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Abstract 

In the electronics industry today almost without exception there are phase-locked loops 

(PLL) implemented within each system and often within each integrated circuit (IC). In fact, 

most PLL's are implemented monolithically within ICs without any or with very few 

external components. Additionally, most are implemented as Analog PLL's utilizing only a 

digital phase detector. This is also evident in the majority of recent publications which focus 

on PLL structures with on-chip voltage controlled oscillators using charge pumps and ring or 

LC oscillators. However, the problem with most on-chip VCO's is that they are far noisier 

than the external crystal types. The noise in the integrated oscillators forces designers to use 

larger loop bandwidths than would be required with less noisy VCO's; subsequently they 

have poor noise filtering capabilities. Additionally, analog PLL's are usually fixed in nature. 

Loop components such as charge-pumps and loop filters are implemented as analog 

components with little or no flexibility. The focus of this thesis is the design and 

implementation of a very low cost, low noise Programmable All Digital PLL (ADPLL) 

which utilizes a low cost digital to analog converter (DAC), a voltage controlled crystal 

oscillator (VCXO), and a field programmable gate array (FPGA). The use of FPGA 

technology for digital design implementation is universal in the industry and provides 

benefits far beyond the implementation of ADPLL's. In fact, in almost every system today, 

an FPGA already exists. Therefore, the inclusion of a DPLL within existing system 

components would be at little or no cost. The implementation of the PLL digitally not only 

allows us to implement it within an FPGA, but also allows us to adapt and configure the PLL 

for many applications and tune it for best performance. Digital circuits also have increased 

noise margin and are not affected by the same noise issues associated with Analog PLL's 

such as temperature, voltage and noise coupled from other signals or circuits. The DPLL 

developed is flexible and can be configured to operate as a clock and data recovery circuit 

(CDR), clock multiplier, clock synthesizer, or noise filtering PLL. Using an external VCXO 

provides a very low noise basis for the PLL and such that we can implement very low 

bandwidths without sacrificing the quality of its output. In this thesis we will present the 

theory, architecture, design, hardware and implementation of the ADPLL in addition to the 

results of the testing of the prototype ADPLL that was built. 
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Chapter 1 Introduction 

1.1 Introduction 

This chapter provides preliminary information and background on Phased-Locked Loop 

(PLL) design, architectures, and components. Furthermore the specific implementation that 

this thesis contributes will be introduced. Theoretical analysis of the implementation will 

also be discussed. 

1.2 Overview of Various PLL Architectures and their Applications 

Phase-Locked Loops are used in many applications, and are as wide spread as any other 

circuit type[l]. In the earliest history they were used to sync the horizontal and vertical 

sweeps in television[ I]. Today, they are used as clock multipliers in high performance 

microprocessors such as Intel Pentium 4. As such their benefits and properties have been 

studied and documented in countless journal papers, books, and articles. In fact there exists 

so much information about PLL's it can be overwhelming and difficult to isolate the specific 

information a researcher may be searching. 

A basic Phase-Locked Loop consists of three basic components, a phase detector, a loop 

filter, and a voltage or current controlled oscillator. 

1. The phase detector can be considered the brain. It makes the decisions about the 

behavior of the loop. Often it is a non-linear device whose output contains the phase or 

frequency difference between its reference and the controlled oscillator. 

2. The loop filter can be considered the muscle. It controls how much impact the decision 

of the brain or phase detector has on the controlled oscillator. Its properties are what keep 

the loop stable and affect the performance. 

3. The voltage or current controlled oscillator is the heart. It is central to the loop and its 

periodic nature keeps the loop ticking. The frequency of its output is dependent upon a much 

lower frequency and lower amplitude signal. 
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- Phase Detector - Loop Filter - Voltage Controlled - - - Oscillator 

il 

Figure 1 : Simple Phase-Locked Loop Diagram 

Figure 1 shows how these components connect in a feedback architecture to create a simple 

phase-locked loop. However, as with any feedback architecture there must exist a balance 

within the loop to maintain stability and performance. The classic analysis of the PLL 

requires certain assumptions be made such as linearity[ I]. Both the phase detector and the 

controlled oscillator have non-linear operating points. Luckily they also have linear or near

linear operating points when differences in phase are small. This allows analysis to be 

performed in the frequency domain using Laplace transformations. 

+---...i F ( s) .....,__ 

x 

Figure 2 : Conceptual diagram of Linear PLL 

Figure 2 shows a conceptual diagram of a linear PLL[l]. This linear PLL is described in the 

frequency domain by the equation (1). 



T(s) = Bo(s) 
B(s) 

3 

s 

( 1) 

The earliest PLL's, such as the one shown in Figure 1, were completely analog. The phase 

detectors where mixers, the loop filters consisted of active amplifiers and low pass filters, 

and the voltage controlled oscillator consisted of crystals and amplifiers. Engineers have 

evolved the PLL into many different variants. The classic digital PLL (DPLL) is mostly 

analog, but replaces the phase detector with a digital implementation [1][4][7][16][18]. 

Next, the All Digital PLL (ADPLL) which replaced the loop filter with a digital equivalent 

and the voltage or current controlled oscillator with a numerically controlled oscillator[1][5]. 

There also exists a Software PLL which utilizes a microprocessor and Analog to Digital 

Converters (ADC) to over-sample the signals and use floating point or integer math to 

perform the phase detection and the loop filter portions of the loop[l]. Let's examine some 

of these architectures in more detail. 

1.2.1 Classic Digital PLL 

The classic digital PLL's used mostly analog components, however the phase-detector is 

replaced with digital gates, and often there exists a divider between the VCO and the phase 

detector. This enables the VCO to operate at higher rate than the reference and still maintain 

synchronization. There also exists a Charge Pump which is used to convert the digital 

outputs to an analog current or voltage[16]. This is a common architecture used today for 

both integrated and discrete PLL's[18]. The key benefits of this type of approach are its 

simplicity and more predictable linear behavior. However, this type of PLL is not flexible 

and adding programmability usually results in degraded performance because of extra 

loading on analog circuits. 
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Figure 3 : Digital PLL Diagram 

1.2.2 All-Digital PLL 

The All-Digital PLL extends the digital circuits to include digital loop filter and numerically 

controlled oscillator. Often the digital loop filters include digital counters, multipliers, 

dividers, or other DSP type structures[7][14] . The numerically controlled oscillator takes as 

an input some number of binary bits of data and produces a square wave output at a specific 

frequency corresponding to the value of the input[5]. 

B Digital 
Digital 

Numerically - Phase - - Controlled ~ - - Loop-Filter -
Detector Oscillator 

a 

ed 
~ Divider ~ 

Figure 4 : All-Digital PLL Diagram 
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The primary benefits of this type of loop is that the majority of its components are digital. 

This provides simplicity in implementation and portability to may applications. Additionally 

digital circuits are easier to translate to different processes and scale well with Moore's Law. 

Programmability is also more easily added because digital circuits are not as susceptible to 

degradation because of loading. However, the ADPLL also behaves in a more non-linear 

manner. This results in the need for more difficult analysis techniques. 

1.2.3 Software PLL 

Software PLL's usually uses sampled data and standard mathematical functions for phase 

detector and loop filters[ l] . This type of PLL uses a microprocessor with arithmetic 

computation units which operate at rates greater than the oscillator and reference. The 

benefits of such implementations are very low bandwidth operation, flexibility of loop 

parameters, and potentially very low noise. However a SPLL must operate at much slower 

rates because of the limits of the microprocessor. 

1.3 Overview of Various PLL Components 

1.3.1 Digital phase detectors 

The phase detector is a critical component of any PLL and in modern PLL architecture the 

digital phase detector is by far the most prevalent. This section briefly discusses four 

common types of digital phase detectors. 

XOR Based Phase Detector: 

The simplest digital phase detector consists of only an XOR gate[l]. 

Figure 5 : XOR Based Phase Detector 
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The output is a series of pulses with varying pulse widths. When locked the output has a 

50% duty cycle. This type of phase detector integrates well with analog loop filters and is 

commonly used in the classic digital PLL's. The loop filter acts to create a RMS voltage 

from the series of pulses. In locked condition the reference and the oscillator are 90 degrees 

out of phase. 

-Jr 

Vc1 = V max - V min 

Figure 6 : XOR PD Response 

It has a response as shown in Figure 6. The linear operating region is -rr/2 to rr/2. 

