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Prediction of the remaining life of high-voltage power transform-
ers is an important issue for energy companies because of the need
for planning maintenance and capital expenditures. Lifetime data for
such transformers are complicated because transformer lifetimes can
extend over many decades and transformer designs and manufactur-
ing practices have evolved. We were asked to develop statistically-
based predictions for the lifetimes of an energy company’s fleet of
high-voltage transmission and distribution transformers. The com-
pany’s data records begin in 1980, providing information on installa-
tion and failure dates of transformers. Although the dataset contains
many units that were installed before 1980, there is no information
about units that were installed and failed before 1980. Thus, the
data are left truncated and right censored. We use a parametric life-
time model to describe the lifetime distribution of individual trans-
formers. We develop a statistical procedure, based on age-adjusted
life distributions, for computing a prediction interval for remaining
life for individual transformers now in service. We then extend these
ideas to provide predictions and prediction intervals for the cumula-
tive number of failures, over a range of time, for the overall fleet of
transformers.

1. Introduction.

1.1. Background. Electrical transmission is an important part of the US energy
industry. There are approximately 150,000 high-voltage power transmission trans-
formers in service in the US. Unexpected failures of transformers can cause large
economic losses. Thus, prediction of remaining life of transformers is an important
issue for the owners of these assets. The prediction of the remaining life can be
based on historical lifetime information about the transformer population (or fleet).
However, because the lifetimes of some transformers extend over several decades,
transformer lifetime data are complicated.

This paper describes the analysis of a transformer lifetime data from an energy
company. Based on their currently available data, the company wants to know the
remaining life of the healthy individual transformers in their fleet and the rate at
which these transformers will fail over time. To protect sensitive and proprietary
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information, we will not use the name of the company. We also code the name of
the transformer manufacturers and modify the serial numbers of the transformers
in the data. We use a parametric lifetime model to describe the lifetime distribu-
tion of individual transformers. We present a statistical procedure for computing a
prediction interval for remaining life for individuals and for the cumulative number
failing in the future.

The energy company began careful archival record keeping in 1980. The dataset
provided to us contained complete information on all units that were installed after
1980 (i.e., the installation dates of all units and date of failure for those that failed).
We also have information on units that were installed before January 1, 1980 and
failed after January 1, 1980. We do not, however, have any information on units
installed and failed before 1980. Thus, transformers that were installed before 1980
must be viewed as transformers sampled from a truncated distribution. Units that
are still in service have lifetimes that are right censored. Hence, the data are left
truncated and right censored. For those units that are left truncated or right cen-
sored (or both), the truncation times and censoring times differ from unit-to-unit
because of the staggered entry of the units into service. There are standard statisti-
cal methods for handling such truncated data described, for example, in Meeker and
Escobar [13], and Meeker and Escobar [12, Chapter 11] but such methods appear
not to be available in commercial software.

1.2. A General Approach to Statistical Prediction of Transformer Life. Our ap-
proach to the prediction problem will be divided into the following steps.

1. Stratification: A simple lifetime model fit to a pooled mixture of disparate
populations can lead to incorrect conclusions. For example, engineering knowledge
suggests that there is an important difference between old transformers and new
transformers because old transformers were often over-engineered. Thus, we first
stratify all transformers into relatively homogeneous groups that have similar life-
time distributions. This grouping will be based on manufacturer and date of in-
stallation. The groupings will be determined from a combination of knowledge of
transformer failure mechanisms, manufacturing history, and data analysis. Each
group will have its own set of parameters. The parameters will be estimated from
the available lifetime data by using the maximum likelihood (ML) method. We may,
however, be able to reduce the number of parameters needed to be estimated by,
for example, assuming a common shape parameter across some of the groups (from
physics of failure, we know that similar failure modes can often be expected to be
described by distributions with similar shape parameters).

2. Lifetime Distribution: Estimate the lifetime probability distribution for each
group of transformers from the available lifetime data.

3. Remaining Life Distribution: Identify all transformers that are at risk to fail
(the “risk set”). Each of these transformers belongs to one of the above-mentioned
groups of transformers. For each transformer in the risk set, compute an estimate of
the distribution of remaining life (this is the conditional distribution of remaining
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life, given the age of the individual transformer).
4. Expected Number of Transformers Failing: Having the distribution of

remaining life on each transformer that is at risk allows the computation of the
estimated expected number of transformers failing in each future interval of time
(e.g., future months). We use this estimated expected number failing as a prediction
of population behavior.

