Orthogonal representations, minimum rank, and graph complements

Leslie Hogben*

November 24, 2007

Abstract

Orthogonal representations are used to show that complements of certain sparse graphs have (positive semidefinite) minimum rank at most 4. This bound applies to the complement of a 2-tree and to the complement of a unicyclic graph. Hence for such graphs, the sum of the minimum rank of the graph and the minimum rank of its complement is at most two more than the order of the graph. The minimum rank of the complement of a 2 -tree is determined exactly.

Keywords. minimum rank, orthogonal representation, 2-tree, unicyclic graph, graph complement.
AMS subject classifications. 05C50, 15A03, 15A18

1 Introduction

A graph is a pair $G=(V, E)$, where V is the (finite, nonempty) set of vertices (usually $\{1, \ldots, n\}$ or a subset thereof) and E is the set of edges (an edge is a two-element subset of vertices); what we call a graph is sometimes called a simple undirected graph. The order of a graph G, denoted $|G|$, is the number of vertices of G.

The set of $n \times n$ real symmetric matrices will be denoted by S_{n}. For $A \in$ S_{n}, the graph of A, denoted $\mathcal{G}(A)$, is the graph with vertices $\{1, \ldots, n\}$ and edges $\left\{\{i, j\}: a_{i j} \neq 0,1 \leq i<j \leq n\right\}$. Note that the diagonal of A is ignored in determining $\mathcal{G}(A)$.

The set of real symmetric matrices of G is

$$
\mathcal{S}(G)=\left\{A \in S_{n}: \mathcal{G}(A)=G\right\}
$$

and the set of real positive semidefinite matrices of G is

$$
\mathcal{S}_{+}(G)=\left\{A \in S_{n}: A \text { positive semidefinite and } \mathcal{G}(A)=G\right\}
$$

[^0]The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\}
$$

and the positive semidefinite minimum rank of G is

$$
\operatorname{mr}_{+}(G)=\min \left\{\operatorname{rank}(A): A \in \mathcal{S}_{+}(G)\right\}
$$

Clearly

$$
\mathcal{S}_{+}(G) \subseteq \mathcal{S}(G) \quad \text { and } \quad \operatorname{mr}(G) \leq \operatorname{mr}_{+}(G)
$$

The minimum rank problem (of a graph, over the real numbers) is to determine $\operatorname{mr}(G)$ for any graph G. See [10] for a survey of known results and discussion of the motivation for the minimum rank problem; an extensive bibliography is also provided there. A minimum rank graph catalog [2] is available on-line, and will be updated routinely. Positive semidefinite minimum rank, both of real symmetric matrices as just defined, and of possibly complex Hermitian matrices, has been studied in [6], [7], [8], [11], [14].

For vertices $u, v \in V$, if u is adjacent to v (i.e., $\{u, v\} \in E$), then we write $u \sim v$; otherwise $u \nsim v$. A subset U of vertices is independent if no two vertices in U are adjacent. The complement of a graph $G=(V, E)$ is the graph $\bar{G}=(V, \bar{E})$, where \bar{E} consists of all two element sets of V that are not in E. The subgraph $G[R]$ of $G=(V, E)$ induced by $R \subseteq V$ is the subgraph with vertex set R and edge set $\{\{i, j\} \in E \mid i, j \in R\}$. The join $G_{1} \vee G_{2}$ of two disjoint graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the union of $G_{1} \cup G_{2}$ and the complete bipartite graph with with vertex set $V_{1} \cup V_{2}$ and partition $\left\{V_{1}, V_{2}\right\}$.

At the AIM workshop [3] the relationship between the minimum rank of a graph and its complement was explored. The following question was asked:

Question 1.1. [9, Question 1.16] How large can $\operatorname{mr}(G)+\operatorname{mr}(\bar{G})$ be?
It was noted there that for the few graphs for which the minimum rank of both the graph and its complement was known,

$$
\begin{equation*}
\operatorname{mr}(G)+\operatorname{mr}(\bar{G}) \leq|G|+2 \tag{1}
\end{equation*}
$$

and equality in this bound is achieved by a path.
In [1] it was shown that the (positive semidefinite) minimum rank of the complement of a tree is at most 3 , and thus a tree satisfies the bound (1). We will show that some other families of sparse graphs, including unicyclic graphs (a graph is unicyclic if it contains exactly one cycle) and 2 -trees (defined below) also satisfy the bound (1).

