding the comparability of 

masters and nonmasters across the two groups. 

Research since Carver's initial conceptualizations has 

focused the consistency of individual's classifications 

rather than merely the percentage of group masters and 

nonmasters (Berk, 1980. 
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Two Administration Indices 

Two coefficients that take individual consistency into 

account are the rho (0) coefficient adapted for this use by 

Hambleton & Novick (1973) and Swaminathan, Hambleton & 

Algina (1974), and the kappa (k) coefficient first developed 

by Cohen (1960) and adapted by Swaminathan, Hambleton and 

Algina (1974) . Rho refers to the proportion of individuals 

consistently classified as masters or nonmasters on two 

parallel tests, while kappa refers to the proportion of 

consistent classifications beyond the chance level. 

Table 1 displays data for 30 students on parallel forms 

of a ten item test (Subkoviak, 1980) . Although the number of 

items and examinees are small relative to the type of tests 

discussed herein, this data set will serve as an example 

throughout this chapter. It is also noted that the scores 

in the example show a large proportion of nonmasters, and 

most criterion-referenced tests are used in anticipation of a 

large proportion of masters. The formulae and calculation 

of the consistency indices are, however, not affected by 

this skewness. 

Rho indicates the proportion of individuals consistently 

classified as masters or n'onmasters. As can be seen in Table 

1, with a mastery level of 8 correct, student 2 was the only 

master on both forms A and B, and students 3 through 30 were 
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Table 1. Scores of 30 students on two forms of a ten-item 
test (Subkoviak, 1980)̂  

Student Form A Form B 

1 9 7 
2 8 8 
3 7 7 
4 7 4 
5 7 3 
6 6 7 
7 6 7 
8 6 5 
9 6 4 
10 5 6 
11 5 4 
12 5 2 
13 5 2 
14 4 7 
15 4 7 
16 4 7 
17 4 6 
18 4 4 
19 4 4 
20 4 4 
21 4 3 
22 4 2 
23 3 6 
24 3 4 
25 3 4 
26 3 4 
27 3 2 
28 3 2 
29 2 4 
30 1 1 

M̂astery level = 8 correct. 
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consistently nonmasters. Student 1 was a master on form A 

and a nonmaster of form B. A tabular display of the con

sistency of classification can be seen in Table 2. A 

total of 29 of the 30 students (the diagonal cells) were con

sistently classified on both forms. To calculate the rho 

Table 2. Mastery and nonmastery consistency for scores in 
Table 1 

Form A Form B 
Mastery Nonmastery TOTAL 

Mastery 1 1 

Nonmastery 0 28 

TOTAL 1 29 

coefficient, the proportion of individuals consistently 

classified, the formula below is 

m 

where p̂ ^̂  = proportion of individuals consistently classified 

in the mastery category on both tests, and m = number of 

categories. 

For the data in Table 1, the proportion of individuals 

consistently classified is; 
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*0 = 3& + §§ = §& - '*7' 

If all individuals are consistently classified, rho 

reaches an upper limit of +1.00. The lower bounds of rho are 

determined by the chance level; except for highly unusual 

circumstances, the lowest rho coefficient would be that seen 

if classification as master or nonmaster was purely random. 

The chance level is: 

m 

where and are the proportion of individuals assigned 

to the respective mastery and nonmastery classification on 

each test form. 

For the scores in Table 1; 

Pc " X 10̂  + (§§ ̂  §&) 

- 2 812 
900 900 

= .90. 

Swaminathan, Hambleton and Algina (1974) suggested that 

the chance factor should be omitted from the index of con

sistency, as the index of interest is the consistency of 

individual classification due to the test alone. They 

suggested the use of Cohen's (1960) kappa: 
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< !o2c 

1-Pc 

where = rho and p̂  = chance level. 

For the Table 1 data, we calculate: 

 ̂ = .70 

These estimates, based on two actual test administrations, 

are hereafter referred to as two form estimates. As can be 

seen, the rho and kappa coefficients measure two different 

aspects of consistency, rho referring to consistent classifi

cation for any reason, and kappa to consistent classification 

beyond chance. 

Comparing rho and kappa 

Before discussing the development of estimates of rho 

and kappa based on one rather than two test administrations, 

it is valuable to gain a perspective on the similarities and 

differences between the two coefficients. As mentioned above, 

in both cases the upper limit is +1.00, which occurs when 

there is perfect agreement in classification,, i.e., when 

every individual who is a form A master is also a form B 

master, and every nonmaster is such on both forms. In such 

a condition, Table 2 would have O's in the off-diagonal 

cells. 
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The lower limits of the two coefficients, however, 

differ. The lower limit of rho is generally the proportion 

of consistent classification expected by chance. The lower 

limit of kappa, in contrast, is -1.00, a condition which 

would occur with perfect inconsistency, i.e., if all form 

A masters were form B nonmasters, and vice versa. 

The role of marginals in the two coefficients differ 

as well. Although the degree to which a test is easy or 

hard (i.e., results in a large proportion of either masters 

or nonmasters) will determine the general degree of con

sistency, the marginals themselves are more crucial in the 

calculation of the kappa than the rho coefficient. The rho 

coefficient indicates the proportion of consistent classifi

cations: if 24 of 30 students fall consistently in the same 

classification, whether the 24 consistent students are com

posed of 12 masters + 12 nonmasters or 22 masters + 2 non-

masters does not affect the rho coefficient. In both cases, 

rho is .80. Kappa, however, because it takes the proportion 

attributable to chance into account, a factor which is de

termined by marginals, will not be the same in the two 

above events. In the former (.12 masters + 12 nonmasters) , 

kappa is .50, and in the latter (22 masters + 2 nonmasters), 

kappa is .72. Furthermore, the marginals indicating in

consistent classification are also accounted for in the 
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calculation of kappa, but not rho. Kappa is, therefore, not 

a direct function of the value of rho. 

This difference in rho and kappa, the role of the 

chance level, is a major factor in the decision of whether 

to use rho or kappa as an index of consistency. Livingston 

and Wingersky (1979) criticized the use of the kappa coeffi

cient because of the role of the correction for chance: 

Applying such a correction to a pass/fail contingency 
table is equivalent to assuming that the proportion of 
examinees passing the test could not have been anything 
but what is happened to be. For example, if 87% of 
the examinees passed the test, kappa will "correct 
for chance" under the assumption that "chance" would 
result in exactly 87% of the examinees passing the 
test. This assumption makes sense when the pass/fail 
cutoff is chosen on the basis of the scores to which 
it will be applied, so as to pass a specified propor
tion of the examinees. It does not make sense when 
the pass/fail cutoff represents an absolute standard 
that is to be applied individually to each examinee 
(p. 250). 

The choice of kappa or rho is a décision partially 

based on whether chance is to be included in the concept of 

consistency of mastery classification; does one want to know 

the consistency of classification regardless of the source of 

that consistency or does one want to know the consistency 

attributable to the test alone? The technical or psycho

metric behavior of the coefficients, discussed below, 

must also be taken into account. 
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One Administration Indices 

It is not uncommon that criterion-referenced tests have 

only one rather than two or more parallel forms. Huynh 

(1976) and Subkoviak (1976) responded to this concern in 

separate developments of estimates of rho and kappa coeffi

cients which can be calculated from one test administration. 

In both cases, their methods involve the actual administra

tion of the one available test form and the simulation of 

scores on a second (hypothetical) form. Hence, from the 

two sets of scores (one actual and.one hypothetical), esti

mates of rho and kappa can be calculated as in the two-

administration case discussed above. 

The difference between Huynh's and Subkoviak's methods 

lies in the procedures for simulating the second form scores 

and the attendant assumptions. Both methods have gained 

increasing attention over the past few years, as a result of 

the increased use of and demand for psychometric informa

tion about criterion-referenced tests. 

The Huynh (1976) and Subkoviak (1976) estimation pro

cedures are not the only methods for calculating rho and kappa 

estimates with one test administration. Marshall and Haertel 

(1975) developed a procedure foç simulating the second test 

scores based on the calculation of scores on a hypothetical 

double-length test (i.e., one with twice the number of items 
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on the administered form), splitting this hypothetical test 

into half-tests and calculating the consistency between the 

two halves. The mathematical complexity, lack of available 

computer programs and relative lack of research on the 

Marshall & Haertel procedures have deemed it the least appli

cable of the current estimation procedures, and it has not 

been included herein. 

Huynh estimation procedure 

Outlined below is Huynh's (1976) method for simulating 

a second administration, calculating rho and kappa coeffi

cients, and a brief discussion of a second related approxima

tion technique. 

The gist of the Huynh estimation procedure is the simu

lation of a second hypothetical distribution of test scores 

by assuming a beta-binomial joint distribution between the 

actual and simulated distributions. That is, we can use 

the scores on form A, calculate the parameters (alpha and 

beta) of the form A (beta-binomial) distribution, and using 

these parameters, simulate form B scores. The key assump

tion is that of a beta distribution, which allows us to simu

late form 2 scores based on scores of the one actual ad

ministration. Appendix A offer's a brief description of beta 

distributions, alpha and beta parameters, and current research 

concerns regarding the beta-binomial model. The data used 
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in this and the following discussion of the Subkoviak pro

cedure consist of the test scores on form A of Table 1. 

The three steps for simulating form B scores are; 

1. Sample statistics from form A scores: The mean 

(y), variance (8̂ ), and Kuder-Richardson 21 (KRĝ ) for scores 

on form A are 4.63, 3.27 and 0.27, respectively. 

