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CHAPTER 1. OVERVIEW

1.1 Introduction

For the good of human society, it is imperative to reduce the pollution and increase

the energy efficiency of the manufacturing of goods. To achieve this, it is necessary to

push the limits of material science to develop new materials that can be used in extreme

chemical and mechanical environments. Over the past decade, intensive efforts have been

invested to develop new superhard materials that can serve as abrasives for polishing and

cutting tools and as wear-resistant and protective coatings.

The best-known superhard material to date is diamond. However, its industrial ap-

plication is limited by its cost and susceptibility to chemical corrosion. Alternatively,

boron compounds are promising candidates because of their excellent chemical and ther-

mal stability. It is well accepted that superhard materials are usually comprised of a

strong, covalently bonded network of atoms. This bonding usually results in a dense,

highly symmetric crystal structure that is stoichiometric, for example TiB2 or cubic-BN.

These types of materials are difficult to chemically modify and as a result the mechanical

properties are, “as made”, rather than, “by design”.

Recently, a class of complex borides, based upon the AlMgB14 crystal structure,

has been proposed as a potentially superhard material. This class of crystal is unlike

conventional superhard materials: the lattice of AlMgB14 falls into the low-symmetry

orthorhombic group [1] and has a loose packed crystal structure. It is known that a

variety of metal species and vacancies can occupy the metal atom sites [2, 3, 4, 5, 6, 7, 8].
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The measured Vickers hardness of the base compound exceeds 32 GPa, and it is observed

that the addition of impurity species and second phases has a significant beneficial impact

on the mechanical properties [2]. At this time, there has been no systematic study aimed

to explain the origin of the intrinsic hardness of the archetypal XYB14-type compound

or to understand how to control its physical properties.

The goal of this project is to provide a thorough understanding of the electronic struc-

ture of the XYB14 orthorhombic borides, and in particular how the electronic structure is

related to its chemical composition, which can be used to control the physical properties

of materials. Using first-principles methods, a series of calculations are performed to

examine the relationship between the chemical bonding and the mechanical properties

of XYB14. The impact of substituting different atomic species into both the metal and

boron sites are investigated. The atomic-scale calculations performed here not only pro-

vide insight to the origin of the unexpected hardness of the XYB14-type crystals, but

also serve as input for meso-scale models that can be used to examine the mechanical

behavior of two-phase XYB14–TiB2 microstructure.

1.2 Literature review

The first XYB14 crystal structure was reported by Matkovich and Economy in 1970,

with X = Al and Y = Mg [1]. The structure was later re-examined by Higashi and

Ito in 1983 [9]. According to Higashi and Ito, the crystal was prepared by heating the

elemental boron, magnesium, and aluminum (with atomic ratio of 6:1:31) to 1500 ◦C,

holding at the temperature for an hour, followed by cooling to room temperature. The

excess aluminum was then dissolved in hot hydrochloric acid. The crystal obtained

in this manner shows an orthorhombic symmetry (Imma) and has measured lattice

parameters of 5.848, 10.312 and 8.112 Å. The crystallographic 64-atom unit cell contains

four subunits of AlMgB14, and can be formulated more precisely as Al4Mg4(B12)4B8.
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The basic building unit is the B12 icosahedron. The eight B atoms that are not part of

the B12 icosahedra are often referred as the inter-icosahedron B atoms, and are trigonal

bonded to three neighboring B12 units. The widely opened B-network provides space

to accommodate a large variety of metal species. The crystal structure of AlMgB14 are

heavily investigated in the literature and has been presented several times through this

work [1, 9, 10]. In addition, Higashi and Ito reported a relatively high concentration of

vacancies on the metal sites, upwards of 25% [9]. At the present time, it is not clear

why intrinsic vacancies are formed at the metal sites and how this will influence the

mechanical properties of the crystal.

Following the initial discovery of the AlMgB14 crystal, the experimental focus was

primarily the creation and characterization of the crystal structure for a variety of chem-

ical compositions [2, 3, 4, 5, 6, 7, 8]. It is observed that the XYB14 structure is willing

to accommodate a wide variety of metal species. For example, the metal sites have

been successfully doped by Li, Be, Na, Mg. For these compositions, the resulting lattice

distortions are less than 5%. There has also been a great interest in working with the

rare-earth elements. It is proposed that substituting a rare-earth element, such as Tb,

Dy, Ho, Er, Yb, or Lu, to the Y site, might result in a magnetic semiconductor [7, 8].

Aside from the basic structural analysis, little attention was paid to the physical

properties of the XYB14 crystal family until 2000 when Ames Lab researchers, Alan

Russell and Bruce Cook, discovered that an AlMgB14 specimen produced by mechanical

alloying technique exhibited superhardness [2]. The measured hardness of the Ames Lab

sample had a baseline of 32 GPa. In addition, by forming a two-phase mixture with

TiB2, both the hardness and wear-resistant properties can be significantly improved.

The mechanical alloying approach introduces a substantial amount of impurity atoms

into the sample during the fabrication process, e.g., Si, C, O, and Fe. It is not clear how

these impurity atoms behave in the specimen and impact its mechanical behavior. The

early work of Cook et al. suggest that these impurities may in fact have a large impact
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on the overall mechanical strength.

Theoretical investigations have only played a minor role in understanding the proper-

ties of the XYB14 structure. This is due to the high computational cost for studying such

a large crystal. For the conventional DFT approach the computational time scales as the

cube of the system size, which until recently has limited the computations to small cells

containing 100s of atoms. The first ab initio calculation, conducted by Lee and Harmon

in 2002 [10], was a monumental task and was limited to a rudimentary analysis of the

electronic density of states and the elastic response of AlMgB14. Lee and Harmon also

computed the electronic and elastic properties of Al0.75Mg0.75B14, in which two vacancies

were included in the unit cell. It is found that the addition of vacancies into the lattice

reduces the overall elastic strength of the crystal.

Other theoretical efforts have concentrated on examining the chemical substitution

on the XYB14 lattice. In 2008, Kölpin et al. investigated the phase stability and elastic

behavior of XMgB14 upon metal substitution, where X refers to Al, Ge, Si, C, Mg, Sc,

Ti, V, Zr, Nb, Ta, and Hf [11]. It is observed that the boron atoms determine the

electronic valence states. The metal atoms do not form strong covalent bonds with

the neighboring boron atoms; instead they transfer their valence electrons to the entire

lattice. It is concluded by Kölpin et al. that the more valence electrons transferred from

the metal sites to the B12 units, the more stable the XMgB14 lattice will be. Additionally,

they suggest that there exists a relationship between the bulk modulus of XMgB14 with

its cohesive energy: decreasing the cohesive energy will increase the bulk modulus. In

this paper, they claimed that the mechanical properties of XYB14 can be tuned by

changing the chemical composition. However, the bulk modulus can only serves as a

rough indicator of the averaged bonding strength of the crystal. For crystals that are

highly anisotropic such as the XYB14 crystal, understanding the hardness requires a

detailed analysis of the individual bonds within the crystal, in particular the critical

bonds that would most likely lead to a mechanical failure.
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In addition to the metal substitution, other work has also been done regarding the

effects of doping the B-network. The early work of Cook et al. suggests that the presence

of Si will enhance the macroscopic hardness of the AlMgB14 specimen [2]. Theoretical

studies return counter results. In 2009, Sahara et al. carried out a series of first principles

calculations on the Si-doped AlMB14 samples (M = Li, Mg, Na) [12]. In their simulations,

Si atoms were substituted into all the possible atomic sites, and it was found that Si

appears to favor the Mg site. The predicted bulk modulus for the Si substituted sample

shows a 7% decrease.

Despite all the experimental and theoretical progress made so far, there are still many

open questions that need to be answered, for example, what determines the occupancy

of metal sites? How do the metal atoms influence the mechanical properties of XYB14?

What is the role of impurities substituted to the B-network?

1.3 Dissertation organization

This dissertation begins with the general introduction to the XYB14-type crystals.

Followed by this, the theoretical approach to simulate the material system will be pre-

sented. The body of this dissertation is comprised of a series of journal papers, where

the first author is the primary investigator and author, and the last author is the major

advisor and the author for correspondence. In Chapter 3, the role of metal species in the

electronic structure of XYB14 will be discussed, and it is illustrated in Chapter 4 that

the off-stoichiometric metal composition is tied closely to the lattice instability of the

crystal. In Chapter 5, detailed chemical analysis is performed to examine the bonding

characteristics within the crystal. The relation between bonding and the mechanical

strength of the crystal will be identified. In Chapter 6, the mechanical behavior of the

XYB14 is directly simulated based on ab initio methods. It is proposed here that ideal

brittle cleavage model can be used as a proper indicator of the fracture strength of the
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XYB14-type crystal. In Chapter 7, first attempt to dope the B lattice is performed, and

its impact on the properties of the host materials is investigated. The dissertation is

finally closed with a general conclusion chapter.
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CHAPTER 2. THEORETICAL APPROACH

2.1 Density functional theory

2.1.1 The Kohn-Sham equation

In this project, density functional theory (DFT) [13] is used to examine the struc-

tural, electronic, and mechanical properties of the XYB14-type compounds. The critical

assumption in DFT is that the potential energy terms in the Hamiltonian can be ex-

pressed as functionals of the charge density, n(r), as proposed by Kohn and Sham in

1965 [13]. Following the Hartree-Fock anstaz, DFT simplifies the many-body problem

by assuming that the electrons can be treated as non-interacting particles traveling in

an effective field [13, 14]. Because the nuclei are moving with negligible velocities com-

pared to electrons, their positions are assumed to be fixed when solving the many-body

electronic structure, which is the so-called Born-Oppenheimer approximation. As given

in equation 2.1, the explicit form of the Kohn-Sham energy is written as a sum of the

kinetic energy of the non-interacting electrons (Ts), the external potential energy carried

by ions (Vext), the Hartree energy (EHartree) and the exchange-correlation energy (EXC)

which encapsulates all the quantum effects for the many body interaction.

E[n(r)] = Ts[n(r)] +

∫
n(r)Vext(r)dr + EHartree[n(r)] + EXC [n(r)] (2.1)
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From the above energy expression, an effective potential can be defined as,

Veff =
δ{

∫
n(r)Vext(r)dr+EHartree[n(r)]+EXC [nr]}

δn(r)

= Vext(r) +
∫ n(r′)
|r−r′|dr

′ + δEXC [n(r)]
δn(r)

(2.2)

Within these assumptions the principle task is to solve the eigenfunction problem of

the Kohn-Sham equation as written in equation 2.3, in a self-consistent fashion. The

self-consistent iterative solution method will be discussed later in this section.

[
−1

2
∇2 + Veff (~r)

]
φi(~r) = εiφi(~r)

n(~r) =
∑
i

|φi(~r)|2 (2.3)

2.1.2 Exchange-correlation functional

In principle, all the terms in equation 2.1 can be explicitly solved, expect for the

exchange-correlation functional. Up to date, many types of exchange-correlation func-

tionals have been proposed with different levels of complexity and accuracy. The simplest

treatment of the exchange-correlation is the local density approximation (LDA). Within

this approximation, the real, inhomogeneous system is divided into infinitesimal volumes

each treated as having a constant charge density. The exchange-correlation energy in

each volume is then approximated as the energy obtained from a uniform electron gas

with the same density.

As defined in equation 2.4, LDA should only be valid in describing the system with

slowly varying densities. However, practically it works surprisingly well in most of the

solid systems, especially for metals. It is believed that this is because the errors caused by

the separated exchange and correlation effects are systematically cancelled. In general,

the LDA approximation tends to underestimate the lattice constant by 2 ∼ 3% and

overestimates the binding energy by 15 ∼ 20%.

ELDA
XC [n(r)] =

∫
n(r)εunifXC [n(r)]dr (2.4)
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An upgraded treatment for the exchange-correlation energy is the generalized gradient

approximation (GGA) in which the EXC is expressed in terms of both the local charge

density and the local density gradient.

EGGA
XC [n(r)] =

∫
n(r)εGGA

XC [n(r),∇n(r)]dr (2.5)

Because of the dependence of the users choice for ∇n(r), the GGA approximations are

often referred to as “semi-local” functionals. For many covalent and weakly bonded

systems, GGA tends to provide a better approximation than LDA, but this is not uni-

versally true. In this work, the GGA functionals are used to examine the electronic

structure of XYB14, in particular, the ones proposed by Perdew-Wang (PW91) [15], and

Perdew-Burke-Ernzerhof (PBE) [16].

