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Abstract 

Clostridium difficile is an anaerobic, gram-positive, spore-forming bacterium that can infect 

both animals and humans. C. difficile infection (CDI) is a toxin-mediated disease that can result 

in the production of three main virulence factors: toxin A, toxin B and binary toxin. Newborn 

piglets are highly susceptible to CDI, however age decreases the chances of colonization. 

Prevention and treatment strategies are limited, and there is currently no commercially 

available treatment option for CDI. However, treatment methods and prevention strategies 

using a nontoxigenic C. difficile strain and equine-origin antitoxins have been explored and 

show preliminary promising results. With evidence of possible zoonotic transfer increasing, 

agriculture and medical professionals should take action to prevent the spread of C. difficile. 

Consequences including economic loss and decline in consumer confidence could result if a 

highly virulent resistant strain of C. difficile emerged and caused an increase in morbidity and 

mortality rates among pigs and humans.  

Clostridium difficile in Neonatal Piglets 

Clostridium difficile is an anaerobic, gram-positive, spore-forming bacterium present in both 

animals and humans (Squire and Riley 2013). Clostridium difficile infection (CDI) occurs in 

organisms with a compromised immune system and those with disrupted gut floras. C. difficile 

is one of the leading causes of enteritis in newborn piglets and it produces three main virulent 

toxins: toxin A, toxin B, and binary toxin (Abt, McKenney and Pamer 2016). Colonization can 

occur within 48 hours of birth in virtually 100% of neonates (Hopman et al. 2011). Within swine 

herds, C. difficile is shown to have the ability to impact, on average, two-thirds of litters, causing 
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97-100% morbidity and a mortality rate as high as 16% within the litter (Anderson and Songer 

2008, Songer 2004). Though a high percentage of neonates are colonized with C. difficile shortly 

after birth, not all piglets will show signs of disease. Some neonates may present as 

asymptomatic, healthy piglets. However, some diseased piglets may experience watery to pasty 

yellow diarrhea, while others may experience constipation (Yaeger, Kinyon and Songer 2007). 

Although these symptoms are not definitive indicators of CDI, developmental and growth 

impairment is usually a result of CDI (Songer 2004). High colonization rates are observed in 

newborn piglets; however, as piglets age colonization frequency decreases by as much as 70.3% 

in 62 day old pigs (Weese et al. 2010). Pig necropsy findings include mesocolonic edema and, 

although not a clear indicator of CDI, there is a strong correlation with the production of C. 

difficile toxins (Yaeger et al. 2007). 

Clostridium difficile Sporulation, Germination and Vegetative Growth 

Clostridium difficile has spore-forming capabilities. Sporulation occurs when nutrients become 

less readily available. In response, a C. difficile cell will split into two unequal compartments. 

The larger compartment, the mother cell, will prepare the forespore, the smaller compartment, 

for dormancy where it will become a stress-resistant cell (Abt et al. 2016). Once matured, the 

mother cell releases the forespore into the environment through lysis. These spores are 

resistant to heat, oxygen, and common disinfectants (Rodriguez-Palacios and LeJeune 2011). 

The main transcription factor that initiates sporulation is stage 0 sporulation protein A (SpoA), 

which is activated through sensor histidine kinases in response to extracellular stimuli (Edwards 

and McBride 2014).  
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Spores germinate to give rise to vegetative cells under favorable environmental conditions. This 

occurs in the lower gastrointestinal tract where oxygen is minimal and bile salts are present to 

induce germination (Koenigsknecht et al. 2015). In particular, taurocholate, a conjugated 

primary bile acid initiates germination by signaling through the C. difficile serine protease bile 

acid receptor, CspC (Brown and Wilson 2018). After initiation and activation of the spore cortex 

lytic enzyme, SleC, by serine protease bile acid receptor, CspB, loss of the endospore’s three 

protective layers, the cortex, coat and exosporium, is achieved and growth of a vegetative cell 

can now occur (Francis et al. 2013, Adams et al. 2013). However, not all bile salts act in the 

same manner. In the intestine there are primary and secondary bile acids, and primary bile 

acids can be conjugated into secondary bile acids. Primary bile acids include taurocholate and 

cholate, and secondary bile acids include deoxycholate and lithocholate (Brown and Wilson 

2018). Under normal healthy conditions, secondary bile salts inhibit spore germination and 

vegetative growth (Brown and Wilson 2018, Winston and Theriot 2016). For example, 

deoxycholate promotes germination but suppresses vegetative growth, allowing intestinal 

immune components to kill C. difficile cells that lack chemical and physical resistance (Wilson 

1983, Sorg and Sonenshein 2008). Chenodeoxycholate, another bile acid, inhibits spore 

germination by competitive inhibition with taurocholate (Sorg and Sonenshein 2009, Sorg and 

Sonenshein 2010). Normal, healthy gut flora can inhibit CDI by way of bile salts, however 

antibiotics can disrupt normal function and alter conjugation of primary bile acids which allows 

for C. difficile cell proliferation and possible antibiotic-resistance (Sun and Hirota 2015, Brown 

and Wilson 2018). 