2. Distributional parameters; Parameters alpha (<5) 

and beta (0) are calculated from form A scores. These 

parameters reflect the first and second moments of the 

distribution and their significance lies in their determina

tion (along with n) of the particular shape of the distribu

tion of scores on the simulated form (see Appendix A). 

a = (-1 + 1(̂ )0 = (-1 + 0̂ )4.63 = 12.52 

®  ̂= -"-52 + 0717 - 1° = 

3. Form B scores; Using the values of alpha, beta and 

the number of items, the joint distribution of scores can be 

determined. This two-step process involves the calculation 

of f(0,0), the probability of an individual scoring 0 on 

the simulated form given a score of 0 on form A, and the 

subsequent calculation of probabilities of all other combina

tions of scores. Computational formulae for the two steps 

are shown below ; 
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f =  ̂2n+6-i 
(x,y) 2n+a+g-i 

(̂x+l,y) ' ̂(x,y) 
(n-x)(g+x+y) 

(x+1)(2n+3-x-y-l) 

The expected frequencies calculated are displayed in 

Table 3 below. Each entry is the proportion of examinees 

who would obtain score y on form B given a score of x on 

form A. For example; the frequency with which a score of 

5 is expected on the simulated form B given a score of 3 

on form A, is 0.0299. The table is symmetrical in that 

+(3.5) = f(5,3). Note that decimals have been omitted. 

The simulation of form B scores allows for calculation 

of the consistency coefficients as if two actual forms had 

been administered. Rho can, thus, be obtained by summing the 

proportion of consistent classifications in Table 3. With 

a mastery level of 8, the proportion of individuals who are 

consistently classified as masters (lower right quadrant of 

matrix) is .0082. The proportion of individuals consistently 

classified as nonmasters is reached by summing all frequen

cies in the upper left quadrant (those scoring 7 and 7 and 

all combinations of lesser numbers), .8938. Rho is, thus, 

the total proportion of consistent masters and consistent 

nonmasters; 



Table 3. Joint distribution of scores for forms A and (Subkoviak, 1980) 

Form A Form B scores 
scores 0 1 2 3 4 5 6 7 8 9 10 

0 0002 0006 0011 0013 0012 0008 0004 0002 0000 0000 0000 

1 0006 0024 0050 0069 0068 0059 0028 0012 0004 0001 0000 

2 0011 0050 0116 0174 0188 0152 0093 0043 0014 0003 0000 

3 0013 0069 0174 0286 0338 0299 0201 0101 0036 0008 0001 

4 0012 0068 0188 0338 0436 0421 0308 0169 0066 0017 0002 

5 0008 0050 0152 0299 0421 0444 0354 0211 0090 0025 0003 

6 0004 0028 0093 0201 0308 0354 0308 0200 0093 0028 0004 

7 0002 0012 0043 0101 0169 0211 0200 0142 0072 0024 0004 

8 0000 0004 0014 0036 0066 0090 0093 0072 0040 0014 0003 

9 0000 0001 0003 0008 0017 0025 0028 0024 0014 0006 0001 

10 0000 0000 0000 0001 0002 0003 0004 0004 0003 0001 0000 

^Each entry represents the proportion of examinees who would obtain score y on form B given 
score X on form A. Decimals have been omitted for ease in reading. 
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= .0082 + .8938 = .90 

The kappa coefficient can be calculated in a manner 

similar to the two-form procedure discussed above. The 

proportion attributable to chance is a function of the 

marginal proportions based on Table 3. The proportion of 

masters on form A is the sum of the last three rows (.0577), 

and the proportion of nonmasters is 1 - .0057, or .9423, 

For our data; 

Pg = (.0577 X .0577) + (.9423 x .9423) 

= .0031 + .8900 

= .89. 

Kappa, according to Equation 3, is; 

The two form rho and kappa coefficients (based on both 

administrations) were .97 and .70, respectively, while with 

one administration and utilizing the Huynh procedure, rho and 

kappa were .90 and .09, respectively. (The differences in 

the coefficients estimated will be discussed after the 

Subkoviak procedure has been outlined.) 

Huynh offers a second approximation method which is 

computationally less complex (and thus less expensive and 
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tedious). Huynh's second approximation method involves the 

same steps as those shown above, with the addition of an 

arcsin transformation of scores in order to normalize the 

distribution. Computation of the normal deviate comparable 

to the standard, and calculation of the probabilities of 

scores less than this value are essential parts of the 

procedure. Peng and Subkoviak (1980) found that the 

elaborate arcsin transformation is not necessary and that a 

simple normalizing procedure is a better method. The addi

tion assumption of normality of the joint distribution of 

scores renders this approximation method less robust and 

has not gained the research interest shown for Huynh's 

first procedure. 

Subkoviak estimation procedure 

Subkoviak (1976) developed a method for calculating 

the rho and kappa coefficients in a much less mathematically 

complex manner. Test scores for form A of Table 1 will re

main the basis for the explanatory calculations. Table 4 

depicts the estimation process described thereafter. 

1. Columns 1 and 2 of Table 4 contain test scores 

and frequencies, respectively. The mean and KR-21, as 

previously calculated, are 4.63 and .27, respectively. 

2. The assumption is made that the 10 item test is a 



Table 4. Subkoviak estimation procedure with Table 1 data 

1 2 3 4 5 6 7 

X «x x̂ P 
X I-2(2x-2x') 

9 1 .90 .930 .869 .869 .930 

8 1 00
 
o
 

.678 .563 .563 .678 

7 3 .70 .383 .527 1.582 1.149 

6 4 .60 .167 .721 2.887 .668 

5 4 .50 .055 .896 3.584 .220 

4 9 .40 .012 .976 8.786 .108 

3 6 w
 

o
 

.002 .996 5.976 .012 

2 1 .20 .000 1.000 1.000 .000 

1 1 

O
 

1—1 

.000 1.000 1.000 .000 

TOTAL 30 24.248 3.765 
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sample from the domain of all such items. Column 3 displays 

the estimates of the proportion of items in the domain that an 

individual which each test score is expected to answer cor

rectly. This is the proportion of items correct on form A, 

the probability of a correct item response. (Subkoviak offers 

an alternative calculation of g, a regression estimate. 

Though preferable with homogeneous groups of students, in 

the context of districtwide testing, the homogeneity assumption 

is unlikely to be met, and the proportion of correct items 

on form A are used.) 

3. Column 4 indicates the probability of an individual's 

classification as a master. Test items are assumed to be 

trials in a binomial process and we wish to know the proba

bility that in ten trials (items) an individual will make 

eight or more successes or items correct (see Tables of the 

Binomial Probability Distribution, 1949). is the 

probability that an individual will be consistently classified 

as a master on 2 independent testings; the converse, that the 

student will be consistently classified as a nonmaster is 
A 2 (l-p^) . Column 5 shows the probability of consistent 

classification, the sum of the probabilities of the two classi

fications (master and nonmaster), + (1-p̂ )̂  = l-2(p̂ -p̂ )̂. 
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4. The probability of consistent classification across 

the entire group if displayed as the summation of column 6. 

Subkoviak's rho coefficient can be calculated by dividing 

this summation by n (30): 

Znx[l-2(p -p 2)] 
Po = N 

26.248 _ q, 
30 ~ 

5. The summation of frequencies times the probability 

that an individual will be consistently classified on two 

independent testing is given by the total of column 7. 

This is used in the calculation of the chance level: 

ZN P ZN P 

= 1-2 = .78. 

6. With the chance level calculated, kappa can be easily 

obtained ; 

 ̂= '̂ l-:78 = '50' 

The two-form, Huynh and Subkoviak estimates of rho and 

kappa are shown in Table 5. As can be seen, all three methods 

yield more similar estimates of rho coefficients than kappa 

coefficients. 
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Table 5. Comparison of rho and kappa estimates 

Rho Kappa 

Two forms 97 70 

Huynh estimates .90 .09 

Subkoviak estimates 89 50 

Empirical Comparisons 

Although the development of rho and kappa and estima

tion procedures for one form administrations have generated 

much research (e.g., Huynh, 1979; Algina & Noe, 1978; Wilcox, 

19 81), only recently have studied addressing a comparison of 

the Huynh and Subkoviak estimates of consistency. Studies 

have compared the two estimation procedures for the rho 

coefficient with actual test data (Subkoviak, 1978), and rho 

and kappa were simulated test data (Marshall & Berlin, 1979). 

Subkoviak (1978) compared the two-administration rho 

coefficient with the estimation procedures developed by Huynh 

(1976) and Subkoviak (1976). The study involved 1586 stu

dents, each of whom took parallel forms of a 50 item test 

developed from items on the Scholastic Aptitude Test (SAT). 

Ten and thirty item subtests were extracted and studied in 

addition to the fifty item test. On each of the three tests 
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(10, 30, and 50 items), four standards were considered: 50%, 

60%, 70%, and 80% of items correct. 

The percentages of students consistently classified on 

both forms of the 12 tests (3 lengths x 4 standards) were 

calculated and referred to as parameter values. Using both 

50 classroom-size samples (n=30) and 50 larger samples 

(n=300), Subkoviak calculated rho coefficients using three 

methods; the two-administration method, the Huynh estimation 

procedure, and the Subkoviak estimation procedure. Comparisons 

of rho coefficients (parameter value versus mean estimates 

of rho calculated by each of the three methods) and standard 

errors were made for each of the 12 tests. 

Overall, Subkoviak found standard errors (regardless of 

test length or placement of standard) of less than .08, al

though larger standard errors were seen with the two-adminis

tration method and the 10-item tests given to classroom size 

samples. The two-administration method (Swaminathan et al., 

1974) produced, as expected, results in agreement with the 

parameter values. 