A well known drawback of applying LDA or GGA to study semiconducting or insu-

lating systems is the underestimated band gap. This is mainly because the appearance

of the spurious self-interaction term in LDA or GGA formalism. In the Hartree-Fock

formalism, this self-interaction is completely cancelled by the non-local exchange inter-

action. However, in LDA or GGA, this interaction is not exactly cancelled and there is

spurious self-interaction term left, which is considerable for inhomogeneous systems. The

presence of self-interaction energy clearly impairs the accuracy of predicting the band

gaps for most semiconductors. One way to reduce the effect of self-interaction energy

is to use hybrid functionals, which combine certain fractions of the non-local Hartree-

Fock exchange with other semi-local exchange energies [17]. For example, the widely

used PBE0 functional has a mixture of 1/4 Hartree-Fock exchange and 3/4 PBE-GGA

exchange energies [18].

EPBE0
XC =

1

4
EHF
X +

3

4
EPBE
X + EPBE

C (2.6)

In recent years, a new hybrid functional form has been developed, which is known as the

HSE functional [19]. Based on the PEB0 functional, it further divides the PBE exchange
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term into the long-ranged and short-ranged contributions, as shown below.

EHSE
XC =

1

4
EHF, SR
X (µ) +

3

4
EPBE, SR
X (µ) + EPBE, LR

X (µ) + EPBE
C (2.7)

Here, the semi-empirical screening factor µ is determined as a compromise between speed

and accuracy in the simulation. The utilization of HSE hybrid functional has been well

tested for many semiconducting oxides. In this work, the HSE functional is the first

time to be used in the borides system, and the results are compared to the experimental

studies.

2.1.3 Self-consistent field

Once appreciate approximations are made to calculate the exchange-correlation func-

tional, the Schrödinger-like Kohn-Sham equation can be solved within a self-consistent

field (SCF), as illustrated in Fig. 2.1. First, an initial charge density is assigned for

the system and then the Kohn-Sham Hamiltonian operator is constructed based on this

charge density. Next the Kohn-Sham equation is solved as an eigenvalue problem using

the basis selected to represent the eigenfunction. The calculated eigenvectors give the

electronic wavefunctions associated with each Kohn-Sham energy state and are used to

determine the new charge density. Comparing the new to the old charge density, if the

difference is smaller than a predefined tolerance factor, then the electronic relaxation is

complete; otherwise, the algorithm is repeated using a new guess for the charge density

based on mixing the old and new charge densities.

2.2 Basis sets

The key problem in DFT is to solve for eigenvalues and eigenfunctions in equation 2.3.

The obtained eigenvalues refer to the Kohn-Sham energy states of the system and the

eigenfunctions are often called the basis set on which the electronic wavefunctions are
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Figure 2.1 A schematic illustration of the self-consistent loop in DFT.

projected. In practice, before entering the SCF loop, the eigenfunction, φi must first be

represented as an expansion of known functions.

One popular approach is to use planewaves (PWs), which naturally impose the peri-

odic boundary condition while providing a complete, unbiased basis set [20]. To solve the

electronic structure in a periodic lattice, the Blöch’s theorem is often used. According to

the Blöch’s theorem, the complex wavefunction for a periodic solid system is expressed

as the product of two terms, a planewave that varies across the crystal based on the wave

vector, k, and a function with the periodicity of the lattice, u(r), as written below.

φk(r) = eik·ruk(r) (2.8)

Here, the wave vector k represents a set of planewaves within the first Brillouin zone.

Incorporating Blöch’s theorem into equation 2.3, results in the electronic wave-function

not only depending on the eigenstate, i, but also the wave vector, k. In principle, the

k values should be continuous within the first BZ; however, in practice, the electronic

structure is solved on a discrete k-point mesh. In some special cases, for example, when

the density of states or band structure is calculated, a highly dense k-point sampling is
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needed.

Despite the success of utilizing the PW methods, the large number of PWs that

is required to capture the shape of wavefunction significantly limits its computational

efficiency. Even with the use of pseudopotentials, PW-based calculation is usually limited

to the system that is less than 100 atoms.

Another set of functions that can be used to represent the eigenfunctions is, numer-

ical atomic orbitals (NAOs). NAOs can accurately represent the eigenfunctions using

considerably fewer terms, and therefore provide a more rapid solution of larger systems.

As written in equation 2.9, this basis is characterized by a spherical harmonic term and

a radial function term.

φIlmn(~r) = RIln(|~rI |)Ylm
(
~rI
|~rI |

)
(2.9)

Here, I is the index of atom, l and m are the angular momentum and n is the number

of multiple orbitals with the same quantum momentum. The spherical harmonic term

is fixed for different orbitals, whereas the radial function term allows a great deal of

flexibility to be modified. For example, one can change the size of the function to

include more number of orbitals per atom, which is often known as multiple−ζ function.

One can also modify the shape and the range of the radial function. Once the basis set is

well defined, the Schrödinger-like Kohn-Sham equation is solved on a three-dimensional

real space grid.

The challenge of using NAOs lies in the fact that there is no systematic way to choose

the shape of the orbitals to provide a complete basis set that spans the Hilbert space.

The choice of the atomic basis set strongly depends on the local chemical environment.

To ensure that NAOs based calculations accurately reproduce the fundamental physical

properties of the system, the results from NAOs calculation must be carefully compared

to a representative set of PWs calculations.

Compared to the PW method, useful information regarding the bonding character-

istics can be directly extracted from the NAO representations. The most widely used
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bonding indicators are the Mulliken-based approaches, such as Crystal Orbital Overlap

Population (COOP), where overlap population is calculated between two atomic cen-

tered orbitals. Apparently, this approach is highly sensitive to the choice of atomic

orbitals; thus the results are biased. An upgraded version of the COOP algorithm is

called Crystal Orbital Hamilton Population (COHP) analysis [21]. In this approach,

all the band structure energies are rewritten as sums of pair contribution from atomic

orbitals. Instead of partitioning electrons to the orbitals as the COOP formalism does,

the COHP method partitions the eigenvalues to the attributed overlapping orbitals. As

a consequence, the results are less sensitive to the basis set and also easier to visualize.

For example, the bonding characteristic between two neighboring atoms can be directly

plotted along with the total density of states at the same energy range. In principle, a

negative COHP value indicates the bonding states because of the lowered energy due to

bonding, whereas a positive value corresponds to the anti-bonding states. The knowledge

of bonding or anti-bonding states can provide direct insight to the change of bonding

strength when these states are filled or emptied.

2.3 Pseudopotentials

The electronic calculations can be significantly simplified by introducing the concept

of pseudopotentials, especially for the PW method [20]. As shown in equation 2.2, the

first term of the effective potential is the external potential attributed by the electron-ion

interactions. In practice, one may replace the all-electron ionic potential with a pseu-

dopotential. As shown in Fig. 2.2, the deeply bound core electrons are highly localized

and therefore they are chemically inert. Only the valence electrons are actively involved

in forming bonds in solids. By considering the valence electrons only in the system, the

deep potential in the core region, written as −Ze2

r
, can be replaced by a much smoother

potential. In Fig. 2.3, an example is given for generating the Al pseudopotential. A
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cutoff radius, rc, is always needed during the construction of the pseudopotentials. In

the case of Al, a rc of 2.0 and 1.5 a.u. is picked for the 3s and 3p orbital, respectively.

In principle, the cutoff radius has to be soft enough to only require a relatively small

basis set to represent the wavefunctions; in the mean time, maintain the transferability

to allow it to be used in different chemical environments.
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Figure 2.2 An example of spherical charge density of Al atom. The core includes the
1s22s2sp6−states and the valence refers to the 3s23p1−states.
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Figure 2.3 A pseudopotential generated for Al atom with only considering the 3s23p1

valence states.

The main advantage of employing pseudopotential is the capability of reducing the
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size of basis set that is required to represent the electronic eigenfunctions of the system.

As illustrated in Fig. 2.4, by ignoring the core electrons, the pseudo-wavefunction has no

radial node inside the core region. However, beyond the core region, both the pseudopo-

tential and the corresponding pseudo-wavefunction must exactly match the all-electron

potential and all-electron wavefunction. In this work, a set of pseudopotentials are gen-

erated and used. Before making any productive runs, the constructed psedupotentials

must be carefully tested to ensure all the required physics are well captured.
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Figure 2.4 A comparison of wavefuction produced by the all-electron (AE) potential
and pseudopotential (PS).

2.4 Summary

In summary, first-principles, DFT methods have been extensively used in calculating

the electronic structure of molecular and crystalline systems. The direct output from

solving the Kohn-Sham equation is the eigenfunctions, which give the charge density, and

the eigenstates, which give the electronic energy. In addition to directly using the DFT

output, the results can be analyzed. The total density of states (DOS) is the number of

Kohn-Sham electron states present within an infinitesimal range of energy. Projecting the
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Kohn-Sham wavefunctions onto a set of orthogonalized atomic-like wavefunctions that

are localized on the atomic sites and then analyzing the DOS for the states localized

on each atomic site creates a projected density of states (PDOS), which gives insight

regarding the bonding within the crystal. The first derivative of the total energy with

respect to the atomic spatial coordinates gives the forces on the atoms, which allows

for the optimized crystal structure to be determined. The second derivatives of the

total energy with respect to certain types of perturbation gives the physical properties

of the crystal, such as elastic tensor, dielectric tensor, piezoelectric tensor, dynamical

properties. These response function (second derivatives of total energy) can be solved

by applying perturbations to the Hamiltonian in the traditional DFT technique, which

is often known as density functional perturbation theory. At present, three types of

perturbations, i. e. atomic displacement, lattice strain, electric field are implemented

in most of the DFT softwares. Combining at least two of them gives the properties as

listed above.
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CHAPTER 3. CHEMICAL DOPING THE XYB14

COMPLEX BORIDES

A paper published in Materials Letters

L. F. Wan and S. P. Beckman

Abstract

In this paper we demonstrate the possibility of chemically doping the orthorhombic

XYB14 crystal by controlling the metal atoms that occupy the X and Y sites. It is

found that the B atoms create a network of covalent bonds in the crystal and create

states near the band gap and Fermi level. The metal atoms are ionically bonded to the

crystal and donate their valence electrons to the B-network. By carefully controlling

the composition of the metal atom sites it may be possible to create a semiconducting

medium with AlLiB14 given as an example.

3.1 Introduction

Boron based compounds exhibit a broad and interesting array of physical properties

such as high melting point, high Seebeck coefficient, high hardness, and low specific

gravity [22, 23, 24, 25, 26]. The origin of boron’s unique behavior is also the origin of

the challenge to understanding it: boron’s electronic structure allows it to readily form

a wide variety of bonds to create a multitude of crystalline structures. For example, B is
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able to bond with metal atoms, M, to form a wide variety of stoichiometric compounds

including M4B, MB, MB2, MB6, and MB12 [22, 24, 27, 28]. Surprisingly these families

of complex borides are not functionally modified as are most engineering materials, e.g.,

Si is substitutionally doped, polymers have side-chains grafted to them, and nanowires

have chemical adsorbates on their surfaces. The borides are used as is which limits their

properties to those present by coincidence rather than properties by design. In this paper

a method of chemical doping is presented that will facilitate controlling the electrical,

and possibly other, properties of this class of complex borides.

This paper focuses on the metal boride, XYB14, where X and Y are metal atoms.

This structure was originally discovered by Matkovich and Economy in 1970 [1] and

investigated by Higashi in 1983 [9]; however, it garnered little scientific interest until 2000

when Cook et al. observed that creating the AlMgB14 compound via mechanical alloying

yielded a specimen with superhard mechanical strength [2]. The observed hardness is

surprising because the atomic structure is relatively open and has low symmetry, whereas

most superhard materials are dense, stoichiometric compounds with high symmetry.

Another aspect of Cook’s specimen that is intriguing is the relatively large number of

impurities, including Ti, Si, C, O, and second phases, including TiB2 and Al2MgO4.

Although fully dense, single phase specimens of AlMgB14 are still difficult to synthe-

size, several preparation methods have been proposed that can produce samples with

densities that are greater than 90% of the theoretical [3, 26, 29, 30, 31]. From these

processing studies it is found that the preparation plays an important role in establish-

ing the properties [30]. The variability may be due in part to changes in the crystal

stoichometry [2, 9] and in part due to the impact of microstructure [32].

Computational efforts have been pursued to investigate the intrinsic atomic properties

of the XYB14 crystal family. These studies have primarily focused on the elastic response

and the influence of adding impurity species to the elastic behavior. Lee and Harmon

were the first to calculate the elastic constants and AlMgB14 [10]. The behavior of a
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crystal both with and without vacancies was compared and it was found that removing

25% of the Al and Mg atoms substantially diminished the elastic response. The influence

of metal species on the elastic properties and binding energy of the XMgB14 crystal family

and AlYB14 sputtered films was investigated by Kölpin et al., and it was found that the

phase stability is related to the transfer of the metal atoms’ valence electrons to the

B-network [11, 33]. Charge density analysis was performed by Letsoalo and Lowther and

it was concluded that there exists a greater charge build-up between the B–B bonds in

the AlMgB14 than in other materials, due to the metal species that, “induce relaxation,”

in the B-network [34]. Other theoretical studies have focused not on the metal atom

species, but direct substitution onto the B-sites [12, 34].

