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A common challenge in analysis of transcriptomic data is to identify differentially
expressed genes, i.e., genes whose mean transcript abundance levels differ across the
levels of a factor of scientific interest. Transcript abundance levels can bemeasured simul-
taneously for thousands of genes in multiple biological samples using RNA sequenc-
ing (RNA-seq) technology. Part of the variation in RNA-seq measures of transcript
abundance may be associated with variation in continuous and/or categorical covariates
measured for each experimental unit or RNA sample. Ignoring relevant covariates or
modeling the effects of irrelevant covariates can be detrimental to identifying differen-
tially expressed genes. We propose a backward selection strategy for selecting a set of
covariates whose effects are accounted for when searching for differentially expressed
genes. We illustrate our approach through the analysis of an RNA-seq study intended to
identify genes differentially expressed between two lines of pigs divergently selected for
residual feed intake. We use simulation to show the advantages of our backward selec-
tion procedure over alternative strategies that either ignore or adjust for all measured
covariates.

KeyWords: False discovery rate; Generalized linear model; Quasi-likelihood; Residual
feed intake.

1. INTRODUCTION

A standard challenge in transcriptomic data analysis is to identify genes whose mean
transcript abundance levels differ across the levels of a categorical factor of primary scientific
interest (e.g., treatment, genotype, tissue, or disease state). Such genes are typically referred
to as differentially expressed (DE).Currently, the leading technologyused to detectDEgenes
is RNA sequencing (RNA-seq). In raw form, RNA-seq data contain information about the
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identity of bases in short RNA sequence fragments known as reads. For the purpose of
identifying DE genes, the number of reads matching each of thousands of gene sequences
is determined for each of several experimental or observational units. These read counts
serve as measures of RNA abundance. Typically, a generalized linear model with a log link
and a negative binomial response is fit to the count data for each gene, and DE genes are
identified by testing, for each gene, whether a model parameter or linear combination of
model parameters is zero.

RNA-seq datasets often contain several covariates in addition to the factor of primary
scientific interest. As in any experiment or observational study, covariatesmay hold informa-
tion about heterogeneity of the experimental or observational units used in the investigation.
Other covariates in an RNA-seq dataset may track variation that is created during the com-
plex process of measuring RNA transcript abundance levels using RNA-seq technology.
If covariates are ignored when searching for DE genes, the unaccounted for variation in
expression levels associated with variation in covariates may obscure the association of
expression levels with the primary factor of interest. On the other hand, explicitly account-
ing for the effects of all covariates in data analysis may be inefficient when some covariates
are actually unassociated or only weakly associated with expression levels. Either ignoring
relevant covariates or accounting for the effects of irrelevant covariates reduces power for
identifying DE genes. Unfortunately, the power problem is exacerbated by the low sample
sizes common in expensive RNA-seq experiments.

To address the challenge of identifying DE genes with RNA-seq datasets that include
covariates, we propose a backward selection algorithm for selecting a subset of covariates
whose effects are estimated and adjusted for when testing for differential expression. Our
goal is to find one subset of all available covariates to include in every gene-specific gen-
eralized linear model. Although it is possible (and perhaps most likely) that the subset of
covariates relevant for one gene is different than the subset of covariates relevant for another,
we seek one subset of covariates common to all genes for twomain reasons. First, the number
of experimental/observational units is often relatively small in RNA-seq datasets, especially
in agricultural applications. Small sample sizes lead to unreliable model selection and con-
siderable uncertainty in models selected separately for tens of thousands of genes. Second,
for purposes of interpretability, it is useful to test for differential expression by adjusting for
the same set of covariates for all genes. Identifying DE genes involves testing whether one
(or more) partial regression coefficients in a generalized linear model are zero. If different
covariates are used for different genes, the interpretation of partial regression coefficients—
and consequently the definition of differential expression—changes from gene to gene. A
shifting definition of what it means for a gene to be DE is undesirable when reporting results.
Instead, we choose one subset of covariates for all genes and attempt to answer the following
question: If we adjust for the effects of the subset of variables that tends to be most relevant
when considering all genes, do we see significant differences in mean transcript abundance
levels across the levels of the factor of primary scientific interest?

As a motivating example, we consider RNA-seq measures of transcript abundance in
blood samples from 31 pigs of two genetic lines created by selection on the basis of residual
feed intake (RFI).RFI is computed as the observed feed intake of an animalminus an estimate
of the feed intake that would be expected considering that animal’s growth characteristics.
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Pigs from the high residual feed intake (HRFI) line tend to eat more feed than expected
adjusted for their growth, while pigs from the low residual feed intake (LRFI) line tend
to eat less than expected adjusted for their growth. Because feed is the largest single cost
incurred by US pork producers, pigs of the LRFI line have economically desirable feeding
and growth characteristics, and understanding the transcriptional differences between these
lines is of scientific interest.

Finding genes differentially expressed between lines is complicated by heterogeneity
among pigs, heterogeneity among the blood samples extracted from pigs, and heterogeneity
among the processed andmeasured RNA samples derived from the blood samples. A total of
13 categorical and continuous covariates (described in detail in the Appendix) are available
for tracking and accounting for this heterogeneity. The backward selection procedure that
we formally define in Sect. 2.3 starts by fitting, for each gene, a full generalized linear model
with a negative binomial response and a log link that includes the effects of primary interest
due to line as well as effects for all 13 covariates. Using criteria described in Sect. 2.4, the
least relevant variable when considering results from all genes is dropped, and the resulting
reduced model is fit for all genes. This process continues until the variable identified as least
relevant is the factor of scientific interest (line in our example). This backward selection
procedure produces a sequence of increasingly smaller subsets of covariates, starting with
all covariates and progressing, one removed variable at a time, down to a subset of covariates
most strongly associated with transcript abundance levels when considering the results for
all genes. From this sequence of subsets of covariates, we determine the subset of covariates
that, when accounted for, leads to identification of the greatest number of genes differentially
expressed across the levels of the factor of primary scientific interest (i.e., line).

