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ETHYL ALCOHOL 
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Ethyl Alcohol – The Fuel of the Future 

Ethanol was extensively used as 

a motor fuel additive prior to the 

end of World War II (ca. 1933)  

1860 Nicholas Otto (b. 1832, d. 1891), 

a German inventor, used ethanol 

to fuel an internal combustion 

engine 

1896 Henry Ford’s (b. 1863, d. 1947) 

first automobile, the quadricycle, 

used corn-based ethanol as fuel 

1908 

 

Hart-Parr Company (Charles 

City, IA)  manufactured tractors 

that could use ethanol as a fuel  

 

Henry Ford’s (b. 1863, d. 1947) 

Model T used corn-based 

ethanol, gasoline, or a 

combinations as fuel  

 

 

1918 World War I caused increased 

need for fuel, including ethanol; 

demand for ethanol reached 

nearly 60 million gal/year 

1940 The U.S. Army constructed and 

operated a fuel ethanol plant in 

Omaha, NE 

4 



Ethyl Alcohol – The Fuel of the Future 

 

The first distillation column for the 

production of fuel ethanol  was 

invented by Dennis and Dave Vander 

Griend at South Dakota State 

University in 1978/1979  
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DDGS Historically 

• Many people have asked what the fuel ethanol industry 
is going to do about the growing piles of non-fermented 
leftovers 

 
– “Grain distillers have developed equipment and an attractive 

market for their recovered grains” (Boruff, 1947)  

– “Distillers are recovering, drying, and marketing their destarched 
grain stillage as distillers dried grains and dried solubles” (Boruff, 
1952)  

 

• This question has been around for quite some time, and 
it also appears that a viable solution had already been 
developed as far back as the 1940s  
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DDGS Historically 

• In the 1940s / 1950s 

 

–  17 lb (7.7 kg) of distillers feed was produced for 

every 1 bu (56 lb; 25.4 kg) of grain that was 

processed into ethanol  

• Similar to today 

 

– But over 700 gal (2650 L) of water was required to 

produce this feed (Boruff, 1947; Boruff, 1952; Boruff 

et al., 1943)  

• vs. < 4 gal. of water today 
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GRAIN ALCOHOL DISTILLERY (ca. 1947) 
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MODERN DRY 

GRIND PROCESS 
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U.S. ETHANOL GROWTH 
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Growth of U.S. fuel ethanol industry 
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Renewable
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U.S. ETHANOL GROWTH 

Since 1950s, generally 5 to 9 % of total U.S. 

energy supply has been renewable 12 



COPRODUCTS 
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ETHANOL COPRODUCTS 

Distillers Wet Grains 

Condensed Distillers Solubles Distillers Dried Grains with Solubles 
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COPRODUCT PRICES  
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COPRODUCT PRICES 
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COPRODUCT PRICES 
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COPRODUCT VALUES 
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COPRODUCT VALUES 
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COPRODUCT RESEARCH 

• As ethanol industry grows, supply of 

coproducts will grow  

 

• Balance = key to sustainability 

 
Livestock 

producers 
Ethanol 

manufacturers 
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ONGOING RESEARCH 
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ONGOING RESEARCH 

• Fuel 

– vs. 

• Food 

– vs. 

• Feed 

– vs. 

• Plastics 

– vs. 

• Chemicals 

– vs. 

• Other uses 

 

Goals: 

• Augment current uses 

• Develop new market opportunities 

• Develop/optimize processes and products 

• Improve sustainability 

 

Context: 

• Application of physics and chemistry to 

biological systems 

• Manufacturing with biological polymers:  

proteins, fibers, lipids 

22 



ONGOING RESEARCH 

• Material handling 

• Pelleting/densification 

• Aquaculture 

• Human foods 

• Plastic composites 
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MATERIAL HANDLING 
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Sieve Opening Size (mm) 

2.38 1.68  1.19  0.841 

    

Scale bar = 3.91 mm Scale bar = 2.50 mm 
 

Scale bar = 2.34 mm Scale bar = 0.987 mm 

0.595  0.420 0.297 0.210 

    

Scale bar = 0.689 mm Scale bar = 0.52 mm Scale bar = 0.36 mm Scale bar = 0.26 mm 

 1 
 2 
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z= a + b/x + cy 

 

x= AoR (°) 

y = HR (-) 

z= Moisture content (%, db) 

 

R2 = 0.71 

Error= 4.50 

 

Moisture < 9.9 (Good Flow) 

9.9 < Moisture < 17.5 (Fair Flow) 

17.5 > Moisture (Poor Flow) 
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PELLETING/DENSIFICATION 
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PELLETING/DENSIFICATION 

Mag. 

x 

DDGS Mfg 

A B 

10 

 

60 

 

200 

 

31 



0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

Percentage of DDGS Pelleted, p  (%)

T
o
ta

l 
S

la
ck

 C
o
st

 p
er

 C
ar

, S
C

ca
r 

($
/c

ar
)

0

1000

2000

3000

4000

5000

6000

P
el

le
ti

n
g
 C

o
st

 p
er

 C
ar

,  
P

ca
r 

($
/c

ar
)

$50/ton DDGS Sales Price, s

$100/ton DDGS Sales Price, s

$150/ton DDGS Sales Price, s

$200/ton DDGS Sales Price, s

15 $/ton pelleting cost, Cop

10 $/ton pelleting cost, Cop

5 $/ton pelleting cost, Cop

a

Resulting slack costs and costs of pelleting for each rail car due to differing DDGS sales prices and 

annualized pelleting cost 

a) breakeven occurs at points of intersection 

PELLETING/DENSIFICATION 

32 



0

500

1000

1500

40 50 60 70 80

Percentage of DDGS Pelleted, p  (%)

T
o

ta
l 

S
la

c
k

 C
o

st
 p

e
r 

C
a
r,

    
S

C
 c

a
r 

($
/c

a
r)

0

500

1000

1500

P
e
ll

e
ti

n
g

 C
o

st
 p

e
r 

C
a
r,

  
 P
c
a

r 
($

/c
a
r)

$50/ton DDGS Sales Price, s
$100/ton DDGS Sales Price, s
$150/ton DDGS Sales Price, s
$200/ton DDGS Sales Price, s
10 $/ton pelleting cost, Cop
15 $/ton pelleting cost, Cop
5 $/ton pelleting cost, Cop

b

PELLETING/DENSIFICATION 

Resulting slack costs and costs of pelleting for each rail car due to differing DDGS sales prices and 

annualized pelleting cost 

b) magnification of the intersections clearly shows the proportion of DDGS which needs to be pelleted to 

achieve breakeven 
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