Phase Frequency Detector: 

The Phase-Frequency Detector has 2 outputs which indicate Up and Down changes in 

frequency required. This detector expands the linear region to 4rr as shown in Figure 8. Also 

its outputs are dependent only on the rising edges of the inputs. This eliminates 

dependencies on the duty cycle of the inputs. This phase detector is widely used in fully 

integrated classic digital PLL's because its outputs allow more direct connection to charge 

pump circuits[ 1][16-18] and its large linear region. 
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Figure 8 : PFD Response 

Alexander (Bang-Bang) Phase Detector: 

This phase detector is widely used in clock data recovery applications because it produces a 

sample of the data as well as phase error information. Additionally, it recognizes when there 

has been no transitions[ 1 ][2-4] [ 13-14]. This is important so that no adjustments to the loop 

are made without transitions. Additionally, the outputs are synchronous digital signals and 

integrate well with all digital PLL's. The phase error information is not dependent on 

amplitude, duty cycle, or frequency of the phase detector outputs as they are with the other 

digital phase detectors discussed. 
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Figure 9: Alexander (Bang-Bang) Phase Detector 
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Figure 10: Bang-Bang PD Response 

1.3.2 Charge Pumps and Loop Filters 

D 

D 

Q T 

A 

v 
Q B 

A 

C;C) 
t t t 
B T A 

A Charge Pump is used in many classic digital PLL's, especially the fully integrated. Its 

purpose is to convert the digital signals to analog current or voltage level suitable for a 

current or voltage controlled oscillator. Gardner[l 6] was one of the first to produce a paper 

describing charge pump operation. The charge pump operates by turning on or off one or 

more current sources. Figure 11 illustrates a common integrated charge pump architecture. 

Analog loop filters can be grouped as either active or passive. A passive loop filter would 

consist of a single pole low pass filter constructed from a resistor and a capacitor similar to 

Figure 11; while an active loop filter would contain an amplifiers and gain control. Loops 
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greater than 2°d order are rarely used because of stability issues[ I]. A Digital loop filters 

would consist of accumulators, integrators and gain control[1][7][14]. 

Charge Pump 

vcc 

.-----t---1 
j : Loop Filter 

Phase 
Detector 

j : 

Figure 11 : Example Charge Pump and Loop Filter 

1.3.3 Controlled Oscillators 

j_ 
I 

vco 

There are many types of controlled oscillators depending on whether they are integrated 

inside of an IC or external. The basic integrated versions are the ring oscillator and the LC 

oscillator[8] [9]. A ring oscillator consists of a series of buffers or inverters forming a 

feedback loop. The delay of each buffer is controlled via the control voltage or current. In 

most cases the delay is adjusted using a voltage control capacitor or varactor. An initial 

signal is injected into the ring and as long as the total gain of the ring is greater than or equal 

to 1 it will continue to oscillate. If the individual stages or buffers of the ring oscillator are 

well matched, it is easy to generate multiple phases of the output clock which is an advantage 

in many architectures. The LC or tank oscillator consists of an inductor and capacitor 

connected in parallel. The tuning range of LC oscillators is usually much narrower than ring 
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oscillators due to the difficulty in changing the inductance value. However, LC oscillators 

have much lower phase noise than ring oscillators[8]. External controlled oscillators are 

usually based on quartz crystal technologies using either Bulk Acoustic Wave(BAW) or 

Surface Acoustic Wave(SA W) technologies[l 1][12) . There is also now published work 

demonstrating the use of crystal based technology in on chip or integrated applications[ I 0). 

Crystal based oscillators are among the lowest noise solutions available. 

1.4 Thesis contribution 

In this final section of the introduction the architecture and design which was developed for 

this thesis will be introduced. The design utilizes a FPGA, DAC and VCXO. The major 

contributions of this thesis are: 

I. An all digital PLL were designed, implemented, and characterized. 

2. The design is flexible and can be adapted to many applications. 

3. The design is scalable to many process technologies . 

4. The design can be adapted to lower or higher frequencies. 

5. The design produces a very low noise clock. 

6. The design implemented is relatively low cost using inexpensive components. 

7. The design can be used to filter noise in other clock or data signals. 

8. The design allows the bandwidth of the loop to be adjusted dynamically allowing for 

faster acquisition time and increased filtering capability. 

9. The design can be used in clock and data recovery applications. 

10. The design introduces a modified phase detector and loop filter architecture which 

produces a more linear response than traditional bang-bang phase detectors. 

11. An automated jitter transfer test was developed to analyze the loop performance. 

Figure 12 on the following page illustrates the basic architecture used. 

1.4.1 Architecture and Design 

An Alexander or Bang-Bang phase detector was selected for implementation for primarily 

two important reasons. This phase detector works very well as a clock and data recovery 

phase detector since it is able to ignore periods where there are no transitions[!]. Secondly, it 

is a synchronous digital output which can be integrated easily with digital loop filter circuits. 
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This aJlows greater flexibility in applications and reduces the need for specific divider ratios 

on the reference clock. Additionally, if the reference signal is intermittent, the loop will 

maintain its present frequency which is a benefit in many applications. One unique feature of 

the implemented phase detector is that it operates at a much higher sample rate than the loop 

filter and DAC. Figure 13 shows a Sample Clock going to the Loop Filter. This clock is an 

integer divide from the VCO Clock which enters the FPGA. The result is that the phase 

detector output becomes a 9 bit signed integer. This makes the phase detector operate more 

linear because the output of the phase detector is not a+ I or -1 as is the common 

implementation of bang-bang phase detectors . The output gain of any bang-bang phase 

detector will be dependent on the jitter or phase noise present on the reference signal and the 

clock inputs[2][3][ 14]. 

Reference 
Signal 

Phase 
Detector 

Loop Filter 

Figure 12: Simplified Design Architecture 

SPI DAG 

vcxo 

The design implements a digital loop filter which has both first order and second order 

paths. The first order path contains the gain control Beta and controls the response to small 

changes in phase, while the second order path contains the gain control Alpha and helps to 

maintain stability and responds to larger frequency and phase steps and maintains the DC 

offset required by the VCXO. The SPI interface is a serial to parallel circuit which receives 

the l 6bit data from the loop filter and creates a serial stream of bits for the DAC. A survey 
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of available DAC devices was performed. There are two basic classes of DAC's available 

off the self. The first is the inexpensive, low frequency type which operate at update rates 

less than IMsample/second. These DAC's are available with resolutions between JO to 16 

bits. The cost of these DAC's is between $1 and $8. The second class is the more expensive 

high frequency type which operate at rates greater than lMsample/second. These DAC's 

have parallel interfaces and use large packages. The resolutions available is between 12 and 

24 bits and are tailored for wireless applications. The cost of these DAC's is usually greater 

than $20. The design implemented uses the inexpensive, lower frequency DAC which are 

available from a variety of vendors. It will be shown that there is only a very small penalty 

in added quantization noise resulting from the use of the slower more inexpensive DAC. 

1.5 Analysis of implemented loop parameters 

1.5.l DAC Resolution and Sample Rate 

To determine the effect of DAC resolution and update rate on the overall jitter of the system 

Equation (2) should be considered. 

1 
R * Kd * K 1- ac v 

106 

1 

1 R * Kdac * K + v 

106 

*-I
F 

s ( 2 ) 

Where R is the assumed orbit radius[3], Kv is the VCXO gain in parts per million (ppm), and 

Fs is the update rate of the loop filter and DAC. The DAC gain is defined by Equation (3). 

K dac 

Vmax-Vmin 
2N ( 3 ) 
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For this implementation we are using a 12bit DAC resulting in Kctac equal to 0.8m V /bit. Fs is 

equal to 1.15Mhz, Kv is 390ppm, and an estimated R = 3. Therefore we could expect JQ 

approximately equal to J .6ps p-p. 

1.5.2 Loop Filter Gain 

Due to the non-linear characteristics of this type of ADPLL, the analysis has not been widely 

published. Nicola Da Dalt published a time domain analysis[3] of a very similar PLL. His 

paper determined that there existed a minimum value of Beta for a given D and Alpha. D is 

the delay of the system. 

/Jmin 
a* (1+2 * D) 

2 ( 4) 

Additionally Da Dalt determined that there existed an optimal value of Beta such that 

minimum jitter would be possible due to minimization of the orbits[3]. 

/Jopt == (1.3846+1.8846 * D) *a ( 5 ) 

It must be noted that the references to Beta in the design and measurement sections is 

somewhat different than Da Dalt's and the introduction chapter of the thesis. Da Dalt refers 

to Beta and Alpha as pure gain. In the design of this ADPLL Alpha and Beta are related to 

gain via Equations (6). 

fJ . == 2-Beta : a . 
gam gam 

2-Alpha 

( 6 ) 

1.6 Conclusion 

In this chapter the basic set of PLL architectures where discussed. The components of these 

PLL's where also described and compared. Finally, the specific design implemented in this 

thesis was also introduced as well as supporting analysis of jitter performance and stability. 
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Chapter 2 Implementation 

2.1 Introduction 

This chapter describes the detailed implementation of the all digital PLL. Each module or 

block of the design will be described including input and output signal names and 

functionality. Additionally the supporting circuits used for control and status monitoring and 

user interface which was used during characterization will also be described. 