The mechanics of our backward selection procedure are similar to those of the usual
backward selection procedure used in multiple regressions in that the variable least signifi-
cant (by some criterion) is removed at each step. Onemajor difference between our proposed
procedure and the usual backward selection procedure for multiple regressions is that we are
dealing simultaneously with thousands of response variables rather than a single response.
A second major difference (related to the first) is that the subset of variables we ultimately
select from the sequence of subsets generated by backward selection is determined by max-
imizing the number of rejected null hypotheses for a test of interest across thousands of
response variables. This strategy is motivated by the knowledge that both including irrele-
vant covariates and excluding relevant covariates can act to reduce power. Thus, selecting
the set of covariates that maximizes the number of rejected hypotheses for the test of interest
is a natural strategy for identifying the most relevant covariates.

In a simulation study presented in Sect. 4, we show that our backward selection proce-
dure is effective at selecting the truly relevant covariates when the truly relevant covariates
are the same for all genes. In this idealized situation, our simulations also show that the
false discovery rate (FDR) can be controlled when tests for differential expression are con-
ducted while adjusting for the effects of the covariates selected using our backward selection
procedure. We also show that FDR can still be controlled even when the set of truly rele-
vant covariates differs across genes. However, results must be carefully interpreted if some
excluded covariates are associated with the factor of primary scientific interest.
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Prior to presenting our differential expression analysis of the RFI RNA-Seq dataset in
Sect. 3, we provide more details about generalized linear models and significance testing for
RNA-seq read count data in Sects. 2.1 and 2.2. We formally define our proposed backward
selection procedure in Sect. 2.3. Section 2.4 covers two measures of covariate relevance
that can be used to choose covariates for removal in each step of backward selection. We
compare the performance of the backward selection algorithm with alternative methods in
a simulation study presented in Sect. 4. The paper concludes with a discussion in Sect. 5.

2. METHODS

2.1. GENERALIZED LINEAR MODELS FOR RNA-SEQ READ COUNT DATA

Consider the analysis ofm genes using RNA-seq read count data from n experimental or
observational units. For g = 1, . . . ,m and i = 1, . . . , n, let ygi be the read count for gene g
from experimental/observational unit i . Let xi = (x′

i1, . . . , x
′
ik)

′ denote a vector of known
explanatory variable values for the i th unit. The k explanatory variables include the factor of
primary scientific interest and k−1 continuous ormulti-level categorical covariates.Without
loss of generality, we assume that xi1 (the leading subvector of xi ) is a vector of zero-one
indicator variable values that code for the level of the factor of primary scientific interest
associated with unit i . The number of components of xi1 is one less than the number of
levels of the factor of primary scientific interest. For example, for the RFI dataset discussed
in Sect. 1 and in more detail in Sect. 3 and the Appendix, xi1 is simply a single indicator
variable that takes the value 1 if the i th pig is from the LRFI line and the value 0 if the
i th pig is from the HRFI line. Each of the other vectors xi2, . . . , xik corresponds to either
a continuous or categorical covariate that is not of primary scientific interest. Vectors for
continuous covariates have only one element while vectors corresponding to categorical
covariates consist of indicator variable values with one less indicator than the number of
levels of the categorical covariate. Finally, let oi be the normalization offset computed for
unit i . The normalization offsets account for differences in the thoroughness of sequencing
across the units. A variety of normalization offsets have been proposed in the literature (see,
e.g., Marioni et al. 2008; Mortazavi et al. 2008; Robinson and Oshlack 2010; Anders and
Huber 2010; Bullard et al. 2010; Risso et al. 2014a,b, and references therein). Throughout
this paper, we set oi to be the log of the 0.75 quantile of unit i read counts in accordance
with the recommendation of Bullard et al. (2010).

As is popular in RNA-seq data analysis, we use, as a working assumption, that the
read counts for gene g (yg1, . . . , ygn) are independent and that ygi ∼ NB(μgi , ωg), where
NB(μgi , ωg) is the negative binomial distribution with mean μgi , dispersion parameter ωg ,
and variance μgi + ωgμ

2
gi . Letting S represent a subset of {1, . . . , k} that contains 1, we

consider log-linear models of the form

log(μgi ) = oi + βg0|S +
∑

j∈S
x′
i jβg j |S , (1)

where βg0|S is an unknown intercept parameter, βg1|S is an unknown parameter vector
for the factor of primary scientific interest, and βg j |S is a vector of unknown covariate
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effects for each j ∈ S \ {1}. The set S is included in the parameter subscripts to emphasize
that the meaning of partial regression coefficients depends on all the covariates included in
the model. We use S∗ to represent the unknown set containing 1 and the largest subset of
{2, . . . , k} such that j ∈ S∗ \ {1} implies βg j |S �= 0 for some g ∈ {1, . . . ,m}. This makes
S∗ \ {1} the set of all indices corresponding to covariates relevant for at least one gene.

For all g = 1, . . . ,m, we wish to test HS∗
0g1 : βg1|S∗ = 0. If HS∗

0g1 is false, gene g is said
to be differentially expressed (DE). Otherwise, gene g is said to be equivalently expressed
(EE). Because the set of all relevant covariates S∗ \ {1} is unknown, we cannot directly test
HS∗
0g1 for any gene g. Instead, we use a backward selection procedure to first identify a set of

covariates Ŝ∗ to approximate S∗. Then, for each gene g, we fit the (possibly misspecified)
model in which the true equation defining log(μgi ) in (1) is replaced by

log(μgi ) = oi + βg0|Ŝ∗ +
∑

j∈Ŝ∗
x′
i jβg j |Ŝ∗ . (2)

Note that the regression coefficients in (2) are the same as the partial regression coefficients
in (1) whenever Ŝ∗ = S∗. Even if Ŝ∗ �= S∗, the partial regression coefficients of interest
given by βg1|S∗ may be similar to βg1|Ŝ∗ if Ŝ∗ includes the most relevant covariates. In
such situations, reasonable decisions about whether βg1|S∗ = 0 may be reached by testing

H Ŝ∗
0g1 : βg1|Ŝ∗ = 0. Thus, for each g ∈ {1, . . . ,m}, we test H Ŝ∗

0g1 : βg1|Ŝ∗ = 0, andweuse the
p-values from thesem tests to declare a subset of them genes to be differentially expressed.