Unfortunately, there are conflicting uses of the term 2-tree in the literature. Here we follow [16] in defining a k-tree to be a graph that can be built up from a k-clique by adding one vertex at a time adjacent to exactly the vertices in an existing k-clique. Thus a tree is a 1-tree and a 2 -tree can be thought of as a graph built up one triangle at a time by identifying an edge of a new triangle with an existing edge. A 2-tree is linear if it has exactly two vertices of degree 2. Thus a linear 2-tree is a "path" of
triangles built up one triangle at a time by identifying an edge of a new triangle with an edge that has a vertex of degree 2. In [15] a linear singly edge-articulated cycle graph or LSEAC graph is (essentially) defined to be a "path" of cycles built up one cycle at a time by identifying an edge of a new cycle with an edge (that has a vertex of degree 2) of the most recently added cycle. Such a graph can be obtained by deleting interior edges from a outerplanar drawing of a linear 2-tree. In [12], the term "linear 2-tree" was used for an LSEAC graph, although an equivalent definition using the dual of an outerplanar drawing was given.

Examples of a linear 2-tree, an LSEAC graph that is not a 2-tree, and a 2 -tree that is not linear are shown in Figure 1.

Figure 1: Linear 2-tree, an LSEAC graph that is not a 2-tree, and a nonlinear 2-tree

In [12] (and independently in [15]) it is shown that a 2-connected graph L is an LSEAC graph if and only if $\operatorname{mr}(L)=|L|-2$. Hence the minimum rank of the left and center graphs shown in Figure 1 is 9.

For a tree, unicyclic graph, or 2-tree G, the number of edges of G is $|G|-1$, $|G|, 2|G|-3$, respectively, so trees, unicyclic graphs, and 2-trees are all sparse.

Suppose $G=(V, E)$ is a graph. Then a d-dimensional orthogonal representation of G is a function $v \rightarrow \vec{v}$ from V to \mathbb{R}^{d} such that \vec{u} and \vec{v} are orthogonal if and only if u and v are nonadjacent vertices. For a subspace U of \mathbb{R}^{d}, let U^{\perp} be the subspace of \mathbb{R}^{d} of vectors orthogonal to U, and $\mathbf{v}^{\perp}=\operatorname{Span}(\mathbf{v})^{\perp}$. The following observations will be used repeatedly.

Observation 1.2. Let $d(G)$ denote the smallest dimension d over all orthogonal representations of G. Then $d(G)$ is equal to $\mathrm{mr}_{+}(G)$.

Observation 1.3. No subspace W of \mathbb{R}^{d} is a union of a finite number of proper subspaces of W.

Observation 1.4. For any three pairwise independent vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{4}$, the following are equivalent.

1. $\operatorname{dim} \operatorname{Span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=3$.
2. $\mathbf{u}^{\perp} \cap \mathbf{v}^{\perp} \nsubseteq \mathbf{w}^{\perp}$.

2 Orthogonal representations of dense graphs

In [1] orthogonal representations were used to prove that the complement of a tree has positive semidefinite minimum rank at most 3 . A complement of a tree can be constructed by adding one vertex at a time, with each new vertex adjacent to all but one of the prior vertices. In this section we extend this technique to certain (very) dense graphs constructed by adding vertices adjacent to all but one or two prior vertices. These results will be used in the next section to study complements of certain sparse graphs and the relationship between $\operatorname{mr}(G)$ and $\operatorname{mr}(\bar{G})$.

The following is an easy generalization of the proof of [1, Theorem 3.16].
Theorem 2.1. Let $Y=\left(V_{Y}, E_{Y}\right)$ be a graph of order at least two such that there is an orthogonal representation in $\mathbb{R}^{d}, d \geq 3$ satisfying
$\vec{v} \notin \operatorname{Span}(\vec{u}) \quad$ for each pair of distinct vertices u, v in V_{Y}.
Let X be a graph that can be constructed by starting with Y and adding one vertex at a time, such that the newly added vertex is adjacent to all prior vertices except at most one vertex. Then there is d-dimensional orthogonal representation of X satisfying (2); in particular, $\operatorname{mr}(X) \leq \mathrm{mr}_{+}(X) \leq d$.