2.2 Design 

The design was implemented with digital circuits designed using Verilog HDL. The design 

was compiled, synthesized, and fitted into a Virtex-II ProX FPGA. The FPGA was 

connected to external components as shown in Figure 13. The external components consist 

of a low cost 12 bit digital to analog converter (DAC) Analog Devices AD5320 and a voltage 

controlled crystal oscillator (VCXO) Crystek CVPD-034 operating with center frequency of 

I 56.25Mhz. The ADPLL design consumes less than 178 slices, which is l % of the V2PX20 

FPGA used and -13% of the smallest Virtex-II Pro device that Xilinx makes, the 2VP2. A 

slice is a standard logic block which all Xilinx FPGA's are built. This design can easily fit 

into a device that is also supporting other functions without requiring extra expense or larger 

device. This design could also be implemented in low cost CPLD technology such as the 

Xilinx CoolRunner II product family if an FPGA was not already present on the circuit card. 

Figure 23 provides a detailed diagram of the circuits inside the FPGA including supporting 

circuits to allow testing. Appendix A contains the Verilog HDL source code for the FPGA 

circuits. The top level verilog HDL source file is available in Appendix A and is named 

"fpga_top. v". 
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: Recovered Data Output 
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l_sr Control Voltage 
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Figure 13: Simplified System Level Diagram 

Reference Signal 
Phase 

Detector 

VCOCLK 

A 

B 

T Decode 

Figure 14: Accumulating Bang-Bang Phase Detector 

2.2.1 Phase Detector 

Upcounter 
Phase Error 

downcounter 

Counter Reset 

An Alexander phase detector as depicted in Figure 9 was augmented with a decoder and up 

and down counters. This was done to create the accumulating bang-bang phase detector 

depicted in Figure 14. The accumulating bang-bang phase detector al lowed the phase 

detector to operate at a higher rate than the loop-filter and DAC. This is important when a 

low speed DAC converter is used. The Phase Error is represented by a 9 bit signed integer 

instead of the typical single signed bit of an Alexander phase detector. The decode operation 

for the phase detector is illustrated in Table 1. Both Invalid and No transition cases do not 

cause the up and down counters to increment. In a low transition case this allows the VCXO 

to maintain a constant frequency. This approach does not have the same limitations as an 
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analog or classic digital PLL. A PLL with an analog loop filter and a charge pump would 

tend to drift downward in frequency in the absence of transitions due to leakage currents and 

loss. The up and down counters are reset whenever the phase error signal is sampled by the 

loop filter. The Verilog HDL source file is in Appendix A and is named "pd.v". 

Table I : BBPD decode table 

A T B Description 

0 0 0 No transitions 

0 0 1 Down 

0 l 0 Invalid 

0 I 1 UP 

1 0 0 UP 

1 0 l Invalid 

1 1 0 Down 

1 1 1 No transitions 

refsig data - -- -
rstcnt phase_error[S:O] 

- PD ;.. 

reset 
--

vcoclk --

Figure 15 : Accumulating Phase Detector Input Output Diagram 
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Table 2 : Accumulating Phase Detector Input Output Description 