In spite of the progress made so far, there is still little understanding of what controls

the properties of the XYB14 crystal family or how to use our understanding to engineer

the behavior. Here we extend the existing theoretical work to demonstrate the relation-

ship between the chemical composition at the metal sites and the electronic structure

by comparing the prototypical crystals, AlMgB14, AlLiB14, and MgMgB14. The unique

bonding characteristics of boron provide this crystal family both a set of strong covalent

bonds, due to the extended network of B atoms, and ionic bonds that bind the metal

atoms to this network. We explore the possibility of exploiting this situation to create an

XYB14 based semiconductor in which the covalently bonded network of B atoms provide

the framework to conduct charge and the metal atoms are used to dope the B-network,

essentially controlling the charge carrier concentration.

3.2 Methods

The crystal structure and electronic properties of XYB14 are calculated by first-

principles, density functional theory (DFT) methods [13, 35]. The exchange-correlation

energy is expressed as a local functional of the charge density including the local gradi-
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ent [15], and ultra-soft pseudopotentials are used to replace the all-electron ion poten-

tials [36]. The wave function is represented by a plane wave basis that is truncated at

900 eV, and the Brillouin zone is sampled using the Monkhorst-Pack [37] algorithm with

a 4 × 4 × 4 grid. These parameters are selected to ensure that the calculated forces on

the ions are converged to an accuracy of better than 5 meV/Å.

3.3 Results and Discussions

The lattice parameters for AlMgB14, AlLiB14, and MgMgB14 are calculated and agree

well with the experimentally determined structures that are published in the literature [1,

3, 4]. Using DFT it is relatively straight forward to qualitatively determine the change

in the electron distribution when isolated atoms are bonded to form a crystal. By this

approach it is observed qualitatively that the B atoms form covalent bonds between

themselves and the metal atoms forfeit electrons to the B network. By calculating the

projected density of states and performing population analysis it is possible to further

verify that the states at the band edges are strongly influenced by the covalent bonds

between the B atoms and that the metal atoms are ionically bonded to the crystal. These

observations have been well established and reported elsewhere [10, 11, 12, 34].

The implications of this have yet to be explored. In particular, if the states at the

band edges, near the Fermi level, are from the covalently bonded B and the metal atoms’

primary role is to contribute electrons to the B, then presumably changing the valency

of the metal atoms will impact the position of the Fermi level in the density of states.

The total density of states (TDOS) are determined and plotted in figure 3.1. Assuming

that each metal atom donates its valence electrons to the B, then each Al atom will

contribute three electrons, each Mg two electrons, and each Li one. For a 64-atom unit

cell the AlMgB14 crystal will have four more electrons than the AlLiB14 and MgMgB14

compounds. This can be verified by removing four electrons from the AlMgB14 unit cell
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Figure 3.1 The total density of states of the AlMgB14, AlLiB14, and MgMgB14 com-
pounds. The vertical dashed lines indicate the Fermi energy. In this paper,
the energy zero is chosen arbitrarily as the maximum of valence band.

and recalculating the atomic and electronic structure. 1 It is shown in figure 3.1 that

AlMgB14 with a 4 electron deficit has a distribution of states that is nearly identical to

the fully compensated AlMgB14; however, the Fermi level has shifted to approximately

the same position as that observed in the AlLiB14 and MgMgB14 density of states.

It is intriguing that the XYB14 crystal family has a moderate sized band gap and

that the Fermi level can be controlled by atomic substitution to the metal sites. By

carefully controlling the composition, it may be possible to create a crystal that behaves

as a doped semiconductor. Consider for example the AlLiB14 crystal, which has a Fermi

level that is only slightly inside the conduction band. The charge density associated with

the conduction band is determined to be 1.0× 1018 cm−3, which is equivalent to heavily

doped n-type Si.

This consideration can be taken a step further by examining what would happen if

a metal is placed in intimate contact with AlLiB14. A rectifying Schottky junction is

formed if the metal’s work function is greater than the semiconducting boride. Using

1A uniform background charge is added to ensure the neutrality of the computational cell.
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DFT, the work function is determined by calculating the potential of a 2D semi-infinite

crystal slab in vacuum with the work function defined as the difference between the

electrostatic potential in vacuum and the Fermi energy of the slab [38]. For AlLiB14 the

(001), (100), and (010) surfaces have calculated work functions of 4.46, 5.21, and 6.04

eV respectively. These numbers are of course idealized and in any engineering situation

the surfaces of the crystal will be highly tailored to optimize the work function and

mitigate problems such as Fermi level pinning due to dangling bonds [39, 40]. From the

calculations here it is predicted that a metal with a work function between 5 and 6 eV

placed in contact with the (001) AlLiB14 surface will create a Schottky barrier with a

depletion width of approximately 10 nm [41].

One potential application for this type of junction is in a solid-state neutron detector.

Boron is known to have a huge neutron capture cross-section, 3800 barns [42], and this

particular crystal has a B atomic density of 11.4×1023 cm−3, which is 3 times larger than

boron carbide [43], A crystal from the XYB14 family that is chemically doped could act

both as the neutron capture medium and as the electronics used to measure the deposited

energy. Such a medium could find direct use in existing detector designs, and may allow

for improvement of these devices by increasing their overall efficiencies [44, 45, 46, 47, 48].

3.4 Summary

In conclusion we reiterate that boron based compounds are remarkably versatile due

to boron’s ability to form a diverse set of bonds. Unlike most engineering materials,

the borides do not typically have functionalized properties by design and instead are

used as is, without modification. Here the electronic structure of the XYB14 crystal

family is studied using first-principles methods. The bonding in this crystal family is

unique in that it has both a network of strong covalent bonds, similar to those found in

tetrahedral semiconductors, and metal atoms that are ionically bonded to the covalent
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network. This family is shown to have a band gap with the Fermi level near the gap.

The states at the edges of the gap are from the covalent network of B atoms and the

metal atoms donate their valence electrons to the B network. This insight allows the

position of the Fermi level to be controlled by selectively occupying the X and Y sites

with metals having different valency. In this manner the crystal is functionally modified

to become a doped semiconductor. It is further demonstrated that it may be possible to

use AlLiB14 to create a rectifying Schottky junction.

One can speculate that the observations presented here may have implications beyond

the creation of a semiconducting boride. Takeda et al. reports that AlMgB14 possesses

a large Seebeck coefficient; however, it has an inadequate electrical conductivity for

practical application as a thermoelectric [26]. By appropriate chemical doping it may be

possible to overcome this limitation, which may make the XYB14 compound a favorable

candidate in the search for new thermoelectric materials. The observations in this paper

may also have bearing for the mechanical and vibrational properties of XYB14. As

the Fermi level is moved through the density of states, electrons will be preferentially

removed from states localized near specific B sites. This suggests that the chemical

doping reported here could be used to tune the electron-phonon coupling in this crystal.
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CHAPTER 4. VACANCY STABILIZED XYB14

STRUCTURES

A paper prepared for submission to Materials Letters

L. F. Wan and S. P. Beckman

Abstract

In this work, the lattice instability of the XYB14 structure is examined by calcu-

lating the phonon vibrational modes. Three soft phonon modes are observed for the

stoichiometric AlMgB14 composition, whereas no soft modes are found for its counter-

part off-stoichiometric composition. The intrinsic vacancies formed at the metal sites

stabilize the entire boron lattice by removing undesired charges carried by the metal

atoms. As a result, the Fermi levels of the XYB14 compounds stay closely at the band

gap.

4.1 Introduction

Although boron compounds have been used by humans for centuries, their crystal

structure and bonding properties are complex due to boron’s capability to engage in

diverse bonding configurations, and as a result many of these materials are not well

understood. An excellent example is the class of boron-rich compounds that has the

chemical formula XYB14, where X and Y are metal atoms. This crystal family has
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recently attracted the attention of the technical community due to its unique electronic

and structural properties [2, 7, 8, 26, 29, 30, 32, 31]. Within the atomic unit cell, there

are five unique boron sites. Four are located within the B12 icosahedra subunits that

make up much of the covalently bonded B-network and one B site resides between the

B12.

According to the Jemmis mno electron counting rules [49], each B12 icosahedron is

two-electron deficient and it has been shown that the metal species ionically bond to

the rigid, covalently-bonded B-network, donating electrons to stabilize the B12. This

approach successfully explains the relative stability of different crystal families by char-

acterizing the impact of the metal atoms electronegativity on the stability of the sys-

tem [11]. It is concluded that the greater the electron contribution to the B from the

metal the greater the stability. However, studying the valence electron concentration

(VEC) alone cannot explain the stability of the compound. For example, the AlMgB14

compound has been found to have an off-stoichiometric composition of Al0.75Mg0.78B14

where 25% of the metal sites are vacant [9]. The effective charge per icosahedron is -2.30

for the AlMgB14 compound and is -1.73 for the off-stoichiometric Al0.75Mg0.75B14 [11].

Why is a structure with metal site vacancies, having a lower VEC preferred?

Here first-principles, density functional theory (DFT) methods are used to examine

the phonon vibrational modes to search for lattice instabilities that can be explained

from the electronic structure. The AlLiB14 compound is studied because it is known

the diffraction data to be nearly stoichiometric [50] and therefore serves as an exem-

plar XYB14 structure. The AlMgB14 compound and its off-stoichiometric counter-part,

Al0.75Mg0.75B14, are also investigated. For common boron-rich borides, four types of

optical phonon vibrational modes are expected [51, 52]: low frequency “librational”

modes, which are the collective rotations of the B12 icosahedra; medium frequency intra-

icosahedra modes, which are the vibrations between the atoms in the icosahedra; high

frequency inter-icosahedra modes, which are the collective vibrations between the icosa-
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hedra; and finally the vibrational modes involved with foreign atoms, in this case, the

metal atoms. These characteristic vibrational modes will be identified as well as the

soft-modes, which signify structural instability.

4.2 Methods

The ground state properties of the XYB14 crystal family are calculated using the

DFT plane wave method encoded in the Quantum Espresso software [13, 20, 35]. The

exchange-correlation energy is approximated using the generalized gradient approxima-

tion (GGA) [15]. Ultrasoft pseudopotentials with non-linear core corrections are used

in place of the all-electron ion potentials [36]. The plane wave expansion is truncated

at 950 eV and the Brillouin zone is sampled using the Monkhorst-Pack algorithm with

a 4 × 4 × 4 mesh to assure that the calculated forces on each atom are accurate to

better than 5 meV/Å [20, 37]. Using this approach the calculated lattice parameters,

shown in Table 4.1, agree with experimentally and theoretically determined values in the

literature.

Table 4.1 Comparison of the lattice parameters for selected XYB14 type crystals.

Compositions a (Å) b (Å) c (Å)

AlMgB14 (This work) 5.902 10.346 8.112

AlMgB14 (Cal. from Ref. [11]) 5.895 10.378 8.154

Al0.75Mg0.75B14 (This work) 5.852 10.261 8.082

Al0.75Mg0.75B14 (Cal. from Ref. [11]) 5.838 10.308 8.113

Al0.75Mg0.78B14 (Exp. from Ref. [9]) 5.848 10.312 8.112

AlLiB14 (This work) 5.861 10.382 8.150

AlLiB14 (Cal. from Ref. [53]) 5.897 10.345 8.107

Al0.956LiB14 (Exp. Ref. [50]) 5.8469 10.3542 8.1429



27

4.3 Results and Discussions

The frozen-phonon method is used to determine the vibrational modes. Displace-

ments of 0.01 Å are used to ensure the validity of harmonic approximation. These

compounds have an exceedingly large unit cell, containing 64 atoms, and solving the

dynamical matrix results in 192 unique eigenvalues and eigenvectors. The phonon eigen-

values are plotted in Fig. 4.1. To assist in visualization each phonon energy is plotted as

a Gaussian with a width of 5.5 cm−1.
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Figure 4.1 The phonon frequency population for selected XYB14 type crystals. The
frequency associated with each phonon normal mode is represented as a
Gaussian function with a width of 5.5 cm−1.

At zero frequency, three acoustic phonon modes appears as all the atoms moving

coherently. The boron librational modes occur between 180 and 320 cm−1, which are

approximately in the same range as boron carbide [51]. The intra-icosahedra vibrations
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have frequencies ranging from 350 to 800 cm−1. The stronger inter-icosahedra bonds show

higher vibrational frequencies, which are typically higher than 700 cm−1. This frequency

ordering confirms that the XYB14 crystal are inverted-molecular structures, and the B–B

bonds inside the icosahedra are weaker than those between the icosahedra. The highest

optical frequencies, greater than 1000 cm−1, are due to the vibrations of the B atoms

that occupy the apex positions of each icosahedra and bond to one another across the

layer of metal atoms. This is consistent with previous observations that the B–B bonds

that connect the icosahedra in the y−direction are the strongest in the crystal [54].