Proof. Let $V_{Y}=\left\{v_{1}, \ldots, v_{k}\right\}$. Let X be constructed from Y by adding vertices v_{k+1}, \ldots, v_{n} such that for $m>k, v_{m}$ is adjacent to all but at most one of v_{1}, \ldots, v_{m-1}. Assuming that an orthogonal representation of $X\left[v_{1}, \ldots, v_{m-1}\right]$ in \mathbb{R}^{d} has been constructed satisfying (2), we show there is an orthogonal representation of $X\left[v_{1}, \ldots, v_{m}\right]$ in \mathbb{R}^{d} satisfying (2). If v_{m} is adjacent to v_{1}, \ldots, v_{m-1} then choose as \vec{v}_{m} any vector in \mathbb{R}^{d} that is not in $\left(\bigcup_{i=1}^{m-1} \vec{v}_{i}^{\perp}\right) \cup\left(\bigcup_{i=1}^{m-1} \operatorname{Span}\left(\vec{v}_{i}\right)\right)$.

Otherwise, let v_{s} be the only vertex of $X\left[v_{1}, \ldots, v_{m-1}\right]$ not adjacent to v_{m} in $X\left[v_{1}, \ldots, v_{m}\right]$. We want to choose a vector \vec{v}_{m} such that

$$
\begin{aligned}
\vec{v}_{m} \in \vec{v}_{s}^{\perp} & \\
\vec{v}_{m} \notin \vec{v}_{i}^{\perp} & \forall i \neq s, i<m \\
\vec{v}_{m} \notin \operatorname{Span}\left(\vec{v}_{i}\right) & \forall i<m .
\end{aligned}
$$

By applying Observation 1.3 to $W=\vec{v}_{s}^{\perp}$ and subspaces

$$
\begin{aligned}
A_{i}=W \cap \vec{v}_{i}^{\perp} & i \neq s, i<m \\
B_{i}=W \cap \operatorname{Span}\left(\vec{v}_{i}\right) & i \neq s, i<m
\end{aligned}
$$

we can conclude the desired vector exists, since clearly none of the subspaces A_{i}, B_{i} is equal to W. Thus we have constructed an orthogonal representation of X in \mathbb{R}^{d} such that \vec{u} and \vec{v} are linearly independent for any distinct vertices u, v of X.

Theorem 2.2. Let $Y=\left(V_{Y}, E_{Y}\right)$ be a graph such that the order of Y is at least two, V_{Y} does not contain a set of four independent vertices, and there is an orthogonal representation of Y in \mathbb{R}^{4} satisfying

$$
\begin{align*}
\vec{v} \notin \operatorname{Span}(\vec{u}) & \text { for } u \neq v \tag{3}\\
\operatorname{dim} \operatorname{Span}(\vec{u}, \vec{v}, \vec{w})=3 & \text { for all distinct } u, v, w \text { such that } v \nsim u \tag{4}
\end{align*}
$$

for all vertices in V_{Y}. Let X be a graph that can be constructed by starting with Y and adding one vertex at a time, such that the newly added vertex is adjacent to all prior vertices except at most two nonadjacent vertices. Then there is an orthogonal representation of X satisfying (3) and (4); in particular, $\operatorname{mr}(X) \leq \mathrm{mr}_{+}(X) \leq 4$.

Proof. Let $V_{Y}=\left\{v_{1}, \ldots, v_{k}\right\}$. Let X be constructed from Y by adding vertices v_{k+1}, \ldots, v_{n} such that for $m>k, v_{m}$ is adjacent to all but at most two nonadjacent vertices in $\left\{v_{1}, \ldots, v_{m-1}\right\}$. Assuming that an orthogonal representation of $X\left[v_{1}, \ldots, v_{m-1}\right]$ has been constructed satisfying (3) and (4), we show there is an orthogonal representation of $X\left[v_{1}, \ldots, v_{m}\right]$ satisfying (3) and (4).