Signal Name Description 

refsig Reference signal may be a clock or data signal 

rstcnt Counter Reset signal 

reset Resets the phase detector flip-flops 

vcoclk clock signal from the VCO or VCXO 

data sampled data output synchronous to vcoclk 

phase_error[8:0] 9 bit signed integer representing the phase error 

2.2.2 Loop Filter 

Phase Error Div by 2"8eta 
~~~~~~~+1--~~~.------1 

+.--- vc 

Q D 
Div by 2"Alpha 

Sample Clock 

Figure 16 : Digital Loop Filter Implementation 

The loop filter consists of a first order path which is just a gain stage and a second order path 

which is an integrator/accumulator followed by a gain stage. The first order gain is 

controlled via input beta and divides the input value by 2beta. The second order gain is 

controlled by input alpha and divides the accumulated value by 2alpha. Because it divides 

only by multiples of 2, the dividers can be simplified to binary right shifts. This is important 

for implementations using standard digital gates because it reduces the complexity and size 

of the dividers. However, in applications where multipliers are available such as the DSP 

blocks in the Xilinx Virtex 4 FPGA, it would be better to use true multiplies in order to give 

better control of loop parameters. 
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vcoclk 
- vc[15:0] -

clkendac 
~ 

- integrator[31 :O] ~ 

phase_error[8:0] -
LP -~ 

alpha[7:0] 

beta[7:0] 

rstcnt 

rstint 
--

Figure 17 : Loop Filter Input Output Diagram 

Table 3 : Loop filter Input Output Description 

Signal Name Description 

vcoclk clock signal from VCO or VCXO 

clkendac clock enable signal used for all registers 

phase_error[8:0] 9 bit signed integer representing phase error 

alpha[7:0] controls 2na order loop gain 

beta[7:0] controls 1st order loop gain 

rstcnt identifies when to sample the phase_error signal 

rstint Reset the integrator registers 

vc[15:0] 16 bit unsigned integer output representing the Control Voltage 

integrator[3 l :O] 32 bit unsigned output of the integrator value used for monitor and debug 

In this implementation the Sample Clock is the VCO output clock, however it is controlled 

by the signal clkendac which acts as a clock enable. This results in an effective clock which 

is divided from the VCO clock. The rate of this Sample Clock is controlled by the vcodiv 

circuit and the input control signal divcnt. The signal divcnt should be set so that the period 

of the Sample Clock is greater than the minimum period allowed by the DAC; in this case 

50ns. The Verilog HDL source file for the loop filter is in Appendix A and is named "lp.v". 
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2.2.3 SP! - Serial Peripheral Inte1face 

The Serial Peripheral Interface is a standard interface which provides the communication of 

the I 2 bit DAC value through a 3 wire serial interface. Most microcontrollers and processors 

support similar interfaces. Using this interface allows flexibility in the DAC design; the 

same pin out and package can be used for many different DAC models allowing pin for pin 

compatibility for 8bit to 16 bit DAC's. Additionally using a serial interface reduces the size 

of the external DAC package. This is important so that the design can maintain only a small 

amount of space on the printed circuit board. The Verilog HDL source file for the serial 

peripheral interface is in Appendix A and is named "spi.v". 

elk SCLK 
- .... -

data[15:0] SYNC --
SDO -~ 

sclki SPI 
--

isync -~ 
clkendac 

--
bitsel[3:0] -~ 

Figure 18 : SPI Input and Output Diagram 
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Table 4 : SPI Input and Output Description 

Signal Name Description 

elk elk input used for all regi sters 

clkendac clock enable signal used for all registers 

data[ 15:0] data to be sent to DAC 

sclki input clock for DAC interface 

1sync input sync signal for DAC interface 

bitsel [3:0] identifies which bit of data goes to DAC 

SCLK Buffered sclki driven to DAC 

SYNC buffered isync driven to DAC 

SDO Buffered data[bitsel] driven to DAC 

2.2.4 VCO Divider (vcodiv) 

This block is responsible for creating the clocks, clock enables and sync pulses used by the 

other circuits in the design. 

elk pd elk - -~ ~ 

sclk 
divcnt[7:0] -~ -- sync -
vcodiv[3:0] VCODIV -

bitsel[3:0] 
~ 

clkendac 
::::-

rstcnt 
::::-

Figure 19 : VCODIV Input/Output Diagram 
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The outputs of this block synchronize the sampling of the accumulating phase detector, reset 

of the counters, calculations in the loop filter and the transmission of the DAC value thru the 

SPI to the DAC. 

Table 5 : YCODIV Input and Output Description 

Pin Name Description 

elk This is the input clock from the YCXO 

di vcnt[7 :0) Divider value for the Sample Clock 

vcodiv[3:0] Divider value for the pdclk 

pdclk elk divided by vcodiv 

sclk elk divided by di vcnt driven out of the FPGA to DAC 

sync pulse occurs 1 every 17 cycles is used by SPI block 

bitsel [3 :0) identifies the bit which should be send out the SPI block 

clkendac clock enable signal for loop filter, spi blocks pulse identifies the rising 

edge of sclk 

rstcnt Counter Reset signal used to reset the up and down counters in the phase 

detector 

The inputs divcnt and vcodiv control the rate of the output clock and clock enable signals, 

clkendac. The pdclk signal is the elk signal divided by vcodiv . This output clock can be 

selected to drive the phase detector VCOCLK signal if the YCXO is too fast for the FPGA 

fabric. This would be the case if the YCXO where operating at greater than 200Mhz. 

However this operation was not used or required during the characterization of this design. 

The clkendac signal is a pulse with duration equal to the period of the signal elk. It is used as 

a clock enable signal by the loop filter and SPI interface so that only a single global clock 

signal vcoclk is used by FPGA logic. The signal divcnt is used to determine the rate of the 

clock enable. The signal sclk is a 50% duty cycle version of this which is driven out of the 

FPGA to the DAC. The Verilog HDL source file is provided in Appendix A of this thesis 

and is named "vcodiv.v". 
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2.2.5 Digital to Analog Converter 

The DAC used for this implementation is an Analog Devices AD5320device[15]. This 

device has several important advantages. First, it is a low-cost DAC with a volume price less 

than $2. Second, it is very small package which saves space on the PCB board. 

V oo GNO 

POWIER ·ON ADSJ20 
RESET 

OAC 
REGISTER 

l.NPUT 
CONTROL 

LOGIC 

SVNC SCLK IOllN 

Figure 20 : AD5320 Diagram 

R fl (0ot R t;;F H 

12-BIT 
DAC 

POWER-DOWN 
CONTROL LOGIC 

6-Lead Small Ouillne Transist<>r Package [SOT-23) 
(RT-6) 

Di1m:nsiom shown in millimereri> 

L60BSC 

l_i!:::::;::::::::::;::::l::;:::::::::;: 
PIN 1 .JI 

COMPLIANT TO JEDEC STANDARl)S M0·178AB 

Figure 21 : AD5320 Package Diagram 
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2.2.6 Voltage Controlled Crystal Oscillator 

The VCXO used for this implementation was produced by Crystek, Inc. The specifications 

as stated in the product data sheet are illustrated in Table 6[14]. The Kv or gain associated 

with the this VCXO was not provided in the datasheet. However, it was measured to be 

approximately 390ppm. 

Table 6 : VCXO specifications 

Frequency Range: 

Temperature Range: 
(Option M) 

(Option X) 

Storage: 

Input Voltage: 
Control Voltage: 
Settability At 
Nominal: 

Input Current: 
Output: 

Jitter: 
Phase Noise: 
(Ref: 122.88MHz) 

Aging: 

Symmetry: 

Rise/Fall Time: 
Pulling Range: 

Linearity: 
Logic: Terminated to 
Vdd-2Vinto 

Temp. 0°C to 85°C 

Temp. -40°C to 0°C 
Enable/Disable Time 

l 2KHz to 80MHz 
lOHz 
lOOHz 

lKHz 
lOKHz 
lOOKHz 

77.760MHz to 200MHz 

0°C to 70°C 
-20°C to 70°C 

-40°C to 85°C 
-55°C to 120°C 

3.3V ± 0.3V 

I .65V ± l .65V 

1.65V ± 0.25V 
50mA Typ, 88mA Max 
Differential L VPECL 
45/55% Max@ 50% Vdd 

lns Max@ 20% to 80% Vdd 

±50ppm APR Min. (std) 

± 10% Max 

50 ohms 
110 11 = 1.490 Min, 1.680 Max 
11 l 11 = 2.275 Min, 2.420 Max 
110 11 = 1.470 Min, 1.745 Max 
11 I 11 = 2.215 Min, 2.420 Max 

200ns Max 
0.5psec Typ., lpsec RMS Max 
-60dBc/Hz Typical 
-95dBc/Hz Typical 
- l 20dBc/Hz Typical 

- l 40dBc/Hz Typical 
- l 45dBc/Hz Typical 
<5ppm 1st/yr, <2ppm every year 
thereafter 
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2.2. 7 ChipScope Pro 

ChipScope Pro is a tool offered by Xilinx as a way to control and monitor internal circuits 

inside the FPGA. Two ChipScope Pro blocks were added to the design in order to facilitate 

the control and monitoring of the parameters listed in Table 7. Figure 22 provides a screen 

capture of the ChipScope Pro control panel as it was used with this design. 

Table 7 : Programmable settings and monitors 

Signal Name Description 

di vcnt[7 :O] Controls the divider which creates the Sample clock it should be set so 

that the period of the sample clock is greater than the minimum period 

of the DAC 

vcodiv[3:0] Controls the divider of the clock going to the phase detector. Not 

usually used unless VCO is too fast for the FPGA logic 

BUFGMUXSEL Selects the divided vco clock or the vco clock directly 

alpha[7:0] controls the 2n° order loop gain 

beta[7:0] controls the 151 order loop gain 

rs tint resets the integrator registers 

integrator[3 l :0] monitors the integrator value 

phase_error[8:0] monitors the phase_error value 

The Chipscope Pro blocks contribute significantly to the total area of the design used for 

characterization. However, in a real system design these blocks would not be necessary 

because either the design would be fixed to certain parameters or the would exist some other 

method to control loop parameters. The logic blocks which were added to the design are 

ICON and VIO blocks. The ICON block is the control portion of ChipScope and VIO is a 

synchronous input and output block. The control and status signals are connected to the VIO 