5. Prediction Intervals: It is also important to compute prediction intervals
to account for the statistical uncertainty in the predictions (statistical uncertainty
accounts for the uncertainty due to the limited sample size and the variability in
future failures, but assumes that the statistical model describing transformer life is
correct).

6. Sensitivity Analysis: To compute our predictions we needed to make as-
sumptions about the stratification and lifetime distributions. There is not enough
information in the data or from the engineers at the company to be certain that
these assumptions are correct. Thus it is important to perturb the assumptions to
assess their effect on answers.

1.3. Overview. The rest of the paper is organized as follows. Section 2 describes
our exploratory analysis of the transformer lifetime data and several potentially
important explanatory variables. Section 3 describes the model and methods for es-
timating the transformer lifetime distributions. Section 4 gives details on stratifying
the data into relatively homogeneous groups and our regression analyses. Section 5
shows how estimates of the transformer lifetime distributions lead to an age-adjusted
distributions of remaining life for individual transformers and how these distribu-
tions can be used as a basis for computing a prediction interval for remaining life for
individual transformers. Section 6 provides predictions for the cumulative number
of failures for the overall population of transformers now in service, as a function
of time. Section 7 presents sensitivity analysis on the prediction results. Section 8
concludes with some discussion and describes areas for future research.

2. The Transformer Lifetime Data. The dataset used in our study contains
710 observations with 62 failures. Table 1 gives a summary of the number of failed,
censored, and truncated units for the different manufacturers. Figure 1 is an event
plot of a subset of the data.

2.1. Failure Mechanism. Transformers, for the most part, fail when voltage stress
exceeds the dielectric strength of the insulation. The insulation in a transformer is
made of a special kind of paper. Over time, the paper will chemically degrade, leading
to a loss in dielectric strength, and eventual failure. The rate of degradation depends
primarily on operating temperature. Thus, all other things being equal, transformers
that tend to run at higher load, with correspondingly higher temperatures, would
be expected to fail sooner than those running at lower loads. Events such as short
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Table 1

Summary of the number of failed, censored, and truncated units for the different manufacturers.

Manufacturer Failed Censored Truncated Total

MA 9 37 0 46
MB 6 44 49 50
MC 23 127 122 150
MD 6 22 27 28
ME 9 150 137 159

Other 9 268 106 277
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Fig 1. Service-time event plot of a subset of the transformer lifetime data. The numbers in the left
panel of the plot are counts for each line.
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circuits on the transmission grid can cause momentary thermal spikes that can be
especially damaging to the insulation.

2.2. Early Failures. Seven units failed within the first 5 years of installation.
The lifetimes for these units are short compared with the vast majority of units that
failed or will fail with age greater than 10 years. These early failures are believed to
have been due to a defect related failure mode that is different from all of the other
failures. The inclusion of these early failures in the analysis leads to an indication of
an approximately constant hazard function for transformer life, which is inconsistent
with the known predominant aging failure mode. Thus, we considered these early
failures to be right censored at the time of failure. This is justified because primary
goal of our analysis is to model the failure mode for the future failures for the
remaining units and it is reasonable to assume that there are no more defective
units in the population for which predictions are to be generated.

2.3. Explanatory Variables. Engineering knowledge suggests that the insulation
type and cooling classes may have an effect on the lifetime of transformers. Thus,
the effects that these two variables have on lifetime are studied in this paper.

Insulation. The transformers are rated at either 55 or 65 degree rise. This vari-
able defines the average temperature rise of the winding, above ambient, at which
the transformer can operate in continuous service. For example, a 55 degree-rise
rated transformer operated at a winding temperature of 95 degrees should, if the
engineering model describing this phenomena is adequate, have the same life as a 65
degree-rise rated transformer operated at a winding temperature of 105 degrees. The
two categories of the insulation class are denoted by “d55” and “d65”, respectively.

