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I
n biological systems, proteins and other
biological macromolecules play an im-
portant role in controlling the size and

shape of biogenic material via direct inter-
actions with certain mineral faces. Self-
assembly of polar and charged residues of
biomacromolecules is thought to regulate
their interactions with the atomic array
of certain crystal planes on the mineral
surface.1�5 These direct interactions are
assumed to provide a close coordination
with certain facets of the mineral phase,
thereby facilitating growth of certain crystal
faces and inhibiting growth of others.5�13

Protein-driven nucleation is believed to
play an important role in the formation
and growth of both biogenic and biomi-
metic nanocrystals.11,14�17 One of the best-
studied biomineralization systems is calcium
carbonate, where the directed growth is

reportedly determined at the initial stage of
nucleation via specific interaction of nuclei
with the functional groups of the organic
interface, leading to formation of a specific
inorganic phase.18�22 The nascent inorganic
phase is affected by the site-adsorbed cation
structure, with the shape andmorphology of
the crystal influenced by the amorphous-like
precursor phase.23�29 Multiple studies sug-
gest that the nucleation of metallic particles
on a biomacromolecular template is initiated
by the adsorption of cations or cation com-
plexes onto the negatively charged surface
sites via simple electrostatic interactions.30,31 In
the biomimetic calcium phosphate system, for
example, prenucleation clusterswere recently
identified as ion-associated complexes, with
charged protein aggregates taking up large
amounts of positively charged calcium ions
and facilitating the nanoparticle nucleation.32
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ABSTRACT

Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic�inorganic nanostructures. However, the role of the

protein in controlling the nucleation and growth of biomimetic particles is not well understood, because themechanism of the bioinspired reaction is often deduced

from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by

an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein

micelles incubated with ferric chloride. Using in situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and

nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated

biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.

KEYWORDS: recombinant iron-binding protein . protein-mediated particle nucleation . in situ TEM analysis

A
RTIC

LE



KASHYAP ET AL . VOL. 8 ’ NO. 9 ’ 9097–9106 ’ 2014

www.acsnano.org

9098

There is a considerable interest in biomimetic fabri-
cation of functional magnetic nanostructures in the
presence of synthetic polymers, viruses, peptides, DNA
molecules, proteins, and various polymer-based hybrid
materials employed as matrices, scaffolds, and tem-
plating agents.8,14,33�44 Bioinspired synthesis of mag-
netite nanocrystals can be carried out in vitro utilizing
proteins from magnetotactic bacteria.45�49 Magneto-
tactic bacteria are a diverse family of aquatic prokary-
otes known to biomineralize intracellular membrane-
bound crystals of magnetic nanocrystals called
magnetosomes, typically magnetite (Fe3O4) or greigite
(Fe3S4).

50�53 Among the several acidic membrane
proteins tightly bound to themagnetosomemagnetite
crystal, Mms6 is believed to be one of the dominant
proteins involved in magnetosome formation and
growth.54,55 The full-length recombinant acidic protein
His-Mms6 was shown to promote the shape-specific
formation of magnetic nanocrystals in vitro.45,46,49,55�58

This biomimetic approach was later utilized in the
templated synthesis of more complex and highly mag-
netic cobalt ferrite nanocrystals in the presence of
the functional acidic C-terminus (i.e., carboxylate-
terminated region) ofMms6.57,59,60 Thenominalmolecular
mass of Mms6 is 10.2 kDa; however, in aqueous solutions
this protein is not present as a monomer. Instead, Mms6
undergoes spontaneous self-assembly and forms mi-
celles with significantly higher apparent molecular
mass, typically consisting of 20�40 protein molec-
ules.44,61,62 Both full-length His-Mms6 and its C-terminus
were shown to be amphiphilic and to multimerize and
form micelles in solution, with the iron binding presum-
ably taking place at the hydrophilic C-termini of the
Mms6.44,61,62 However, neither the macromolecular
structures nor the localization of the bound iron to the
micelle surface has been established so far. In the
biomimetic synthesis of cobalt ferrite in the presence of
the synthetic C-terminus of Mms6, the protein was
reported to control the size, shape, and phase of cobalt
ferrite nanoparticles by changing the kinetics of the
nucleation and growth process via uniform catalytic
oxidation of the nuclei.56,59 The classicalmodel of nuclea-
tion is not applicable for this system, as the thermody-
namics and kinetics of nucleation are reportedly altered
by the biomacromolecule.59 MamC is another magneto-
some membrane protein present in several strains of
magnetotactic bacteria.58,63�66 Similar toMms6,MamC is
amphiphilic, with a hydrophilic C-terminus assumed to
play an active role in magnetite biomineralization.64,66