block to allow access via this graphical user interface. The ChipScope blocks do not have 

source files associated with them. They get merged during the FPGA compile process. 

Figure 23 shows how these blocks are connected to the rest of the ADPLL design. 
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Figure 22 : ChipScope Pro Screen Capture 
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2.3 FPGA compile and P&R 

The entire design including Chipscope Pro cores was processed through the Xilinx ISE 

version 6.3.03i tools set. This included using the Xilinx Synthesis Tool (XST) to synthesize 

the verilog HDL files to EDIF format. Xilinx translate tool was used to combine the EDIF 

files from the synthesized design and the Chipscope Pro cores and the Coregen adder circuits 

into a complete design file. This design file is then processed by the Xilinx map tool which 

maps gates to FPGA slices. This design is then processed by the Xilinx par tool which 

generates a completely placed and routed design. The final step is to convert this design to a 

bit-stream file which can be programmed into the FPGA via the JTAG programming port. 

The design consumed 1226 Slices or 12% of the target device XC2VPX20. The majority of 

this was consumed by the Chipscope Pro cores which contain a Jot of internal memory cells. 

When the DPLL is compiled without the ChipScope Pro blocks and all of the control signals 

such as alpha[7:0], beta[7:0], divcnt[7:0], etc are brought to input pins the ADPLL alone 

consumes only 178 Slices or 1 % of the 2VPX20 FPGA. The design will operate at up to 

172Mhz according to the static timing analysis performed by the Xilinx tools. All data was 

taken using a 156.25Mhz VCXO and 78.125Mhz Reference Signal. The printed circuit 

board used to test the design is a MK20XFP board which was co-developed by Xilinx, Inc 

and M6 Research, Inc. contains a picture of the board used. 

2.4 Conclusion 

In this chapter of the thesis the ADPLL design was described in detail. Each block 

associated with the design was describe and the input and output signals identified. 

Additionally, the ChipScope Pro interface was shown and the control and status signals 

where described. Finally, all verilog HDL source files for each module is provided in 

Appendix A of this thesis. 
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Figure 24 : Picture of MK20XFP Board 
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Chapter 3 Measured Results 

3.1 Introduction 

This chapter of the thesis is intended to present all data taken on the implementation as it was 

tested on the MK20XFP board as shown in Figure 24 utilizing the Xilinx Virtex-Il ProX 

FPGA, Analog Devices AD5320 DAC, and Crystek I 56.25Mhz VCXO. The individual 

parameters of the design were varied in order to analyze their impact on performance, 

bandwidth, and stability. Additionally, the test setups and automation software which was 

developed in order to acquire the data will also be described. 

3.2 Measurement Setup 

There were two basic test setups used to analyze the performance of the implemented 

ADPLL circuit. The first was a reference source and a spectrum analyzer which was used for 

jitter transfer, jitter generation, and frequency step response. The second was a Bit Error 

Rate Tester (BERT) using reference clock sources which was used only for jitter tolerance 

testing. This setup is a 12Gbps BERT test system developed by Hewlett-Packard before the 

company split off into Agilent. It has the ability to operate from lOMhz to 12Gbps. Test 

Setup #1 was used for the majority of the testing including Jitter Transfer, Jitter Generation 

and Frequency Step Response. Test Setup #2 was used only for the Jitter Tolerance Test. 

Table 8 : Equipment List for Test Setup #1 

Model 
Manufacturer Description 

Number 

Agilent 33250 Function I Arbitrary Waveform Generator, 80 MHz 

Agilent E4407B 
E4407B ESA-E Series Spectrum Analyzer 

100 Hz to 26.5 GHz 

Agilent infinuim 4Gs/s, 2.5Ghz Digital Storage Oscilloscope 
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Table 9 : Equipment List for Test Setup #2 

Model 
Manufacturer Description 

Number 

Agilent 83752A Signal generator 

HP 70004A Display 

HP 70843B Error Performance Analyzer 

HP 3325B Signal generator 

3.3 Labview Automation 

In order to facilitate repeatable and numerous measurements, National Instruments Labview 

software was used to develop an automated Jitter Transfer Measurement using a test setup #1 

as described in Table 8. Using the Labview software two virtual instruments (Vi's) were 

developed. The first, Jitter_Transfer3.vi, configures the reference source to generate a 

reference clock at defined frequency with a defined amount of modulation. Then using the 

spectrum analyzer it measures the modulation amplitude present on the signal under test. 

This is repeated for a number of different Modulation frequencies. Labview Vi's are 

constructed graphically first by constructing a Front Panel which consist of controls and 

indicators. The Front Panel represents the Graphical User Interface of the instrument. Figure 

25 shows the Front Panel for the Jitter_Transfer3 .vi Block. The operation of the program 

behind the Front Panel is represented by the Block Diagram. The Block Diagram is formed 

by connecting different controls and indicators from the Front Panel represented by icons to 

functions and sub-vi's using wires . Figure 26 shows the Block Diagram for the 

Jitter_Transfer3.vi. As can be seen from the Front Panel this VI receives a list of modulation 

frequencies, modulation frequency, center frequency, averages, and reference divide ratio. It 

outputs 3 vectors which are also plotted on the graph on the front panel. The vectors are 

modulation gain, input modulation amplitude which is calculated using Equation (7), and 

measured output modulation amplitude. As can be seen there is very good correlation 

between the two graphs. This data is recreated in Figure 30. 
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Figure 25 : Jitter Transfer3.vi Front Panel 



Tim':.~J'f.T:!lti 

.E~e 

< 

0[0 .. 31 . 

~ 
slggen.vi 
e 11C:f OU~ 

1,:rr.:::_1, in 

~-m 
~----t~ 

IRef Modi 

: . ·-· i=.F-.•r··· [I) 
l!"' tBlJ ,--·-
I f;~fe_r~r;ice I 
, m· :ttr "-·-·· ,, 

.. :.:~:;t1Tu! 

l 
I 
I 

~ 
r--.--....<• 
i ¥/lite Lob' 
l . Measurer 

i F~e 

·)~~~ :::::::::::~IQQ~ 

,. ,Q.~ ... "* - :t:·-... ~ !S"($•-·ra""~w.-.~:!1fi£i-S~-I~~~~ ~·4LobVIEW7 •.•• w-.1~~~i'iilf. " . . -- .... ~ "'1~AA1.I: 
~'W · ~''~""""" .... -~ R.1 ~ !!;~"'t'~~~.~-",,_ !:;~t~ . ~~--'10:'*""'~~~..21Rlt.~l ....... ~--"•~ -

Figure 26 : Jitter Transfer3.vi Block diagram 

VJ 
N 



33 

The second VI, Multiplejitter_transfer3.vi, calls the first VI, Jitter_Transfer3.vi, multiple 

times pausing between each call to allow for changing loop parameters via ChipScope Pro 

control panel. During each iteration of Jitter_Transfer3.vi , the data is graphed on separate 

amplitude and gain graphs for immediate feedback on progress and performance. Figure 27 

shows the Front Panel of Multiplejitter_transfer3.vi which receives the same basic inputs as 

Jitter_Transfer3.vi and passes them directly to Jitter_Transfer3.vi. The output is a series of 

graphs. The top graph shows data collected from each iteration through Jitter_Transfer3.vi 

and the comparison of the effects of the different parameter changes. This data is also saved 

to a data file which was later imported into a spreadsheet which recreated the graphs for 

inclusion in this thesis. The top graph shows the jitter transfer or modulation gain, the 

second graph shows just the modulation amplitude that was measured. Figure 28 shows the 

Block Diagram for the Multiplejitter_transfer3.vi. Central in the VI diagram is the icon for 

the Jitter_Transfer3.vi sub-vi. It is shown along with the function block which pops-up a 

dialog box to request the loop parameter change. The Labview software uses the General 

Purpose Instrument Bus (GPIB) to communicate with both pieces of equipment. 
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3.4 Jitter Transfer 

Using the Labview VI's some calibration measurements were taken in order to get an idea of 

the amount of noise present in the VCXO and the FPGA output drivers. A baseline noise 

measurement was taken with the DAC set to a fixed value of Ox6FO. This is shown in 

Figure 29. This graph establishes the noise floor of the DAC and FPGA at about -60dBc to 

-70 dBc. 
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Figure 29: Fixed Control Voltage Noise Plot 
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Reference Modulation Noise 
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Figure 30 : Reference Modulation Plot 

Next a measurement was taken to correlate the calculated value of Reference modulation 

amplitude relative to the actual measured value using the equipment Amplitude of the 

reference modulation, A(dBc) is calculated by the following equation. 

A(dBc) == 20 *log( Fdev * Nref J 
Fmod*2 

( 7) 

Where Fdev is the frequency of the deviation, Fmod is the modulation frequency and Nref is 

the reference divide ratio. The reference divide ratio is usually 2, because the VCXO 

frequency is twice the reference frequency. Notice the two values correlate very weJJ with 

only minor differences due to noise. 
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Jitter Transfer Amplitude Alpha= OxC 

O ;.:-~~-,-~~,------,-,..--,-r,..-~--r,--

-1 0 - _:"""S_· . 

-20 

g -30 
'O 

:; -40 --·-· """"+"';..w....+·;..++.-·++P. 
Cl) 

'O 
~ -50 

ii -60 -
E 
< -70 ; ....... ~---+--~-~rl-----'+ 

-80 

-90 +-----~--~~----~-'-+------~~----~ 

100 1000 10000 

Modulation Frequency (Hz) 

100000 

-+--Ref Mod - Beta=O Beta=1 x Beta=2 --llE- Beta=3 -seta=4 -+- Beta=5 

--Beta=6 -· Beta= 7 Beta=B 

Figure 31 : Jitter Transfer Amplitude Alpha=OxC 
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In order to analyze the effects of the parameter Beta a fixed value for Alpha was chosen such 