Cooling. A transformer’s cooling system consists of internal and external sub-
systems. The internal subsystem uses either natural or forced flow of oil. Forced flow
is more efficient. The external cooling system uses either the air or water cooling.
Water cooling is more efficient. The external cooling media circulation is again ei-
ther natural or forced. Forced circulation is usually used on larger units and is more
efficient but is activated only when temperature is above a certain threshold. The
cooling methods for the transformers in the data are categorized into four groups:
natural internal oil and natural external air/water (NINE), natural internal oil and
forced external air/water (NIFE), forced internal oil and forced external air/water
(FIFE), and unknown.

3. Statistical Lifetime Model for Left Truncated and Right Censored

Data.

3.1. The Lifetime Model. We denote the lifetime of a transformer by T and
model this time with a log-location-scale distribution. The most commonly used
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distributions for lifetime, the Weibull and lognormal, are members of this family.
The cumulative distribution function (cdf) of a log-location-scale distributions can
be expressed as

F (t;µ, σ) = Φ

[
log(t) − µ

σ

]

where Φ is the standard cdf for the location-scale family of distributions (location
0 and scale 1), µ is the location parameter, and σ is the scale parameter. The
corresponding probability density function (pdf) is the first derivative of the cdf
with respect to time and is given by

f(t;µ, σ) =
1

σt
φ

[
log(t) − µ

σ

]

where φ is the standard pdf for the location-scale family of distributions. The haz-
ard function is h(t;µ, σ) = f(t;µ, σ)/[1−F (t;µ, σ)]. For the lognormal distribution,
replace Φ and φ above with Φnor and φnor, the standard normal cdf and pdf, respec-
tively. The cdf and pdf of the Weibull random variable T are

F (t;µ, σ) = Φsev

[
log(t) − µ

σ

]
and f(t;µ, σ) =

1

σt
φsev

[
log(t) − µ

σ

]

where Φsev(z) = 1 − exp[− exp(z)] and φsev(z) = exp[z − exp(z)] are the standard
(i.e., µ = 0, σ = 1) smallest extreme value cdf and pdf, respectively. The cdf and
pdf of the Weibull random variable T can also be expressed as

F (t; η, β) = 1 − exp

[
−

(
t

η

)β
]

and f(t; η, β) =

(
β

η

) (
t

η

)β−1

exp

[
−

(
t

η

)β
]

where η = exp(µ) is the scale parameter and β = 1/σ is the shape parameter.
If the Weibull shape parameter β > 1, the Weibull hazard function is increasing
(corresponding to wearout); if β = 1, the hazard function is a constant; and if
β < 1, the hazard function is decreasing. The location-scale parametrization is,
however, more convenient for regression analysis.

3.2. Censoring and Truncation. Right-censored lifetime data result when un-
failed units are still in service (unfailed) when data are analyzed. A transformer still
in service in March 2008 (the “data-freeze” point) is considered as a censored unit
in this study.

Truncation, which is similar to but different from censoring, arises when failure
times are observed only when they take on values in a particular range. When the
existence of the unseen “observation” is not known for observations that fall outside
the particular range, the data that are observed are said to be truncated. Because we
have no information about transformers that were installed and failed before 1980,
the units that were installed before 1980 and failed after 1980 should be modeled as
having been sampled from a left-truncated distribution. Ignoring truncation causes
bias in estimation.



PREDICTION INTERVALS 7

3.3. Maximum Likelihood Estimation. Let ti denote the lifetime or survival time
of transformer i, giving the number of years of service between the time the trans-
former was installed until it failed (for a failed transformer) or until the data-freeze
point (for a surviving transformer). Here, i = 1, · · · , n, where n is the number of
transformers in the dataset. Let τL

i be the left truncation time, giving the time at
which the life distribution of transformer i was truncated on the left. More precisely,
τL
i is the number of years between the transformer’s manufacturing date and 1980 for

transformers installed before 1980. Let νi be the truncation indicator. In particular,
νi = 0 if transformer i is truncated (installed before 1980) and νi = 1 if transformer
i is not truncated (installed after 1980). Let ci be the censoring time (time that a
transformer has survived) and let δi be the censoring indicator. In particular, δi = 1
if transformer i failed and δi = 0 if it was censored (not yet failed).

The likelihood function for the transformer lifetime data is

L(θ|DATA) =
n∏

i=1

f(ti;θ)δiνi ×
[

f(ti;θ)

1 − F (τL
i ;θ)

]δi(1−νi)

(1)

× [1 − F (ci;θ)](1−δi)νi ×
[

1 − F (ci;θ)

1 − F (τL
i ;θ)

](1−δi)(1−νi)

.