A key finding of the study was the observed bias of the 

one-administration rho estimates, which appeared to be a 

function of test length and proximity of the standard to the 
I 

mode. On the shorter tests, rho coefficients derived by the 

Huynh procedures were consistently lower than parameter 

values. Research by Huynh and Saunders (1979) also yielded 
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this underestimation of rho, as well as a similar bias with 

the kappa coefficient. 

Coefficients calculated by the Subkoviak method showed a 

different pattern of bias; in short tests, underestimates 

were obtained when the standard was near the mode (50% of 

items correct), and overestimates when the standard was near 

the tails of the distributions (80% of items correct). 

Algina and Noe (1978) found a similar pattern of bias with 

the Subkoviak method. 

Subkovick (1978) did not address the question of the 

shape(s) of the tests score distributions. Although it is 

implied that the distribution of all examinees' scores (i.e., 

all classroom samples, and all large samples) were normal, 

with data from one classroom sample provided as an example, 

it is doubtful if all samples resulted in normal distribu

tions. Thus, the effect of distribution shapes on estimates 

of rho (and kappa) remain in question. 

Marshall and Berlin (1979) did address the effect of 

the score distribution shape on rho and kappa estimates using 

simulated test data. Five distributions of 5, 10 and 20 

items each were simulated; normal, left-skewed unimodal, 

left-skewed bimodal, and two symmetrical bimodal distributions 

with varying modal proximities. Marshall and Berlin calcu

lates both the Huynh estimates of rho and kappa, and the 
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Subkoviak estimate of rho for all 15 (5 distributions x 3 

lengths) tests. 

Huynh's rho estimates reflected the modes in unimodal, 

but not bimodal, distributions. That is, the rho estimates 

were at their minimum value when the mode and standard con

verged. With the assumption of a beta distribution for 

Huynh's estimation procedure, this is unsurprising. In con

trast, Subkoviak's rho estimates, not based on the beta-

binomial assumption, performed similarly with unimodal 

and bimodal distributions, reflecting the modes in both 

cases. 

That Huynh's kappa estimates measured something very dif

ferent from the rho estimates is unsurprising in light of 

the different formulae and role of chance in the two coeffi

cients. Kappa responded to the shape of distributions just 

as rho had, but in a manner opposite of rho. Kappa was 

at its maximum value, rather than minimum as with rho, when 

the standard and mode converged in both skewed and normal 

distributions. 

Overall, research points to the impact of both test 

length and distribution shape on the behavior of rho and 

kappa estimates. Huynh and Subkoviak estimations of rho 

yield different patterns of over- and underestimation, though 

both deviated very little from the two-form estimates with a 

normally distributed test of 30 or 50 items. 
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Several important questions are as yet unanswered 

regarding one-form estimates of rho and kappa. Research has 

not been conducted with tests of length 50+, nor has the 

impact of distribution shape on tests of over 20 items been 

investigated. As many of the criterion-referenced tests used 

by school districts consist of more than 20 items, and 

distribution shapes, though generally unimodal, can vary 

greatly, it is important to assess the behavior of the esti

mates under these conditions. In addition, no research has 

been reported using Subkoviak's kappa estimation. 
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PURPOSE 

The current investigation included two studies comparing 

the behavior of Huynh and Subkoviak estimates of rho and 

kappa coefficients. Study I involved simulated data, and 

Study II used actual test data. 

In Study I, data were generated to simulate nine 

distributions of test scores, with 3 test lengths (25, 50, 

and 75 items) and 3 shapes (normal, and two degrees of 

skewness). Three standards for designating mastery (70%, 80% 

and 90% of items correct) were applied to each of the nine 

distributions, yielding 27 tests. Estimates of both rho and 

kappa estimates, as proposed by Huynh and Subkoviak, were 

calculated for each of the 27 distributions. 

In Study II, estimates of rho and kappa proposed were 

calculated using data from three tests given by a large 

school district to assess mastery of curricular objectives. 

The tests, all composed of over 75 items, yielded three 

distinct distribution shapes varying in degree of skewness. 

Three standards were set at 70%, 80%, and 90% of items 

correct for each test. Subtests of 25, 50 and 75 items 

were extracted from each test by random selection and the 

three standards applied. Rho and kappa estimates were calcu

lated for the nine original tests, and the 27 subtests which 

paralleled those of Study I. 
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STUDY I: SIMULATION STUDY 

Data Generation 

Nine distributions were simulated using the Aherns and 

Dieter "(1974) algorithm for beta parameters. Each distribu

tion consisted of 2500 nonzero values representing the num

ber of students who hypothetically took each test. Test 

lengths of 25, 50 and 75 items, and three distribution shapes 

(normal, left skewed with low kurtosis, and left skewed with 

high kurtosis) were specified to yield nine distinct distribu

tions. Appendix A offers a discussion of beta distributions, 

alpha and beta parameters, and recent research on the beta-

binomial model. Table 6 displays the alpha and beta param

eters used to generate the nine distributions and resultant 

test statistics. 

Distributions 

Data were generated in three distributional shapes; 

normal, left-skewed with low kurtosis and left-skewed with 

high kurtosis. Table 6 displays the statistics for these 

distributions. 

These three shapes are representative of those seen in 

criterion-referenced tests used by school districts. Edu

cational Testing Service notes a trend in Basic Skills 

Assessment tests toward normal and/or left-skewed 



Table 6. Statistics of simulated tests 

Number q+̂ ndard 
Distribution of Mean , Skevmess Kurtosis Alpha Beta Mode 

items deviation 

Normal 25 12.00 3.80 .02 -.15 4.0 4.0 12(48%) 
50 24.90 7.87 . -.04 -.33 4.0 4.0 25(50%) 
75 36.96 11.61 .04 -.26 4.0 4.0 37(49%) 

Left- 25 16.36 3.42 -.48 .09 6.0 3.0 17(68%) 
skewed 50 33.18 6.86 -.39 -.14 6.0 3.0 35(70%) 
(lOw) 75 50.19 10.56 -.49 .03 6.0 3.0 53(71%) 

Left- 25 19.72 2.84 -.92 .82 8.0 2.0 21(84%) 
skewed 50 40.11 5.88 -.99 .82 8.0 2.0 43(86%) 
(high) 75 60.51 8.35 -.97 1.04 8.0 2.0 65(87%) 
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distributions. The Des Moines Community Schools have found 

normal and both right- and left-skewed distributions in 

district-wide tests of curricular objectives which are/can 

be used as criterion-referenced tests. Although distribution 

shapes vary, it is rare to see a bimodal distribution for 

criterion-referenced tests. 

These distributions also allow for comparisons with 

findings of Subkoviak (1978) and Marshall and Berlin (1979). 

Subkoviak calculated rho coefficients for an (apparently) 

normal distribution, and Marshall and Serlin calculated 

rho and kappa for both normal and left-skewed distributions. 

Examinees 

Data were simulated representing 2500 nonzero scores for 

each test. This is a typical number of examinees on tests 

given on a comprehensive basis in large school districts 

and is comparable to the number of examinees in Study II. 

Test Lengths 

Tests were specified by lengths of 25, 50, or 75 items. 

Many criterion-referenced tests used on a semester or annual 

basis are within this range of items. Although many mastery 

tests used in the classroom are shorter than 25 items, the 

focus herein is on criterion-referenced tests given on a 
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districtwide basis and with which decisions are based on 

composite rather than subtests scores. Comparison with 

Subkovick (1978) calculations of rho estimates with 30 and 

50 item tests is made possible. 

Standards 

Three standards were applied individually to each of 

the nine distributions, yielding a total of twenty-seven 

simulated tests. Standards used were 70%, 80%, and 90% of 

items correct, as shown in Table 7. The rationale for these 

standards lies in the current focus on districtwide tasting; 

with district development of tests and setting of standards. 

Table 7. Mastery standards for simulated data 

Standards 
70% 80% 90% 

Test Items Items Items 
length correct correct correct 

25 17̂  20 22̂  

50 35 40 45 

75 52̂  60 67* 

Ŝcore rounded downward from (score + 0.5). 



43 

it is usual for tests to be of a difficulty level such that 

most examinees answer most of the items correctly. In 

general, only a minority (10-20%) of examinees are classi

fied as nonmasters with districtwide tests. 

Rho and Kappa Estimates 

Subkoviak and Huynh estimates of coefficients rho and 

kappa were calculated for each of the twenty-seven simulated 

test distributions. Estimates were calculated from computer 

programs developed by the respective authors (Subkoviak, 

1978; Huynh & Saunders, 1980) and adapted by the present 

researcher. 
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STUDY II: ACTUAL PLAN 

A parallel investigation using actual rather than 

simulated data was also conducted. Three tests administered 

by a large school district provided test scores for the cal

culation of Huynh and Subkoviak estimations of rho and kappa. 

The three tests yielded three distinct distributions, one 

appearing approximately normal, and two left-skewed. Sub

tests of 75, 50, and 25 items were drawn by a random sampling 

process from each test, and standards of 70%, 80%, and 90% 

of items correct were applied. This procedure created 27 

tests which paralleled those in the simulation study. Esti

mates of rho and kappa were calculated for these 27 test 

distributions as well as for nine tests created by applying 

the three standards to the full-length tests. 