Virulence Factors: Toxin A, Toxin B, and Binary Toxin 
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Clostridium difficile is a toxin-mediated disease that produces toxins in response to nutrient 

deficiency. The main C. difficile virulence factors include toxins A and B, which target intestinal 

epithelial cells and enteritis can occur as a result. The genes responsible for toxins A and B are 

tcdA and tcdB respectively, and they are located in the C. difficile pathogenic island (Pruitt et al. 

2010). The homologous toxins contain four domains: a glycosyltransferase domain (GTD), 

autoprotease domain (APD), delivery domain, and combined repetitive oligopeptides (CROPs) 

domain (Alvin and Lacy 2017). Once the toxins have entered the cell via receptor-mediated 

endocytosis, cytosolic Rho GTPases are inactivated via glycosylation (Abt et al. 2016). Rho 

GTPases include Rho, Ras and Cdc42 which are responsible for many cellular processes 

including actin and microtubule dynamics, gene expression, the cell cycle, cell polarity, and 

membrane transport (Schwartz 2004). Subsequent to inactivation, the cell undergoes necrosis 

and consequently activates the host inflammatory response. 

There is a third highly virulent toxin that is estimated to be in about 20% of C. difficile strains 

known as binary toxin or C. difficile transferase (CDT) (Peng et al. 2017). CDT is encoded by two 

genes, cdtA and cdtB, which are located on the CDT locus (Popoff et al. 1988, Perelle et al. 

1997). CdtA is an ADP-ribosyl transferase that ribosylates actin, and CdtB forms pores in the 

endosome to allow CdtA to enter the cytosol of the infected cell. Depolymerization of the actin 

cytoskeleton causes cellular protrusions formed by microtubules that consequently increases 

bacterial adherence to target cells (Gerding et al. 2014, Abt et al. 2016).  

Although not a clear indicator of CDI, there is a strong correlation with the production of C. 

difficile toxins (Songer et al. 2009). Neonatal pigs with C. difficile colonization can appear 

asymptomatic or symptomatic. Clinical features include dyspnea, mild abdominal distention, 
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mesocolonic edema, scrotal edema, and yellow, pasty diarrhea (Songer 2004, Yaeger et al. 

2007). Histological findings can include marked loss of goblet cells, neutrophil infiltration in the 

superficial lamina propria, and neutrophil and fibrin exudation form inflamed mucosal 

segments in the lumen (Yaeger et al. 2007). Compared to the large intestine, there are usually 

no remarkable lesions in the small intestine (Songer 2004). 

Immune Response 

An immune response is activated via toxin-mediated damage, loss of epithelial integrity, and 

the detection of translocating bacteria (Abt et al. 2016). Pro-inflammatory cytokines and 

chemokines are released by damaged epithelial cells and resident immune cells which activate 

circulating innate and adaptive immune cells (Abt et al. 2016). This leads to neutrophil 

accumulation and activation of innate lymphoid cells (Abt et al. 2016). The intensity of the host 

inflammatory response correlates with the severity of CDI. For example, in a study by Steele 

and others, IL-8 levels were significantly higher in acute diseased pigs compared to chronic 

diseased pigs (Steele et al. 2010). IL-8 is a pro-inflammatory chemokine released by resident 

innate immune cells and epithelial cells, and it is responsible for neutrophil migration (Abt et al. 

2016). Cytokines TGF-β and TNF-α were also increased in acute diseased pigs compared to 

chronic diseased pigs but were not statistically significant (Steele et al. 2010).  

Prevention and Treatment Strategies 

Nontoxigenic Clostridium difficile 

There is a need for CDI prevention and treatment options as there is currently no commercially 

available products for immunoprophylaxis of CDI (Songer et al. 2007). Past research has shown 
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that when hamsters are given a nontoxigenic strain of C. difficile as a probiotic, disease and 

death by precolonization is avoided (Sambol et al. 2002). Arruda has demonstrated this in 

newborn piglets (Arruda et al. 2016, Songer et al. 2007). Arruda gave piglets heat-shocked 

nontoxigenic C. difficile (NTCD) spores within four hours of birth. Mesocolonic edema was 

observed in 17% of piglets given NTCD then challenged, which was significantly lower than 54% 

of positive control challenged pigs, and it was not statistically different from control animals 

(Arruda et al. 2016). In addition, only 5.8% of challenged NTCD piglets tested positive for toxins, 

compared to approximately 30% of positive control challenged pigs. These results show a 

potential candidate for the prevention of CDI.  

Equine-origin Antitoxins 

Antitoxin from equine plasma is also a possible preventative measure that can be administered 

to protect piglets from CDI. When newborn piglets were given equine-origin antitoxin within 

the first 72 hours of life and later infected, they obtained lower total microscopic lesion scores 

compared to challenged piglets who were not given the antitoxin. However, the mean weights 

of infected and non-infected piglets did not differ. In addition to decreased microscopic lesions, 

antitoxin can also be given to piglets orally which suggests this method as being both beneficial 

and practical (Ramirez et al. 2014). 