that all possible values of Beta would result in stable operation of the ADPLL. Figure 31 and 

Figure 32 illustrate these measurements. Gain is calculated by subtracting the calculated 

reference modulation amplitude from the measured output amplitude for each modulation 

frequency. The data points taken at 200Hz and less should be considered to be marginal 

measurements since these measurements are taken near the limits of the spectrum anal yzers 

specified operating range. Some false or invalid measurements were observed in this range 

during the course of testing. Additionally, measurements of amplitude less than -65dB are 

not as accurate since this is the approximate noise floor of the test system. With this in mind 

we can see that as Beta increases the closed loop bandwidth of the system decreases. Where 

as a Beta= 0 results in a bandwidth of approximately lOKhz; a Beta= 4 results in a 

bandwidth of 1.5Khz. It is also noticed that as the value of beta approaches the value of 

alpha the modulation gain starts to show peaking or positive gain. 
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Figure 34 : Jitter Transfer Gain Alpha=OxF 

These measurements where repeated with an Alpha=OxF which is its maximum value. It is 

shown that increasing Alpha also reduces closed-loop bandwidth of the system. This is 

shown by comparing Figure 34 and Figure 32. In fact it can be seen that with Alpha= OxF 

and Beta> 4 the closed loop bandwidth of the system is less than what can be measured by 

the equipment used or less than 1 OOhz. 

In order to investigate this issue further data was taken with a fixed value of Beta=5 and 

Alpha was varied from Ox9 to OxF. This data is shown in Figure 35 and Figure 36. 
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Jitter Transfer Amplitude Beta= 5 
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It is important to point out the increased peaking of the jitter transfer function as Alpha 

approaches Beta. In fact peaking is evident whenever Alpha< Beta+ 8. It was also 

observed that the ADPLL appeared stable anytime Alpha< Beta+ 3. 

Next a value of Alpha and Beta were chosen for good stability and peaking performance and 

the divcnt parameter was changed from a value of 8 to a value of Ox 18. This value did affect 

the closed loop bandwidth slightly; however the impact was significantly less pronounced 

than the effect of Alpha and Beta on closed-loop bandwidth. This can be seen in Figure 38. 

This affect is most likely due to the increased phase detector gain resulting from reduced 

update rate of the loop filter. 

Jitter Transfer Amplitude Alpha= OxF;Beta=4 
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Figure 37 : Jitter Transfer Amplitude Alpha=OxF;Beta=4 



-5 

iD -10 
~ 
c: 
l1l 

(.? 

-20 

100 

43 

Jitter Transfer Gain Alpha= OxF;Beta=4 
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Figure 38 : Jitter Transfer Gain Alpha=OxF;Beta=4 

3.5 Jitter Generation 

100000 

Jitter generation was evaluated using the phase noise measurement capability of the spectrum 

analyzer in test setup #1. The bandwidth of consideration is from I OKhz to I OMhz. The 

lower limit of 1 OKhz is the limit of the equipment. First the Reference Source was measured 

with no modulation present. The value of 0.4299 Degrees shown in Figure 39 is the total 

noise present in the band of interest. This equals 7.64ps RMS jitter from Equation (8). 
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Figure 39 : Phase Noise Measurement Reference 
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The system was measured first with a fixed DAC value so that the VCXO and the drivers of 

the FPGA could be measured. Using Equation (8), a value of 2.22ps RMS jitter was 

calculated for the fixed DAC value. It is important to point out that when measured directly 

at the output of the VCXO this value is approximately 1 ps RMS. The difference can be 

attributed to the noise present in the FPGA 
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Figure 40 : Phase Noise Measurement Fixed DAC value 

Next two sets of values for Alpha and Beta were chosen to illustrate the worst and best case 

phase noise possible in the system. The first measurement shown in Figure 41 represents the 

worst case phase noise. It has the widest closed-loop bandwidth and significant peaking. 

Using Equation (8) the peak to peak jitter is 12.84ps RMS. The second measurement shown 

in Figure 42 represents the best or more common case with more narrow bandwidth and 

minimal peaking. Its peak to peak jitter is 2.27ps RMS. This is better than the reference 

source and comparable to the fixed DAC value. It was observed that if the measurement 

was taken directly at the output of the VCXO the peak to peak jitter is less than 2ps RMS. 

Therefore it is felt that much of the phase noise present in the measurements is caused by the 

output and input drivers of the FPGA. 
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Figure 42 : Phase Noise Measurement Alpha=OxF;Beta=5 

When we compare the measured values of jitter generation to the published papers this 

ADPLL exceeds the performance of many systems. The integrated ring oscillator based 

PLL's range from 14.6ps [7] to 15.9ps [8]. Published integrated LC oscillators operating at 

much higher frequencies range from 3.6ps [8] to 4.77ps [2]. It is expected that the 

performance of this system would be improved with higher freq uencies. 
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3.6 Frequency Step Response 

Frequency step response is an important measurement to monitor for PLL's. Test setup #1 

was used to generate frequency step responses with different PLL parameter values. The 

oscilloscope captures are shown in Figure 43 to Figure 46. It should be noted that this is a 

very large step response and tends to push the ADPLL into non-linear operating points as can 

be seen by the triangular osciJJations in the screen captures. Lee [2] gives a good analysis of 

this behavior which is caused by slewing. The slewing results because of the maximum rate 

at which the DAC value can be updated and the behavior of the bang-bang phase detector. 

Figure 43 : 1 OOOHz Frequency Step Response Alpha=6;Beta=3 
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Figure 44: lOOOHz Frequency Step Response Alpha=6;Beta=2 

It can be seen that lock time increases dramatically when the value of beta is reduced. A 

smaller value of beta allows the DAC value to be increased faster because the gain of the first 

order path is much larger. Figure 46 shows an event which results from the large frequency 

step induced and the very low gain of both first and second order paths. This is not likely to 

occur in a real system. 
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Figure 45 : Negative 1 OOOHz Frequency Step Response Alpha=9;Beta=5 

The ADPLL responded by tracking the wrong direction resulting in an out of lock condition. 

The result is that the DAC value saturates. Eventually the loop forces the DAC value which 

is a 12 bit unsigned integer value to rollover. The loop then continues to track down until 

lock is acquired. This event is repeatable and only occurs with a positive step of 1 Khz and 

with large values of Alpha. 

Another issue that was observed is that as the value of Alpha is increased, the loop will loose 

lock momentarily when the value of alpha is changed. This occurs only when alpha is 

greater than Ox9. This is an issue because the expectation was that the parameters could be 

modified dynamically in order to produce fast lock times and then increased in order to have 

lower bandwidths. Changes to beta do not cause the loop to loose lock. 
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Figure 46 : Positive I OOOHz Frequency Step Response Alpha=9;Beta=5 

3. 7 Data Recovery Jitter Tolerance 

Jitter tolerance is the ability of a clock and data recovery (CDR) system to receive data with 

significant amounts of jitter and still be able to accurately recover the data and clock signal. 

To perform this test, test setup #2 was used to provide a PRBS23 pattern driven into the 

reference signal input. The output data was monitored for errors and the input data was 

modulated with sinusoidal jitter. Figure 47 represents the maximum amount of jitter which 

was used and error free data received. The performance of a CDR system depends on 

tracking the jitter that is received. Since this system has such low bandwidth it was unable to 

recover data with greater than 0.39UI of modulation unless the loop bandwidth was 

significantly higher than the modulation frequency. In fact only the widest bandwidth 

settings provided adequate jitter tolerance performance. This shows that for acceptable jitter 
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tolerance performance the bandwidth should be approximately I Ox the frequency of the 

required rolloff point for the required jitter tolerance. 
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Figure 47 : Jitter Tolerance Plots 

3.8 Comparison to Analytical Analysis 

1000 10000 

Measured phase noise was only slightly larger than the calculated quantization jitter 

calculated previously. In fact if measured directly at the output of the VCXO it is nearly 

equal. It was observed that the ADPLL became unstable when the value of Beta approached 

Alpha within a value of 3. When comparing this with Da Dalt's[3] analysis of minimum 

Beta we see very good correlation. Consider Table I 0 which used a value of D=2 in 

Equation (4). The measured value column represents the maximum value of Beta where the 

ADPLL was observed to be stable and able to lock. The second column represents the value 

of a as it is used in Da Dal ts equations. The third column is the calculated value of~ from 
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DaDalts equations. The fourth column represents the value of Beta which is calculated from 