The value of examining the behavior of the rho and 

kappa estimates with actual data is clear. Distributions of 

scores are not necessarily of the beta family of distribu

tions. In the case of Huynh estimates, it is assumed that 

score distributions are within the beta family (see Appendix 

A); coefficient behavior may differ in distributions which 

deviate from this assumption. Calculation of estimates with 

data from tests actually employed by schools provides this 

needed real life information. 
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Data Collection 

Scores on three tests developed and administered by the 

Des Moines (Iowa) Independent School District provided the 

data for this investigation. The objectives-based tests were 

developed, pilot-tested and administered by the Des Moines 

Independent School District as part of an ongoing curriculum 

evaluation program. None of the tests was used as a cri

terion-referenced test at the time of administration, although 

curriculum specialists and individual teachers were encouraged 

to evaluate individual students on the basis of the test, 

as well as using it for evaluation of their own teaching. 

One of the tests, biology, was used as all or part of the 

students' final examination in that course. 

Two tests, mathematics and geography, were administered 

to all seventh-grade students, while the third test, biology, 

was administered to all students, predominantly tenth-

graders, enrolled in that course. All tests were intended 

and used to evaluate mastery of the core objectives of the 

respective courses. Table 8 displays the test statistics 

for the three tests. 



Table 8. Statistics of actual tests 

Distribution 
Number 
of 
items 

Mean Standard 
deviation Skewness Kurtosis Alpha Beta Mode 

Math 25 14.58 4.54 -.02 -.57 5.3 3.8 13(52%) 
(N=2282) 50 27.03 9.03 .25 -.71 4.2 3.6 25(50%) 

75 39.92 13.32 .28 -.71 4.1 3.6 28(37%) 
95 48.24 16.57 .38 -.62 4.0 3.9 37(39%) 

Geography 25 16.28 4.40 -.31 -.52 5.8 3.1 16(64%) 
(N=2160) 50 32.83 8.76 -.30 —. 64 4.9 2.6 31(62%) 

75 48.27 12.77 -.25 -.67 5.0 2.8 46(61%) 
' 80 52.43 13.44 -.31 — .60 5.1 2.7 51(64%) 

Biology 25 17.18 4.07 -.41 -.25 7.3 3.3 17/20(61%/80%) 
(N=1216) 50 33.39 7.64 -.30 -.40 7.0 3.5 

75 51.68 10.91 -.44 T . 2 6  7.3 3.3 
88 60.89 12.54 —. 46 -.28 7.5 3.3 
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Subtests 

Subtests of 25, 50, and 75 items were drawn from the 

full-length tests. Items on the full-length tests were 

randomly deleted to create tests of 75 items. From the 75 

remaining items, 25 were randomly deleted to create 50 item 

tests, and 25 items from these forms were randomly deleted 

to create 25 item tests. Thus, all versions of the shorter 

tests were composed only of items contained in the longer 

tests. While this procedure led to nonindeperidence of tests, 

it maximized the similarity of distribution shapes across 

test lengths. The test statistics for the nine subtests 

(three tests x 3 lengths) are displayed in Table 8, above, 

along with those for the full-length tests. 

Examinees 

Test scores for all students who were enrolled in the 

respective courses and who took the tests were included in 

the analysis. The number of examinees were 2282, 2160, and 

1216 for the math, geography, and biology tests, respectively. 

The smaller number of examinees for the high school biology 

test is accounted for by the elective nature of that course; 

the math and geography are required bourses for all seventh 

grade students. 
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Distributions 

The distribution of scores on the math test appeared 

approximately normal, while the geography and biology 

tests were left-skewed. Alpha and beta parameters were calcu

lated for full-length tests as well as subtests. Parameters 

for the different lengths of the same tests vary slightly 

due to the random selection of items in subtests. All 

parameters are displayed in Table 8. 

Although there is no statistical procedure which pro

vides a cogent test for the goodness-of-fit of the beta-

binomial model to data, a descriptive technique was employed 

to provide a general indication of whether test distributions 

were in the beta family. (Appendix A offers a discussion 

of the beta-binomial model and the difficulty of evaluating 

its goodness-of-fit to data.) Alpha and beta parameters for 

the 12 test distributions shown in Table 8 were used to 

generate between distributions. Frequencies yielded by the 

beta distributions were compared with observed frequencies of 

the comparable tests. The maximum discrepancy between 

observed and expected frequencies t and chi-square 

goodness-of-fit statistics were calculated (see Table 9). 

In every case, the chi-square statistic was signifi

cant at the .01 level, signifying that observed departed 

significantly from expected frequencies. However, this 
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Table 9. Discrepancies between expected and observed 
frequencies 

Test (items) °max̂ *̂  df 

Math 
92 29.5 (.012) 72 779.9** 
75 37.8 (.016) 59 495.5** 
50 58.1 (.030) 42 507.3** 
25 90.2 (.039) 21 3325.2** 

Biology 
88 19.4 (.015) 53 121.9** 
75 19.2 (.015) 46 160.3** 
50 43.1 (.035) 33 241.6** 
25 75.6 (.062) 17 745.3** 

Geography 
80 35.2 (.020) 58 219.7** 
75 29.5 (.013) 56 242.0** 
50 61.5 (.028) 39 359.9** 
25 120.6 (.055) 20 1103.1** 

appears to be an artifact of the necessary procedure used 

to group categories at the tails of the distributions (see 

Appendix B). 

Standards 

Three mastery standards were applied to the three 

full-length tests and to the nine subtests. Standards 

paralleled those used in Study I: 70%, 80%, and 90% of 

items correct. As stated above, these are commonly found 

mastery standards for criterion-referenced tests given on a 
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districtwide basis. Table 10 displays the mastery standards 

for all full-length tests and subtests. Note that all 

standards are rounded down to the nearest whole number. 

Table 10. Mastery standards for actual test data 

Test Number 
of items 70% 

Standards 
80% 90% 

Subtests 25 17a 20 22* 

Subtests 50 35 40 45 

Subtests 75 52̂  60 67* 

Geography 80 56 64 72 

Biology 88 61* 70* 79* 

Math 95 66* 76 85* 

R̂ounded down to nearest whole number. 

Rho and Kappa Estimates 

Huynh and Subkoviak estimates of rho and kappa were 

calculated for all tests and subtests with all three levels 

of mastery. 
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RESULTS 

Results of Study I are discussed below, followed by 

results of Study II. Both sections begin with presentations 

of all estimates of rho and kappa calculated and are organized 

in parallel fashion. 

Within each section, rho and kappa estimates are dis

cussed separately, beginning with a general description of 

findings for respective estimates, and proceeding to the im

pact of test lengths, distribution shapes, and standards on 

coefficients. Brief summaries conclude each discussion of 

rho and kappa. 

As no acceptable statistical means of comparison are 

available, estimates are evaluated descriptively. 

Other than Tables 11, 18 and 19, which present an over

view of all coefficients, all rho and kappa estimates are 

rounded to the hundredths place for ease in reading. 

Study I: Simulated Data 

Rho estimates 

Table 11 displays rho estimates calculated by the Huynh 

and Sxibkoviak procedures for all simulated test distributions.. 

Huynh estimates of rho ranged from .678 to .996, with a median 

value of .87; Subkoviak estimates ranged from .740 to .994, 

with a median value of .88. As can be seen, Huynh and 
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Table 11. Rho and kappa estimates for simulated data (N=2500) 

Number  ̂  ̂ Rho estimates Kappa estimates 
items Huynh Subkoviak Huynh Subkoviak 

Normal 25 70% .854 .856 .332 .481 
80% .964 .942 .203 .388 
90% .992 .979 .107 .291 

50 70% .903 .895 .538 .633 
80% .966 .961 .427 .537 
90% .995 .991 .251 .287 

75 70% .922 .926 .612 .668 
80% .976 .972 .-498 .590 
90% .996 .994 .329 .455 

Left- 25 70% .684 .741 .368 .482 
skewed 80% .793 .794 .306 .433 
(low) 90% .918 .890 .206 .371 

50 70% .788 .802 .572 .603 
80% .852 .859 .518 .584 
90% .957 .945 .459 .459 

75 70% .834 .833 .668 .667 
80% .878 .880 .623 .642 
90% .956 .954 .497 .581 

Left- 25 70% .834 .852 .296 .478 
skewed 80% • .678 .748 .344 .479 
(high) 90% .715 .740 .308 .430 

50 70% .874 .890 .550 .632 
80% .796 .826 .579 .634 
90% .822 .812 .526 .541 

75 70% .903 .912 .612 .663 
80% .839 .842 .644 .668 
90% .845 .842 .601' .609 
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Siibkoviak estimates deviate little from one another (the 

largest difference being .06). Both Huynh and Subkoviak 

estimates are reasonably high relative to values expected for 

reliability coefficients. 

Table 11 also indicates that Huynh and Subkoviak esti

mates differ with test length, shape of distribution, and 

standard. The effects of these variables on rho estimates 

are discussed below. 

Test lengths Given the same distribution and standard, 

longer tests yield higher rho coefficients without exception. 

Median values for Huynh and Subkoviak estimates by test length 

are shown in Table 12. As shown, Subkoviak estimates are 

slightly higher than Huynh estimates, but this difference 

is not great enough to be of practical importance. 

Table 12. Median rho estimates for simulated data by test 
length 

Test length Huynh 
estimates 

Subkoviak 
estimates 

25 items 83 85 

50 items 87 89 

75 items 90 91 
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Distribution shapes In every case, at each standard 

and test length, both Huynh and Subkoviak estimates for the 

normal distribution are higher than those for comparable 

standards and test lengths of the skewed distributions. 

This is reflected by the medians for each distribution reported 

in Table 13. 

Table 13. Median rho estimates for simulated data by 
distribution shape 

Huynh Subkoviak 
estimates estimates 

Normal .96 .96 

Left-skewed (low) .87 .86 

Left-skewed (high) .83 .84 

Standards No consistent pattern was seen regarding the 

impact the standard across all test lengths and distribution 

shapes. 