2.2. SIGNIFICANCE TESTING FOR RNA-SEQ READ COUNT DATA

A variety of methods have been proposed for testing the significance of regression coeffi-
cients in generalized linear models for RNA-seq read count data. Some prominent examples
include Lu et al. (2005), Robinson and Smyth (2008a,b), Anders and Huber (2010), Hard-
castle and Kelly (2010), Di et al. (2011), Van De Wiel et al. (2012), and McCarthy et al.
(2012). A recent review of methods was provided by Lorenz et al. (2014). To conduct our
tests for differential expression and to assess the significance of covariates, we use the R

(R Core Team 2012) QuasiSeq package, which implements the quasi-likelihood testing
method developed by Lund et al. (2012). This approach was recently found by Burden et al.
(2014) to be the “best performing package in the sense that it achieves a low FDR which is
accurately estimated over the full range of p-values.”

In brief, the QuasiSeq method uses a hierarchical model for gene-specific quasi-
dispersion parameters to obtain quasi-dispersion parameter estimates that are stabilized by
borrowing information across genes. For each gene, the usual likelihood ratio test statistic for
testing the significance of a subvector of regression coefficients is then scaled by the inverse
of the estimated quasi-dispersion parameter. This scaled test statistic is then compared to an
appropriate central F distribution to obtain an approximate p-value. Approximate control of
the false discovery rate (FDR) at any desired level α is obtained by converting the p-values
to q-values (Storey 2002) and rejecting a null hypothesis if and only if its corresponding q-
value is less than α. When computing q-values by the method of Storey (2002), an estimate
of m0, the number of true null hypotheses among all m null hypotheses tested, is required.
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We use the histogram-based method of Nettleton et al. (2006) to estimate m0. Desirable
theoretical characteristics of a closely related histogram-based approach were demonstrated
by Liang and Nettleton (2012).

The denominator degrees of freedom parameter for the F distribution used to obtain
p-values in the quasi-likelihood analysis are bounded below by the sample size minus the
number of estimated partial regression coefficients and, all else equal, will decrease as irrel-
evant covariates are included in the model. Decreased denominator degrees of freedom can
result in a loss in power for detectingDEgenes. On the other hand, excluding relevant covari-
ates will increase the denominator degrees of freedom at the cost of larger quasi-dispersion
parameter estimates due to lack of model fit. Because the estimated quasi-dispersion para-
meters are the denominators of the F statistics, larger quasi-dispersion parameter estimates
lead to smaller F statistics and, again, reduced power for identifying differentially expressed
genes. For these reasons, finding the most relevant set of covariates is crucial for differential
expression analysis.

2.3. THE PROPOSED BACKWARD SELECTION ALGORITHM

LetS be any subset of {1, . . . , k}. For any j ∈ S, let p j |S denote the vector ofm p-values
obtained by testing HS

0g j : βg j |S = 0 for each gene g = 1, . . . ,m. Let r( p j |S) be a measure
of the relevance of x j inmodel (1); as an example, the simplest of the two relevancemeasures
we consider in this paper (see Sect. 2.4) is the number of elements of p j |S less than 0.05.
Let S1 = {1, . . . , k} and consider an iterative procedure whose �th iteration is as follows:

1. Compute p j |S�
for all j ∈ S�.

2. Let q� be the vector of q-values obtained from p1|S�
.

3. Let R�(α) be the number of q-values in q� less than or equal to a user-defined FDR
threshold α.

4. Find j∗ so that r( p j∗|S) ≤ r( p j |S) for all j ∈ S�.

5. If j∗ = 1, stop iterating. Otherwise, carry out the � + 1st iteration with S�+1 =
S� \ { j∗}.

Suppose the iterative procedure concludes after L iterations, and let �∗ be the smallest
element of {1, . . . , L} such that R�∗(α) ≥ R�(α) for all � ∈ {1, . . . , L}.We set Ŝ∗ = S�∗ and
base our inference about differential expression on the fit of model (2). By the definition of
�∗, this analysis will maximize the number of genes declared to be differentially expressed
(at FDR threshold α) over the L models that correspond to the L explanatory variable
index sets S1 ⊃ · · · ⊃ SL . Despite maximizing the number of genes declared differentially
expressed over the sequence of models, we show through simulation studies in Sect. 4 that
this approach can control the false discovery rate at desired levels.

2.4. MEASURES OF VARIABLE RELEVANCE

For a given S ⊆ {1, . . . , k} and any j ∈ S, we consider variable j to be an irrelevant
variable if
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HS
0g j : βg j |S = 0 is true for all g = 1, . . . ,m. (3)

When (3) holds, each element of p j |S will be uniformly distributed on (0, 1) whenever the
test used to produce the elements of p j |S has size equal to the significance level for all
significance levels in (0, 1). If the test used to produce the elements of p j |S is unbiased for
all significance levels, then an element of p j |S corresponding to a false null hypothesis will
have a distribution stochastically smaller than uniform(0, 1) and a density that is decreasing
on the interval (0, 1). Based on this reasoning, the empirical distribution of the elements
of p j |S provides information about the relevance of variable j in the model that includes
the explanatory variables whose indices are contained in S. An empirical distribution close
to uniform or stochastically larger than uniform implies little relevance while an empirical
distribution with a clear excess of small p-values relative to a uniform distribution implies
relevance of variable j for at least least some appreciable number of genes.

In practice, the tests used to assess significance are only approximate, each observed p-
value is only a single draw from itsmarginal distribution, and dependence among genes leads
to dependence among p-values. For all of these reasons, empirical distributions composed
of one p-value from each gene can have shapes that are neither uniform nor stochastically
smaller than uniform. Nonetheless, measuring the extent to which an empirical distribution
of the elements of p j |S departs from uniform toward a distribution with a decreasing density
on (0, 1) can provide a useful measure of relevance for variable j . As an example, the
histograms in the first row of Fig. 1 show the empirical distribution of the elements of p j |S
for each j ∈ S = {1, . . . , 14}. Based on visual inspection, covariates like RINb, Conca,
Order,Diet, and Eosi appear irrelevant in the full model, while covariates like Concb, Neut,
Mono, and Block appear relevant.