Self-assembly of MamC into negatively charged macro-
molecular complexes and iron binding to their surface
have been recently reported.67

For the majority of bioinspired systems the mech-
anism of nanoparticle formation remains unclear, be-
cause the analysis of the nanomaterial growth is either
performed by taking sample aliquots during different
stages of the growth process or carried out after the

synthesis.46,59,60,68�74 This approach provides impor-
tant clues relevant to the overall effect of the templat-
ing agent, permits characterization of a resultant

biomimetic material, and allows an indirect inference
of the nanoparticle growth pathway. However, it gen-
erally lacks information about the dynamics of the

material’s formation.59,60,75�77 As a result, despite nu-
merous reports on mineral�protein interactions and
iron biomineralization processes, the fundamental
templating interactions and nucleation and growth
processes are not well understood. In order to obtain
reliable information on fundamental dynamic func-
tions or processes involved in protein-templated bio-
mineralization, it is imperative to study the biological
and biomacromolecular systems in their native, fully
hydrated environments, rather than as altered “pre-
pared” samples, which are prone to artifacts. Use of
fluid cell transmission electron microscopy (TEM) has
allowed real-time imaging of intact biological struc-
tures in their native liquid environment with suffi-
ciently high spatial and temporal resolution, enabling
visualization of many dynamic physical, chemical,
and structural nanoscale phenomena taking place in
liquids.76,78�89 While imaging low-contrast organic
materials is notoriously difficult with TEM, a number
of recent fluid cell TEM and scanning TEM (STEM) studies
have elucidated themechanisms of dynamic processes in
soft nanomaterials and biomacromolecules.83,85,87,90,91

Notably, Parent and co-workers demonstrated that palla-
dium nanoparticle growth in a block copolymer micellar
template proceeds by monomer addition followed by
aggregation and coalescence, knowledge that was used
to engineer optimized mesoporous nanoparticles with
ordered pores.87,91 Themotion of platinum-loadedmicel-
lar nanoparticles in liquid has been observed using in situ
liquid cell TEM, indicating that this technique is uniquely
suited for imaging dynamics of soft nanomaterials.92

Here we report the direct visualization of iron bind-
ing of the self-assembled bacterial recombinant acidic
biomineralization protein Mms6 in the solution phase
and subsequent protein-directed nanoparticle nuclea-
tion in situ. A well-characterized mammalian iron stor-
age protein, ferritin, previously visualized with the
in situ fluid cell TEM, was used as a reference.83 Our
results provide important insights into the specific
surface interactions of self-assembled protein micelles
with metal ions and their role in biomimetic iron oxide
nanoparticle nucleation. Our findings are applicable for
in situ characterization of a variety of dynamic pro-
cesses taking place at inorganic�organic interfaces in
protein solutions and for optimization of synthetic
conditions in a variety of bioinspired reactions.

RESULTS AND DISCUSSION

The macromolecules have higher mass density and
average atomic number compared to the surrounding
buffer solution and can be visualized with various
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TEM techniques. We performed cryo-TEM and
HAADF-STEM imaging to characterize the structure
and chemistry of the Mms6 micelles ex situ. Figure 1
shows a cryo-TEM image of vitrified Mms6 micelles
(Figure 1a) accompanied by a HAADF-STEM image of
micelles dried on a carbon grid for comparison
(Figure 1b). The proteinaceous micelles are clearly
visible as spherical structures in the vitrified and dried
sample, where both sample preparations reveal the
micelles to have average sizes of 25�150 nm. The
micelles appear aggregated in the dried sample, which
is likely an artifact created by capillary drying forces.
This aggregation further reinforces the need to
perform in situ imaging of the protein complexes in
order to characterize them in their native hydrated
state.
To ensure specimen stability, minimize its thickness,