Here θ is a vector that gives the location parameter (µi) and scale parameters (σi)
for each transformer. The exact structure of θ depends on the context of the model.
For example, in Section 4.1, we stratify the data into J groups with nj transformers
in group j and fit a single distribution to each group. For this model we assume that
observations from group j have the same location (µj) and scale parameters (σj).
Thus,

θ = (µ1, · · · , µ1︸ ︷︷ ︸
Group 1

, · · · , µJ , · · · , µJ︸ ︷︷ ︸
Group J

, σ1, · · · , σ1︸ ︷︷ ︸
Group 1

, · · · , σJ , · · · , σJ︸ ︷︷ ︸
Group J

)′.

For notational simplicity, we also use F (ti;θ) = F (ti;µi, σi) and f(ti;θ) = f(ti;µi, σi).
In our regression models, µi may depend on the values of explanatory variables.

The ML estimate θ̂ is obtained by finding the values of the parameters that
maximize the likelihood function in (1). We used SPLIDA [14] to do the analyses in
this paper.

4. Stratification and Regression Analysis.

4.1. Stratification. As described in Section 1.2, we need to stratify the data into
relatively homogeneous groups. Manufacturer and installation year were used as
preliminary stratification variables. The transformers manufactured by the same
manufacturer were divided into two groups (New and Old) based on age (instal-
lation year). We chose the cutting year for this partitioning to be 1987. In Sec-
tion 7.1, we give the results of a sensitivity analysis that investigated the effects
of changing the cutting year. There are only one or two failures in some groups
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Table 2

Weibull ML estimates of parameters and standard errors for each group.

Group η̂ ŝe
η̂

β̂ ŝe
β̂

Failures Total

MA New 18.39 1.607 5.83 1.796 6 46
MC.ME.Other New 32.75 8.920 4.09 1.594 4 167

MB Old 150.27 97.953 1.54 1.057 6 50
MC Old 157.81 61.187 1.10 0.381 20 133

MD 136.81 109.638 0.51 0.499 6 28
Other Old 93.49 36.751 3.26 1.288 5 137

ME Old 124.85 44.351 2.66 0.952 8 149

(i.e., MC New, ME New, and Other New). These groups are combined together as
MC.ME.Other New. Note that all MA units were installed after 1990 and all MB
units were installed before 1987.

Figure 2 is a multiple Weibull probability plot showing the nonparametric and
the Weibull ML estimates of the cdf for all of the individual groups. The nonpara-
metric estimates are based on the method for truncated/censored data described
in Turnbull [17]. The points in Figure 2 were plotted at each known lifetime and
at the midpoint of the step of the Turnbull cdf estimates, as suggested in Meeker
and Escobar [12, Section 6.4.2] and Lawless [10, Section 3.3]. Table 2 gives the ML
estimates and standard errors of the Weibull distribution parameters for each group.

Note that the nonparametric and the parametric estimates in Figure 2 do not
agree well for the Old groups. This is due to the truncation in these groups. When
sampling from a truncated distribution, the ML estimator based on the likelihood
in (1) is consistent. The nonparametric estimator used in the probability plots,
however, is not consistent if all observations are truncated. Because almost all of the
observations are truncated in the Old groups, we would not expect the parametric
and nonparametric estimates to agree well, even in moderately large finite samples.

Based on the ML estimates for the individual groups, the dataset was partitioned
into two large groups: the Old group with slowly increasing hazard rate (β̂ ≈ 2), and
the New group with a more rapidly increasing hazard rate (β̂ ≈ 5). The Old group
consists of MB Old, MC Old, Other Old and ME Old, and the New group consists
of MA New and MC.ME.Other New. When we do regression analyses in Section 4.4,
we assume that there is a common shape parameter for all of the transformers in
the Old group and a different common shape parameter for all of the transformers
in the New group. This assumption is supported by the lifetime data as can be seen
in Figure 2 and by doing likelihood ratio tests (details not given here).