Standards and distribution shapes Table 14 displays 

the median rho estimates by standard and distribution shape. 

Huynh estimates are followed by Subkoviak estimates in each 

case. 

The normal and left-skewed (low) distributions showed 

similar patterns: as the standard increased, the rho 

coefficients increased. The left-skewed (high) distribution 
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Table 14. Median rho estimates for simulated data by 
standard and distribution 

Mni-itiai Left-skewed Left-skewed 
Standards (low) (high) 

(70%) (86%) 

70% .90/.89̂  .78/.80 .87/.89 

80% .96/.96 .85/.85 .79/.82 

90% .99/.99 .95/.94 .82/.81 

D̂istribution mode. 

Ĥuynh estimate/Subkoviak estimate. 

did not reveal the same pattern: here, both Huynh and 

Subkoviak coefficients were at their maximum at the lowest 

standard. Figures 2-4 depict these relationships between 

standards and distributions for each test length graphically. 

In all three distributions, the behavior of both Huynh 

and Subkoviak estimates of rho reflect the proximity of the 

mode to the standard. That is, the rho coefficients were at 

their minimum observed value when the standard was near the 

mode of the distribution. The modes for normal, left-skewed 

(low), and left-skewed (high) distributions were within .01 

of 49%, 70%, and 86%, respectively. (Variance in modes was 

due to rounding at different test lengths.) 
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Summary Overall, both Huynh and Subkoviak estimates 

of rho with simulated test data were similar and reasonably 

high. Longer tests yielded higher estimates in all cases; 

the normal distribution displayed higher estimates than 

skewed distributions. Test lengths and the interactions 

between standards and distribution shapes had an impact on 

coefficients: estimates were at their lowest observed value 

when the standards were at or near the distribution modes in 

all cases. 

When the standards and modes coincide, a small dif

ference in form A and B scores (e.g., one point) for 

examinees leads to inconsistency in categorization for the 

largest number of examinees. When the standards are far 

from the modes, a small difference in scores for examinees 

leads to less inconsistency in categorization because fewer 

examinees are near this critical area of the standard 

(shows most inconsistency) when the standards and needs 

converge, and displays increasing values as the standards 

and modes diverge. Thus, rho is at its lowest value of 

the standard. 

Kappa estimates 

Kappa estimates for simulated data are displayed in 

Table 11. As expected, kappa estimates were lower than rho 

estimates. Huynh estimates ranged from .107 to .668, with a 
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median value of .49; Subkoviak estimates ranged from .291 

to .668, with a median value of .54. Subkoviak estimates 

were higher than Huynh estimates by at least .10 for com

parable distributions, test lengths and standards in 15 of 

the 27 cases, and by at least .02 in 25 of the 27 cases. 

Test lengths Given the same standard and distribution, 

longer tests resulted in higher coefficients without excep

tion. For comparable lengths, Subkoviak estimates were 

higher than Huynh estimates. Median values by test length 

are displayed in Table 15. 

Table 15. Median kappa estimates for simulated data by 
test length 

Huynh Subkoviak 
Test length estimates estimates 

25 items .30 .43 

50 items .52 .60 

75 items .61 .64 

Distribution shapes Median values for coefficients 

by distribution are shown in Table 16. As can be seen, the 

normal distribution yielded the lowest kappa estimates. 

Subkoviak estimates are consistently higher than Huynh 

estimates (by from .05-.15) in all distributions. 
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Table 16. Median rho estimates for simulated data by 
distribution shape 

Huynh 
estimates 

Subkoviak 
estimates 

Normal .33 .48 

Left-skewed .49 .58 
(low) 

Left-skewed .58 .63 
(high) 

Standards No consistent pattern was discernible 

regarding the impact of standards on kappa estimates. An 

interaction, however, of standards with distribution shapes 

was evident and is discussed below. 

Standards and distribution shapes Table 17 displays 

the median values for Huynh and Subkoviak estimates of kappa 

by distribution and standard. Huynh estimates are followed 

by Subkoviak estimates in each case. Graphic representa

tions follow in Figures 5-7. 

The normal and left-skewed (low) distributions showed 

a similar behavior in regard to the standard: as the 

standard increased, the kappa estimates decreased. This, 

it will be noted, was the opposite of rho estimates where 

coefficients increased as the standard increased. The left-



Table 17. Median kappa estimates by standard and distribution 

Normal Left-skewed (low) Left-skewed (high) 
(49%)̂  (70%) (86%) 

70% .53/.63̂  .57/.60 .55/.63 

80% .42/.53 .51/.58 .57/.63 

90% .25/.28 .36/.45 .52/.54 

D̂istribution mode. 

Ĥuynh estimates/Subkoviak estimates. 



1.0 

0.9 

0 . 8  

0.7 

0 . 6  
Eh 
M 0.5 
H 

I 0.4 
U 

0.3 

0 . 2  

0.1 

0 . 0  

HUYNH ESTIMATES 

LSH 

LSL 

NOR 

70% 80% 
Standards 

90% 

1.0 

0.9' 

0.8" • 

0.7 

0 . 6  

I 
U 
H 
h 
H 0.4 
8 
0.3 

0 . 2  

0.1 

0 . 0  

SUBKOVIAK ESTIMATES 

a\ 
w 

* 
70% 80% 

Standards 
90% 

Figure 5. Kappa estimates for simulated 25 item tests 



HUYNH ESTIMATES 
1.0 

0.9 • 

0.8 . . 

0.7 

EHO.6 

§ 
H 

HO.5 

I 80.4 

0.3 

0 . 2  

0.1 

0.0 ,  

LSH 

LSL 

NOR 

70% 

Figure 6. 

80% 
Standards 

90% 

1.0|-

0.9- " 

0 . 8  

0.7 

H 0.0 " 

§ 
H 
U 4-

U 0.4 

0.3 

0 . 2  

0.1 

0.0' 

SUBKOVIAK ESTIMATES 

70% 

<T> 
•U 

4. 
80% 

Standards 
90% 

Kappa estimates for simulated 50 item tests 



HUYNH ESTIMATES SUBKOVIAK ESTIMATES 
1.0 

0.9 

0.8 

0.7 

0 . 6  

lo.5 
O 

lo.4 
O 
u 

0.3 

0 . 2  

0.1 

0 . 0  

LSH 

LSL 

[OR 

4- 4. 
70% 80% 90% 

Standards 

1.0 

0.9 

0 . 8  

0.7 

0.6" * 

80.5* 
U 
H 

So .4  
O 
u 

0.3" 

0.2" 

0.1 

0 . 0  

a\ 
tn 

* 
70% 80% 90% 

Standards 

Figure 7. Kappa estimates for simulated 75 item tests 



66 

skewed (high) distribution did not follow this pattern; it 

yielded a maximum coefficient at the 80% standard and mini

mum at the 90% standard. 

As mentioned above, the modes for the normal, left-

skewed (low) and left-skewed (high) were 49%, 70%, and 

86%, respectively. Kappa coefficients, thus, reflected the 

distribution modes in that they were at their maximum ob

served value when the standard approached the mode. This was 

the opposite of the rho coefficients, which were at their • 

minimum value when the standard was near the mode. 

Summary Kappa coefficients were lower than rho 

coefficients at comparable test lengths, distribution shapes 

and standards. This was not unexpected, as both Huynh and 

Subkoviak estimates of kappa take the effect of chance into 

account and rho estimates do not. 

Increasing test length increased the magnitude of esti

mates, but even with the longest tests, estimates were not 

at a level considered acceptably high for reliability coeffi

cients. Both Huynh and Subkoviak estimates reflected the 

mode in that estimates were at their maximum value when 

•standards converged with distribution modes. 
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Study II: Actual Data 

Study II used scores from three tests administered by a 

school district, as well as subtests of 25, 50 and 75 items 

created from each of the tests. Math scores appeared quite 

normally distributed, and the geography and biology scores 

were increasingly left-skewed. 

None of the test distributions in Study II was strictly 

of the beta-binomial family according to goodness-of-fit 

test performed (see Appendix B) . However,, serious ques

tions remain regarding the persuasiveness of these findings 

(see Appendix A). 

Rho estimates 

Table 18 displays rho estimates calculated by Huynh and 

Subkoviak procedures for all subtests of math, geography and 

biology tests. Huynh estimates for the 25-75 item tests 

range from .763 to .986, with a median value of .86; Sub

koviak estimates range from .795 to .977, with a median 

value of .87. As can be seen, Huynh and Subkoviak estimates 

deviate only slightly from one another, the largest dif

ference being .03. In 16 cases at 70% and 80% standards, 

Subkoviak estimates are slightly higher than Huynh estimates, 

but not large enough to be of practical importance. 

Table 19 displays estimates for the full length tests. 