the third column. Notice that columns 4 and 5 are consistently different by a value of 2. 

Table 10: Comparison of minimum Beta 

Beta-min Measured 

Alpha 2"-Alpha Bmin Calculated Beta-min 

7 0.007813 0.0195313 5.68 4 

8 0.003906 0.0097656 6.68 5 

9 0.001953 0.0048828 7.68 6 

10 0.000977 0.0024414 8.68 7 

11 0.000488 0.0012207 9.68 8 

According to Da Dalt's [3] equation for optimal value of Beta equation (5), if we specify a 

value of Alpha equal to OxC; the optimum value of Beta would be approximately 8. 

However from Figure 32 we see excessive peaking with any value of Beta greater than 3. 

However, consider that Da Dalt was examining jitter based on the trajectory and orbit of the 

closed loop system only. The peaking in the jitter transfer map has a different cause and 

effect. Therefore a trade-off must be made regarding the effects of the peaking versus effects 

of larger orbits or less than optimum Beta in order to choose the best performing loop 

parameters. 

3.9 Conclusion 

In this chapter data was presented which showed the implemented design operates well with 

a variety of loop parameter values. Further the ADPLL performs better than published 

integrated solutions with respect to jitter generation. This is due in no small order to the low 

noise performance of the crystal based VCXO. Further it is shown that the ADPLL operates 

effectively as a noise reducing filter and clock multiplying circuit due to the ability to 

produce very low bandwidth loops. 
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Chapter 4 Conclusion 

In this thesis an all digital PLL based on DAC and VCXO technology was analyzed, 

designed, and implemented using FPGA technology. The DPLL was characterized with 

different programmable settings and shown to function well in different applications. As part 

of the characterization of the ADPLL an automated jitter transfer program was developed to 

analyze the loop performance. This automation is important in order to produce accurate and 

repeatable characterization data. The ADPLL was shown to have flexibility in loop 

bandwidth and was stable across a wide range of parameter settings. The design was shown 

to operate as both noise filtering, clock multiplying and data recovery applications. The data 

recovery application's performance was limited by the narrow bandwidth of the implemented 

design. The performance of the system would benefit with the use of a faster DAC and wider 

bandwidth. The ADPLL implemented is more suitable for jitter filtering where it was shown 

to reduce input jitter significantly and have very low jitter generation capability. The Verilog 

HDL code provided in the thesis can be synthesized to any digital technology using standard 

industry CAD tools. In this thesis we used a Xilinx Virtex-II ProX FPGA; however the 

design could be re-processed for the latest Virtex 4 FPGA or designed into an Application 

Specific Integrated Circuit (ASIC). Additionally, the design is not limited to the particular 

DAC and VCXO used in this implementation. Most VCXO or VCSO oscillators share the 

same footprint and pin-out. Therefore, changing operating rate of the design would be 

straightforward. Further, there exist many DAC's which operate with the same SPI interface 

as used in this design. Changing the DAC used may require new PCB design due to footprint 

and pin-out differences between these DAC's. Furthermore, the circuit is not limited to the 

operation speed of the DAC or digital circuits. It is possible to divide a very high speed 

VCSO using an external component before entering the FPGA without dramatically affecting 

performance. 

The cost of the implemented design is estimated at less than $25 which includes the cost of 

the DAC and VCXO. It is assumed that the FPGA or ASIC would be a pre-existing 

component which could be expanded to support the added functionality. For comparison 

purposes, this is a reduction of at least 50% over existing solutions such as Texas Instruments 
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CDC7005 device and supporting components and over I 00% versus existing Integrated 

Circuit Systems (ICS) devices. 

In the thesis an innovative accumulating phase detector was introduced. This phase detector 

expanded the capabilities of a standard bang-bang phase detector to operate at a higher rate 

than the loop filter and DAC. This results in a lower update rate for the VCXO however it 

allows the phase detector to appear more linear than a standard bang-bang phase detector. 

This reduced rate for the DAC is important because most low cost DAC's have update rates 

far lower than the clock rates of most digital communication systems today. 

4.1 Future Work 

This thesis introduced an innovative solution for clocking in today's systems. The following 

is a list of potential future work. 

I. Characterize the performance benefits of faster DAC. 

2. Improve Clock and Data Recovery operation. 

3. Measure low bandwidth performance using equipment capable of measuring in 

very low frequency band. 

4. Implement loops with frequencies greater than 600Mhz. 

5. Design of an automated control system which could dynamically adapt loop 

parameters. 

6. Implementation using embedded multipliers of Xilinx Virtex 4. 
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Appendix A 

4.2 Introduction 

This Appendix contains the Verilog HDL source code for the implemented design. The 

function of each of these verilog modules is described in detail in Chapter 2. 

4.3 Design Top-Level module : fpga_top. v 

II FileName: fpga_top.v 
II 
II Author: Justin Gaither 
II 
II Begin Date: Tue Nov 30 15:03:16 2004 
II 
II Description: Top level system for All Digital PLL using external 
II DAC and VCXO 
II 
II 
II 
II Revision History 
//-----------------------------------------------------------------
//Date Modified User Name Full Name 
II Descrition of Changes 
//-----------------------------------------------------------------
//$Log: fpga_top.v,v $ 
II Revision 1.2 2005/01/31 22:10:57 jgaither 
II Update for fixed vc, and elk and data to sma 
II 
II Revision 1.1 2005/01119 20:26:49 jgaither 
II Initial revision 
II 
II 
II 
//-----------------------------------------------------------------
//NOTES: 
//-----------------------------------------------------------------
// 
II 
//-----------------------------------------------------------------
'timescale lns/lOOps 
'ifdefTPDA 



'else 
'define TPDB #0.1 
' define TPDA #0.1 

'endif 

module fpga_top (/* AUTOARG*I 
II Outputs 
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SCLK, SDO, SYNC, clk_sel, clk_en, dataoutp, dataoutn, clkoutp, 
clkoutn, 
II Inputs 
reset, refclk_P, refclk_N, vcoclk_P, vcoclk_N 
); 
input reset; 
input refclk_P,refclk_N; 
input vcoclk_P, vcoclk_N; 
output SCLK,SDO,SYNC; 
output clk_sel,clk_en; 
output dataoutp,dataoutn; 
output clkoutp,clkoutn; 

wire [35:0] controlO; 
wire [63:0] sync_in; 
wire [63:0] sync_out; 

wire [3:0] bitsel; 
wire clkendac,isync; 
wire [15:0] vc,vcx; 
wire [s:o] phase_error; 
reg refsig; 
wire [31:0] integrator; 

IBUF rst_buf (.O(rst) , .!(reset)); 
IBUFGDS refclk_buf (.O(refclki) , .I(refclk_P), .IB(refclk_N)); 
IBUFGDS vcoclk_buf (.O(vcoclki), .I(vcoclk_P), .IB(vcoclk_N)); 

II BUFG refclk_bufg (.O(refclk) , .I(refclki)); 
llBVFG clk_bufg (.O(sclk) , .I(sclki)); 
OBUF clksel_buf (.O(clk_sel), .I(l'bl)); 
OBUF clken_buf (.O(clk_en) , .I(l'bO)); 

OBUFDS data_buf 
OBUFDS clk_buf 

(.O(dataoutp), .OB(dataoutn), .I(datax)); 
(.O(clkoutp) , .OB(clkoutn), .I(vcoclk)); 
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II Can select divided pdclk or input clock 
BUFGMUX vcoclk_bufg (.O(vcoclk), .IO(vcoclki), .Il(pdclk), .S(sync_out[25])); 
BUFG vcoclk2_bufg (.O(vcoclk2), .I(vcoclki)); 

vcodiv vcodiv( 

pd pd( 

lp lp( 

II Outputs 
.clkendac 
.rstcnt 
.bitsel 
.sync 
.sclk 
.pdclk 
II Inputs 
.elk 
.divcnt 
.vcodiv 
); 

II Outputs 
.data 
.phase_error 
II Inputs 
.refsig 
.rstcnt 
.vcoclk 
.reset 
); 

II Outputs 
.vc 
.integrator 
II Inputs 
.elk 
.elk en 
.phase_error 
.beta 
.alpha 
.rstcnt 
.rs tint 

(clkendac), 
(rstcnt), 
(bitsel[3:o]), 
(isync), 
(sclk), 

(pdclk), 

(vcoclk2), 
(sync_out[63:56]), 
(sync_out[23:16]) 

(datax), 
(phase_error), 

(refclki), 
(rstcnt), 
(vcoclk), 
(rst) 

(vc[15:0]), 
(integrator), 

(vcoclk), 
(clkendac), 
(phase_error), 

(sync_out[55:52]), 
(sync_out[51 :48]), 

(rstcnt), 
(sync_ out[ 45]) 
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); 

assign vex= (sync_out[24])? vc: sync_out[15:0] ; 

spi spi( 
II Outputs 
.SYNC 
.SDO 
.SCLK 
.dout 
.syn 
II Inputs 
.elk 
.sclki 
.data 
.1sync 
.clkendac 
.bitsel 
); 

(SYNC), 
(SDO), 

(SCLK), 
(dout), 
(syn), 

(vcoclk), 
(sclk), 
(vcx[15:0]), 
(isync), 
(clkendac), 
(bitsel[s:o]) 

assign sync_in = {isync,phase_error,vc,integrator}; 

II Chipscope Pro Cores 

11-----------------------------------------------------------------
11 
II ICON core instance 
II 
11-----------------------------------------------------------------
iconl i_icon 

( 
.controlO(controlO) 

); 

11-----------------------------------------------------------------
11 
II VIO core instance 
II 
ll-----------------------------------------------------------------
vio4 i_vio 

( 
.control(controlO), 



); 

.elk( vcoclk2), 

.sync_in(sync_in), // 64 bits 

.sync_out(sync_out) II 64 bits 

endmodule // fpga_top 
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4.4 Accumulating Phase Detector Module : pd. v 

II FileName: pd.v 
II 
II Author: Justin Gaither 
II 
II Begin Date: Thu Dec 23 15:15:40 2004 
II 
II Description: Accumulating Bang· Bang Phase detector 
II 
II 
II 
11 Revision History 
//-------------------------------------- ---------------------------
// Date Modified User Name Full Name 
II Descrition of Changes 
//-----------------------------------------------------------------
//$Log: pd.v,v $ 
II Revision 1.1 2005/01131 22:10:57 jgaither 
II Initial revision 
II 
II Revision 1.1 2005/01119 20:26:49 jgaither 