and provide an adequate signal for electron energy
loss spectroscopy (EELS) and energy-filtered TEM
(EFTEM), additional characterization was conducted
on ferric chloride incubated Mms6 prepared on a
conventional EM grid. Figure 2 shows EFTEM elemental
maps of the Fe L2,3-edge (b) and O K-edge (c) energy
loss values, in addition to the corresponding zero-loss
image (a). The EFTEM elemental maps confirm the
presence of oxygen and iron in Mms6 proteinaceous
micelles incubated with ferric chloride. Although the
iron peaks are significantly weaker compared to that of
oxygen (due to the higher energy loss and lower
signal-to-noise ratio of the Fe L2,3-edge), the elements
are clearly distinguishable. Figures 2d,e show the
corresponding oxygen and iron EELS spectra collected
from a single micelle, respectively.
Figure 3 shows in situ liquid cell HAADF-STEM

images of Mms6 proteinaceous micelles suspended
in buffer solution. The hydrated micelles in buffer
solution appear as spherical structures with higher
contrast due to an increased mass density compared
to the surrounding solution (Figure 3a). The size of the
hydrated micelles is similar to that of the vitrified and
dried micelles shown in Figure 1. While the image
contrast and signal-to-noise are markedly lower than
those of the micelles on a grid (cf. Figure 1b), the in situ
image indicates that HAADF-STEM imaging of these
low atomic number micelles in liquid is possible, even
though previous works utilized TEM imaging and/or
heavy metal loading to image synthetic micelles and
biomacromolecules in liquid.83,92 After initial imaging
of theMms6micelles, dilute ferric chloride solutionwas
delivered to the fluid cell via fluid flow channels in situ.
The proteinaceous micelles were allowed to incubate
with the ferric chloride for 60 min and then sub-
sequently washed with water delivered in situ. The
exposure to ferric chloride solution in situ did not
induce significant changes in the size of the proteinac-
eous micelles, as illustrated by the before and after
HAADF-STEM images and size distributions in Figure S1

shown in the Supporting Information. A relatively low
image contrast likely led to some error in the size
measurements, thus contributing to a larger size dis-
tribution. The incubation of the protein micelles with
ferric chloride in situ led to a noticeable enhancement
in the Z-contrast of the protein micelles (Figure 1c),
attributed to binding and subsequent surface localiza-
tion of iron. Because the size and shape of the Mms6
micelles did not change after iron incubation (Figure S1),
we assume the contrast change was due solely to the
presence of the higher atomic number iron species in
the micelles.
The addition of NaOH in situ induces local pH

gradients and affects the formed hydrolyzed species,
as exemplified in Figure 4. Before NaOH is added to
induce iron oxide nucleation, the Mms6 micelles have
relatively constant Z-contrast from the center to edge,
indicating a relatively constant concentration of iron
species throughout (Figure 4a). The proteinaceous
micelles appeared stable under the current imaging
conditions, exhibiting no electron beam damage.
Moreover, no reduction of ferric iron caused by the
electron beam could be detected prior to the delivery
of NaOH in situ. On the basis of this observation, it was
concluded that under our experimental conditions
aqueous ferric iron is not readily reduced by the

Figure 1. Ex situ images ofmicelles of the biomineralization
recombinant protein Mms6: (a) Cryo-TEM image of vitrified
micelles, scale bar 200 nm. (b) HAADF-STEM image of
micelles dried on a grid.

A
RTIC

LE



KASHYAP ET AL . VOL. 8 ’ NO. 9 ’ 9097–9106 ’ 2014

www.acsnano.org

9100

electron beam, and e-beam-induced nucleation on the
micellar surfaces can be ruled out.93,94

Hydrolysis of Fe(III) salt solutions in bulk media can
lead to a variety of structures, with the key factors in the
formation and crystallinity of formed iron oxides being
the concentration of Fe(III), rate at which the hydro-
lyzed species are supplied to the growing crystal, pH,
and temperature.95�98 The formation of ferrihydrite is
favored when the rate of supply of growth units is
relatively rapid, resulting in formation of poorly crystal-
line particulates, while the formation of green rust in
the case of ferric chloride, without the ferrous iron, is
unlikely.97 The presence of a negatively charged mi-
cellar surface and high concentration of surface-bound
ferric iron apparently lower the energy barrier to
subsequent nucleation, thus facilitating this process.
At higher OH/Fe ratios, the growth units are supplied

more slowly, permitting the controlled ordering needed
for formation of better-shaped particles.95,97,99 As the
pH increasesduring the in situdelivery ofNaOHsolution,
the variation of localized iron concentration and supply
of reagents to the growing crystal govern the nucleation
by affecting the nominal OH/Fe ratio.95,97