4.2. Distribution Choice. We also fit individual lognormal distributions and made
a lognormal probability plot (not shown here) that is similar to Figure 2. Gener-
ally, the Weibull distributions fit somewhat better, both visually in the probability
plot and in terms of the loglikelihood values at the ML estimates. There is a physi-
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Fig 2. Weibull probability plot with the ML estimates of the cdfs for each of the individual groups.

cal/probabilistic explanation for this. In the transformer, there are many potential
locations where the voltage stress could exceed the dielectric stress. The transformer
will fail the first time such an event occurs. That is, a transformer’s lifetime is con-
trolled by the distribution of a minimum. The Weibull distribution is one of the
limiting distribution of minima.

4.3. A Problem with the MD Group Data. Figure 3 is a calendar-time event plot
for the MD group of transformers. For the MD group, we know of 27 transform-
ers that were installed before 1975 and one that was installed in 1990. Of the 27
MD Old transformers, five failed shortly after 1980 and one failed in 2001. The other
21 MD Old transformers are still in service. Recall that if there were any failures
before 1980, we have no record of them. Attempting to fit a Weibull distribution
to the MD Old truncated data gives nonsensical estimates of the Weibull η and β
parameters; both ML estimates are close to 0. The relative likelihood contours are
shown in Figure 4. This problem in estimation is caused by the enormous spread
in the lifetimes (the 5 near 1980, one in 2001, and the remaining 21 that have
not failed yet) and the uncertainty due to the truncation of units that failed before
1980. It is believed that the early failures were probably due to an underlying failure
mechanism different from the aging failure mechanism that is expected to cause the
surviving units to fail eventually or, at least the lifetime distributions are different.
Thus the simple Weibull distribution would not provide an adequate description of
the failure distribution and estimation from truncated data can be highly sensitive
to the shape of the assumed distribution.

Adding in the unit installed in 1990 (and that is still in service) does not help
much. In this case, as shown in Table 2, the estimate of the Weibull shape parameter
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Fig 3. Calendar-time event plot for the MD group.
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Table 3

Model comparison for the Old Group based on the Weibull distribution.

Model loglikelihood

1 µ(x) = Cooling -103.663
2 µ(x) = Manufacturer + Cooling -100.268
3 µ(x) = Manufacturer+Cooling+Insulation -100.198

for the MD group is β̂ = 0.51, still implying a strongly decreasing hazard function.
Such a decreasing hazard is not consistent with the known aging failure mode of the
transformer insulation.

As a remedy, in the estimation and modeling stage, we exclude the MD units.
When we make the predictions, however, we include the MD Old units that are
currently in service in the Old group and the single MD New unit in the New
group.

4.4. Regression Analysis. In this section, we extend the single distribution mod-
els fit in Section 4.1 to regression models. For details on parametric regression anal-
ysis for lifetime data, see, for example, Lawless [10] or Meeker and Escobar [12,
Chapter 17]. In our models, the location parameter µ is treated as a function of
explanatory variable x, denoted by µ(x) = g(x,β) where x = (x1, x2, · · · , xp)

′ and
β = (β0, β1, · · · , βp)

′. In the case of linear regression g(x,β) = x′β.
We fit separate regression models for the strata identified in Section 4.1 in the next

two sections. The explanatory variables considered in the regression modeling were
Manufacturer, Insulation, and Cooling, all of which are categorical variables.

The Old group. Table 3 compares the loglikelihood values for the Weibull regres-
sion models fit to the Old group. Likelihood ratio tests show that Manufacturer and
Insulation are not statistically important (i.e., the values of the loglikelihood for
Models 2 and 3 are only slightly larger then that for Model 1). Hence, the final
model for the Old group is µ(x)=Cooling. Table 4 gives ML estimates and confi-
dence intervals for parameters for the final model for the Old group. Figure 5a gives
the Weibull probability plot showing the Weibull regression estimate of the cdfs for
the different cooling categories. The slopes of the fitted lines are the same because
of the constant shape parameter assumption in our model.

The New group. Table 5 compares the loglikelihood values for the Weibull regres-
sion models fit to the New group. Insulation is not in the model because it only has
one level in the New group. Likelihood ratio tests show that Manufacturer is statis-
tically important. Hence, the final model for the New group is µ(x) =Manufacturer.
Table 6 gives ML estimates and confidence intervals for the final regression model
parameters for the New group. Figure 5b is a Weibull probability plot showing the
ML estimates of the cdfs for the two manufacturers in this group.
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Table 4

Weibull ML estimates and confidence intervals for the Old group.