The phonon modes involved with metal atoms are shown at relatively low frequency

regime. The vibrations involving only the metal atoms in the B lattice have frequencies

lower than 300 cm−1. In addition there are vibrational modes involving the metal atoms,

Al, and the B12 icosahedra at between 300 and 450 cm−1.

The vibrational spectral population of AlLiB14 and Al0.75Mg0.75B14 are very similar

with the principal differences being in the 0 to 500 cm−1 range, where the masses of the

metal atoms have the greatest impact. The higher frequency portion of the spectra are

qualitatively the same. Surprisingly these two are more similar than the stoichiometric

AlMgB14 spectra is to either. Most notably the stoichiometric AlMgB14 spectra has a

set of three soft-modes. Examining the eigenvectors of the soft modes, which give the

atomic displacements, it is clear that these are associated with certain atoms moving out

of the lattice.

It is demonstrated previously that the electronic structure of XYB14 obeys rigid

band model fairly well [55]. The removal of metal atoms is not expected to influence the

bonding structure of XYB14. However, the total number of valence electrons contributed

from the metal atoms are changed. As a result, the Fermi level moves through the

electronic states. For the composition as Al0.75Mg0.75B14, the valence bands are fully filled

and the conduction bands are completely open, leaving the Fermi level at the valence

band maximum. When more electrons are attributed by the metal atoms, the higher
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energy conduction bands begin to be filled. For example, in the AlMgB14 structure,

the Fermi level resides about 2 eV inside the conduction bands. The observed lattice

instability of AlMgB14 might due to the electron occupation to the conduction bands.

This cause of lattice instability has also been reported in many other boron compounds,

such as metal tetraborides and metal diborides [56, 57]. In these boron compounds, the

lattice instabilities are eliminated by rearranging the lattice to settle in a lower symmetry

state; whereas in the XYB14 structure, because the metal atoms do not contribute to the

bonding, the lattice is stabilized by introducing metal site vacancies.

Applying a simple counting scheme, we begin by restating that each B12 is two-

electron deficient. Although the B12 are essential parts of the crystal, it is insufficient to

only consider these when determining the compensating charge needed. It is tempting

consider the inter-icosahedra B as trigonally bonded to its neighboring icosahedra, and

therefore satisfied by the three valence electrons intrinsic to B; however, careful inspection

of the charge distribution shows that the three-fold rotation symmetry is in fact broken

and only the mirror plane associated with the Imma space group passes through this site.

In addition, the inter-icosahedra B also forms a covalent bond with the inter-icosahedra

B across the layer of metal atoms as is shown in Ref. [58]. Therefore each inter-icosahedra

requires the addition of one electron to satisfy its bonding geometry.

In each of the 64-atom XYB14 unit cell, there are 4 units of the B12 icosahedra,

8 inter-icosahedra B atoms and 4 X and Y metal atoms. Within the simple electron

counting approach, one can conclude that totally 16 number of valence electrons are

needed for each XYB14 unit cell to to stabilize the covalently bonded B-network. In the

case of the stoichiometric compound, AlLiB14, the valency of the metal atoms is exactly

16. In comparison, AlMgB14 has a total of 20 valence electrons. However, by placing

a vacancy at 25% of each metal this count is reduced to 15, which is the case for the

off-stoichiometric Al0.75Mg0.75B14 composition. More experimental verified examples are

given in Table 4.2. In all of these experimentally determined compositions, the valence
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electron count have a value around 16. To look back in the electronic structures, this

electron configuration will put their Fermi level either at the band edges or in the band

gap. As a result, these XYB14 compounds behave as semiconductors rather than metals.

Table 4.2 Number of valence electrons carried by the metal atoms in several XYB14

type crystals.

Compositions Number of valence electrons

Al0.956LiB14 (Ref. [50]) 15.8

Al0.75Mg0.78B14 (Ref. [9]) 15.2

Mg0.97Mg0.97B14 (Ref. [4]) 15.5

Al0.74Ho0.633B14 (Ref. [7]) 16.4

Al0.73Er0.62B14 (Ref. [7]) 16.2

This vacancy induced semiconducting behavior is not new in many of the B-rich

compounds. In 1999, Schmechel and Werheit studied the vacancy formation mechanism

in a variety of boron compounds, and it is concluded that the formation of vacancy is

related to the number of valence electrons that are required to compensate the electron

deficient B lattice [59]. For instance, β−rhombohedral boron has a vacancy concentration

of 4.9 vacancy per unit cell [60]. Both α− and β−tetragonal boron have missing metal

atoms [61]. In the complex boron carbide structures, the vacancy concentration is directly

related to the carbon content [59]. It is shown that by forming vacancies at specific atomic

sites, the Fermi level moves from the conduction bands into the band gap. This explains

why the experimental observed off-stoichiometric boron compounds show semiconducting

properties, whereas the theoretical studied stoichiometric compositions always predict

metallic behavior.
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4.4 Summary

In the B-rich borides, including the XYB14 compounds discussed here, there is a

transfer of electrons to and within the B-network that allows for the covalent bonds

to be fully satisfied. It is demonstrated here that the presence of excess charge results

in lattice instabilities characterized by soft phonon modes. The addition of metal site

vacancies stabilizes the lattice. Counting the number of bonds indicates that a total of

16 electrons are needed to stabilize the lattice and indeed this is found to be the case.

Using a rigid band model, as demonstrated in Ref. [55], it is found that necessary electron

occupation will place the Fermi level immediately at the band gap. An observation that

leave many potential engineering applications for this compound if it can be grown and

its interfaces suitably controlled.
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CHAPTER 5. THE ELECTRONIC STRUCTURE OF

AlLiB14

A paper submitted to Science and Technology of Advanced Materials

L. F. Wan and S. P. Beckman

Abstract

The XYB14 compound, where X and Y are metal atoms, is a unique crystal system

that has demonstrated potential for application both as a high-temperature thermoelec-

tric material and as part of a low-cost, superhard material system. Engineering this

material for these applications requires understanding the relationship between the elec-

tronic structure, the localized bonds within the crystal, and the physical properties.

We present here the results of a detailed first-principles investigation that relates the

electronic structure of the archetypal AlLiB14 compound to the localized bonds within

the crystal. We conclude from these results that in principle it is possible to use the

composition to control the electronic structure and, by selectively populating bonding

or anti-bonding states, control the physical properties. In addition deformation poten-

tials are calculated for hydrostatic and uniaxial compression. Finally using a hybrid

functional method the band gap is determined to be 2.12 eV, which clarifies previously

reported absorption data.
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5.1 Introduction

The modernization of industrial manufacturing to allow for clean, high-efficiency op-

eration requires the development of new materials that can perform in extreme environ-

ments. The metal borides possess not only excellent mechanical strength, high melting

temperatures, and resistance to chemical corrosion, but are also found to have interest-

ing electronic properties including a large Seebeck coefficient [26, 62, 63]. The XYB14

crystal family, where X and Y are metal atoms, sparked public interest in 2000 when

Cook et al. reported that a specimen containing AlMgB14 had superhard strength [2].

Engineering this material to optimize the thermoelectric and mechanical properties for

high-temperature application requires a detailed understanding of the bonding in the

crystal that is currently lacking.

This relatively open, low-symmetry crystal family was first discovered in 1970 by

Matkovich and Economy and was further studied by Higashi and Ito in the early 1980s [1,

9]. The metal atoms, which occupy the X and Y sites, do not covalently bond to the

B, but instead are ionically bonded to the covalent network of B. It is presumed that

the electrons from the metal atoms stabilize the B12 icosahedra found within the B-

network [49]. Previous theoretical studies focused on correlating the elastic properties of

the crystal to its chemical composition [10, 11, 12, 34, 55, 64]. It is suggested that the

X and Y sites can be selected to tune the electronic structure of the crystal and thereby

control the physical properties; however, there is yet to be an explanation of how the

electronic states relate to the localized bonding and subsequently the physical properties.

The relationship between the composition and the elastic properties is extensively

investigated by Kölpin et al. in Ref. [11] and it is determined that changing the metal

atoms, which donate their electrons to the B-network, has a direct impact on the bulk

modulus. This is related to the transfer of electrons from the metal species to the B12

icosahedra. However, the bulk modulus is only an indicator of average bond strength,
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and understanding the hardness of a compound requires a detailed understanding of the

individual bonds in the crystal and in particular the pathways that will likely fail first.

The first theoretical effort to extend beyond the homogeneous elastic response focused

on the ideal fracture strength of this crystal [58]. By examining the mechanical strength

for a series of fracture pathways, and it is concluded that it is the bonds that span between

the icosahedral layers, the so-called B2–B2 and B1–B1 bonds, are critical for determining

the strength of the system. To use the composition to engineer the properties it is

necessary to understand how these critical bonds are related to the electronic structure.

Here the localized bonding in the crystal is examined in detail and is related to the

electronic structure. From these results it is possible to correlate the relationship between

the composition, electronic structure, and the desired physical properties. Although this

article focuses on the mechanical properties of the archetypal AlLiB14 compound, these

results are generally valid for the physical properties of the entire XYB14 crystal family.

Following this introduction the methods are presented in section 5.2. The results are

discussed in section 5.3 and a summary of the conclusions is presented in section 5.4.

5.2 Methods

The first-principles, density functional theory [13] (DFT) method used here [35]

approximates the exchange-correlation energy as a local functional of the charge density

including the local gradient (GGA) [15]. Ultrasoft pseudopotentials are used to replace

the all electron ion potentials [36]. The plane wave expression of the wave function is

truncated at 950 eV and the Brillouin zone is sampled using a 6× 6× 6 Monkhorst-Pack

mesh [37], which allows the calculated forces on the ions to have an accuracy of better

than 5 meV/Å.

The SIESTA density functional theory method [65] is used in addition to the Quantum

Espresso [35] algorithm. Unlike Quantum Espresso, which uses plane wave to represent
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the wave function, this method expresses the electronic wavefunctions as a set of local-

ized atomic-like orbitals. From this approach the crystal orbital Hamilton populations

(COHPs) can be easily determined [21]. In the calculations presented here, the atomic-

like orbitals for each species is represented as a set of double ζ-functions plus a shell

polarization. A detailed description of the parameterized basis set is given in Table 5.1.

Norm-conserving pseudopotentials are used for the ion potentials [66]. The exchange-

correlation energy is estimated using the generalized gradient approximation [16]. The

real space integration is performed with an energy cutoff of 2380 eV and the Brillouin

zone is sampled on a 12× 12× 12 Monkhorst-Pack grid [37].

Table 5.1 The cutoff radii, rc and rm, for the double−ζ functions used for each atomic
species in this calculation.

Orbital First−ζ Second−ζ

Al
3s2 5.9597 5.1295

3p1 7.6524 6.0347

Li 2s1 8.8136 7.0376

B
2s2 5.2881 4.4391

2p1 6.2996 4.6667

Density functional theory returns the ground state electronic energies and wave func-

tions for a given set of external potentials so long as the basis set that represents the

wave function spans Hilbert space sufficiently to represent the solution. Therefore dif-

ferent basis should return identical results. The energies and density of states produced

by these two methods are compared to assure that the basis are fully converged. Using

these approaches the predicted lattice parameters of AlLiB14 are accurate to within 1%

of their experimentally reported values [3, 5].
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5.3 Results and Discussions

Within the AlLiB14 crystal structure, shown in Fig. 5.1 there exist five unique B

sites. The B12 icosahedra layers are stacked in the y-direction. The B1 (green) apex

sites in the icosahedra allow for direct bonding between the B12 via B1-B1 bonds that

extend between the layers. Within the B12 layers, in the xz-plane, each icosahedra unit

is bonded to four neighbors at their B4 (yellow) sites. The B atoms that do not belong

to an icosahedra are referred to as inter-icosahedra B and are identified as B2 (black)

sites. Each inter-icosahedra B atom appears to be bonded to three nearby B12 at either

B5 (red) or B3 (blue) sites located inside the icosahedra. The Al (cyan) and Li (pink)

are located between the layers of B12.

Figure 5.1 The atomic structure and bonding charge density, ∆ρbonding, of the

AlLiB14 crystal. The atomic sites are identified in the legend, on the right.
(a) shows the charge density isosurface with a value of +0.022 e/a.u.3 and
(b) shows an isosurface with a value of −0.012 e/a.u.3
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The fundamental assumption of DFT is that the electronic properties of a system

can be described by the spatial charge distribution, and therefore it is natural to begin a

study of the electronic properties by examining the charge. However, the charge density

is not always the most useful quantity, instead the bonding charge density, ∆ρbonding,

which is rendered by subtracting the charge density of the bonded structure from the sum

of the charge contribution from each of the atoms treated as though they are isolated.