After NaOH is added, a lower contrast “halo” forms
around the perimeter of the micelle, which can be
attributed, in part, to surface depletion of the higher
atomic number bound iron. We propose that this is
likely the first step in the formation of a liquid-like,
disordered prenucleation phase (Figure 4b), followed
by the subsequentnucleationof ironoxidenanoparticles.

Figure 2. Ex situ EFTEM and EELS analysis ofMms6micelles. Zero-loss image (a) and elementalmaps of (b) iron and (c) oxygen
acquired in EFTEM mode from Mms6 incubated with ferric chloride, from a specimen prepared on a grid. Scale bar: 200 nm.
(d, e) EELS spectra acquired from the specimen at the oxygen and iron edges, respectively.

Figure 3. In situ fluid cell HAADF-STEM images of Mms6
micelles in buffer (a) before and (b) after incubation with
ferric chloride. Figure 4. In situ fluid cell HAADF-STEM images of Mms6

micelles in buffer during reaction with NaOH. (a) Iron-
incubated Mms6 micelle before addition of NaOH. (b) Same
micelle after initial addition of NaOH, showing contrast
change due to possible formation of an amorphous iron-
rich precursor surface layer. Scale bar: 200 nm.
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Alternatively, a change in micellar surface association of
protein induced by the pH alteration could lead to an
instantaneous change inproteindissociationandprompt
a temporary release of protein�iron complexes into the
surrounding solution. This would lead to formation of
transient iron-associated protein entities, likely mani-
fested as a halo. It is worth noting that visualization of
this highly dynamic process was made possible only by
in situ fluid cell STEM imaging and currently could not
be validated by other experimental techniques. Self-
assembly of protein into micelles and emergence of the
resultant micellar surface-bound iron appear to play a
crucial role in biomimetic particle development by sus-
taining the ferric ion delivery to the forming amorphous
prenucleation phase and lowering the energy barrier to
subsequent nucleation. The protein-directed iron surface
concentration, therefore, affects the rate of formation of
biomimetic ironoxidenanoparticles. TheMms6presently
is not available in its monomeric form; however, we
hypothesize that in the absence of a micellar surface
the amorphous precursor would not form locally.
Mms6 binds Fe3þ and increases the local iron con-

centration in specific negatively charged areas favor-
ing the nucleation of a disordered precursor phase,
likely (2-line-) ferrihydrite, often called “hydrous ferric
oxide”, or “amorphous iron oxide”, which is believed
to be the first step in biomimetic formation of
magnetite.49,55,56,61,100 Following the surface depletion
of prenucleation liquid iron-rich complex (cf. Figure 4b),
iron oxide nuclei begin to form preferentially on the
surface of the Mms6 micelles (Figure 5a), although at
this point particle nucleation in the interior region of
the micelles cannot be excluded. Iron oxide nanopar-
ticles are not observed to undergo aggregation during
nucleation; they appear and grow independently. The
notable lack of spontaneous bulk nucleation (outside
the micelles) suggests that the high iron concentration
near themicellar surface likely leads to supersaturation
conditions necessary for localized nucleation. Prefer-
ential iron�protein surface binding leads to a removal
of ferric ions from the bulk solution, essentially leading
to a surface-localized supersaturation of the prenuclea-
tion iron-rich ion complex with respect to the nucleat-
ing amorphous nanoparticles. Surface-localized iron
binding has also been recently observed using in situ

liquid cell STEM for the recombinant membrane pro-
tein MamC.67

Our direct observations of iron binding and micelle-
localized nucleation are consistent with our previous
studies that have shown the hydrophilic C-terminal
region of Mms6, which is present at the corona of the
micelles, is the active site of the protein for iron binding
and biomineralization.56,61,62 Importantly, our direct
observations of micelle-localized iron oxide nucleation
reinforce the idea that the presence ofMms6 protein in
bacterial magnetosome membrane vesicles could, ar-
guably, lead to localization of iron on themagnetosome