If v_{m} is adjacent to all vertices except v_{s}, v_{t} (with $v_{s} \nsim v_{t}$), it suffices to choose \vec{v}_{m} such that

$$
\begin{align*}
\vec{v}_{m} \in \vec{v}_{s}^{\perp} \cap \vec{v}_{t}^{\perp} & \tag{5}\\
\vec{v}_{m} \notin \vec{v}_{i}^{\perp} & \forall i \neq s, t, i<m \tag{6}\\
\vec{v}_{m} \notin \operatorname{Span}\left(\vec{v}_{r}, \vec{v}_{i}\right) & r=s, t, \forall i \neq r, i<m \tag{7}\\
\vec{v}_{m} \notin \operatorname{Span}\left(\vec{v}_{i}, \vec{v}_{j}\right) & \forall i, j \text { such that } 1 \leq i<j<m \text { and } v_{i} \nsim v_{j} . \tag{8}
\end{align*}
$$

We will show that it is always possible to make such a choice.
By applying Observation 1.3 to

$$
W=\vec{v}_{s}^{\perp} \cap \vec{v}_{t}^{\perp}
$$

and subspaces

$$
\begin{array}{cl}
A_{i}=W \cap \vec{v}_{i}^{\perp} & i \neq s, t, i<m \\
B_{i}=W \cap \operatorname{Span}\left(\vec{v}_{r}, \vec{v}_{i}\right) & r=s, t, i \neq r, i<m \\
C_{i, j}=W \cap \operatorname{Span}\left(\vec{v}_{i}, \vec{v}_{j}\right) & i<j<m \text { such that } v_{i} \nsim v_{j}
\end{array}
$$

we can conclude the desired vector exists, provided none of the subspaces $A_{i}, B_{i}, C_{i, j}$ is equal to W.

By condition (4) and Observation 1.4, $\vec{v}_{s}^{\perp} \cap \vec{v}_{t}^{\perp} \nsubseteq v_{i}^{\perp}$ for all $i \neq s, t$, so $A_{i} \neq W$.
By elementary linear algebra, $\operatorname{dim} W=2=\operatorname{dim} \operatorname{Span}\left(\vec{v}_{r}, \vec{v}_{i}\right)$, so if $W=B_{i}$, $W=\operatorname{Span}\left(\vec{v}_{r}, \vec{v}_{i}\right)$. But $\vec{v}_{r} \in \operatorname{Span}\left(\vec{v}_{r}, \vec{v}_{i}\right)$ and $\vec{v}_{r} \notin W$ (since $r=s$ or $r=t$). Thus $B_{i} \neq W$.

Finally, consider $C_{i, j}$. If $W=C_{i, j}$, then again both W and $\operatorname{Span}\left(\vec{v}_{i}, \vec{v}_{j}\right)$ are of dimension two, so

$$
\operatorname{Span}\left(\vec{v}_{i}, \vec{v}_{j}\right)=W=\vec{v}_{s}^{\perp} \cap \vec{v}_{t}^{\perp}=\operatorname{Span}\left(\vec{v}_{s}, \vec{v}_{t}\right)^{\perp}
$$

Hence, none of $v_{i}, v_{j}, v_{s}, v_{t}$ is adjacent to any of the others. Since V_{Y} does not contain an independent set of four vertices, $\left\{v_{i}, v_{j}, v_{s}, v_{t}\right\} \nsubseteq V_{Y}$. But then if $p=\max \{i, j, s, t\}$, when v_{p} was added, it would have been nonadjacent to three prior vertices, which is prohibited.

If v_{m} is adjacent to all vertices except v_{s}, choose \vec{v}_{m} satisfying

$$
\begin{aligned}
\vec{v}_{m} \in \vec{v}_{s}^{\perp} & \\
\vec{v}_{m} \notin \vec{v}_{i}^{\perp} & \forall i \neq s \\
\vec{v}_{m} \notin \operatorname{Span}\left(\vec{v}_{s}, \vec{v}_{i}\right) & \forall i \neq s, i<m \\
\vec{v}_{m} \notin \operatorname{Span}\left(\vec{v}_{i}, \vec{v}_{j}\right) & \forall i, j \text { such that } 1 \leq i<j<m \text { and } v_{i} \nsim v_{j} .
\end{aligned}
$$

The existence of an acceptable choice is guaranteed by using $W=\vec{v}_{s}^{\perp}$ in the previous argument and examining dimensions to show none of $A_{i}, B_{i}, C_{i, j}$ equals W. If v_{m} is adjacent to all vertices the choice is even easier.

The next example shows that the hypothesis, the two vertices to which the new vertex will not be adjacent must themselves be nonadjacent, is necessary for Theorem 2.2.

Example 2.3. Let G be the graph shown in Figure 2. It is straightforward to verify that if G is constructed by adding vertices in order, each vertex added is adjacent to all but at most two prior vertices. Since G is a linear 2-tree, $\operatorname{mr}(G)=|G|-2=5$.