Regions with positive ∆ρbonding, shown in Fig. 5.1 (a), have accumulated charge during

bonding, and regions with negative ∆ρbonding, shown in Fig. 5.1 (b), experience charge

depletion upon bonding.

Charge accumulation is observed between the layers of B creating the critical B1-B1

and B2-B2 bonds that are identified and discussed in Ref. [58]. In the xz-plane charge

accumulation is observed between the inter-icosahedra B2 sites and the B3 and B5 icosa-

hedra sites, resulting in B2-B3 and B2-B5 bonds. The icosahedra are directly bonded to

each other via B4-B4 bonds. Charge accumulation, is also present within the icosahedra.

No covalent bond charge is observed between the metal species and the B.

The charge accumulation shown in Fig. 5.1 (a) induces the charge depletion shown

in frame (b). In agreement with previous efforts the metal species are shown to donate

charge to the B atoms. In addition there is a rearrangement of charge within the B-

network to facilitate the covalent bonding between the B. Charge depletion is observed

near the B1, B3, B4, and B5 sites, away from the covalent bond charges that were noted

in Fig. 5.1 (a). It is noteworthy that there is little local charge depletion near the B2

site compared to the other B sites. This suggests that the B2 atoms do not contribute

significant charge to the B2-B2 bonds and instead the observed bond charge must come

from the metal species.

Löwdin population analysis [67] confirms the qualitative features observed in the

charge density. The metal species, which have a valency of 3 and 1 for Al and Li

respectively, have an integrated charge of 1.70 and 0.71 electrons indicating substantial
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loss especially from the Al site. The B sites, which have a valency of 3 electrons, have all

gained charge with the B1, B2, B3, B4, and B5 sites having Löwdin populations of 3.07,

3.43, 3.11, 3.03, and 3.01 electrons. From this analysis it is concluded that the B2 sites

have gained considerable charge, compared to the other B sites, and this charge comes

from the metal species.

The density of states (DOS) and partial density of states of AlLiB14, presented in

Fig. 5.2, are consistent with previous theoretical investigations [11, 55, 64]. AlLiB14 is

found to have a band gap of 1.26 eV and the Fermi level is located at the edge of the gap.

The metal atoms have negligible contribution to the states near the band gap, and the

band edge is dominated by the B 2p-states with the B2 and B3 sites making the greatest

contribution. Chemically doping the metal atom sites to move the Fermi level across the

gap will selectively remove electrons from these atomic orbitals.

From the DOS alone it is tempting to assume that the valence band edge represents

the hybridization of the B2 and B3 2p-states and that passing the Fermi level through

these states directly affects these hybridized bonds, but the actual physics is not so sim-

ple. The crystal orbital Hamilton population (COHP) [21] is calculated to determine the

nature of the orbital interactions between sites: bonding, non-bonding or anti-bonding.

The AlLiB14 COHP, presented in Fig. 5.3, demonstrates that the valence band edge rep-

resents electrons in B2-B3 and B2-B5 bonding states and B2-B2 anti-bonding states. The

B1-B1 bonds that span between the layers of B12 are non-bonding at the valence band

edge, but become bonding about 0.35 eV below the valence band edge.

This demonstrates that the electrons associated with the valence band edge are highly

localized in the crystal, near the volume where the B2, B3, and B5 sites juxtapose. Mov-

ing the Fermi level into the states at the valence band edge removes electrons from this

localized region and has the effect of strengthening the B2-B2 bonds, by depopulating

the anti-bonding states, and weakening the B2-B3 and B2-B5 bonds, by depopulating

the bonding states. The B2-B2 bonding states have lower energy, at least 0.55 eV be-
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low the band edge; however, B1-B1 bonding states are located 0.35 eV below the band

edge and moving the Fermi level below this energy will weaken the B1-B1 bonds. This

analysis of the DOS and COHP demonstrates how manipulating the composition can

possibly be used to selectively occupy these bonding or anti-bonding states and control

the mechanical properties of the XYB14 crystal family.

When a strain is applied to a crystal, the elastic energy is stored in the local bonds by

changing the electronic energy, and for the icosahedral B compounds the inter-icosahedra

bonds are strongly effected due to their sparse distribution. In the case of α- and β-

rhombohedral B, applied strain causes rotation of the rigid B12 substructures [68]. The

high number density of inter-icosahedra bonds in the XYB14 compound suggests that

this crystal family will respond differently under loading than other B compounds. This

will be apparent in both the structural and electronic response of the crystal to loading.

To assess the effect of pressure on the atomic structure, pair distribution functions

(PDFs) are presented in Fig. 5.4. The top frame of Fig. 5.4 shows the atomic distances

for the ground state AlLiB14 crystal. Below this are the PDFs for crystals that have

been strained uniaxially by 1% in the x-, y-, and z-directions. The averaged intra-

icosahedra bond length is approximately 1.81 Å, which matches well with the experi-

mental value [50].

It is predicted by Wan and Beckman in Ref. [58] that for the {010} planes frac-

ture is more likely to occur through the inter-icosahedra bonds than through the intra-

icosahedra bonds. The results in Fig. 5.4 confirm that uniaxial loading along the

y-direction has a greater impact on the B1-B1 and B2-B2 bond lengths than any of

the other atomic distances. The effect of loading in the xz-plane is more complicated.

In the case of compression in the x-direction, the distance between the B2-B5 and B4-B4

bonds are effected, because they are aligned in the loading direction. Similarly the B2-B3

and B4-B4 bond distances are effected by uniaxial loading in the z-direction. Unlike the

B1-B1 and B2-B2 bonds, which are directly aligned in the y-direction, none of the inter-
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icosahedra bonds in the xz-plane are directly parallel to the loading directions. As a

result of this complex geometry and numerous bonds, the strain is distributed within the

B layer. This helps to explain the observation in Ref. [58] that the fracture strength of

the {100} and {001} planes is nearly independent of the location of the fracture interface.

Although AlLiB14 has no pronounced icosahedra rotations, it is still observed to

deform in a very anisotropic manner, which also impacts the electronic structure. The

volume deformation potential, αv = dEg/dln (V ), where Eg is the band gap, is around

−4.5 eV for uniaxial loading in the x-direction and 3 eV, for pressure along y- and

z-directions. Although the effect of uniaxial strain is non-negligible, hydrostatic pressure

has little impact on the band gap of AlLiB14, less than a 1 meV change for a 1.5% volume

change. This differs significantly from α- and β-rhombohedral B, which are reported to

experience 17 and 70 meV/GPa changes to their band gap [68].

The relative changes to the band gap reported here are likely correct; however, it

is known that the GGA used in this letter predicts band gaps that are wrong, and the

1.26 eV band gap, presented above, is probably inaccurate. Hybrid functional methods

may offer a better approximation of the actual band gap, and in particular the Heyd-

Scuseria-Ernzerhof hybrid functional [19, 69] is tested. The details of this calculation is

given in the Supplementary Data to this paper. The hybrid functional predicts a band

gap of 2.12 eV, which is significantly larger than the GGA band gap. Werheit et al. have

measured the absorption spectrum and report that the strongest absorption occurs at

1.95 eV, which agrees well with the results here [70]. Our calculation suggests that the

absorption events reported at lower energies are not due to inter-band transitions and

are possibly due to the Urbach tails and deep states in the gap that are discussed in

detail in Ref. [70].



41

5.4 Conclusions

To summarize, the electronic structure of AlLiB14 is investigated using first-principles

DFT methods. It is apparent from the charge density and Löwdin population analysis

that the charge transfer to the the B2 inter-icosahedra site is significant. The B2-B2

bonds contribute to the strength of the crystal across critical planes [58]. Because the

atom at the B2 site forms four bonds with its neighbors additional charge needs to be

transferred from the metal species to this atom to stabilize the bonds. This observation

suggests that the analysis in Ref. [11], where the crystal’s stability is directly linked to

the charge transfer from the metal species to the B12 icosahedra, may not fully explain

the stability of the crystal family or describe the bonding characteristics.

Based on the charge density, DOS, and COHP analysis, we are now able to answer

the question, “Is it possible to tune the electronic structure to control the mechanical

properties of XYB14?” In principle it is possible to use chemical doping to move the

Fermi level from the band gap into the valence band, removing electrons from the B2-B2

anti-bonding states, which will strengthen the crystal. However, only a modest window

is available where chemical doping can be effectively used to strengthen the crystal. If

the Fermi level moves too deep into the band, lower than 0.35 eV below the gap, the

electrons will begin to depopulate the states localized in the B1-B1 bonding states, and

possibly the B2-B2 bonding states as well, weakening the bonds that have been identified

as critical for the overall strength of the XYB14 compound. It is noteworthy that the off-

stoichiometric Al0.75Mg0.78B14 [9], which is present in the superhard specimen prepared

by Cook and Russell [2], is predicted to have its Fermi level directly in this window,

meaning that the strength should be maximized [71].

The impact of strain on the structural and electronic properties is investigated. Unlike

α- and β-rhombohedral B, loading does not result in rotations of the B12 subunits; instead

the deformation compresses the bonds between the icosahedra. Whereas previous studies
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have focused on applying hydrostatic pressure and have noted that this yields no change

in the gap, here uniaxial pressure is applied and it is found that the band edges will

shift their energies. It is possible that the application of hydrostatic pressure results in a

complex rearrangement of the states at the band edges, which may cause a rigid, uniform

shift of the gap; however, this cannot be assessed without a detailed study of the band

alignment.

A hybrid functional method is used to determine that the band-gap of AlLiB14 is

2.12 eV. This result is compared to the absorption measurements reported in Ref. [70].

This comparison allows for a definitive identification of the fundamental inter-band ab-

sorption edge apart from the many absorption events that are also measured. It is

noteworthy that a photon with a wavelength of 585 nm is required to excite an electron

across a 2.12 eV band gap and this wavelength is very near the maximum in the solar

spectrum. This leads one to speculate that with careful processing the XYB14 crystal

family may find use in photoactive applications. Of course, for engineering applications,

it will be necessary to determine the band alignment relative to a known standard.
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Figure 5.2 The total and partial density of states for the AlLiB14 crystal. The nomen-
clature used in this figure follows the nomenclature used in Fig. 5.1. The
valence band maximum is arbitrarily set as the energy zero. The dashed
vertical line indicates the Fermi level.
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CHAPTER 6. FRACTURE STRENGTH OF AlLiB14

A paper published in Physical Review Letter

L. F. Wan and S. P. Beckman

Abstract

The orthorhombic boride crystal family XYB14, where X and Y are metal atoms, plays

a critical role in a unique class of superhard compounds, yet there have been no studies

aimed at understanding the origin of the mechanical strength of this compound. We

present here the results from a comprehensive investigation into the fracture strength of

the archetypal AlLiB14 crystal. First-principles, ab initio, methods are used to determine

the ideal brittle cleavage strength for several high-symmetry orientations. The elastic

tensor and the orientation-dependent Young’s modulus are calculated. From these results

the lower bound fracture strength of AlLiB14 is predicted to be between 29 and 31 GPa,

which is near the measured hardness reported in the literature. These results indicate

that the intrinsic strength of AlLiB14 is limited by the interatomic B-B bonds that span

between the B layers.

6.1 Introduction

The development of new superhard materials that can operate under extreme condi-

tions is critical for high-performance industrial manufacturing and is a subject that has
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recently received great attention [72, 73, 74]. The orthorhombic borides, formulated as

XYB14 where X and Y are metal atoms, have been of interest to scientists and engineers

for the past decade due to a report [2, 75] that AlMgB14 prepared by mechanical milling

can achieve a hardness between 32 and 46 GPa. The reason for the observed superhard-

ness is not understood. It is suggested that in part the strength is due to the so-called

“nanocomposite” microstructure comprised of AlMgB14 and TiB2, although the hardness

of each individual phase is believed to be less than the hardness of the composite [76].

There have been many studies examining TiB2 [77, 78, 79, 80], but the orthorhombic

boride family has received much less attention and is therefore the focus of this letter.

Whereas most hard materials are dense, highly symmetric crystals, the XYB14 struc-

ture, shown in Fig. 6.1, is relatively open and has low symmetry (Imma). This crystal

structure, which was first reported by Matkovich and Economy in 1970, has a unit cell

containing four formula units of XYB14 [1]. The 64-atom unit cell can be expressed as

X4Y4(B12)4B8 to distinguish the two B allotropes. The B layers are constructed from

B12 icosahedron that are connected to each other through the so-called inter-icosahedra

B atoms that are trigonally bonded to three B12 units within the B layer. Recent spec-

troscopy evidence indicates that the B-B bonds that span between the B layers, directly

connecting icosahedron, are very strong [81]. Unlike many metal-boride compounds the

metal atoms are not covalently bonded to the B, but instead the metal atoms ionize and

donate their valence electrons to the covalently bonded B network [10, 11, 55, 64]. As

a near-superhard material, this crystal family is unique, which has led us to investigate

the bonding in the crystal as it affects the crystal’s mechanical strength.