II Initial revision 
II 
II 
II 
//-----------------------------------------------------------------
//NOTES: 
//-----------------------------------------------------------------
// 
II 
//-----------------------------------------------------------------
' timescale lns/lOOps 



' if def TPDA 
'else 
'define TPDB #0.1 
'define TPDA #0.1 

'endif 

module pd (/*AUTOARG*/ 
II Outputs 
data, phase_error, 
//Inputs 
refsig, rstcnt, vcoclk, reset 
); 
input refsig; 
input rstcnt; 
input vcoclk; 
output data; 
output [s:o] phase_error; 
input reset; 

reg a,b,t,ta; 
reg up, down; 
wire data; 
reg [s:o] phase_error; 
reg [15:0] upcnt,dncnt; 
wire [15:0] new _pe; 

initial begin 
upcnt = o; 
dncnt = o; 
phase_error = o; 

end 

assign data= a; 
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//-----------------------------------------------------------------
//Standard Bang-Bang Phase Detector 
//-----------------------------------------------------------------

always@(negedge vcoclk or posedge reset) 
if(reset) begin 

ta <= 'TPDB o; 
end 



else begin 
ta<= 'TPDB refsig; 

end 
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always@(posedge vcoclk or posedge reset) 
if(reset) begin 

a<= 'TPDB O; 
b <= 'TPDB O; 
t <= 'TPDB o; 

end 
else begin 

end 

b <= 'TPDB refsig; 
a<= 'TPDB b; 
t <= 'TPDB ta; 

//-----------------------------------------------------------------
//Decode phase detector outputs 
//------------------- ---------------------------- -- ----------------

always@(a orb or t) 
case({a, t ,b}) 

3'b000 : begin// no trans 
up= o; 
down= o; 

end 
3'b001 : begin// too fast 

up =O; 
down= 1; 

end 
3'b010 : begin// invalid 

up= 1; 
down= 1; 
$display("Error in PFD %b %b %b %t",a ,t ,b,$time); 

end 
3'b011 : begin// too slow 

up= 1; 
down= o; 

end 
3'b 100 : begin // too slow 

up= 1; 
down= o; 

end 



3'b101 : begin II invalid 
up= 1; 
down= 1; 
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$display("Error in PFD %b %b %b %t" ,a ,t ,b,$time); 
end 
3'b110: begin II too fast 

up =O; 
down= 1; 

end 
3'blll: begin II no trans 

up =O; 
down= o; 

end 
endcase II case(a, t , b) 

11-----------------------------------------------------------------
11 Up and Down Counters 
11-----------------------------------------------------------------

always@(posedge vcoclk) begin 
if(rstcnt) begin 

upcnt <= 'TPDB 16'hOOOO; 
dncnt <= 'TPDB 16'hOOOO; 
phase_error <= 'TPDB foew_pe[15l,new_pe [7:o]}; 

end 
else if(up & !down) 

upcnt <= 'TPDB upcnt + I; 
else if(down & !up) 

dncnt <= 'TPDB dncnt + I; 
end 

sub subtract (II subtractor from coregen 
.A(upcnt), II unsigned 
.B(dncnt), II unsigned 
.S(new_pe)); 

endmodule II pd 



4.5 Loop Filter Module : lp. v 

II FileName: lp.v 
II 
II Author: Justin Gaither 
II 
II Begin Date: Tue Nov 9 10:04:11 2004 
II 
II Description: 
II 
II 
II 
11 Revision History 
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//-----------------------------------------------------------------
// Date Modified User Name Full Name 
II Descrition of Changes 
//-----------------------------------------------------------------
//$Log: lp.v,v $ 
II Revision 1.2 2005/01131 22:10:57 jgaither 
II Update for fixed vc, and elk and data to sma 
II 
II Revision 1.1 2005/01/19 20:26:49 jgaither 
II Initial revision 
II 
II 
II 
//-----------------------------------------------------------------
1/ NOTES: 
//-----------------------------------------------------------------
// 
II 
//-----------------------------------------------------------------
'timescale lns/lOOps 
'ifdefTPDA 
'else 
'define TPDB #0.1 
'define TPDA #0.1 

'endif 

module lp (/* AUTOARG*/ 
II Outputs 
vc, integrator, 
II Inputs 
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elk, elken, phase_error, beta, alpha, rstcnt, rstint 
); 
input elk; 
input elken; 
input [s:o] phase_error; 
input [3:0] beta; 
input [3:0] alpha; 
input rstcnt; 
output [15:0] vc; 
output [31:0] integrator; 
input rstint; 

reg [15:0] 
reg [31:0] 
reg 

integrator; 
load; 

reg [11:0] bl,al; 
wire [31:0] new_int; 
wire [11:0] new_vc,new_vcx; 
wire [11:0] vc_new; 

initial begin 
integrator = 32'hOOOOOOOO; 
vc = 16'dl676; 

end 

II register the control voltage(vc) and integrator 
always@(posedge elk) begin 

if (rstcnt) 
load<= 'TPDB I; 

else if(elken) 
load <= 'TPDB o; 

if (rstint) 
integrator<= 'TPDB 32'hOOOOOOOO; 

else ifOoad & elken) begin 
integrator <= 'TPDB new _int; 
vc <= 'TPDB vc_new; 
11$display("%d %x %x",vc,integrator,phase_error); 

end 
end 

add12 add12 (II signed adder from coregen 
.A(bl), II signed 



.B(al), //signed 

.S(new_vc)); 

66 

II integrator should drive to zero value 
addl6 addl6 (//signed adder from coregen 

.AGntegrator), //signed 

.B(phase_error), //signed 

.S(new _int)); 

II Simple way to saturate the Control Voltage similar to what an Analog filter 
would do. 

assign 'TPDA vc_new = (vc[11:8] == 4'hf & new_vc[11:s] == 4'h0)? 16'hOFFF: 
(vc[11:8] == 4'h0 & new_vc[11:8] == 4'hfJ? 16'h0000: {4'hO,new_vc[11:0]}; 

//-----------------------------------------------------------------
// Gain Stages 
//-----------------------------------------------------------------

always@(posedge elk) 
case(beta) 

4'h0 : bl= {{3{phase_error[8]}},phase_error}; //keep sign 
4'hl : bl= {{4{phase_error[8]}},phase_error[8:1]}; 
4'h2 : bl= {{5{phase_error[8]}},phase_error[8:2]}; 
4'h3 : bl= {{6{phase_error[8]}},phase_error[8:3]}; 
4'h4 : bl= {{7{phase_error[8]}},phase_error[8:4]}; 
4'h5 : bl= {{8{phase_error[8]}},phase_error[8:5]}; 
4'h6 : bl= {{9{phase_error[8]}},phase_error[8:6]}; 
4'h7 : bl= {{lO{phase_error[8]}},phase_error[8:7]}; 
4'h8: bl= {{ll{phase_error[8]}},phase_error[8:8]}; 
4'h9: bl= 12'hO; 
4'ha : bl= 12'hQ; 
4'hb: bl= 12'hO; 
4'hc : b 1 = 12'hO; 
4'hd : b 1 = 12'hO; 
4'he : b 1 = 12'hO; 
4'hf : b 1 = 12'hO; 

endcase // case(beta) 
always@(posedge elk) 

case(alpha) 
4'h0 : al= new_int[ll:Q]; //keep sign 
4'hl : al= new_int[12:1]; 
4'h2 : al= new_int[13:2]; 



4'h3: al= new_int(14:3]; 
4'h4: al= new_int(15:4]; 
4'h5: al= new_int[l6:5]; 
4'h6: al= new_int[l7:6]; 
4'h7: al= new_int[1s:7]; 
4'h8: al= new_int(19:s]; 
4'h9 : al= new_int[20:9]; 
4'ha: al= new_int[21:10]; 
4'hb: al= new_int[22:11]; 
4'hc: al= new_int(23:12]; 
4'hd: al= new_int(24:13); 
4'he: al= new_int[25:14); 
4'hf: al= new_int[26:15); 

endcase II case(beta) 

endmodule II div8 
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4.6 Serial Peripheral Interface module: spi.v 

II FileName: spi.v 
II 
II Author: Justin Gaither 
II 
II Begin Date: Fri Nov 12 09:23:19 2004 
II 
II Description: Serial Peripheral Interface 
II 
II 
II 
11 Revision History 
11-----------------------------------------------------------------
11 Date Modified User Name Full Name 
II Descrition of Changes 
11-----------------------------------------------------------------
11 $Log: spi.v,v $ 
II Revision 1.1 2005101119 20:26:49 jgaither 
II Initial revision 
II 
II 
II 
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//-----------------------------------------------------------------
//NOTES: 
//-----------------------------------------------------------------
// 
II 
//-----------------------------------------------------------------
'timescale lns/lOOps 
'ifdefTPDA 
'else 
'define TPDB #0.1 
'define TPDA #0.1 

'endif 

module spi(/* AUTOARG*/ 
II Outputs 
SYNC, SDO, SCLK, dout, syn, 
//Inputs 
elk, data, isync, selki, elkendac, bitsel 
); 
input elk; 
input [15:0] data; 
input isync; 
input selki; 
input clkendac; 
input [3:0] bitsel; 
output SYNC; 
output SDO; 
output SCLK; 
output dout,syn; 

reg syn,dout,en,busy; 
reg [3:0] cnt; 
reg [15:0] datav; 
reg clko; 

OBUF sclk_buf (.O(SCLK), .I(elko)); 
OBUF sdo_buf (.O(SDO), .I(dout)); 
OBUF sync_buf (.O(SYNC), .I(syn)); 

always@(posedge elk) begin 
elko <= 'TPDB sclki; 
if(clkendac) begin 

if(!isync) 



datav <= 'TPDB data; 
syn<= 'TPDB ~isync; 
dout <= 'TPDB datav[bitsel]; 

end 
end 

endmodule II spi 

4. 7 VCO divider Module : vcodiv. v 

II FileName: vcodiv.v 
II 
II Author: Justin Gaither 
II 
II Begin Date: Tue Nov 9 10:04:11 2004 
II 
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II Description: Divides the clock from vco and generates pulses and bitsel to 
II SPI interface 
II 
II 
II Revision History 
11-----------------------------------------------------------------
11 Date Modified User Name Full Name 
II Descrition of Changes 
11-----------------------------------------------------------------
11 $Log: vcodiv.v,v $ 
II Revision 1.2 2005101131 22:10:57 jgaither 
II added elk divider to pd 
II 
II Revision 1.1 2005101119 20:26:49 jgaither 
II Initial revision 
II 
II 
II 
11-----------------------------------------------------------------
11 NOTES: 
11-----------------------------------------------------------------
11 
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II 
//-----------------------------------------------------------------
'timescale lns/lOOps 
'ifdefTPDA 
'else 
'define TPDB #0.1 
'define TPDA #0.1 
'endif 

module vcodiv(/* AUTOARG*/ 
II Outputs 
elkendac, rstcnt, bitsel, sync, selk, pdelk, 
II Inputs 
elk, divcnt, vcodiv 
); 
input elk; 
input [7:0] divcnt; 
input [3:0] vcodiv; 
output elkendac; 
output rstcnt; 
output [3:0] bitsel; 
output sync; 
output selk; 
output pd elk; 

reg [3:0] bitsel; 
reg rs tent; 
wire elkendac; 
reg [7:0] cnt; 
reg [3:0] vent; 
reg sync; 

initial begin 
cnt = 1; 
vent= 1; 
bitsel = 4'hf, 
sync= o; 
rstcnt = o; 

end 

always@(posedge elk) begin 
vent <= 'TPDB (vent< vcodiv) ? vent+ 1 : 4'hl; 
cnt <= 'TPDB (cnt < divcnt)? cnt + 1 : 8'h01; 



if(clkendac & bitsel == 4'h3) 
rstcnt <= 'TPDB I; 

else II single elk pulse 
rstcnt <= ' TPDB o; 

if (clkendac) begin 
if(bitsel == 4'h0) begin 

bitsel <= 'TPDB 4'hf, 
sync<= 'TPDB o; 

end 
else if(sync) 

bitsel <= 'TPDB bitsel - 1; 
else 

end 
end 

sync<= 'TPDB i; 

assign clkendac = <cnt == divcnt) ; 
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assign sclk = (cnt <= {l'b0,divcnt[7:1]}); 
assign pdclk = (cnt <= {l'b0,divcnt[3:1]}); 

endmodule 
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