Figure 2: A graph of minimum rank 5 constructed with each added vertex adjacent to all but at most two prior vertices.

The next example shows that the hypothesis, V_{Y} does not contain a set of four independent vertices, is necessary for Theorem 2.2.

Example 2.4. Let X be the graph shown in Figure 3 and let $Y=X[1,2,3,4]$.
The 4×4 identity matrix is a representation of Y that satisfies (3) and (4) of Theorem 2.2. X can be constructed by first adding vertex 5 adjacent to vertices 1 and 2 (and nonadjacent only to nonadjacent vertices 3 and 4), and then adding vertex 6 adjacent to vertices 3,4 , and 5 (and nonadjacent only to nonadjacent vertices 1 and 2). But X cannot have an orthogonal representation in \mathbb{R}^{4}, because X is a tree, so $\mathrm{mr}_{+}(X)=|X|-1=5$ (cf. [13])

Figure 3: A graph of positive semidefinite minimum rank 5 constructed by adding on to a set of four independent vertices.

3 Minimum rank of graph complements

Theorems 2.1 and 2.2 can be applied to the complements of several families of sparse graphs. Since the complement of a 2-tree satisfies the hypotheses of Theorem 2.2, we have

Corollary 3.1. If H is a 2 -tree, then $\operatorname{mr}_{+}(\bar{H}) \leq 4$.
In fact, we can determine exactly what the minimum rank of the complement of a 2-tree is. A dominating vertex of a graph H is a vertex adjacent to every other vertex of H, or equivalently, a vertex of degree $|H|-1$.

Theorem 3.2. If H is a 2-tree, then

$$
\operatorname{mr}(\bar{H})= \begin{cases}0 & \text { if }|H| \leq 3 \\ 1 & \text { if }|H| \geq 4 \text { and } H \text { has two dominating vertices; } \\ 3 & \text { if }|H| \geq 5 \text { and } H \text { has exactly one dominating vertex; } \\ 4 & \text { if }|H| \geq 6 \text { and } H \text { does not have a dominating vertex. }\end{cases}
$$

Proof. Let H be a 2-tree. The complement of $\overline{K_{r}}$ is $r K_{1}$, so if $|H|$ is 2 or 3 , then $\operatorname{mr}(\bar{H})=0$. If $|H| \geq 4$ and H has two dominating vertices, then $H=(|H|-2) K_{1} \vee K_{2}$. and the complement of $(|H|-2) K_{1} \vee K_{2}$ is $K_{|H|-2} \cup 2 K_{1}$, so in this case $\operatorname{mr}(\bar{H})=1$.

If H does not have two dominating vertices, then H contains an induced L_{3}, shown in Figure 4. (The existence of an L_{3} is fairly clear, and a statement about the existence of an L_{3} with additional properties is established below.) Since $\overline{L_{3}}=$ $P_{4} \cup K_{1}, \operatorname{mr}(\bar{H}) \geq 3$. Thus it remains to distinguish the cases $\operatorname{mr}(\bar{H})=3$ and $\operatorname{mr}(\bar{H})=4$.

Figure 4: The 2-trees L_{3}, L_{4}, T_{3}

If H has exactly one dominating vertex v, then $H-v$ is a tree, because $H-v$ has $(2|H|-3)-(|H|-1)=|H-v|-1$ edges, and $H-v$ is connected. Since $\bar{H}=\overline{H-v} \cup\{v\}, \operatorname{mr}(\bar{H})=\operatorname{mr}(\overline{H-v}) \leq 3$ by [1, Theorem 3.16].

Let H be a 2 -tree that has exactly one dominating vertex v, and let H be constructed from vertices $1,2, \ldots, n$, in that order. Note that the order of $1,2,3$ is irrelevant, so without loss of generality we may assume that 1 is a dominating vertex of H (and all its induced subgraphs) and 2 is a dominating vertex of $H[1,2,3,4]$. We establish the following statement by induction on t.

$$
\begin{equation*}
\text { If } s \sim t \text { and } s<t \text {, then } \exists R \subseteq V_{H} \text { such that } H[R]=L_{3} \text { and } 1, s, t \in R \tag{9}
\end{equation*}
$$

(Note that $s=1$ is permitted.)
Let m be the first index such that $H\left[v_{1}, \ldots, v_{m}\right]$ does not have two dominating vertices, so $H\left[v_{1}, \ldots, v_{m-1}\right]$ has dominating vertices 1 and 2 . Then the neighbors of m are 1 and r, with $2<r<m$. Initially we show that (9) is true for $t \leq m$. Since $t \sim s$ and $s<t \leq m, s \in\{1,2, r\}$. If we choose R to contain $1,2, r, t, m$ (and one additional vertex if necessary to obtain a set of five) then $H[R]=L_{3}$.