Parameter MLE Std.Err. 95% Lower 95% Upper

η̂(NIFE) 127.22 25.112 86.401 187.317
η̂(FIFE) 92.66 17.305 64.251 133.607
η̂(NINE) 346.47 186.249 120.808 993.665

η̂(Unknown) 32.12 4.750 24.042 42.927

β̂ 2.22 0.357 1.624 3.045
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Fig 5. Weibull probability plots showing the ML estimates of the cdfs for the Old group and the
New group regression models.

Table 5

Model comparison for the New Group based on the Weibull distribution.

Model loglikelihood

4 µ(x) = µ -25.268
5 µ(x) = Manufacturer -20.138
6 µ(x) = Manufacturer + Cooling -18.089

Table 6

Weibull ML estimates and confidence intervals for the New Group.

Parameter MLE Std.Err. 95% Lower 95% Upper

η̂(MA New) 18.94 1.850 15.641 22.936
η̂(MC.ME.Other New) 29.29 4.548 21.602 39.706

β̂ 5.01 1.229 3.098 8.104
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5. Predictions for the Remaining Life of Individual Transformers. In
this section, we develop a prediction interval procedure to capture, with 100(1 −
α)% confidence, the future failure time of an individual transformer, conditional on

surviving until its present age, ti. The prediction interval is denoted by
[

T
˜ i , T̃i

]
.

The cdf for the lifetime of a transformer, conditional on surviving until time ti, is

(2) F (t|ti;θ) = Pr(T ≤ t|T > ti) =
F (t;θ) − F (ti;θ)

1 − F (ti;θ)
, t ≥ ti.

This conditional cdf provides the basis of our predictions and prediction intervals.

5.1. The Naive Prediction Interval Procedure. A simple naive prediction interval
procedure (also known as the “plug-in” method) provides an approximate interval
that we use as a start toward obtaining a more refined interval. The procedure simply
takes the ML estimates of the parameters and substitutes them into the estimated
conditional probability distributions in (2) (one distribution for each transformer).
The estimated probability distributions can then be used as a basis for comput-
ing predictions and prediction intervals. Let 100(1 − α)% be the nominal coverage
probability. The coverage probability is defined as the probability that the predic-
tion interval procedure will produce an interval that captures what it is intended to
capture.

The naive 100(1 − α)% prediction interval for a transformer having age ti is[
T
˜ i , T̃i

]
where T

˜ i and T̃i satisfy F (T
˜ i|ti, θ̂) = αl , F (T̃i|ti, θ̂) = 1 − αu. Here αl

and αu are the lower and upper tail probabilities, respectively and αl + αu = α. We
choose αl = αu = α/2. This simple procedure ignores the uncertainty in θ̂. Thus,
the coverage probability that an interval obtained using this procedure will capture
the future failure time of the transformer in question is generally smaller than the
nominal value. The procedure needs to be calibrated so that it will have a coverage
probability that is closer to the nominal coverage probability.

5.2. Calibration of the Naive Prediction Interval. Calibration of the naive predic-
tion interval procedure to account for statistical uncertainty can be done through
asymptotic expansions (Komaki [9], Barndorff-Nielsen and Cox [2]) or by using
Monte Carlo simulation/bootstrap re-sampling methods (Beran [3] and Escobar
and Meeker [6]). Lawless and Fredette [11] show how to use a predictive distribution
approach that provides intervals that are the same as the calibrated naive prediction
interval.

In practice, simulation is much easier and is more commonly used to calibrate
naive prediction interval procedures. In either case, the basic idea is to find an input
value for the coverage probability (usually larger than the nominal value) that gives
a procedure that has the desired nominal coverage probability. In general the actual
coverage probability of a procedure employing calibration is still only approximately
equal to the nominal confidence level. The calibrated procedure, if it is not exact
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(i.e. actual coverage probability is equal to the nominal), can be expected to provide
a much better approximation than the naive procedure.