There aremanyways to formallymeasure the relevance of explanatory variable j through
definition of a relevance function r(·) thatmaps p j |S to the real line.We consider two choices
for r(·), one relatively simple and one more complicated. It turns out that both measures of
relevance lead to similar performance for our backward selection and testing procedure. As
noted in the previous section, the simpler of our two relevance measure sets r( p j |S) to the
number of elements of p j |S less than 0.05. We use p.05 as an abbreviation for this criterion
in the remainder of the paper. The more complicated version of r(·) is described as follows.

Given a vector of p-values p = (p1, . . . , pm)′, let F̂m(·) be the empirical distribution
function of the elements of p. If we were to assume that the elements of p were an inde-
pendent and identically distributed sample from a distribution with cumulative distribution
function F(·), then F̂m(·) is known to be the nonparametric maximum likelihood estimator
of F(·). If we were to assume that the distribution defined by F(·) has a non-increasing
density, then the nonparametric maximum likelihood estimator of F(·), subject to the con-
straint of a non-increasing density, is given by F̃m(·), the least concave majorant of F̂m(·)
(Grenander 1956). If we let

r( p) = √
m sup

x∈(0,1)
[F̃m(x) − x], (4)

then r( p) is a Kolmogorov–Smirnov-type statistic that measures the extent to which the
empirical distribution of the elements of p departs from a uniform(0, 1) distribution toward
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Figure 1. Histograms of p-values at each iteration of the backward selection procedure applied to the RFI RNA-
seq dataset using the number of p-values less than 0.05 (p.05) as the measure of covariate relevance. Rather
than using a common upper limit for each histogram’s vertical axis, the upper limit varies across histograms to
accommodate the height of the tallest bar in each histogram. Using variable upper limits makes it easier to see
differences between the histogram shapes of relevant and irrelevant covariates.

a distribution with a decreasing density on (0, 1). Henceforth, we refer to this measure of
variable relevance as the GKS criterion (short for Grenander–Kolmogorov–Smirnov).

3. ANALYSIS OF THE RFI RNA-SEQ DATASET

The proposed backward selection algorithmwas used to analyze theRFIRNA-seq dataset
introduced in Sect. 1 and described in more detail in the Appendix. Recall that the primary
scientific goal is to identify genes whose mean transcript abundance levels, adjusted for
relevant covariates, differ between the LRFI and HRFI lines. The dataset consists of read
counts for 12,280 genes for each of 31 pigs.As is customary inRNA-seq analysis, this dataset
excludes genes with predominantly low read counts because genes with low read counts
contain little information about differential expression and can lead to computation problems
when attempting to find maximum likelihood estimates of partial regression coefficients in
our negative binomial generalized linear models. Thus, the 12,280 genes analyzed in this
study each have average read counts of at least 8 and no more than 27 zero counts across the
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31 pigs. This same threshold for gene inclusion was used throughout the simulation study
described in Sect. 4.

Table 1 and Fig. 1 summarize the results of the backward selection algorithm when p.05
is used as the measure of covariate relevance. The covariate RINbwas the first to be removed
from the full model, followed in subsequent iterations by the covariatesOrder, Eosi,Conca,
Diet, RFI, Baso, and Mono. At the 9th iteration, Line was judged to be the least relevant
factor, and thus, the backward selection procedure terminated.

Figure 1 shows that several of the variables have p-value distributions that change sub-
stantially as covariates are removed during backward selection. The p-value distribution
of Lymp, for example, is close to uniform in the full model but gradually concentrates
increasing mass on small p-values as variables are excluded from the full model. Lymp
is a continuous covariate measured for each blood sample and is not orthogonal to any
variable in the dataset. Lymp has particularly high Pearson correlation coefficients (0.63,
0.67, and 0.85) with three other blood sample variables, Eosi, Baso, and Mono. Due to
this non-orthogonality, it is not surprising to see changes in the significance of the Lymp
partial regression coefficients as Eosi, Baso, andMono are eliminated from the model after
iterations 3, 7, and 8, respectively. Many other changes in p-value histograms from iteration
to iteration can be explained similarly.

As the bottom row of Table 1 shows, the model corresponding to iteration � = 7 yielded
the greatest number (R7(0.05) = 448) of q-values no larger than 0.05 for the Line test.
Hence, the backward selection procedure resulted in the declaration of 448 genes as differ-
entially expressed between the LRFI and HRFI lines while controlling for the effects of the
covariates Baso,Mono, Concb, RINa,Neut, Lymp, and Block. For this dataset, the backward
selection procedure using the GKS criterion to measure covariate relevance deleted vari-
ables in a slightly different order but selected the same final model and, therefore, provided
results identical to backward selection using p.05 to measure covariate relevance.

The results of our proposed backward selection procedure can be contrasted with two
simple alternative strategies that might be used in practice. The first such strategy is to
account for all covariates regardless of whether the data suggest they are relevant. As shown
in the first column and last row of Table 1, fitting the full model yielded only two genes with
q-values less than 0.05 for the Line test. The second strategy is to ignore all covariates. This
is the only strategy available to researchers who do not measure or record covariates, and
it might be the most commonly used strategy, considering that many published RNA-seq
studies of differential expression do not mention covariates. When the 13 covariates in the
RFI RNA-seq analysis were ignored, 251 genes had q-values less than or equal to 0.05 for
the Line test. Both of these alternative strategies identified far fewer differentially expressed
genes than our proposed backward selection procedure. Via simulation, we evaluate the
efficacy of these simple strategies relative to our backward selection procedure in the next
section.
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Table 1. The first 14 rows show the number of p-values less than 0.05 for each covariate at each iteration of the
backward selection algorithm applied to the RFI RNA-seq data.