Following Matkovich and Economy’s work [1], Higashi and Ito synthesized several

XYB14 compounds and used diffraction methods to refine the crystallographic data. For

some of the compounds, such as AlMgB14, a relatively high concentration of vacancies,

around 25%, are found at the metal atom sites [9]. Diffraction results for other XYB14

compounds, such as AlLiB14, do not find such a large number of vacancies [3, 4]. Werheit
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Figure 6.1 A simple schematic of the XYB14 crystal structure. The red spheres are the
X site, the blue spheres are the Y site, and the light grey spheres are the
B atoms. The short-dashed arrows denoted by Emin and Emax show the
loading directions that yield the minimum and maximum Young’s modu-
lus for AlLiB14. The six planes selected for examination within the brittle
cleavage model are shown as long-dashed lines and are labeled according to
the nomenclature used in Table 6.1.

et al. have used Raman spectroscopy to compared the vibrational spectrum of various

XYB14 compounds and have found that the AlLiB14 crystal has less internal distortions

than many other XYB14 structures, including AlMgB14 [81]. From these results we con-

clude that experimental specimens of AlLiB14 are likely to have fewer point defects than

many other XYB14 compounds and consequently AlLiB14 is selected as the archetypical

structure for study in this letter.

Previous theoretical studies have focused on the effects of chemical substitution on

the properties of the XYB14 crystal family [10, 11, 12, 55]. This is in part because the

system is known to accept a large number of metal species including Li, Be, Na, Mg,

Al, as well as a variety of rare-earth elements, such as Tb, Dy, Ho, Er, Yb, and Lu [5,

6, 3, 4, 2, 7, 8]. In addition the superhard Ames Laboratory specimen was synthesized

by a mechanical alloying method, which introduces a wide variety of impurity species to

the crystal including Ti, Si, Fe, O, and C [75]. In these theoretical studies the reported
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figure of merit for hardness is the bulk modulus because its computation is relatively

simple. However, the bulk modulus alone only gives information about the average bond

strength under an applied volume dilation and does not give any information about the

strength of individual bonds in the crystal. Understanding hardness requires knowledge

about the local mechanisms for bond breaking as it relates to fracture in the crystal.

In this letter the fracture strength of AlLiB14 will be examined using an ideal brittle

cleavage model. This approach allows for insight regarding the local bonding within the

crystal and may lead to a strategy for improving the hardness.

6.2 Methods

The first-principles, density functional theory method used in this study is imple-

mented in the SIESTA software package [13, 65]. The Perdew-Burke-Ernzerhof gen-

eralized gradient approximation is used for the exchange-correlation energy and norm-

conserving pseudopotentials are used in place of the all-electron atomic potentials [16, 66].

The wavefunction is represented by a set of finite-range numerical atomic orbitals. Each

atomic basis is extended to include double−ζ functions plus a shell polarization that is

constructed using the split-valence scheme [82]. The cutoff radii used for each ζ func-

tion are presented in Ref. [54]. Real space meshing is performed to an energy cutoff of

175 Rydberg. The Kohn-Sham energies are sampled across the Brillouin zone using a

12× 12× 12 Monkhorst-Pack grid [37]. The atomic structural optimization follows the

conjugate gradient minimization method and the thresholds for the residual forces on

atoms and the supercell are 0.005 eV/Å and 0.0005 eV/Å3 respectively. The calculated

lattice parameters for AlLiB14 are 5.88, 10.39, and 8.15 Å, which agree well with the

reported experimental values 5.847, 10.354, and 8.143 Å [3].

The ideal brittle cleavage model used here separates the AlLiB14 crystal into two

semi-infinite, rigid atomic blocks that are pulled apart to introduce a pair of cleavage
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surfaces at a predefined atomic plane. This idealized approach simultaneously stretches

and breaks all the bonds at the interface. Although the effect of crack tip initiation and

propagation cannot be included using this method, it allows for the bond strengths local-

ized in the crystal to be investigated. Internal atomic relaxations and lattice contractions

perpendicular to the direction of elongation are forbidden. These constraints allow the

strength of the bonds across the cleavage interface to be determined independent of pos-

sible near-surface atomic reconstructions, which would be present in an experimental

specimen. The calculated energy of the cleaved crystal, relative to the energy of the

perfect crystal, is called the decohesive energy, Eb, and is determined as a function of the

interplaner spacing, x, across the specified cleavage planes. The decohesive energy is fit

to the universal binding energy relation (UBER) developed by Rose et al. in Ref. [83],

which is expressed more precisely in Ref. [84] as,

Eb(x) = Gb

[
1−

(
1 +

x

lb

)
exp

(
−x
lb

)]
.

When all the atomic bonds that span the cleavage interface are broken, the decohesive

energy saturates to the cleavage energy, Gb. The cleavage stress is the first derivative of

the decohesive energy with respect to x. The critical cleavage stress, σb, is defined as the

maximum stress, and the corresponding interplanar spacing is referred to as the critical

length, lb.

6.3 Results and Discussions

For AlLiB14 cleavage is considered within the high-symmetry {100}, {010}, and {001}

families of planes. For each crystallographic direction two cleavage planes are examined:

one that passes through the icosahedron, labeled B, and one that passes between the

icosahedron, labeled M . These were selected to best represent the variation in the

bonding for each of the sampled directions; one of the cleavage planes has many bonds

that span the interface and the other few bonds. It is intended to test interfaces with the
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Table 6.1 The numerical results for applying the ideal brittle cleavage model to the six
AlLiB14 cleavage planes that are shown in Fig. 6.1.

Orientation
Cleavage energy Critical length Critical stress

Gb/Area (J/m2) lb (Å) σb (GPa)

{100}–B 7.94 0.51 57.7

{100}–M 7.74 0.45 63.5

{010}–B 9.16 0.49 68.4

{010}–M 5.42 0.56 35.7

{001}–B 8.27 0.49 62.0

{001}–M 7.51 0.57 48.1

highest and lowest fracture energies. These planes are identified in Fig. 6.1. A 128-atom

supercell is used to guarantee that the calculated decohesive energies are converged to

better than 0.005 J/m2. The decohesive energies, UBER fit, and derived stresses are

plotted in Fig. 6.2. The computed data matches the functional form of the UBER

relation very well and the resulting critical parameters are listed in Table 6.1.

The decohesive energy curves and stresses for the {100}-B and -M planes are very

similar, the critical stresses differ by less than 10%. This is not surprising considering

that the density and geometric arrangements of the B-B bonds in these planes are nearly

equivalent. Whereas the {100} planes are very similar, the {010} planes are considerably

different. The {010}-B plane passes through the B layer bisecting the icosahedron,

breaking many B-B bonds, but the {010}-M plane passes between the B layers and

therefore cuts significantly fewer bonds. Within the ideal brittle cleavage model the

calculated critical stress for the M plane is 48% smaller than that of the B plane.

According to the Raman spectroscopy results reported in Ref. [81], the B-B bonds

that span between the B layers and connect the icosahedron are expected to have a
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Figure 6.2 The ideal brittle cleavage results for AlLiB14. The left ordinate axis labels
the energies and the right the stresses. The top frame gives the results for
the {100} planes, the middle the {010} planes, and the bottom the {001}
planes. In each frame the B results are red and the M results are blue. The
decohesive energy DFT data are solid symbols, the UBER relations are solid
lines, and the stresses are dashed lines.
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Figure 6.3 An isosurface showing regions in an XYB14 crystal with positive bonding
charge density. The atomic sites are color coded following the description
in Fig. 6.1.

greater binding strength than the bonds inside the icosahedron. This can be examined

qualitatively by plotting the bonding charge density, as shown in Fig. 6.3. 1 The bond-

ing process results in a buildup of charge in the B-B bonds that bridge the B layers. In

Fig. 6.3 charge accumulation between the B layers is observed both between the icosahe-

dron and the inter-icosahedra B. The results from the ideal cleavage model, presented in

Table 6.1, indicate that regardless of the anticipated high strength of the bonds at this

plane, the relatively low number density of bonds causes the {010}-M plane to have the

lowest critical stress of all the planes examined here. It can be concluded that the B-B

bonds that span between the B layers are key for controlling the overall strength of the

crystal.

It is the weakest planes that are of primary interest because fracture naturally trans-

verses the weakest path through a crystal. It is these same planes that also dominate

the elastic response. For a given family of planes, the elastic response to a uniaxial load

applied normal to the planes should be an indicator of the relative cleavage strength;

1The bonding charge density is rendered by subtracting the charge density of the bonded structure
from the sum of the charge contribution from each of the atoms, treated as though they are isolated.
A positive bonding charge density indicates charge accumulation and a negative value indicates charge
depletion.
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Table 6.2 The elastic tensor components for AlLiB14.

Stiffness coefficients c11 c22 c33 c44 c55 c66 c12 c13 c23

(GPa) 526 411 419 91.0 201 130 45.7 83.4 32.0

Compliance coefficients s11 s22 s33 s44 s55 s66 s12 s13 s23

(×10−12m2/N) 1.98 2.47 2.47 10.99 4.98 7.69 -0.19 -0.38 -0.15

i.e., the Young’s modulus should scale with the cleavage strength. For the orthorhombic

XYB14-type crystal there are nine unique tensor elements that can be derived from the

linear stress-strain relation and the crystal symmetries. The components of the stiff-

ness and compliance tensors for AlLiB14 are calculated and presented in Table 6.2. In

Fig. 6.4(a), the Young’s modulus, E, is represented as a function of crystallographic

orientation, according to the formula,

1

E
= l41s11 + l42s22 + l43s33 + 2l21l

2
2s12 + 2l21l

2
3s13 + 2l22l

2
3s23

+ l22l
2
3s44 + l21l

2
3s55 + l21l

2
2s66,

where sij are the elastic compliance tensor components and l1, l2, and l3 are the direction

cosines. The representation surface in Fig. 6.4(a) is projected on the (100), (010) and

(001) planes, and the results are shown in Fig. 6.4(b).

For the [010], [001], and [100] directions the Young’s modulus is 293, 404 and 505

GPa. From the ideal brittle cleavage model the minimum critical stresses for these

same directions are 35.7, 48.1, and 57.7 GPa, as listed in Table 6.1. Comparing these

numbers demonstrates that indeed the directional representation of the Young’s modulus

is an accurate predictor of the relative ideal fracture strength of a particular orientation.

From the results in Fig. 6.4 the minimum value of the Young’s modulus is 256.0 GPa,

which corresponds to a uniaxial load orientated (φ = 90◦, θ = 44.96◦), where φ is the

angle of rotation from the positive x−axis to the positive y−axis in the xy−plane and
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Figure 6.4 The representation surface for the Young’s modulus of AlLiB14 (given in
GPa) as a function of crystallographic orientation. Frame (a) shows a 3D
plot of the representation surface. Frame (b) shows 2D projections of the
representation surface onto the (100), (010) and (001) planes and are printed
in green, blue and red, respectively.

θ is the out-of-plane angle of rotation from the positive z−axis to the xy−plane. This

direction is drawn in Fig. 6.1 as a short-dashed arrow that is labeled Emin. Assuming

linear proportional scaling, the computed results for the high-symmetry orientations can

be used to predict that the cleavage strength for a uniaxial load applied in the Emin

direction is between 29 and 31 GPa. This is the predicted lower limit of the ideal brittle

cleavage strength for AlLiB14. We submit that for a brittle material, such as AlLiB14,

which does not undergo extensive plastic deformation near the crack tip prior to fracture,

the calculated ideal brittle cleavage strength is a reasonable estimation of the fracture

strength. The physical features of fracture neglected in this ideal brittle cleavage model,

including crack tip plasticity, lattice contractions, and atomic reconstructions, results in

an overestimation of the cleavage energy and subsequently the actual critical energy and

stress will be lower than our calculated results. The experimentally measured hardness

for AlLiB14 ranges between 20 and 29 GPa [3, 5], which suggests that for this material the

atomic scale behavior that we have reported here plays an important role in determining

the actual hardness of the material.
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6.4 Summary

In summary, we have coupled the results from a series of ideal brittle cleavage strength

calculations to the calculated orientation dependent Young’s modulus to predict the

fracture strength of AlLiB14. While admittedly this simplistic model neglects some of

the macroscopic features of fracture associated with crack tips, lattice plasticity, and

interface reconstructions, we believe that here we have demonstrated that this still may

be an effective approach to gauge the strength of brittle materials, such as the XYB14

crystal family. In contrast to all of the previous theoretical studies of the XYB14 crystal

family, which have used the bulk modulus as an indicator of the bond strength, the

approach used here allows for the local bond strength to be investigated on a plane-

by-plane basis. Unlike the more sophisticated, multi-scale modeling approaches, which

have been deployed to study fracture in polycrystalline diamond, Si, and other metallic

systems [85, 86, 87, 88], the method used here is relatively simple. We believe that our

approach can be used to screen prospective structures prior to their being investigated

using a more elaborate theoretical technique.