membrane surface, facilitating and directing the shape-
specific magnetite biomineralization by the magneto-
tactic bacteria.
Similar to the in situ reaction with NaOH, analysis of

iron oxide nucleation on protein-bearing EM grids
exposed to NaOH ex situ revealed preferential nuclea-
tion on the surface of proteinaceous micelles as well
(Figure 5b). HAADF-STEM images of the biomimetic
nuclei performed ex situ shows formation of disordered
particles with an average size of 1.2 nm. On the basis of
the analysis of electron diffraction patterns (Figure 5b),
the nascent nuclei could be best identified as
amorphous iron oxide, in good agreement with the
proposed formation of disordered ferrihydrite. In com-
parison, ex situ exposure of ferric chloride to NaOH
without the Mms6 resulted in a random formation of a
large number of nuclei (Figure 5c). Therefore, nuclea-
tion of iron oxide in the presence of Mms6 provides a
unique synthetic pathway for localized growth at the
micellar surface. In control in situ fluid cell experiments
without Mms6, nanoparticles were also found to nu-
cleate randomly (Figure 5d). As we observed no ag-
gregation during in situ nucleation in the presence of
proteinmicelles, theMms6 protein-mediated synthesis
might aid in preventing uncontrolled aggregation of
iron oxide nanoparticles, promoting uniform nuclea-
tion and affecting subsequent growth.
The schematic in Figure 6 summarizes the proposed

mechanism for Mms6 micelle-mediated iron oxide
nucleation and growth. Initially negatively charged
Mms6 micelles are present in solution with sizes
ranging from 25 to 150 nm (a). Ferric chloride is
added to the solution, and the negatively charged
micelle surface binds Fe(III) with minimal change to

Figure 5. HAADF-STEM images acquired after reaction of
ferric chloride with NaOH: (a) Mms6 micelles in the fluid cell
holder in situ; (b) Mms6 micelles on an EM grid ex situ. The
inset shows the corresponding selected area electron dif-
fractionpattern. Inset scale bar: 2 1/nm. (c) In the absenceof
Mms6 ex situ on an EM grid, and (d) in the absence of Mms6
in situ. Scale bar: 20 nm.
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their shape and size, with ferric iron species con-
centrating at the surface of the Mms6. Upon con-
trolled addition of NaOH, the change in pH leads to
formation of an amorphous iron-rich prenucleation
complex, resulting in surface-localized supersaturation
with respect to a disordered solid phase, likely ferrihy-
drite. It is worth noting, however, that detailed phase
analysis of the nascent nucleation phase is currently
impractical because of its amorphous nature. Binding
of Fe(III) by the Mms6 micelles minimizes uncontrolled
nucleation of iron oxide in the bulk solution. Upon
further increase of pH, the conditions become condu-
cive for nucleation of first iron oxide nanoparticles,
which are observed to form preferentially at the
micellar surface during the controlled reaction with
NaOH. Nucleation of iron oxide particulates occurs
relatively free from interparticle interactions, such as
aggregation, due to the templating action of the
protein micelle.

CONCLUSIONS

In summary, we have visualized iron binding of the
self-assembled bacterial recombinant acidic Mms6
protein by utilizing in situ liquid cell HAADF-STEM
imaging. The micelles are visible without heavy-metal

loading, indicating that in situ liquid cell HAADF-STEM
imaging is a viable technique for observing organic
micelles in liquid. Upon incubation in ferric chloride,
the Z-contrast of the micelles is further increased due
to iron binding. Slow addition of NaOH to the micelles
in situ leads to a contrast change at the surface of the
micelles, which we attribute to the formation of an
amorphous precursor phase. Further addition of NaOH
led to nucleation of iron oxide on the micelles. No
aggregation was observed during nucleation, and
nucleation was not observed to occur in the bulk
outside of the micelles. These results suggest that
protein self-assembly andmicellar surface iron binding
lower the energy barrier to subsequent nucleation,
thus facilitating this process. Our findings are applic-
able for optimization of bioinspired synthesis of mag-
netic nanoparticles. Our results provide, for the first
time, direct evidence of the localization of the bound
iron to the C-terminal region of the Mms6micelles and
improve the current understanding of the relationship
between the self-organization of recombinant acidic
proteins, surface-localized metal binding, and forma-
tion of a macromolecule�solution interface, critical for
protein-assisted nucleation of biomimetic magnetic
nanoparticles.