� = 1 � = 2 � = 3 � = 4 � = 5 � = 6 � = 7 � = 8 � = 9

RINb 202
Order 235 324
Eosi 303 340 320
Conca 450 503 421 409
Diet 392 497 489 507 335
RFI 585 708 1004 1042 879 917
Baso 255 458 742 742 1262 1396 1275
Mono 1400 1531 1293 1519 1371 1496 1506 1432
Line 722 1221 1682 1793 1676 1949 2303 2139 2235
Concb 1680 2635 3015 3326 4353 4414 4385 4331 4153
RINa 281 681 1939 2020 2100 2118 2543 2594 2997
Neut 1138 1704 2123 2155 2290 2350 2352 2987 2919
Lymp 625 818 1119 1251 1350 1393 1354 1606 4225
Block 967 1259 1867 2152 2379 2456 2406 2380 2440
R�(0.05) 2 2 1 1 0 46 448 337 379

The last row R�(0.05) is the number of q-values less than or equal to 0.05 for the test of the Line factor in each
iteration

4. SIMULATION STUDY

We considered three simulation scenarios described in detail in Sects. 4.1, 4.2, and 4.3,
respectively. We compared analysis approaches with respect to their ability to identify dif-
ferentially expressed genes while controlling FDR. Such comparisons require simulated
datasets to contain both EE and DE genes. Within each scenario, we varied π0 = the pro-
portion of EE genes over the values 0.6, 0.7, 0.8, and 0.9. Within each scenario and for
each value of π0 ∈ {0.6, 0.7, 0.8, 0.9}, we simulated 100 datasets. Each dataset included
read counts for 31 pigs and 5000 genes simulated from independent negative binomial dis-
tributions. The log of each negative binomial mean was set to be a linear combination of
covariates as in Eq. (1), with S specifically defined in each scenario. Except where other-
wise noted in Sect. 4.3, covariates for the 31 pigs were held fixed at the values observed for
the actual RFI data. The true values of partial regression coefficients and negative binomial
dispersion parameters were set based on values estimated from the RFI data, and EE genes
were established by setting to zero the partial regression coefficient for the Line indicator
variable as detailed in the following sections.

4.1. SIMULATION SCENARIO 1: SAME SET OF RELEVANT COVARIATES FOR

EVERY GENE

The first simulation scenario provides a favorable case for our backward selection pro-
cedure in which the same set of covariates is relevant for every gene. As the common set
of relevant covariates, we used those identified by our backward selection procedure when
applied to the RFI dataset in Sect. 3, i.e., Line, Baso, Lymp,Mono, Neut, Concb, RINa, and
Block. As true parameter values for simulating new data, we used the dispersion parameter
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estimates and the partial regression coefficient estimates from the fit of the selected model
to the RFI data, except that we set partial regression coefficients on the Line indicator vari-
able to zero for a subset of genes to permit simulation of EE genes. More specifically, the
m̂0 = 7795 least significant partial regression coefficients for Line were set to zero, where
m̂0 = 7795 is the estimated number of Line partial regression coefficients equal to zero
when the method of Nettleton et al. (2006) is applied to Line p-values from the fit of the
selected model to the RFI data. This strategy yielded a parameter vector (consisting of a
dispersion parameter and partial regression coefficients) for each of 7795 EE genes and each
of 12280 − 7795 = 4485 DE genes. To simulate any particular dataset for a given value of
π0 ∈ {0.6, 0.7, 0.8, 0.9}, we randomly sampled 5000 · π0 EE gene parameter vectors and
5000 · (1 − π0) DE gene parameter vectors. The selected parameter vectors and observed
covariates for the 31 pigs were used to simulate a 5000 × 31 dataset of negative binomial
read counts. Random selection of parameters and generation of data were independently
repeated 100 times to obtain the 100 datasets for each value of π0 ∈ {0.6, 0.7, 0.8, 0.9} as
described in the introduction to Sect. 4.

4.2. SIMULATION SCENARIO 2: DIFFERENT SETS OF RELEVANT COVARIATES

FOR DIFFERENT GENES

The second simulation scenario is designed to evaluate our backward selection procedure
when, contrary to our working assumption, different sets of covariates are relevant for
different genes within each dataset. In simulation scenario 2, each dataset was simulated
using exactly the sameprocedure described inSect. 4.1, except that instead of generating data
for all 5000 genes using one set of relevant covariates, data for 1250 genes were simulated
from each of four covariate sets. The covariate sets we considered are sets S6, S7, S8, and
S9, which correspond to iterations � = 6, 7, 8 and 9 form theRFI data analysis is Sect. 3. The
largest of these covariate sets (S6) contains the covariate RFI in addition to the covariates
considered in Sect. 4.1 (those inS7). Covariate setsS8 andS9 differ fromS7 by the exclusion
of covariates Baso and both Baso and Mono, respectively.

4.3. SIMULATION SCENARIO 3: ORTHOGONAL COVARIATES

As described in the Appendix, the covariate RFI provides a continuous measure of resid-
ual feed intake for each of the 31 pigs in the study. Because the LRFI and HRFI lines were
created by selecting on residual feed intake for several generations, it is not surprising that
the LRFI pigs in our study tend to have lower RFI values than the HRFI pigs in our study.
Thus, theRFI covariate is strongly associated with the factor Line in our dataset. This associ-
ation makes it difficult to distinguish the direct effects of Line from the direct effects of RFI
on transcript abundance levels. To remove this partial confounding in the third simulation
scenario, the average RFI value for pigs from the LRFI line was subtracted from each LRFI
pig’s RFI value. Likewise, the average RFI value for pigs from the HRFI line was subtracted
from each HRFI pig’s RFI value. After these subtractions, the altered RFI values sum to
zero within each line so that the altered RFI variable is orthogonal to the Line factor. The
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simulation strategy described in Sect. 4.2 was then repeated with the altered RFI values in
place of the original RFI values.

4.4. SIMULATION RESULTS

We analyzed the simulated datasets using model (2) with five different strategies for
choosing Ŝ∗: all available covariates (Full), only the factor of primary interest (Line Only),
the backward selection procedure with the p.05 measure of covariate relevance (Backward),
the backward selection procedure with the GKS measure of covariate relevance, and Ŝ∗ =
S∗, i.e., using the true set of covariates that was actually used to simulate the data for each
gene (Oracle). Of course, the Oracle procedure cannot be used in practice, but its inclusion
provides a useful reference measure of the performance achieved if covariate selection were
perfect.