5.3. The Random Weighted Bootstrap. Discussion of traditional bootstrap re-
sampling methods for lifetime/survival data can be found, for example, in Davison
and Hinkley [4]. However, due to the complicated data structure (left truncated and
right censored) and sparsity of failures over the combinations of different levels of
explanatory variables, the traditional bootstrap method is not easy to implement
and may not perform well. The random weighted likelihood bootstrap procedure
introduced by Newton and Raftery [16], provides a versatile, effective, and easy-to-
use method to generate bootstrap samples for such more complicated problems. The
procedure uses the following steps:

1. Simulate random values Zi, i = 1, 2, · · · , n that are i.i.d. from a distribution
having the property E(Zi) = [Var(Zi)]

1/2.
2. The random weighted likelihood is L∗(θ|DATA) =

∏n
i=1 [Li(θ|DATA)]Zi

where Li(θ|DATA) is the likelihood contribution from an individual obser-
vation.

3. Obtain the ML estimate θ̂
∗

by maximizing L∗(θ|DATA).

4. Repeat step 1-3 B times, to get B bootstrap samples θ̂
∗

b , b = 1, 2, · · · , B.

Barbe and Bertail [1, Chapter 2] discuss how to choose the random weights by using
an Edgeworth expansion. Jin, Ying, and Wei [8] showed that the distribution of√

n(θ̂
∗− θ̂) (given the original data) can be used to approximate the distribution of√

n(θ̂−θ), if one uses i.i.d. positive random weights generated from continuous dis-
tribution with E(Zi) = [Var(Zi)]

1/2. They pointed out that the resampling method is
rather robust for different choices of the distribution of Zi, under this condition. We
used Zi ∼ Gamma(1, 1) in this paper. We also tried alternative distributions, such
as, Gamma(1, 0.5), Gamma(1, 2), and Beta(

√
2− 1, 1). The resulting intervals were

insensitive to the distribution used, showing similar robustness for our particular
application.

5.4. Calibrated Prediction Intervals. For an individual transformer with age ti,
the calibrated prediction interval of remaining life can be obtained by using the
following procedure.

1. Simulate T ∗

ib, b = 1, · · · , B from distribution F (t|ti, θ̂).

2. Compute U∗

ib = F (T ∗

ib|ti, θ̂
∗

b), b = 1, · · · , B.
3. Let ul

i, u
u
i be, respectively, the lower and upper α/2 sample quantiles of U∗

ib, b =
1, · · · , B. The 100(1 − α)% calibrated prediction interval can be obtained by
solving for T

˜ i and T̃i in F (T
˜ i|tiθ̂) = ul

i and F (T̃i|ti, θ̂) = uu
i , respectively.

5.5. Prediction Results. In this section, we present prediction intervals for the
remaining life for individual transformers based on using the Weibull distribution
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and a stratification cutting at year 1987. Figure 6 shows 90% prediction intervals
for remaining life for a subset of individual transformers that are at risk. The Years
axis is logarithmic.

There are some interesting patterns in these results. In particular, for a group of
relatively young transformers in the same group (young relative to expected life)
and with the same values of the explanatory variable(s), the prediction intervals are
similar (but not exactly the same because of the conditioning on actual age). For a
unit in such a group that has been in service long enough to have its age fall within
the prediction intervals for the younger units, however, the lower endpoints of the
interval is very close to the current age of the unit. Intervals for such units can be
rather short, indicating that, according to our model, they are at high risk to failure.
See, for example, unit MA New200 in Figure 6. Interestingly, as we were finishing
this work, we learned of a recent failure of a transformer that had such a prediction
interval.

Units, like MA New200, that are predicted to be at especially high risk to failure
in the near term are sometimes outfitted with special equipment to continuously
(hourly) monitor, communicate, and archive transformer condition measurements
that are useful for detecting faults that may lead to failure. These measurements are
taken from the transformer insulating oil and most commonly indicate the presence
of dissolved gases but also may indicate other attributes including moisture con-
tent and loss of dielectric strength. Dissolved gas analysis (DGA) is automatically-
performed by these monitors and is important in the transformer maintenance pro-
cess because it can be used to predict anomalous and dangerous conditions such as
winding overheating, partial discharge, or arcing in the transformer. Without such
a monitor, DGA is performed by sending an oil sample to a laboratory. These lab
tests are routinely performed on a 6-12 month basis for healthy transformers but
more frequently if a test indicates a potential problem. If an imminent failure can be
detected early enough, the transformer can be operated under reduced loading until
replaced, to avoid costly catastrophic failures that sometimes cause explosions. Lab
testing, although generally useful, exposes the transformer to possible rapidly de-
teriorating failure conditions between tests. Continuous monitoring eliminates this
exposure but incurs the investment price of the monitoring equipment. Although
this price is typically less than 1% of the transformer cost, the large number of
transformers in a company’s fleet prohibits monitoring of all of them.