Note that in reporting medians in Table 19 and all following 
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Table 18. Rho and kappa estimates for actual data 

Nuî er Rho estimates Kappa estimates 
items Huynh Subkoviak Huynh Subkoviak 

Math 
(N=2282) 

(N=2160) 

(N=1216) 

25 70% .782 .814 .527 .600 
80% .862 .877 .458 .590 
90% .931 .923 .364 .544 

50 70% .876 .902 .642 .733 
80% .932 .930 .571 .674 
90% .980 .969 .426 .575 

75 70% .900 .920 .701 .774 
80% .950 .946 .630 .708 
90% .986 .977 .498 .613 

25 70% .770 .805 .540 .610 
80% .808 .829 .500 .583 
90% .880 .874 .425 .511 

50 70% .841 .857 .680 .713 
80% .867 .883 .648 .705 
90% .932 .923 .547 .591 

75 70% .886 .878 .728 .752 
80% .894 .907 .691 .740 
90% .951 .943 .596 .622 

25 70% .763 .795 .509 .582 
80% .776 .807 .483 .568 
90% .851 .854 .412 .510 

50 70% .813 .830 .626 .660 
80% .852 .860 .586 .627 
90% .941 .937 .460 .573 

75 70% .845 .854 .658 .706 
80% .867 .868 .657 .670 
90% .939 .936 .554 .590 



Table 19. Rho and kappa estimates for actual data 

Number  ̂ Rho estimates Kappa estimates 
items Huynh Subkoviak Huynh Subkoviak 

Math 95 70% .922 .948 .716 .791 
(N=2282) 80% .966 .980 .641 .721 

90% .992 .993 .502 .679 

Geography 80 70% .869 .878 .735 .754 
(N=2160) 80% .895 .905 .703 .744 

90% .952 .945 .602 .623 

Biology 88 70% .854 .868 .706 .733 
(N=1216) 80% .873 .869 .680 .680 

90% .948 .946 .567 .603 
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tables, only subtests (i.e., 25, 50 and 75 item tests) are 

discussed unless otherwise specified. 

Test lengths Given the same distribution and standard, 

longer tests yield higher rho coefficients without exception. 

Median values for Huynh and Subkoviak estimates by test length 

are shown in Table 20. It is clear that at given test lengths, 

Subkoviak estimates are slightly higher than Huynh esti

mates, but not enough to be of practical importance. 

Table 20. Median rho estimates for actual data by test 
length 

Test length Kuynh estimates Subkoviak estimates 

25 items .80 .82 

50 items .87 .90 

75 items .90 .92 

Distribution shapes At all standards and test 

lengths, both Huynh and Subkoviak estimates for the math 

test are higher than for the biology and geography tests. 

It should be recalled that the math test scores appeared 

quite normally distributed, while the biology and geography 

distributions were clearly skewed (see Table 8). Medians 

for Huynh and Subkoviak estimates for each distribution 

are reported in Table 21. Only subtest coefficients are 
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Table 21. Median rho estimates for actual data by 
distribution̂  

Huynh estimates Subkoviak estimates 

Math .93 .92 

Geography .86 .88 

Biology .85 .85 

Încludes only subtests. 

included in calculations of medians. 

Standards Within every test length and distribution 

shape, rho estimates increased with an increase in the 

standard. This was without exception for all subtests, as 

well as full length tests. 

Standards and distribution shapes Table 22 displays 

the median rho estimates by standard and distribution. Huynh 

estimates are followed by Subkoviak estimates in each case. 

Graphic representations follow in Figures 8-10. 

In all three distributions, the behavior of both Huynh 

and Subkoviak estimates of rho reflected the proximity of 

the mode to the standard. That is, the rho coefficients 

were at their lowest observed value as the standard neared 
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Table 22. Median rho estimates for actual data by standard 
and distribution 

Standards Math 
(46%)* 

Geography 
(62%) 

Biology 
(72%) 

70% .87/.90̂  .84/.85 .81/.83 

80% .93/.93 .86/.88 .85/.86 

90% .98/.96 .93/.92 .93/.93 

Âverage distribution mode. 

Ĥuynh estimate/Subkoviak estimate. 

the mode of the distribution. The average modes for all 

math, geography, and biology subtests were 46%, 62%, and 

72%, respectively. Modes for subtests varied with length 

due to the random selection of items (see Table 8). 

Beta-binomial model . Although none of the distribu

tions was strictly of the beta family (see Appendices A 

and B), the behavior of Huynh estimates (which assume a 

beta-binomial distribution) did not differ from that ex

pected if the distributions had been from the beta family. 

In fact, the behavior paralleled that of the Huynh esti

mates in Study I, which used data which fit the beta-

binomial model. In both studies, the proximity of the 

distribution mode and standard yielded the lowest observed 
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coefficients regardless of distribution shape. 

Summary Huynh and Subkoviak estimates of rho based 

on actual data deviated very little from one another. All 

coefficients were reasonably high in terms of expected values 

for reliability coefficients. 

Coefficients increased with increased test length in 

all cases. Both Huynh and Subkoviak estimates behaved simi

larly in terms of distribution shape and location of the 

standard; lowest observed values were seen when the standards 

were near the distribution modes. 

Kappa estimates 

Kappa estimates for subtests of actual data are dis

played in Table 18, and for full length tests in Table 19. 

Huynh's kappa estimates for subtests ranged from .364 to . 

.728, with a median value.of .55; Sxibkoviak's estimates 

ranged from .510 to .774, with a median value of .61. In 

every case, the Subkoviak estimates were higher than the 

Huynh estimates by at least .03. 

Test lengths Given the same standard and distribution, 

longer tests resulted in higher kappa coefficients without 

exception. In addition, Subkoviak estimates were higher than 

Huynh estimates at every length. Median values for subtests 

by length are displayed in Table 23. 
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Table 23. Median kappa estimates for actual data by test 
length 

Test length Huynh estimates Subkoviak estimates 

25 items .48 .58 

50 items .58 .66 

75 items .62 .71 

Distribution shapes Median values for kappa 

coefficients by distribution are shown in Table 24. The 

geography test yielded the highest median coefficients, 

followed by biology and math. 

Table 24. Median kappa estimates for actual data by 
distribution 

Huynh estimates Subkoviak estimates 

Math .52 .61 

Geography .59 .62 

Biology .55 .59 

Standards Within every test length and distribution 

shape, kappa coefficients decreased as standards increased. 

This behavior was the opposite of rho estimates, where 

coefficients increased with the standard. 
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Standards and distribution shapes Table 25 displays 

the median values for Huynh and Subkoviak estimates of kappa 

by distribution and standard. Huynh estimates are followed 

by Subkoviak estimates in each case. Figures 11-13 depict 

the relationships graphically. 

Table 25. Median kappa estimates for actual data by 
standard and distribution 

Standards Math 
(46%) 

Geography 
(62%)  

Biology 
(72%) 

70% 

80% 

90% 

,64/. 73' 

.57/.67 

,42/.57 

.68/.71 

.64/.70 

.54/.59 

.62/.66 

.58/.62 

.46/.57 

Âverage distribution modes. 

Ĥuynh estimate/Subkoviak estimate. 

In all three distributions, the behavior of kappa 

reflected the proximity of the standard to the mode. The 

average modes for the math, geography and biology tests 

were 46%, 62%, and 72%, respectively. (Differences in sub

test modes for a given test were due to random selection of 

items.) The highest observed value was seen at the 70% 

standard in all cases, including full-length tests. 
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Beta-binomial model The behavior of Huynh estimates 

of kappa (which are based on the beta-binomial model) did not 

appear different from their behavior in Study I, where 

distributions were clearly of the beta family. Huynh and 

Subkoviak estimates were at their highest observed values 

when the standards were at or near the distribution modes, 

regardless of the specific shape of the distributions. 

Summary Kappa estimates were lower than rho esti

mates for the same test lengths, distribution shapes and 

standards. This was expected, kappa's regard for the chance 

level accounts for this difference. Kappa coefficients ob

served would not be considered reasonably high in terms of 

expected values for reliability coefficients. 

Test length affected kappa estimates; increased test 

length increased the coefficients in every case. Both 

Huynh and Subkoviak estimates were at their highest observed 

values when the distribution modes and standards converged. 

This is the opposite of rho estimates, which were at their 

lowest observed values with this condition. 

Comparison of Studies I and II 

With simulated (Study I) and actual (Study II) data, 

both Huynh and Subkoviak estimates of rho were adequately 

high in terms of expected values for reliability coefficients. 
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The lowest observed rho coefficients were .67 and .74 for 

the Huynh and Subkoviak procedures, respectively. The two 

procedures yielded rho coefficients which differed very 

little from one another at comparable test lengths, distri

bution shapes and standards: the largest difference was 

.06. 

Kappa estimates, on the other hand, differed consider

ably by estimation procedure in both studies. Subkoviak 

estimates for subtests were higher than comparable Huynh 

estimates by at least .03 in 47 (of 54) cases. Kappa coeffi

cients were also consistently lower than rho coefficients, 

ranging as low as .107. 

Test length affected all coefficients in a similar and 

unsurprising manner: as number of items increased, coeffi

cients also increased. This was seen in every case without 

exception. 

Distribution shapes had an overall impact on the levels 

of both rho and kappa estimates ; the degree of skewness of a 

distribution affected the general level of estimates. In 

Study I, the normal distribution yielded the highest rho 

coefficients, followed (in order) by the slightly and highly 

skewed distributions. In Study II, the math test yielded 

the highest rho coefficients, followed (in order) by the 

slightly skewed geography test and more skewed biology test. 
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This phenomenon was due to the convergence of standards and 

modes in normal distributions and increasing divergence 

as distribution became more skewed. Convergence of standards 

and modes yields highest rho values. 

An opposite, and less dramatic, effect of skewness 

was seen with the kappa estimates. In Study I, the normal 

distribution yielded the lowest coefficients, followed (in 

ascending order) by the slightly and highly skewed distri

butions. In Study II, the least-skewed math test yielded 

the lowest Huynh estimates, but not the lowest Subkoviak 

estimates. Additionally, the geography and biology tests 

did not follow the Study I pattern with either Huynh or 

Subkoviak kappas: the less skewed geography test yielded 

higher coefficients than the biology test. It should be 

noted, however, that the difference among kappa estimates 

for the three tests in Study II was only .07 for the Huynh 

estimates and .03 for the Subkoviak estimates. 