For all five analysis strategies, the QuasiSeq R package was used to compute a p-value
for testing the significance of the partial regression coefficient on the Line indicator variable
for each gene. These p-values were converted to q-values (as described in Sect. 2.2), and
genes with q-values no larger than 0.05 were declared DE. We evaluated each procedure’s
performance according to three criteria: the incurred FDRwhenFDR is nominally controlled
at 5%, the number of true positive (NTP) declarations of differential expression, and the
partial area under the receiver operating characteristic curve (PAUC) corresponding to false
positive rates less than or equal to 0.05. These performance criteria assess error control,
power, and the ability to distinguish EE and DE genes from one another, respectively. In all
scenarios and for all performancemeasures, the results for our backward selection procedure
with the p.05 variable relevance criterion were very similar to the results when using the
GKS variable relevance criterion. To simplify figures, we have shown results only for the
simpler p.05 version of backward selection.

A summary of the results for simulation scenario 1 is displayed in the left columnof Fig. 2.
All methods provided approximate control of the FDR at or below 5 %. The Full approach
was slightly conservative while the Line Only approach was very conservative, with actual
FDR around 1 %. In terms of power for detecting DE genes and the ability to distinguish
EE genes from DE genes, Backward performed as well as Oracle, while the Full and Line
Only procedures exhibited far lower NTP and PAUC on average. The backward selection
procedure was able to match the Oracle procedure in this scenario because the correct set
of relevant covariates was chosen by backward selection (Ŝ∗ = S∗) for around 80 % of
the datasets. When backward selection failed to identify the exact set of relevant covariates
(Ŝ∗ �= S∗), the selected set was typically a small superset of the true set (Ŝ∗ ⊃ S∗) so that
the fitted model was correct, though slightly more complicated than necessary due to the
inclusion of one or (rarely) more irrelevant covariates.

The results for simulation scenario 2 are summarized in the second column of Fig. 2.
Backward selection matched the Oracle procedure with respect to power (as measured by
average NTP) and outperformed all methods except Oracle with respect to PAUC. Backward
selection, however, failed to control FDR at 5 % for all values of π0 ∈ {0.6, 0.7, 0.8, 0.9}.
The incurred FDR rate was more than four times the nominal level when π0 = 0.9. The
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Figure 2. Empirical estimates of incurred false discovery rate (FDR), the average number of true positive (NTP)
detections of differential expression, and the average partial area under the receiver operating characteristic curve
(PAUC) from 100 replicates as a function of π0 ∈ {0.6, 0.7, 0.8, 0.9} for Backward, Full, Line Only, and Oracle
methods and all three simulation scenarios. Standard errors of means (not shown to improve clarity of plots) were
no larger than 0.0125, 4.6, and 0.00017 for FDR, NTP, and PAUC, respectively.

Line Only method also failed to control FDR for π0 = 0.8 and 0.9, but the departures from
the target 5 % rate were not as severe for Line Only as for Backward.

The failure of the backward method to control FDR can be explained as follows. In
simulation scenario 2, the true set of covariates is S6 for 1250 genes, S7 for 1250 genes,
S8 for 1250 genes, and S9 for 1250 genes. Despite different sets of relevant covariates for
different genes, the backward procedure, by design, selects one common set of covariates for
all genes for reasons explained in Sect. 1. Backward selections chose S7 for more than 90 of
the 100 datasets on average across π0 ∈ {0.6, 0.7, 0.8, 0.9}. Because S6 ⊃ S7 ⊃ S8 ⊃ S9,
selecting S6 would guarantee that all relevant covariates were included in the model for
each gene. However, S6 includes RFI, which is strongly associated with Line as discussed
in Sect. 4.3. The lack of orthogonality between the Line indicator variable and RFI reduces



590 Y. Nguyen et al.

Table 2. The average number of false discoveries over 100 replicates as a function of π0 and the true covariate
set used to generate data in simulation scenario 2.

π0 S6 S7 S8 S9 Total

0.6 46.57 5.47 5.62 6.44 64.10
0.7 44.40 4.14 3.99 4.85 57.3
0.8 41.44 2.77 2.64 3.45 50.30
0.9 23.58 1.17 1.43 1.44 27.62

the significance of the Line partial regression coefficient inmodels that include both Line and
RFI. Decreased significance of the Line partial regression coefficient reduces the number of
Line q-values less than or equal to 0.05 and discourages selection of S6 by our backward
selection procedure. For EE genes whose true covariate set is S6, the partial regression
coefficients for RFI and Line are nonzero and zero, respectively. However, when models
excluding RFI are selected (e.g., S7) and fit to the data, the association between gene
expression andRFI andbetweenRFI andLine leads to a nonzeropartial regression coefficient
for Line in the fitted model. In the notation of Sect. 2, we have βg1|S6

= 0 and βg1|S7
�= 0

for EE genes whose true covariate set is S6. When the selected covariate set is S7 for such
genes, the null hypothesis HS7

0g1 : βg1|S7
= 0 is correctly rejected, but this leads to a false

discovery of differential expression in our simulation set up because βg1|S6
= 0. Table 2

confirms that the vast majority of false discoveries by the Backward procedure occurred for
genes whose relevant covariate set is S6.

Results for simulation scenario 3 are presented in the third column of Fig. 2. Recall
that scenario 3 is identical to scenario 2 except that the strong association between the RFI
covariate and the Line factor was eliminated by centering RFI values on zero within each
line by subtracting within-line RFI averages. The resulting orthogonality between RFI and
Line improved the performance of all methods with respect to all performance criteria when
compared to both simulation scenarios 1 and 2. Backward performed as well as Oracle even
though the relevant set of covariates differed from gene to gene. For approximately 75 %
of the datasets, covariate set S6 was selected so that fitted models included the relevant
covariates, along with 0, 1, 2, or 3 extra covariates depending on the gene. The loss of
denominator degrees of freedom for including up to three irrelevant covariateswas negligible
in this case. However, the loss in power was substantial when all covariates were used, as
shown by the relatively poor performance of the Full method.