The existing picture of bonding in the XYB14 crystal family is that B forms a covalent

network of atoms constructed of B12 icosahedron. The B12 are stabilized by the electrons

donated by the ionized metal atoms, according to the Jemmis mno rules [49]. Excess

charge accumulates in the inter-icosahedra bonds, both those within the B layer and those

that span between the layers. Experimental results indicate that the inter-icosahedra B-

B bonds spanning between the layers are stronger than the intra-icosahedra bonds [81].

Here we find that regardless the strength of the inter-icosahedra bonds the fracture is

significantly more likely to proceed between the icosahedron rather than through, due to

the density of bonds at the cleavage plane. In fact the {010}-M planes are the weakest

of those examined in this study, which suggests that the hardness of the material may

be closely tied to the B-B bonding that connects the icosahedra layers. In practice,
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this means the intrinsic strength of this crystal family possibly can be changed, either

strengthened or weakened, by the introduction of a dopant species that directly affects

these bonds.
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CHAPTER 7. SUBSTITUTIONAL C ON B SITES IN

AlLiB14

A paper submitted to J. Phys.: Condens. Matter

L. F. Wan and S. P. Beckman

Abstract

The effect of C substitution in the AlLiB14 lattice is examined using first-principles

methods. The inter-icosahedra B site is found to be the most favorable B site for C

substitution and the formation energy is predicted to be 1.7 eV in B-rich conditions.

Substituting C does not affect the band gap, nor does it introduce defect states to the

gap. An ideal brittle cleavage model is used to study the impact of C doping on the

mechanical properties of AlLiB14 and it is concluded that introducing C to the crystal

decreases the ideal fracture strength by 3.3 GPa, which is about a 12% reduction in

overall strength.

7.1 Introduction

The orthorhombic borides, formulated as XYB14, where X and Y are metal species,

have generated great scientific interest since the discovery of the ultra-hard AlMgB14–TiB2

nanocomposite [2]. Similar to most of the B-rich borides, the crystal structure of or-

thorhombic XYB14 is largely dominated by the B12 icosahedra [1, 23]. The primitive cell
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contains four units of XYB14, and can be written as X4Y4(B12)4B8 to distinguish the

icosahedron in the formula. In addition to the B12 subunits, there are eight individual B

atoms, each of which is bonded to three neighboring icosahedra. The low crystal sym-

metry and open structure provides space to accommodate metal species. A schematic

representation of the B network can be found in Figure 7.1. Unlike the strong covalent

bonds between B atoms that hold the lattice rigid, the bonding between the metal atoms

and the boron structure is relatively weak. It is believed that the role of the metal species

is to ionically bond to the crystal and contribute their valence electrons to stabilize the

charge deficient B12 icosahedra [10, 11, 49, 64].

It is known that various metal species can be substituted in the lattice without

introducing significant lattice strains from the mismatch of atomic radii [2, 4, 5, 7, 8, 9,

31]. The overall volume change of the XYB14 crystal is usually less than 5% although the

atomic radius of the metal elements may differ by as much as 20%. Because of the unique

role of the metal atoms, many scientific investigations have been undertaken to examine

the impact of metal site occupation on the electronic properties of XYB14, for example,

electric conductivity, thermoelectric response, and optical excitations [26, 55, 70, 81].

Recent results also predict the possibility of controlling individual bond strengths by

chemical doping the metal atomic sites [54, 55, 58].

The strength of the crystal is due to the B–B bonds; hence, a subtle change to

the B lattice may strongly impact the overall bonding strength. A naturally occurring

substitutional dopant in the B lattice is carbon. The superhard AlMgB14–TiB2 specimen

prepared by mechanical milling in 2000 [75] has a high concentration of C, although due

to the omnipresent nature of C in the laboratory, it is likely that C will be found even

in the high-purity XYB14 crystals fabricated using sophisticated techniques [89]. Due

to the chemical similarity of B and C, it is difficult to experimentally distinguish the

individual C atoms on the B lattice and thus the exact influence of C on the mechanical

response of the crystal is unknown.
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In this article the role of C substitution on the XYB14 lattice is studied using ab

initio methods. The AlLiB14 compound is chosen as the host because experimental evi-

dence suggests that it is stoichiometric, whereas many of the XYB14 structures, including

AlMgB14, have a high fraction of metal site vacancies [4, 9, 81]. Following this intro-

duction, the theoretical approach will be presented. In section 7.3 the atomic structure,

energies, and electronic states of the C substitutional impurity will be discussed. The

impact of this substitution on the mechanical properties will also be examined using an

ideal brittle fracture model. The article will conclude with a summary of the results in

section 7.4.

7.2 Methods

This theoretical study is carried out using the first-principles, density functional the-

ory [13] approach that is implemented in the SIESTA source code [65]. Norm-conserving

pseudopotentials are created for each ion [66] and the exchange-correlation functional is

approximated using the generalized gradient approximation [16]. The electronic wave-

function is represented by a set of numerical atomic orbitals [82]. Each atomic basis is

constructed to include double−ζ functions plus shell polarization. The relevant param-

eters for the pseudopotentials and atomic basis sets are given as Supplementary Data to

this article. Real space integration is performed using an energy cutoff of 175 Rydberg

and the Brillouin zone is sampled on a 12 × 12 × 12 Monkhorst-Pack mesh [37]. The

structural optimization thresholds are chosen to ensure the residual forces on atoms and

cells are smaller than 0.005 eV/Å and 0.0005 eV/Å3 respectively.

Following the work of Van de Walle and Neugebauer in [90], the formation energy for

an impurity atom, X, in its charge neutral state is expressed as

Ef (X) = Etot (X)− Etot (defect free)−
∑
i

niµi (7.1)

where Ef (X) denotes the formation energy of the defect, andEtot (X) and Etot (defect free)
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Figure 7.1 An illustration of the network of B atoms of an XYB14 crystal for a 2×1×2
supercell. The metal species are not shown here, but can be found in
Ref. [54]. The B2 site, where C is substituted, is highlighted in orange.

are the total energies for supercells with and without defects. The sum expresses the

change in the number of atoms, ni, between the supercell with and without defects for

each species, i. The chemical potential for each species is µi. The chemical potentials

for B and C are balanced using the B13C2 compound,

µB13C2 = 13µB + 2µC. (7.2)

The elemental chemical potentials are upper bounded by the chemical potential of the

bulk elements, i.e., µB < µB(bulk) and µC < µC(bulk). Here µB(bulk) is defined as the energy



62

per atom in α−rhombohedron boron and µC(bulk) is determined for bulk graphite. In the

B-rich limit µB = µB(bulk) and the chemical potential for C is determined by the chemical

relationship in 7.2, and similarly in the C-rich limit µC = µC(bulk).

It is necessary to use convergence tests to determine the effect of supercell periodicity

on the results [91, 92, 93]. It has been proposed that the calculated energy of formation

scales with the inverse of both the supercell’s linear dimension and cell volume [92].

Here the simulation cell is independently expanded along the x−, y−, and z−directions.

The shortest lattice periodicity is in the x − direction, which has the strongest impact

on the calculated results. It is found that doubling the supercell in both the x− and

z − directions, results in a total energy that is converged to an accuracy of 0.1 eV. The

effect of C substitution on the bonding is relatively short ranged. It is observed that the

C defect only influences the atomic bonding within a radius of 4 Å. The results from this

convergence study are summarized in the Supplementary Data to this article.

7.3 Results and discussion

Following the nomenclature defined by Wan and Beckman in [54], the five unique B

sites are identified in Figure 7.1. The results, in Table 7.1, indicate that C substitution at

the inter-icosahedra, B2, site is approximately 0.7 eV lower than the others. The energy

of formation can differ by as much as 0.33 eV depending on the choice of chemical

reservoirs. For the remainder of this investigation only C substitution at the B2 site is

considered.

From the calculated partial density of states, shown in Figure 7.2, it is determined

that the presence of C does not introduce states to the band gap; there are changes to

the states within the bands only. Spatially, the influence of C on the chemical bonding

is limited and only the B atoms at the B2, B3, and B5 sites that are directly bonded to

the C experience a change in their electronic energies.
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Table 7.1 The formation energy (in eV) for C substitution at the five B sites under
B-rich and C-rich conditions.

Substitutional site B-rich condition C-rich condition

B1 2.67 2.33

B2 1.91 1.58

B3 2.67 2.33

B4 2.61 2.27

B5 2.65 2.31

These electronic changes impact the local atomic structure. In Table 7.2, the inter-

atomic distances, Rij, between the C defect and its first nearest neighbors are presented

along with the interatomic distances for the bulk, undoped structure, R0
ij. The addition

of C does not disrupt the local symmetry; however, the C atom is 0.10 Å closer to the

B12 icosahedra layer than the a B atom would usually be. The in-plane bond lengths

R23 and R25 are shortened by 0.11 and 0.06 Å, respectively.

Table 7.2 The interatomic distances between the C substitutional atom and its neigh-
boring B atoms in units of Å.

Atomic pair R0
ij Rij Rij/R

0
ij

B2–B2 2.09 2.19 1.05

B2–B3 1.83 1.72 0.94

B2–B5 1.75 1.69 0.97

It is anticipated that the changes to the local electronic energies and atomic structure

will also be reflected in the bond strengths. The elastic stiffness coefficients, presented in

Table 7.3, provide a simple approach to examining the bonding strengths. The addition

of C leads to a 4% decrease of c22 and has little impact on the other tensor components.
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Figure 7.2 The density of states projected on selected B or C 2p − states. The red
solid lines and blue dotted lines represent the AlLiB14 defect structure and
the ideal structure respectively. The left column shows the partial density
of states for B atoms within the first nearest neighbor distance from C, and
the right column shows the second nearest neighbors.

The c22 coefficient corresponds to the crystal’s response to uniaxial loading parallel to the

C–B2 bond. The substituted C on the B2 site has only a minor impact on the bonding

within the icosahedra, thus the diminished c22 coefficient is primarily due to the bonding

between the icosahedra layers, i.e., the C–B2 bond.

Previous studies demonstrate that the ideal brittle cleavage model [84] can be used

in conjunction with the elastic stiffness tensor to predict the intrinsic hardness of the

XYB14 crystal [58]. The effect of C substitution on the fracture strength is investigated

for the cleavage planes illustrated in Figure 7.1 and the cleavage energy and critical

stress for each are given in Table 7.4. The addition of C decreases the fracture stress by

about 3.3 GPa on the {010}–M1 plane. Following the procedure outlined in Wan and
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Table 7.3 The elastic stiffness coefficients for AlLiB14 structure with and without C.

Compounds
Elastic stiffness coefficients (GPa)

c11 c12 c13 c22 c23 c33 c44 c55 c66

AlLiB14 with C 529 45.5 83.3 394 31.1 422 92.9 199 132

AlLiB14 526 45.7 83.4 411 32.0 419 91.0 201 130

Beckman [58] it can be approximated that the fracture strength of C doped AlLiB14 is

12% lower than that of pure AlLiB14.

Table 7.4 A comparison of ideal brittle cleavage parameters for selected cleavage planes
in ideal AlLiB14 and the corresponding C defect structure.

Composition Orientation
Cleavage energy Critical length Critical stress

Gb/Area (J/m2) lb (Å) σb (GPa)

AlLiB14 with C
{010}–M1 4.85 0.57 31.53

{010}–M2 5.15 0.54 34.82

AlLiB14 {010}–M 5.42 0.56 35.73

AlLiB14 with C
{001}–M1 7.06 0.56 46.27

{001}–M2 7.34 0.58 47.01

AlLiB14 {001}–M 7.51 0.57 48.12

7.4 Summary and Conclusions

In this paper, the influence of C impurities on the structural and mechanical prop-

erties of AlLiB14 is discussed. Due to its size and chemical similarity to B the addition

of C does not introduce substantial lattice strain. The structural and electronic changes
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exist for the nearest neighbor sites only, within 4 Å of the defect. Electronic states are

not introduced to the band gap by the addition of C and the changes to the projected

density of states are only observed for the B2, B3, and B5 atoms that are directly bonded

to the C. This suggests that C impurities do not strongly affect the electrical properties

of the system.

