Progress on Developing Value-Added Uses for Distillers Grains: Current and Evolving Opportunities

Kurt A. Rosentrater, Ph.D.

Department of Agricultural and Biosystems Engineering Iowa State University (515) 294-4019 karosent@iastate.edu

OVERVIEW

- 1. Ethyl alcohol
- 2. Coproducts
- 3. Ongoing research
- 4. New opportunities
- 5. Concluding thoughts

ETHYL ALCOHOL

Ethyl Alcohol – The Fuel of the Future

1860	Nicholas Otto (b. 1832, d. 1891), a German inventor, used ethanol to fuel an internal combustion engine
1896	Henry Ford's (b. 1863, d. 1947) first automobile, the quadricycle, used corn-based ethanol as fuel
1908	Hart-Parr Company (Charles City, IA) manufactured tractors that could use ethanol as a fuel
	Henry Ford's (b. 1863, d. 1947) Model T used corn-based ethanol, gasoline, or a combinations as fuel
1918	World War I caused increased need for fuel, including ethanol; demand for ethanol reached nearly 60 million gal/year
1940	The U.S. Army constructed and operated a fuel ethanol plant in Omaha, NE

Ethanol was extensively used as a motor fuel additive prior to the end of World War II (ca. 1933) ₄

Ethyl Alcohol – The Fuel of the Future

The first distillation column for the production of fuel ethanol was invented by Dennis and Dave Vander Griend at South Dakota State University in 1978/1979

DDGS Historically

- Many people have asked what the fuel ethanol industry is going to do about the growing piles of non-fermented leftovers
 - "Grain distillers have developed equipment and an attractive market for their recovered grains" (Boruff, 1947)
 - "Distillers are recovering, drying, and marketing their destarched grain stillage as distillers dried grains and dried solubles" (Boruff, 1952)
- This question has been around for quite some time, and it also appears that a viable solution had already been developed as far back as the 1940s

DDGS Historically

- In the 1940s / 1950s
 - 17 lb (7.7 kg) of distillers feed was produced for every 1 bu (56 lb; 25.4 kg) of grain that was processed into ethanol
 - Similar to today
 - But over 700 gal (2650 L) of water was required to produce this feed (Boruff, 1947; Boruff, 1952; Boruff et al., 1943)
 - vs. < 4 gal. of water today

GRAIN ALCOHOL DISTILLERY (ca. 1947)

8

MODERN DRY GRIND PROCESS

U.S. ETHANOL GROWTH

U.S. ETHANOL GROWTH

US EIA, *2011*¹¹

U.S. ETHANOL GROWTH

Since 1950s, generally 5 to 9 % of total U.S. US EIA, 2011 energy supply has been renewable

COPRODUCTS

ETHANOL COPRODUCTS

Distillers Dried Grains with Solubles

Condensed Distillers Solubles

Distillers Wet Grains

COPRODUCT PRICES

COPRODUCT PRICES

Date

COPRODUCT PRICES

Date

COPRODUCT VALUES

Date

COPRODUCT VALUES

COPRODUCT RESEARCH

 As ethanol industry grows, supply of coproducts will grow

• Balance = key to sustainability

Livestock producers

Ethanol manufacturers

ONGOING RESEARCH

ONGOING RESEARCH

- Fuel
 - VS.
- Food
 - VS.
- Feed
 - VS.
- Plastics
 - VS.
- Chemicals
 - VS.
- Other uses

Goals:

- Augment current uses
- Develop new market opportunities
- Develop/optimize processes and products
- Improve sustainability

Context:

- Application of physics and chemistry to biological systems
- Manufacturing with biological polymers: proteins, fibers, lipids

ONGOING RESEARCH

- Material handling
- Pelleting/densification
- Aquaculture
- Human foods
- Plastic composites

Scale bar = 0.689 mm

Scale bar = 0.52 mm

Scale bar = 0.36 mm

Scale bar = 0.26 mm

Particle Diameter (mm)

Good flow	Fair flow	Poor flow

z= a + b/x + cy x= AoR (°) y = HR (-) z= Moisture content (%, db) R² = 0.71 Error= 4.50

Moisture < 9.9 (Good Flow) 9.9 < Moisture < 17.5 (Fair Flow) 17.5 > Moisture (Poor Flow)

Good flow	Fair flow	Poor flow

Resulting slack costs and costs of pelleting for each rail car due to differing DDGS sales prices and annualized pelleting cost a) breakeven occurs at points of intersection

32

Resulting slack costs and costs of pelleting for each rail car due to differing DDGS sales prices and annualized pelleting cost

b) magnification of the intersections clearly shows the proportion of DDGS which needs to be pelleted to achieve breakeven

Percent of DDGS pelleted, p (%), required to achieve breakeven increases as both DDGS Sales Price, s (\$/ton), and Pelleting Cost, Cop (\$/ton), increase