Now assume (9) is true for $H[1, \ldots, q-1], m \leq q-1<n$. Let the neighbors of q be $1, r$ (recall 1 is the dominating vertex). By the induction hypothesis, there exists R such that $H[R]=L_{3}$ and $1, r \in R$. There are two vertices of degree two in $H[R]$. If one of these is r, let x denote the other one. If neither degree two vertex is r, then one, which we denote by x, has r as a neighbor. Let R^{\prime} be obtained from R by replacing x by q. Then $H\left[R^{\prime}\right]=L_{3}$. Since (9) is already established when q is omitted, this completes the proof of (9).

Now suppose H does not have a dominating vertex. Let p be the first vertex such that $H[1, \ldots, p]$ does not have a dominating vertex, let 1 be the dominating vertex of $H[1, \ldots, p-1]$, and let s, t be the two neighbors of p in $H[1, \ldots, p]$, with $1<s<t<p$; note $s \sim t$. There exists R such that $H[R]=L_{3}$ and $1, s, t \in R$. When p is added to $H[R]$, it is not adjacent to 1 . Thus $H[R \cup\{p\}]=L_{4}$ or $H[R \cup\{p\}]=T_{3}$ (see Figure 4). The complements of L_{4} and T_{3} are the unicyclic graphs shown in Figure 5. In [5] it was shown that $\operatorname{mr}\left(\overline{L_{4}}\right)=4$ and $\operatorname{mr}\left(\overline{T_{3}}\right)=4\left(\overline{L_{4}}\right.$ is a partial 4-sun and $\overline{T_{3}}$ is the 3 -sun).

Figure 5: Complements of the linear 2-trees L_{4} and T_{3}

To apply Theorem 2.1 to complements of unicyclic graphs, we need to show that for the complement of any cycle there is an orthogonal representation of dimension at most 4.

Theorem 3.3. For all $n \geq 3$, there is an orthogonal representation of $\overline{C_{n}}$ in \mathbb{R}^{4} satisfying condition (2).
Proof. By Theorem 2.2, we can find an orthogonal representation of $\overline{P_{n-1}}$ in \mathbb{R}^{4} satisfying conditions (3) and (4). Then arguing as in the proof of Theorem 2.2 we can add the remaining vertex adjacent to all but two vertices. Note that the hypothesis that these two vertices are not adjacent in $\overline{C_{n}}$ is not needed to obtain this representation, since this hypotheses is not needed to establish the existence of a vector meeting criteria (5) and (6), which is all that is necessary here.

Corollary 3.4. Let H be a unicyclic graph. Then $\mathrm{mr}_{+}(\bar{H}) \leq 4$.
Proof. A unicyclic graph can be constructed from a cycle by adding one vertex at a time, with the new vertex adjacent to at most one prior vertex. Thus the complement of a unicyclic graph has an orthogonal representation of dimension at most 4 by Theorems 3.3 and 2.1.

To ensure condition (2) for $\overline{C_{4}}, \mathbb{R}^{4}$ is needed, even though $\operatorname{mr}\left(\overline{C_{4}}\right)=2$, because $\overline{C_{4}}=2 K_{2}$, which does not have an orthogonal representation satisfying (2) in \mathbb{R}^{3}. Furthermore, there are examples of unicylic graphs whose complements have minimum rank 4:

Example 3.5. The unicyclic graph $\overline{L_{4}}$ shown in Figure 5 has the linear 2-tree L_{4} (shown in Figure 4) as its complement, and $\operatorname{mr}\left(L_{4}\right)=6-2=4$.

We have established the bound (1) for 2-trees and unicyclic graphs.
Corollary 3.6. Let G be graph such that $\operatorname{mr}(\bar{G}) \leq 4$. Then

$$
\operatorname{mr}(G)+\operatorname{mr}(\bar{G}) \leq|G|+2
$$

In particular, trees, unicyclic graphs and 2-trees satisfy this bound.
Proof. If $G=P_{n}$ is a path, it was shown in [1] that $\operatorname{mr}\left(\overline{P_{n}}\right) \leq 3$, so

$$
\operatorname{mr}\left(P_{n}\right)+\operatorname{mr}\left(\overline{P_{n}}\right) \leq n-1+3=n+2 .
$$

If G is not a path,

$$
\operatorname{mr}(G)+\operatorname{mr}(\bar{G}) \leq|G|-2+4=|G|+2 .
$$

Acknowledgement. The author thanks the referees for their helpful comments.