5. DISCUSSION

The proposed backward selection algorithm provides a practical method for identifying
and controlling for the effects of relevant covariates in the analysis of RNA-seq data. In
the past, we have used visual inspection of p-value histograms (like those in Fig. 1) to
identify and remove irrelevant covariates from models for RNA-seq data. The proposed
backward selection algorithm provides a well-defined formalization of this process. This
section discusses limitations, variations, and extensions of the backward selection algorithm.
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5.1. COMBINING MODEL SELECTION AND INFERENCE

Caution is in order any time the same dataset is used both to select a model and to per-
form statistical inference with the selected model (see Miller 2002, for example). We may
avoid some problems associated with double use of data because of an important difference
between the work we have presented here and traditional work onmodel selection and infer-
ence. While most past work focuses on a single response variable, we combine information
from thousands of response variables when choosing the common set of variables to include
in the model for each response. Although our backward selection algorithm uses data from
all genes, excluding the data from any one gene would be very unlikely to change the set of
selected covariates. Thus, we can view the model used to make inferences about any single
gene as being selected using data from other genes. This separation between the data used
for model selection and data used for inference could be partly responsible for the good
inferential performance following backward selection exhibited in the simulation results of
Sect. 4.4.

5.2. BACKWARD SELECTION WITH OTHER RNA-SEQ ANALYSIS METHODS

The reasoning behind our backward selection algorithm rests on the claim that includ-
ing irrelevant covariates and excluding relevant covariates in models for gene expression
analysis results in power loss for scientific discovery. Support for this claim is given in
Sect. 2.2 and in the simulation results of Sect. 4.4. Our argument depends to some extent
on the quasi-likelihood approach implemented in QuasiSeq and does not directly apply
to other inference methods that do not account for lack of model fit with quasi-dispersion
parameter estimates and do not account for model complexity with denominator degrees of
freedom. Thus, further study is required before our backward selection algorithm could be
recommended for use with other RNA-seq analysis packages. However, of the many meth-
ods available for RNA-seq analysis other than QuasiSeq, one approach does stand out as
a good candidate for use with backward selection. The voom approach (Law et al. 2014)
in conjunction with the R package limma (Ritchie et al. 2015) involves weighted linear
model analysis of log-transformed RNA-seq read counts. The limma estimates of linear
model error variances are analogous to the quasi-dispersion estimates of QuasiSeq, and
both methods of inference involve F statistics whose denominator degrees of freedom are
derived from the same basic argument. For these reasons, we expect the proposed backward
selection to work well with voom/limma analysis.

5.3. MEASURES OF COVARIATE RELEVANCE

We have suggested two related measures of covariate relevance to use in backward
selection. We have found that both measures perform very similarly across the simulation
scenarios we considered. The p.05 criterion has an advantage of simplicity but could be
criticized because of the somewhat arbitrary 0.05 p-value threshold. Alternative thresholds
could be considered, but we do not expect much variation in performance across thresholds
near 0.05 because of the similar performance of p.05 and GKS, which is threshold free. Both
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the p.05 and GKS criteria provide reasonable ways to detect departures from uniformity
toward distributions stochastically smaller than uniform, and both criteria produce similar
sequences of models that permit effective model selection.

5.4. DIRECT VERSUS INDIRECT ASSOCIATIONS AND AUTOMATIC COVARIATE

INCLUSION

For model selection, we have proposed choosing the model (from those in the backward
selection sequence) that maximizes the number of declarations of differential expression
subject to control of FDR at a desired nominal level. Despite the greedy nature of this
selection criterion, we found that the approach worked well except for challenging genes
where there is no direct association between gene expression and the primary factor of
interest, but rather only indirect association that results from strong association between the
primary factor of interest and a covariate that is directly associated with gene expression.
In this situation, illustrated with simulation scenario 2 in Sect. 4.2, the proposed backward
selection procedure failed to control FDR. However, most false discoveries in this case
were not incorrect conclusions if the declarations of differential expression are stated as
associations between gene expression and the primary factor of interest while controlling
for the effects of the selected covariates. In our analysis of the actual RFI RNA-seq dataset in
Sect. 3, we must be careful to acknowledge that some of the gene expression levels declared
to be significantly associated with Line may be indirectly associated with Line and only
directly associated with RFI or other covariates that were not included in the selected set.

In the RFI application, we are fortunate that either direct or indirect associations between
expression and Line are of interest. In other applications where researchers are specifically
interested in distinguishing direct effects of a primary factor of interest from indirect effects
due to a covariate, such covariates should be automatically included in the model. More
generally, if scientific questions of interest dictate that one or more covariates be included in
the model, the fate of such covariates should not be decided by backward selection; rather,
such covariates should be part of every model considered, just as the intercept term was,
by default, part of every model we fit to the RFI dataset. Similarly, covariates that indicate
restrictions on randomization in the experimental design (like Block in the RFI example)
may be included in the model by default rather than subjected to backward selection. The
backward selection algorithm’s primary purpose is to identify and account for covariates
that are not part of the model a priori but are relevant in the sense that they explain non-
negligible residual variation in transcript abundance levels beyond that explained by factors
that are part of the model a priori. Accounting for such relevant covariates can boost power
for discovery of differential expression that is of primary scientific interest.

5.5. BACKWARD SELECTION TO ACCOUNT FOR UNOBSERVED COVARIATES

In contrast to our paper, which has focused on adjusting for the effects of observed covari-
ates, Leek and Storey (2007) and Leek (2014) have proposed surrogate variable analysis
(SVA) as a strategy for dealingwith unobserved covariates in differential expression analysis
of microarray data and RNA-Seq data, respectively. It is possible to combine SVA with our
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backward selection strategy to simultaneously account for both observed and unobserved
covariates in RNA-seq analysis. Using our RFI RNA-seq dataset as an example, we applied
the approach of Leek (2014) as implemented in the sva R package available on Biocon-
ductor (Gentleman et al. 2004). After accounting for the effects of all 14 observed variables
in our dataset, SVA detected one unobserved covariate and estimated values for a surrogate
variable to be used in place of the unobserved covariate. We then applied our backward
selection algorithm as described in Sect. 3, except that we included the surrogate variable
among our other covariates. The surrogate variable was removed from the model on the
fourth iteration, and the final selected model was identical to the model chosen in Sect. 3.
Although considering unobserved covariates turned out to be irrelevant for the analysis of
our example dataset, accounting for such variables may be crucial in other cases.