METHODS
Materials and Reagents. Ferritin (CalBiochem) and Mms6 used

in the study were dialyzed against an identical buffer (20 mM
TRIS, 100mMKCl, pH 7.45). All aqueous solutions were prepared
with deionized water passed through a Millipore Milli-Q Plus
water purification system (λ = 18.2MΩ) and spargedwith argon
for 15min. Ferric chloride hexahydrate (FeCl3 3 6H2O, >99%) was
purchased from Sigma-Aldrich and used without purification.
The molecular mass of Mms6 is 10.2 kDa, however in aqueous
solution forms Mms6 micelles.61,62,101 The amount of protein in
solution was maintained at 0.67 μM; Mms6 was incubated with
10 μM ferric chloride solution prepared from a deoxygenated
0.5 M stock solution.

Specimen Preparation. To minimize the thickness of the liquid
layer, the protein solutions were deposited with a Nano eNabler
molecular printer (BioForce Sciences) onto plasma-cleaned
electron-transparent silicon nitride window membranes for
in situ imaging and carbon-coated Au grids (QuantiFoil) for
ex situ imaging. The molecular printer permitted the deposition
of extremely small amounts of liquid (femptoliters).102,103

Silicon nitride window membranes were cleaned by rinsing
in toluene (3 � 3 mL), rinsed with chemically pure acetone
(3 � 3 mL), and washed with ethanol (3 � 5 mL), followed
by cleaning in ozone plasma cleaner (BioForce) for 45 min.

Immediately after the plasma cleaning, thewindowmembranes
were functionalized with (3-aminopropyl)triethoxysilane (APTES)
to facilitate the protein surface immobilization.67,104,105 To ensure
protein integrity during the specimen deposition, silicon nitride
windowswere loaded on a custom-made cold stage at 7 �C, while
maintaining the appropriate humidity levels.67

Dynamic Light Scattering. Dynamic light scattering (DLS) and
measurements of zeta potentials of the protein solutions
were carried out with a Zetasizer nanoparticle analyzer
(model: ZEN3690, Malvern Instrument Ltd., Southborough,
MA, USA). Prior to analysis, the buffer was filtered through a
0.2 μm nitrocellulose membrane and the protein specimens
were centrifuged for 20 min (1000 rpm, 23 �C). The particle size
distributions were acquired on numerous 10 s acquisitions with
three repeats. Data were processed using Dispersion Technol-
ogy Software 5.00 (Malvern Instrument Ltd.).

In Situ Fluid Cell Characterization. The iron-binding proteins
were examined with a continuous flow fluid cell TEM holder
platform (Hummingbird Scientific). After the membrane func-
tionalization and protein deposition, the windows were as-
sembled and sealed in the liquid cell holder platform,
resulting in the liquid specimen being sandwiched between
the electron-transparent silicon nitride window membranes.
Imaging and characterization of the specimens were carried out

Figure 6. Schematic of Mms6-mediated iron oxide nucleation of micelle-bound iron species.
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with an FEI Tecnai G2 F20 (S)TEM operating at an accelerating
voltage of 200 kV equipped with a Tridiem Gatan imaging filter,
high angle annular dark field, and energy-dispersive X-ray
spectroscopy detectors. In situ fluid delivery was carried out
witha syringepumpwith a variablepumping speed (2�5μL/min).
For comparison, specimens were also printed on conventional EM
grids and examined with a standard single-tilt holder. Electron
energy loss spectroscopywasused toprobe the localized chemical
composition of the liquid specimens. Elemental maps of oxygen
and iron were acquired in energy-filtered transmission electron
microscopy mode with a slit width 30 ( 1 eV. EELS spectra were
acquired with a slit width of 10 eV and dispersion of 0.5 eV/pixel.
Data analysis was performed with Digital Micrograph software
(GMS version 2.11.1404.0) and OriginPro 9.0 software. To ensure
reproducibility of results, micelle sizes were measured onmicelles
imaged in numerous micrographs obtained in the HAADF-STEM
mode.
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