References

[1] AIM minimum rank - special graphs work group (Francesco Barioli, Wayne Barrett, Steve Butler, Sebastian M. Cioabă, Dragoš Cvetković, Shaun M. Fallat, Chris Godsil, Willem Haemers, Leslie Hogben, Rana Mikkelson, Sivaram Narayan, Olga Pryporova, Irene Sciriha, Wasin So, Dragan Stevanović, Hein van der Holst, Kevin Vander Meulen, Amy Wangsness). Zero forcing sets and the minimum rank of graphs. To appear in Linear Algebra and Its Applications.
[2] American Institute of Mathematics. Minimum rank graph catalog. Available at http://aimath.org/pastworkshops/matrixspectrum.html
[3] American Institute of Mathematics workshop "Spectra of Families of Matrices described by Graphs, Digraphs, and Sign Patterns," held October 23-27, 2006 in Palo Alto, CA.
[4] F. Barioli, S. Fallat, and L. Hogben. Computation of minimal rank and path cover number for graphs. Linear Algebra and Its Applications, 392: 289-303, 2004.
[5] F. Barioli, S.M. Fallat, and L. Hogben. On the difference between the maximum multiplicity and path cover number for tree-like graphs. Linear Algebra and Its Applications 409: 13-31, 2005.
[6] W. Barrett, H. van der Holst and R. Loewy. Graphs whose minimal rank is two. Electronic Journal of Linear Algebra, 11: 258-280, 2004.
[7] M. Booth, P. Hackney, B. Harris, C. R. Johnson, M. Lay, L. H. Mitchell, S. K. Narayan, A. Pascoe, K. Steinmetz, B. D. Sutton, and W. Wang. On the minimum rank among positive semidefinite matrices with a given graph. Preprint.
[8] M. Booth, P. Hackney, B. Harris, C. R. Johnson, M. Lay, L. H. Mitchell, S. K. Narayan, A. Pascoe, and B. D. Sutton. The minimum semidefinite rank of a graph. Preprint.
[9] R. Brualdi, L. Hogben, B. Shader, AIM Workshop Spectra of Families of Matrices described by Graphs, Digraphs, and Sign Patterns Final Report: Mathematical Results (revised, March 30, 2007). Available at http://aimath.org/pastworkshops/matrixspectrumrep.pdf
[10] S. Fallat and L. Hogben. The Minimum Rank of Symmetric Matrices Described by a Graph: A Survey. Linear Algebra and Its Applications 426 (2007) 558-582.
[11] P. Hackney, B. Harris, M. Lay, L. H. Mitchell, S. K. Narayan, and A. Pascoe. Linearly independant vertices and minimum semidefinite rank. Preprint.
[12] L. Hogben and H. van der Holst. Forbidden minors for the class of graphs G with $\xi(G) \leq 2$. Linear Algebra and Its Applications, 423: 42-52, 2007.
[13] H. van der Holst. Graphs whose positive semidefinite matrices have nullity at most two. Linear Algebra Appl. 375 (2003), 1-11.
[14] Y. Jiang, L. H. Mitchell, and S. K. Narayan. Unitary matrix digraphs and minimum semidefinite rank of a graph. Preprint.
[15] C. R. Johnson, R. Loewy and P. A. Smith. The graphs for which maximum multiplicity of an eigenvalue is two. Preprint. Available at http://arxiv.org/pdf/math.CO/0701562.
[16] D. B. West, Introduction to Graph Theory, 2nd Ed., Prentice Hall, New Jersey, 2001.

This is a manuscript of an article from Linear Algebra and its Applications 428 (2008); 2560, doi:10.1016/j.laa.2007.12.004. Posted with permission.© 2007. This manuscript version is made available under the CCBY-NC-ND 4.0 license http://creativecommons.org/licenses/by-ncnd/4.0/

[^0]: *Department of Mathematics, Iowa State University, Ames, IA 50011, USA (lhogben@iastate.edu)