5.6. BACKWARD SELECTION WHEN MULTIPLE FACTORS ARE OF INTEREST

We have described our method for the important special case where a single categorical
factor is of primary scientific interest. The backward selection algorithm can be trivially
extended to handle cases where a single quantitative variable is of primary interest. If
multiple factors (quantitative, categorical, or a combinations of the two) are of interest,
there are multiple variations of the algorithm that could be considered. We will highlight
two options by focusing on the case where two factors (say A and B) are of interest.

First, suppose the part of the model involving the factors of interest is specified a priori so
that backward selection will focus only on eliminating irrelevant covariates from the model.
For example, suppose we will include A, B, and A × B interaction effects in our model
regardless of what the data imply about the significance of these effects. To choose what
covariates to include in amodel with A, B, and A×B interaction effects, we could apply our
backward selection algorithm as before by treating the A, B, and A× B interaction effects
as the effects associated with a single factor of primary interest. In the notation of Sect. 2,
we would define xi1 and βg1|S so that x′

i1βg1|S represents the sum of the appropriate A, B,
and A × B partial regression coefficients for unit i in the model with variables indicated
by S. Backward selection could then proceed exactly as defined in Sect. 2.3. The joint
significance of the A, B, and A × B partial regression coefficients would determine when
to stop backward selection and which model in the backward selection sequence to choose.

Now suppose the part of the model involving the factors of interest is not fully specified a
priori but instead will be chosen based on an examination of the data. For example, suppose
the researchers are interested in the main effects of factors A and B but do not want to study
A×B interaction effects unless the data indicate that these effects are important.One strategy
is to treat the A × B interaction effects as we would the effects of any other categorical
covariate. Without loss of generality, interaction effects for unit i could be coded in xi2 and
other covariates specified by xi3, . . . , xik . Additive effects for A and B and unit i would
be coded in xi1, and joint significance of the partial regression coefficients on xi1 would
be used to stop backward selection and choose the model. If the selected model includes
A×B interaction effects, subsequent inferences would bemade for each gene using amodel
that includes A, B, and A× B interaction effects, along with any other selected covariates.
If interaction effects are removed by the backward selection algorithm, then subsequent
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inferences for each gene could focus on A and B main effects while accounting for the
effects of other relevant covariates without further consideration of A × B interactions.

Even in the relatively simple two-factor scenario described above, there are other strate-
gies worth considering that we have not described here. Determining the relative merits of
various strategies requires a more formal problem statement, including a clear description
of the tests to be conducted after model selection, the desired error control properties for
each set of tests, and priorities for discovery of the multiple types of differential expression
that arise when multiple factors are of scientific interest. Such details are beyond the scope
of the current article but worth considering in future research.

ACKNOWLEDGEMENTS

This material is based upon work supported by Agriculture and Food Research Initiative Competitive Grant
No. 2011-68004-30336 from the United States Department of Agriculture (USDA) National Institute of Food and
Agriculture (NIFA), and by National Institute of General Medical Sciences (NIGMS) of the National Institutes
of Health (NIH) and the joint National Science Foundation (NSF)/NIGMS Mathematical Biology Program under
AwardNumber R01GM109458. Yet Nguyenwas funded in part by aGrant from theVietnamEducation Foundation
(VEF). The opinions, findings, and conclusions stated herein are those of the authors and do not necessarily reflect
those of USDA, NSF, NIH, or VEF.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

[Received July 2015. Accepted September 2015. Published Online October 2015.]

APPENDIX: DESCRIPTION OF VARIABLES IN THE RFI
DATASET

x·1 = Line is the categorical factor of primary scientific interest. Line has two levels,
which correspond to the HRFI and LRFI selection lines. Among the 31 pigs in this
study, 15 were from the LRFI line and 16 were from the HRFI line.

x·2 = RFI is a continuous covariate that provides a measure of the residual feed intake
for each of the 31 pigs from which blood samples were drawn for RNA-seq analysis.
Pigs in the HRFI line tend to have high RFI values, while pigs in the LRFI line tend
to have low RFI values.

x·3 = Diet is a categorical factor with two levels corresponding to the two diets (high
fiber, low energy vs. low fiber, high energy) that were fed to the pigs in this study.
Approximately half the pigs within each line were fed each diet. Because RNA-seq
analysis was performed on blood samples collected prior to the initiation of the two
diets, this factor is not expected to be associated with the transcript abundance levels
measured by RNA-seq. However, other covariates in this study may be associated
with Diet. For example, feed consumption on the assigned diet played a role in the

http://creativecommons.org/licenses/by/4.0/
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calculation of RFI values, and pigs on the high fiber, low energy diet tended to have
higher RFI values than pigs on the low fiber, high energy diet.

x·4 = Baso is a continuous covariate that provides a measure of the concentration of
basophil cells in the blood sample drawn from each pig.

x·5 = Eosi is a continuous covariate that provides a measure of the concentration of
eosinophil cells in the blood sample drawn from each pig.

x·6 = Lymp is a continuous covariate that provides a measure of the concentration of
lymphocyte cells in the blood sample drawn from each pig.

x·7 = Mono is a continuous covariate that provides a measure of the concentration of
monocyte cells in the blood sample drawn from each pig.

x·8 = Neut is a continuous covariate that provides a measure of the concentration of
neutrophil cells in the blood sample drawn from each pig.

x·9 = Concb is a continuous measure of the RNA concentration in each sample before
globin depletion (a step that is necessary to focus sequencing efforts on messenger
RNA molecules other than highly abundant globin messenger RNA in each blood
sample).

x·10 = Conca is a continuous measure of the RNA concentration in each sample after
globin depletion.

x·11 = RINb is a continuous measure of RNA integrity within each sample before
globin depletion.

x·12 = RINa is a continuous measure of RNA integrity within each sample after
globin depletion.

x·13 = Block is a categorical factor with four levels corresponding to the four blocks
used to organize sample collection and processing. Initially, each block involved eight
samples, two for each combination of Line and Diet. One LRFI sample from the first
block was removed from the study due to low-quality RNA.

x·14 = Order is a categorical factor with eight levels indicating the random order
samples were processed within each block.
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