Both rho and kappa estimates responded to the relation

ship of the distribution shape and the standard. Rho esti

mates were at their lowest observed value when the standard 

neared the distribution mode; kappa estimates were at their 

highest observed value in this condition. This was seen 
t 

consistently with all simulated and actual data, regardless 

of test length and degree of skewness of distribution. 

Studies I and II yielded no apparent differences in rho 
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or kappa behavior other than those accounted for by dif

ferences in distribution shape. Although the beta-binomial 

model, upon which Huynh estimates are based, apparently 

did not fit data in Study II, whether this was due to the 

goodness-of-fit procedure used (see Appendices A and B) 

or the robust nature of the model is unclear. 



86 

DISCUSSION 

The current studies investigated the behavior of rho and 

kappa coefficients with simulated and actual tests of 25 or 

more items, various distribution shapes, and standards of 

70%, 80% and 90% items correct. Huynh (1976) and Subkoviak 

(1976) estimates of rho and kappa for one-form administration 

were calculated. 

All rho estimates were acceptably high, ranging from 

.•67 to .99. Huynh and Subkoviak estimates of rho were of 

comparable magnitude in all cases. Kappa estimates were 

consistently lower, ranging from .10 to .77. The difference 

between rho and kappa levels was due to the consideration 

given to chance by the kappa coefficient. Huynh and 

Subkoviak estimations of kappa were more divergent than rho 

estimates, with Subkoviak coefficients being higher. 

With both rho and kappa estimates, test length affected 

magnitudes of coefficients: increasing test length increased 

estimates without exception. 

Magnitudes of coefficients were also affected by the 

skewness of the distribution shapes. Less skewed distribu

tions (simulated and actual) yielded the highest rho coeffi

cients and magnitudes decreased as skewness increased. 

With kappa estimates, the opposite was seen: the less skewed 

distributions yielded the lowest coefficients. However, for 
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kappa estimates, magnitudes did not change in a consistent 

direction with increases in skewness. 

The effect of distribution shape on rho and kappa was 

a function of the proximity of distribution modes and 

standards. Rho was.at its lowest value when the standard 

was near the distribution mode. In the current studies, with 

standards of 70%, 80% and 90% of items correct, the mode and 

standards converged only in the highly skewed distributions, 

resulting in lower overall estimates for these distributions. 

The opposite behavior occurred with kappa coefficients: kappa 

was at its highest magnitude when the standard and mode 

converged. Thus, the least skewed distributions yielded the 

lowest coefficients. 

The behavior of rho and kappa in the current studies 

followed mathematical patterns and was thus, to a certain 

extent, predictable. Three phenomena, attributable to the 

nature of rho and kappa statistics, were apparent. First, 

values of rho were greater than values of kappa, due to 

the inclusion of the chance level in calculation of kappa. 

Second, longer tests yielded higher coefficients. Because 

scores were more spread in longer tests, lower proportions 

of students scored near the standards, yielding less in

consistency. Third, as discussed at length elsewhere, rho 

values were at their lowest when standards and distribution 
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modes converged. 

No differences were seen between simulated and actual 

data, other than those attributable to differing distribution 

shapes. 

Current and Previous 
Research 

Findings in the current studies regarding the effect of 

the standard and distribution shape were in agreement with an 

earlier study with shorter tests and differing distribution 

shapes (Marshall & Serlin, 1979) . 

In both current and prior research, Huynh and Subkoviak 

procedures resulted in rho coefficients of similar magnitude 

(Subkoviak, 1978) . No previous research, however, has com

pared kappa estimates. Huynh and Subkoviak estimates of 

kappa were not of similar magnitude in the current studies: 

Subkoviak estimates were consistently higher than Huynh 

estimates. 

A possible explanation for the disparity of Huynh and 

Subkoviak kappa estimates lies in the method for calculating 

students' domain scores in the Subkoviak procedure. Sub

koviak offers two methods for estimating domain scores: 

regression estimates and proportions of correct responses 

on the first form (p-values). In the current studies, p-

values were used to compute domain scores. With large 
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sample tests (districtwide or statewide testing), assumptions 

of the regression model, namely, homogeneous subjects (and, 

perhaps, equal item difficulty), are unlikely to be met, 

mandating the use of p-values for domain estimates in these 

situations. Earlier research with Subkoviak's rho coeffi

cient had concerned itself with smaller sample sizes (e.g., 

classroom samples) and mastery tests, wherein these assump

tions are more likely to be met. 

It should be unsurprising that the Subkoviak estimates 

based on the regression procedure yield estimates of rho and 

kappa of similar magnitude to Huynh estimates. The Huynh 

procedure (in assuming a beta-binomial model) implies that 

there is a linear regression of observed on true (hypo

thetical) scores. Both procedures, thus, restrict the range 

of scores and eliminate the fluctuations often seen in 

administered tests. (Preliminary findings in current re

search support the similarity of Huynh and Subkoviak kappa, 

as well as rho estimates when using Subkoviak's regression 

process.) 

The disparity between Huynh and Subkoviak coefficients 

with the use of p-values in Subkoviak's calculations is 

less apparent for rho than kappa. This is due to the impact 

of the p-value twice in the calculation of kappa, in esti

mating both rho and the chance level. 
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In the current study using actual data, the apparent 

lack of fit of the beta-binomial model to data had no ef

fect on the behavior of Huynh estimates. Problems re

garding goodness-of-fit of the beta-binomial model not

withstanding (see Appendix A), current research supports 

the robustness of the model and, thus, the use of Huynh 

estimates. Previous research has, however, shown that in 

some conditions (e.g., extreme bimodality), the Huynh esti

mates do not function as expected (Marshall & Berlin, 1979). 

Implications for Practitioners 

A number of practical questions regarding the use of rho 

and kappa coefficients are likely to be asked by the prac

titioner. 

(1) When is the use of rho and kappa appropriate? Be

fore considering their use, the practitioner must be clear 

that the question being addressed concerns the consistency 

of categorization of students along a continuum, rather than 

the consistency of the degree to which an attribute is dis

played. The latter is an issue of criterion-referenced 

score reliability (see Brennan and Kane, 1977) rather than 

, reliability of mastery classifications, and is not addressed 

by rho or kappa. 

(2) Which is better, one- or two-form estimates? 
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Two-form estimates are preferable in that they involve no 

bias and are easily calculable. They are advocated when two 

forms are, indeed, available and administered to examinees. 

When two forms are not available or not administered to the 

same examinees, the choice of one-form estimates, though 

psychometrically sound, involves loss of information 

regarding the status of those examinees who are classified 

inconsistently. One form estimates supply no information 

regarding the relative proportions of false masters and 

false nonmasters. While false masters may be of more conse

quence in mastery testing, false nonmasters are generally 

of more educational, legal and economic consequence in 

minimum competency testing. Although one form estimates 

given an indication of the proportion of students who may have 

been inconsistently classified, no indication of whether 

students are initially false-masters or false-nonmasters is 

available. This information would be desirable. 

(3) Should a school calculate one-form estimates? In 

situations where only one form is available or administered 

to students, calculation of one-form estimates is contingent 

on several factors. First, the availability of computer 

programs for either Huynh or Subkoviak programs is limited, 

and both necessitate fairly sophisticated computers. Further

more, the Subkoviak program, as currently available, does not 
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include estimation of kappa and must be so modified. 

For schools with the necessary computer facilities, 

calculation of rho or kappa coefficients from one form tests 

provides valuable information about a test which is not 

available from more commonly found reliability coefficients. 

Although, in many instances, after a mastery or competency 

test is administered by a school district, the initial 

concern is the number of nonmasters (requiring remediation, 

retesting, etc.), knowledge of the degree of consistency in 

classification rendered by the test is valuable as an indi

cator of the degree of confidence that should be placed 

in categorizing examinees. 

(4) Which are preferable; Huynh or Subkoviak estimates? 

Several factors must be considered in choosing estimation 

methods. The first, availability of computer resources, was 

discussed above. Second, the expected distribution shapes 

must be considered. In rare situations where distributions 

are not unimodal, use of the Huynh procedure is questionable 

in that it assumes a beta-binomial distribution. In the 

more usual situation, howeyer, when scores are distributed 

unimodally, either estimation procedures is psychometrically 

acceptable. Third, the degree of bias (degree of deviation 

from two-score estimates) must be considered. Research with 

short tests has shown Huynh estimates to be stable and con

servative, while Subkoviak estimates are less stable, both 
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under- and overestimating two-form estimates. While research 

has yet to uphold this finding with longer tests of varying 

distribution shapes, Huynh estimates may be the most cautious 

choice at this time. 

(5) Shall I report rho or kappa? Rho, consistency of 

classification for any reason, and kappa, consistency of 

classification beyond chance, measure very different aspects 

of consistency. Whether one includes or excludes the role 

of chance is the major determinant of the choice between 

rho and kappa, whether they are based on one- or two-form 

coefficients. 

Reporting of kappa coefficients is not without question 

when the standard is predetermined: chance level is figured 

by the proportion of examinees who are classified as masters 

on a particular test administration. This determination of 

chance level by the specific population is questionable (see 

Livingston & Wingersky, 1979), but in situations where 

populations vary greatly from testing to testing, the chance 

level and thus kappa may vary greatly between administrations 

of the same test. 

Furthermore, the interpretation of kappa is problematic 

in that no acceptable levels are apparent. Whereas, the rho 

coefficient is on the more common 0 to +1 scale, the -1 to 

+1 scale of kappa is difficult to interpret. 
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(6) How do I use this information to evaluate and im

prove tests? It is very important that the practitioner under

stand the effect of the interaction between distribution shape 

and placement of the standard on both rho and kappa esti

mates. This effect is seen with both one- and two-form 

estimates. 