The C atom changes the bonding and mechanical properties of the system locally

in the lattice. The equilibrium position of the C atom is slightly closer to the B layer

than the B2 atom that it replaces and the strength of the bonds between the B-layers is

weaker. A simulation of ideal brittle cleavage predicts that the addition of C will lead to

a 0.3 J/m2 reduction of the decohesive energy for a cleavage surface introduced between

the C–B2 bonds. It is predicted that this will reduce the overall fracture strength of the

crystal by approximately 3.3 GPa or 12% of 28 GPa.

However, the energy of formation for substitutional C is relatively large, 1.7 eV. Even

at high temperatures, for example 1800 K, the equilibrium concentration for C is only

around 2.2 × 1018 per cm3. This suggests that C impurities will not reside in isolation

on the B lattice, but instead gather in interstitial sites or at interfaces, such as grain

boundaries, or possibly form defect complexes involving multiple C atoms or vacancies.

It is concluded that the concentration of isolated C atoms on B lattice sites is relatively

low, but locally their presence will strongly impact the strength of the crystal. If the

C atoms cluster they may serve as a nucleation site for cracks in this crystal family. It

would be beneficial for future studies to focus on the interaction of C atoms within the

lattice and at interstitial sites. It would be particularly interesting to understand the

barriers to diffusion of C within the lattice.
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CHAPTER 8. CONCLUSIONS

This thesis is devoted to understanding the origin of unexpected hardness of the

XYB14 crystal family and explaining how the mechanical properties are tied to its elec-

tronic structure. The role of substitutional C atom are clearly identified, and its influence

on the mechanical behavior of the host material are well examined. A simple ideal brittle

cleavage model is tested and proved to be applicable to predict the hardness of XYB14

crystal from the atomic-scale calculations. The details of the results are summarized as

follows.

The first-principles DFT method is employed to study the electronic structure of

XYB14 crystal. It is found that the electronic structure of XYB14 is dominated by

the covalently bonded B-network. The metal atoms are not strongly bonded with any

neighboring B atoms; instead, they transfer their valence electrons to stabilize the charge

deficient B lattice. It is found that the electronic structure of XYB14 obeys rigid band

model fairly well. By changing the number of valence electrons attributed by the metal

atoms, one can easily move the Fermi level through the density of states.

A simple electron counting scheme reveals that the charge deficient B lattice is stabi-

lized by accepting 16 electrons from the metal atoms, which help to fully fill the valence

bands. Once extra electrons are contributed by the metal atoms, the conduction bands

begin to be occupied, which leads to structural instability of the crystal. Here, this

phenomenon is well studied by observing soft vibrational modes of the lattice. By form-

ing vacancies at the metal sites, excess charge are removed from the lattice and as a

result, the XYB14 behaves as semiconductors, rather than metals. To some extent, the
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formation of metal vacancies may give rise to a variety of interesting features of this

crystal family. For example, the open space between the B-network may provide free

channels to diffuse small ions. The lattice imperfection may also help to scatter phonons,

which reduces the lattice contribution to the thermal conductivity. This is particularly

noteworthy for the thermoelectric applications.

Having understood the role of individual atoms in the electronic structure of XYB14,

we can move forward to discuss how the electronic structure determines its mechanical

behavior. Ultimately, the question we want to answer is: is it possible to improve the

mechanical properties of XYB14 by tuning its electronic structure. As concluded in

Chapter 5, by emptying the electronic occupation of certain anti-bonding orbitals at

the valence band edge, it is possible to enhance the corresponding bonding strength.

However, only a very narrow window is available to strength the crystal by repopulating

the localized B–B electronic states.

To complete the analysis of the electronic structure of XYB14, a hybrid functional

approach is used to give a better approximation of the band gap energies. It is well known

that the traditional LDA- or GGA-DFT method tends to underestimate the band gap for

many semiconducting or insulating systems, although the general shape of the bands is

believed to be reliable. A simple correction to the band gap is to use hybrid functionals,

which incorporate certain fraction of true Hartree-Fock exchange energy. As discussed in

Chapter 5, using the HSE hybrid functional, a band gap around 2 eV is predicted for the

AlLiB14 compound. In addition, applying external stress has a minor impact on the band

gap energy, which is primarily due to the strong mechanical strength of the crystal. It is

noted that the 2 eV band gap energy responds to a strong photon absorption peak in the

solar spectrum. Therefore, this crystal family may also be useful for certain photoactive

applications.

A big limitation of the first-principles methods is the small system size that it can

effectively investigate. Because all the quantum effects are taken into account, the sys-
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tem size is usually restricted to within 100s atoms. To understand and predict the

macroscopic properties of this crystal family, for example, hardness, one need to de-

ploy appropriate semi-empirical model that can be used in larger scale simulations. The

first-principles methods, on the other hand, can provide input parameters for these semi-

empirical models and also give insight to the bond breaking mechanism as it related to

crack propagation in the crystal. In this work, the ideal brittle cleavage model is used

to approximate the fracture strength of the AlLiB14 crystal. It allows us to examine

the bonding strength of the crystal on a plane-by-plane basis. It is observed that the

overall bonding strength of the crystal is tied closely to the localized B–B bonds that

span between the icosahedra layers. In addition to the ideal brittle cleavage model,

a simple relationship between the macroscopic hardness and the orientation-dependent

Young’s modulus is identified. This finding offers a very effective way to characterize the

macroscopic hardness of the XYB14-type crystal from the atomic level.

Experimentally it is observed that C is a natural dopant in the boron structures

due to the chemical similarity between B and C. By comparing the formation energy

for placing C atom at different B sites, it is concluded that C is energetically prefer to

occupy the inter-icosahedron B site. The corresponding formation energy is predicted

to be approximately 1.7 eV. It should be pointed out here that 1.7 eV is a relatively

large energy for substituting foreign atom in solids. Even at high temperature (for

example 1800 K), the equilibrium concentration for C is only on the order of 1018 per

cm3. This indicates that C impurity atoms might not be willing to reside in the B lattice;

instead diffuse into interstitial sites or take a position at the interface or grain boundary.

In addition to the large formation energy, the substitution of C atom will weaken the

fracture strength of the host by approximately 12%, because of the diminished inter-

icosahedron B–B bonds that connect the icosahedra layers.

To summarize, this work provides detailed investigations on the relation between

the electronic structure and mechanical properties of the XYB14 crystal. A vacancy
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formation mechanism is proposed that explains the origin of the off-stoichiometric nature

of many of the XYB14 compound. By analyzing the bonding structure of the material,

it is found that, in principle, the bonding strength of the crystal can be enhanced by

carefully repopulating certain electronic states. However, doping the B lattice with C

predicts a lowered bonding strength of the crystal. Hopefully, the knowledge gained here

may assist future development of this crystal family.
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APPENDIX A. SUPPLEMENTARY MATERIALS TO

CHAPTER 5

Using the Heyd-Scuseria-Ernzerhof functional

It is well-established in the literature that the use of standard local/semi-local approx-

imations in calculating the exchange-correlation energy results in significant underesti-

mation of the band gap for semiconductors. In this work, the Heyd-Scuseria-Ernzerhof

hybrid functional is used, which tends to provide a better estimation of the band gap

energy for semiconductors [19]. The electronic calculation is carried out using the VASP

source code [94]. For the ion potentials the projector augmented wave method is used

within the Perdew-Burke-Ernzerhof flavor [16, 95]. The results are fully converged for

a 318.6 eV cutoff energy and 6 × 6 × 4 k-point sampling [37]. As expected, the hybrid

functional calculation yields a significantly larger band gap, around 2.12 eV, compared

to the 1.26 eV gap predicted using the generalize gradient approximation.
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APPENDIX B. SUPPLEMENTARY MATERIALS TO

CHAPTER 7

Atomic basis for the electronic calculations

The parameterization for each atomic species used in the basis set is presented in

Table B.1.

Table B.1 The cutoff radii for the double−ζ functions.

Element Valence configuration First−ζ (rc) Second−ζ (rm)

Al
3s2 5.9597 5.1295

3p1 7.6524 6.0347

Li 2s1 8.8136 7.0376

B
2s2 5.2881 4.4391

2p1 6.2996 4.6667

C
2s2 4.4068 3.3893

2p2 5.2497 3.5188

Convergence tests on calculating formation energies

Convergence tests are performed with respect to supercell size for C substituted to

the inter-icosahedra B2 site. In Fig. B.1, the simulation cell is expanded along the



74

x−direction. It is observed that the calculated formation energies fit well with the rela-

tion proposed in Ref. [92]. The obtained formation energies are summarized in Table. B.2

as a function of supercell configuration. From these calculations and the energy relation

in Ref. [92] it is concluded that a 2× 1× 2 supercell configuration is adequate to predict

the formation energy of C substitution to within an accuracy of 0.1 eV.

Table B.2 The formation energy of C substituted to the inter-icosahedra B2 site as
a function of supercell configuration. The results are calculated under the
B-rich condition. The number of k-points is halved as the supercell is doubled
due to folding of the Brillouin zone.

Supercell BZ sampling Formation energy (eV)

1× 1× 1 12× 12× 12 1.91

2× 1× 1 6× 12× 12 1.81

1× 2× 1 12× 6× 12 1.88

1× 1× 2 12× 12× 6 1.86

2× 1× 2 6× 12× 6 1.74
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Figure B.1 The formation energy for C substituted to the B2 site, plotted as a function
of supercell dimension in the x−direction. The DFT results are obtained
for 1× 1× 1, 2× 1× 1, and 4× 1× 1 supercells. The dashed line is Eqn. (2)
in Ref. [92] fitted to the data.
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[67] P-O. Löwdin. J. Chem. Phys., 18:365, 1950.

[68] K. Shirai, H. Dekura, and A. Yanase. J. Phys. Soc. Jpn., 78:084714, 2009.

[69] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria. J. Chem. Phys.,

125:224106, 2006.

[70] H. Werheit, U. Kuhlmann, G. Krach, I. Higashi, T. Lundstrom, and Y. Yu. J. Alloys

Compd., 202:269, 1993.

[71] L. F. Wan and S. P. Beckman. MRS Proceedings, 1224:1224–FF11–02, 2009.

[72] R. B. Kaner, J. J. Gilman, and S. H. Tolbert. Science, 308:1268, 2005.

[73] V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D. C. Rubie. Appl.

Phys. Lett., 78:1385, 2001.

[74] P. F. McMillan. Nature Mater., 1:19, 2002.

[75] T. L. Lewis. A study of selected properties and applications of almgb14 and related

composites: Ultra-hard materials. Master’s thesis, Iowa State Univeristy, 2001.

[76] A. Ahmed, S. Bahadur, B. A. Cook, and J. Peters. Tribol. Int., 39:129–137, 2006.

[77] R. G. Munro. J. Res. Natl. Inst. Stand. Technol., 105:709, 2000.

[78] P. S. Spoor, J. D. Maynard, M. J. Pan, D. J. Green, J. R. Hellmann, and T. Tanaka.

Appl. Phys. Lett., 70:1959, 1997.

[79] N. L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, and S. Otani. Acta Mater., 58:76,

2010.



82

[80] R. Heid, B. Renker, H. Schober, P. Adelmann, D. Ernst, and K. P. Bohnen. Phys.

Rev. B, 67:180510, 2003.

[81] H. Werheit, V. Filipov, U. Kuhlmann, U. Schwarz, M. Armbruster, A. Leithe-Jasper,

T. Tanaka, I. Higashi, T. Lundstrom, V. N. Gurin, and M. M. Korsukova. Sci.

Technol. Adv. Mater., 11:023001, 2010.

[82] J. Junquera, O. Paz, D. Sanchez-Portal, and E. Artacho. Phys. Rev. B, 64:235111,

2001.

[83] J. H. Rose, J. R. Smith, and J. Ferrante. Phys. Rev. B, 28:1835, 1983.

[84] P. Lazar, R. Podloucky, and W. Wolf. Appl. Phys. Lett., 87:261910, 2005.

[85] O. A. Shenderova, D. W. Brenner, A. Omeltchenko, X. Su, and L. H. Yang. Phys.

Rev. B, 61:3877, 2000.

[86] F. F. Abraham, J. Q. Broughton, N. Bernstein, and E. Kaxiras. Europhys. Lett.,

44:783, 1998.

[87] P. Gumbsch and G. E. Beltz. Model. Simul. Mater. Sci. Eng., 3:597, 1995.

[88] W. A. Gurtin and R. E. Miller. Model. Simul. Mater. Sci. Eng., 11:R33, 2003.

[89] H. Werheit. Electric Refractory Materials, chapter Boron and Boron-rich Com-

pounds. Marcel Dekker, Inc., 2000.

[90] C. Van de Walle and J. Neugebauer. J. Appl. Phys., 95:3851, 2004.

[91] G. Markov and M. C. Payne. Phys. Rev. B, 51:4014, 1995.
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