Zoonotic Transfer 

Clostridium difficile can infect both pigs and humans. Ribotype 078 (RT078) has been isolated 

from both species, suggesting transmission between the two can occur. It is also the most 

common cause of community acquired CDI in humans in the Northern Hemisphere (Knight et al. 
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2015). In one study by Knetsch and others, 247 RT078 samples were collected from humans 

and animals (cattle, horses, pigs, poultry) between 1996 and 2012 from North America, Europe, 

Australia, and Asia. Of the 183 samples from humans and 59 from animals, six total clusters 

were discovered, and of those six clusters, one was found to share both human and animal 

isolates from more than one country suggesting that zoonotic transmission is not limited to 

geographical regions (Knetsch et al. 2018).  

In a smaller, more local study by Keessen and others, RT078 was also predominantly found in 

both pigs and humans. Keessen took a total of 128 samples from pig farmers, their relatives, 

and their employees from 32 pig farms. Twelve (25%) of the 48 persons who had daily contact 

with pigs, and 3 (14%) of 22 persons who had weekly contact with pigs had positive C. difficile 

colonization fecal samples. The number of persons willing to submit a fecal sample ranged from 

1 to 10 per farm, and of the 32 farms, 16 farms had at least one C. difficile positive fecal sample. 

Thirteen of the 16 farms had genetically related human and pig isolates, including 100% 

identical multilocus variable number tandem repeat analysis (MLVA) results for human and pig 

RT078 isolates from 3 farms (Keessen et al. 2013). These results suggest that zoonotic 

transmission is occurring either through direct contact or the environment, but more studies 

are needed to determine this.  

In addition to animal to human C. difficile transmission, it has yet to be determined if spore 

contaminated animal derived food products can cause CDI in humans because spore 

germination and vegetation is normally inhibited in individuals with healthy guts (Brown and 

Wilson 2018). However, retail meat products in North America have tested positive for C. 

difficile spores in both ready-to-eat, cooked meats and uncooked meats (Brown and Wilson 
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2018). Spore containing meat included uncooked ground pork (43%) from Arizona, ground pork 

(12.2%) from Canada, uncooked pork sausage (23%) from Arizona, and cooked Braunschweiger 

pork sausage (63%) from Arizona (Brown and Wilson 2018). In addition, all of the previously 

stated meat products also tested positive for RT078 but had spore counts as low as 20-60 per 

gram (Alam et al. 2017, Brown and Wilson 2018, Songer et al. 2009, Weese et al. 2009). It is 

estimated that 100-1000 spores can cause CDI in susceptible humans but the actual number is 

unknown (Warriner et al. 2017). 

Researchers have suggested that a “One Health” approach is needed when evaluating the 

impact C. difficile infected animals have on humans contracting CDI (Knetsch et al. 2018). In the 

USA, 80% of all antibiotics are used in agriculture and only 70% are considered ‘medically 

important’ (Knetsch et al. 2018). This should be of a concern to the agriculture and medical 

communities since it is known that the overuse of antibiotics can produce highly resistant 

strains of bacteria. This needs to be considered when exploring treatment options for CDI in 

piglets to prevent the production of newly virulent C. difficile strains that could have the ability 

to also infect humans.  

Potential Economic Impact 

CDI mortality rates in piglets are generally low, but rates as high as 16% have been reported 

(Anderson and Songer 2008). There is little, if any, literature regarding the economic impact pig 

CDI can have in the agriculture industry. However, there are reports that document the 

economic consequences caused by other pig outbreaks that can be recognized as a potential 

outcome if there was a CDI outbreak in pigs. For example, the 1998-1999 Nipah outbreak in 
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Malaysia and Singapore resulted in the death of millions of pigs, an estimated loss of $97 

million and 80% decrease in local pork consumption (Chua et al. 2000, Khan et al. 2013). During 

the H1N1 outbreaks in 2009, pork prices declined as low as $0.49 per lb. and it was estimated 

that pork producers lost an estimated $13.64 per head totaling about $7.2 million in losses daily 

(Khan et al. 2013). Widespread outbreaks not only cause morbidity and mortality in a large 

quantity of pigs resulting in a significant financial loss to the agricultural industry, but it also can 

result in a loss of consumer confidence. Direct evidence of zoonotic transfer could also 

decrease pork consumption even more. Recovered piglets are approximately 0.5 Kg lighter on 

average, so there is already a financial loss as a consequence of CDI (Songer 2004). It is not 

certain that pig CDI could produce such a tremendous economic impact, but as increasing 

bacterial resistant strains arise, C. difficile certainly has the potential.  

Conclusion 

Clostridium difficile can infect a variety of species, including pigs and humans. C. difficile is the 

number one cause of enteritis in newborn piglets, and for unknown reasons the frequency of 

CDI decreases with age. To reduce CDI, improved prevention and treatment options need to be 

explored. This is especially important now with increasing evidence supporting a possible 

zoonotic transfer and spore contaminated meats. Agricultural and medical officials should be 

concerned about preventing possible C. difficile outbreaks that could cause large economic 

impacts in both industries.   
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