Rho will be at its minimum observed value, and kappa 

at its maximum when the mode and standard converge. It is 

possible that a practitioner unfamiliar with this psycho

metric occurrence, will interpret a relatively low rho coeffi

cient in this circumstance as an indication of problems with 

the test, and proceed to change the test or diminish the 

psychometric validity of the test. In a similar manner, the 

unaware practitioner may be more positive than warranted 

about a relatively high kappa estimate which results from 

this distribution - standard interaction. Such a judgment 

error is compounded by the lack of a clear range of accep

table values for kappa estimates. 

In the development of a criterion-referenced test a 

major concern is the establishment of the appropriate diffi

culty level; in many cases, a difficulty level is considered 

appropriate if most (e.g., 70-80%) of students score above 

the standard. While necessary for the validity of the 

test, such an appropriate difficulty level creates a 
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paradoxical situation when rho and kappa are calculated. If 

a criterion-referenced test has a difficulty level allowing 

most students to pass, the distribution mode will likely 

be near the standard. As discussed above, rho will be at 

its minimum value and kappa at its maximum value in this 

situation. The practitioner is faced with a paradox in 

evaluating the goodness of the test; when the difficulty 

level is appropriate, rho and kappa are necessarily effected. 

The varying magnitudes of estimates due to distribution 

shape and standard interaction must also be considered in the 

interpretation of long-term trends or comparisons between 

test scores of different populations. That is, in looking at 

the coefficients calculated from the same test at different 

administrations or from different populations, the practi

tioner may see very dissimilar values of coefficients. The 

overall worthiness of the test in consistently classifying 

examinees should be judged, when possible, on several calcu

lations of rho and kappa rather than on one calculation 

with one population. 

Implications for Future Research 

A number of directions for future research are immediate

ly apparent; 

(1) Research similar to the present (test lengths of 25 



96 

or more, large sample sizes) with coefficients based on 

actual two-form tests is needed. Comparisons among two-

form, Huynh and Subkoviak (both regression and p-value 

approach) estimates under these circumstances would pro

vide an evaluation of the degree of bias (i.e., deviation 

from the two-form estimates) with longer tests and various 

commonly found distributions. 

(2) Research with tests developed and used as cri

terion-referenced tests is also needed. The relationship 

between the standard and distribution mode on coefficients 

is a critical factor in estimates, particularly with ex

tremely skewed distributions. Such extreme shapes are 

likely to occur with minimum competency tests, as items 

necessarily reflect instructional materials to which 

examinees have been exposed and it is expected that most 

of the students will be above the standard. The impact of 

the interaction between shape and standard when the standard 

is below the mode in an extremely skewed test is not fully 

known. 

(3) The calculation of chance in the calculation of 

kappa is problematic when the standard is predetermined and 

applied to all examinees (see Livingston & Wingersky, 1979). 

As discussed above, changes in distribution shape greatly 

effect the calculation of chance, and thus, kappa. Perhaps 
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the use of a chance level which is based on several adminis

trations of the same test or with several groups or examinees 

would provide an alternate procedure. This would lessen the 

common sample-to-sample fluctuations in calculation of chance 

and perhaps provide a clearer picture of kappa levels not 

tied to a specific population or test administration. While 

chance is, indeed, still based on distribution shape(s), the 

soundness and usefulness of such an approach should be ex

plored. 

(4) The relationship between classification consistency 

and criterion-referenced score consistency may offer needed 

information and possibly means for easier estimation of rho 

and kappa. What psychometric and practical relationship may 

there be between squared error loss (see Brennan & Kane, 

1977) and rho and/or kappa? Can easily calculable statis

tics such as the standard deviation or the standard eror be 

adapted to provide information related to classification 

consistency? Are there ways to make estimates of rho and 

kappa that do not require the sophisticated computer pro

grams used herein? 

(5) Although the current Marshall & Serlin (1979) 

estimation procedure (wherein a hypothetical double-length 

test based on scores on one form is created and then split 

in half to create two tests) has received little research 
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due to its complexity and unavailability of computer programs, 

the merits of a split-half approach should be investigated. 

Such an approach may provide a method of calculating rho and 

kappa without the need to create a hypothetical second form, 

thus, avoiding both attendant assumptions and making 

calculation easier. For test of 50 or more items from the 

same domain and of approximately equal difficulty (nor an 

unlikely circumstance with minimum competency tests), a 

comparison between classification based on the two halves of 

the test may provide an adequate estimate of rho and kappa. 

In cases where one test samples from several domains, a 

splitting of items within each domain to create the two 

halves may be both practical and workable. Such an approach 

would be particularly valuable to schools with less sophisti

cated computer equipment. 
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APPENDIX A; BETA-BINOMIAL ASSUMPTIONS 

Two questions are addressed below; (1) What is a 

beta-binomial distribution?; and, (2) How can we determine 

if a distribution is a beta distribution? 

The beta-binomial model assumes that estimates of 

ability parameters (e.g., test scores) are distributed 

within the population in a specified pattern. This pattern 

can assume a wide variety of shapes; normal, skewed, rec

tangular, U-shaped. All of the distributions in this family 

are unimodal (or U-shaped) and quasisymmetrical about the 

mode. 

One mathematical formula defines the density function of 

all distributions in this family (see Wilcox, 1981). Alpha 

and beta are constants (parameters) used in this formula to 

determine (along with n, the number of items) the specific 

shape of each beta distribution. Alpha and beta have a 

mathematical correspondence to the first and second moments 

(the mean and variance) of a distribution. 

Huynh uses the beta-binomial model in the generation of 

the hypothetical (second form) test scores. Use of the model 

is valuable, in that with all beta distributions, the re

gression of the true scores on the observed scores is linear 
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(Lord & Novick, 1968). In other words, the relationship 

between scores from the administered test and Huynh's hypo

thetical scores is linear. 

A major concern with the use of this model lies with 

the lack of a statistical method for determining if the 

model provides a good fit to data (Wilcox, 1981). In cases 

where a distribution is unimodal or U-shaped "some member 

of the beta family should provide a good fit" (Gross & 

Shulman, 1980, p. 195). However, unimodal distributions have 

been reported that also apparntly were not beta distributions 

(Keats, 1964). In the case where a distribution of test 

scores is not unimodal, one assumes the model is not a good 

approximation to this data (Gross & Shulman, 1980). 

Although there is no accepted statistical procedure to 

test the goodness of fit of the beta model, there are 

several methods of getting an indication of the goodness-

of-fit. Three are reported briefly below. 

Original work by Keats (1964) was extended by Wilcox 

(1981) in comparing an observed frequency distribution with 

the distribution predicted by the beta-binomial model. A 

chi-square statistic was used to compare the observed and 

expected frequencies. 

Gross & Shulman (1980) made three predictions regarding 

expected frequencies, reliability coefficients, and validity 
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coefficients of the model given the parameters from a set of 

data. A descriptive comparison was then made between 

expected and actual data. The authors noted that "two theo

retical predictions are in close agreement with the observed 

results" and that (results) "would be considered adequate 

by applied investigators" (p. 200) . The prediction re

garding validity coefficients was in less agreement with 

test data, though it may not have been "simply due to the 

inadequacy of the model" (p. 201). 

Huynh and Saunders (19 79) calculated maximum discrepan

cies between observed frequencies of several sets of data 

and those expected from the model. These discrepancies 

were then subjected to the Kolomogorov-Smirnoff test and 

the significance level obtained. Conclusions were that 

several sets of data "follow closely the beta-binomial model" 

and others "reveal substantial departures" (p. 114). 

In terms of the subsequent behavior of rho estimates, 

Huynh and Saunders found no difference in size, direction or 

degree of error between those data sets that followed and 

those that departed from the model. Other research 

(Wilcox, 1981) also supported the robust nature of the 

model: in cases were the model apparently did not fit data, 

no difference in behavior of Huynh's estimates was seen. 



109 

APPENDIX B: GOODNESS-OF-FIT TEST FOR THE 

BETA-BINOMIAL MODEL 

The observed frequencies for each of the three full-

length tests and nine subtests were individually compared 

with expected frequencies from a beta distribution derived 

using the same alpha and beta parameters as the observed 

distribution. The Aherns and Dieter (1974) algorithm to 

generate random numbers from a beta distribution was 

used to generate nonzero scores for ten times the number of 

examinees on each test. This ten-fold sample was used to 

provide more accurate estimation. The frequencies generated 

were then divided by ten for comparison with observed frequen

cies. 

A chi-square statistic was calculated for each test 

distribution, comparing the observed and expected (i.e., 

generated) frequences. Frequencies at the tails of the 

distributions were summed to eliminate cells with zeros. 

This summing of cells at the tails was done with all 

distributions, though more so with the highly skewed ones. 

Degrees of freedom were adjusted accordingly. 

All chi-square statistics were significant at the p<.01 

level, as shown in Table 9. In comparing observed and ex

pected distributions, it was apparent that large deviations 

often appeared at the tails of the distributions. The small 
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cell sizes at the tails had a greater impact on the chi-

square statistic relative to cells in the middle of the 

distributions. Thus, it may be that the finding of signifi

cance was, in at least some cases, due to the combination 

of a large sample size (reducing the impact of deviations 

in the middle of the distributions), and relatively large 

deviations between observed and expected frequencies at the 

distribution tails. 

Appendix A discussed the controversial (and tentative) 

nature of measuring the goodness-of-fit of the beta-binomial 

model to data. Whether the current findings are due to these 

concerns, the use of the chi-square statistic with large 

sample sizes and large deviations at the tails, or simply 

because all observed distributions were, indeed, not of the 

beta family, is unclear. 