6. Prediction for the Cumulative Number of Failures for the Popula-

tion. This section describes a method for predicting the cumulative number of
future failures in the population, as a function of time. For the population of trans-
formers, we will predict the cumulative number of failures by the end of each month
for the next 10 years. We also compute corresponding calibrated pointwise predic-
tion intervals, quantifying the statistical uncertainty and failure process variability.
Such predictions and intervals are needed for planning of capital expenditures.
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Years

1 2 5 10 20 50 100 200

ME_Old225
ME_Old555
ME_Old480
ME_Old696
ME_Old452
ME_Old635

ME_New380
Other_Old657
Other_Old125
Other_Old217
Other_Old596

Other_New612
Other_New174
Other_New548
Other_New236
Other_New361
Other_New387

MC_Old563
MC_Old422
MC_Old651
MC_Old115
MC_Old502
MC_Old554

MC_New364
MC_New568
MC_New644
MB_Old602
MB_Old170
MB_Old591
MB_Old527

MA_New200
MA_New243
MA_New535
MA_New182
MA_New597
MA_New521
MA_New183

Serial No. current age 90% prediction interval

Fig 6. Weibull distribution 90% prediction intervals for remaining life for a subset of individual
at-risk transformers
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6.1. Population Prediction Model. From (2), for an individual transformer that is
surviving and has age ti at the data-freeze time, the conditional probability of failure
between age ti and a future age twi (the amount of time in service for transformer
i at a specified date in the future) is ρi = F (twi |ti,θ). The ML estimator of ρi is
ρ̂i = F (twi |ti, θ̂). Note that the times ti and twi differ among the transformers because
of different dates of entry into the transformer population.

The total number of future failures between the times when the individual trans-
formers have ages ti and twi is K =

∑n∗

i=1 Ii, where Ii ∼ Bernoulli(ρi), i = 1, 2, · · · , n∗.
Here n∗ is the number of transformers that are at risk. Thus, K is a sum of inde-
pendent non-identical Bernoulli random variables. In general, there is not a simple
closed-form expression for FK(k |θ), the cdf of K. Monte Carlo simulation can be
used to evaluate the cdf of K, to any degree of accuracy (e.g. using the algorithm in
Escobar and Meeker [6, A.3]). However, the Monte Carlo approach is computation-
ally intensive when the number of non-identically distributed components is large.
Poisson approximation and a normal approximation based on the ordinary central
limit theorem (CLT) have been suggested in the past. Here, we use an approach
suggested by Volkova [18] which is based on a refined CLT that makes a correction
based on the skewness in the distribution of K. In particular, the estimated cdf of
K can be approximated by

FK(k | θ̂) = GK

[
k + .5 − µK(θ̂)

σK(θ̂)
, θ̂

]
, k = 0, 1, · · · , n∗

where GK(x, θ̂) = Φnor(x) + γK(θ̂)(1 − x2)φnor(x)/6, and

µK(θ̂) = Ê(K) =
n∗∑

i=1

ρ̂i, σK(θ̂) =
[
V̂ar(K)

]1/2
=

[
n∗∑

i=1

ρ̂i(1 − ρ̂i)

]1/2

,

γK(θ̂) =
[
V̂ar(K)

]
−3/2

Ê
[
K − µK(θ̂)

]3
= σ−3

K (θ̂)
n∗∑

i=1

ρ̂i(1 − ρ̂i)(1 − 2ρ̂i)

are estimates of the mean, standard deviation, and skewness of the distribution of
K, respectively.

6.2. Calibrated Prediction Intervals. The calibrated prediction interval
[

K
˜

, K̃
]

for the cumulative number of failures at a specified date in the future can be obtained
by using the following procedure.

1. Simulate I∗i from Bernoulli(ρi), i = 1, 2, · · · , n∗ and compute K∗ =
∑n∗

i=1 I∗i .
2. Repeat step 1 B times to get K∗

b , b = 1, 2, · · · , B.

3. Compute U∗

Kb = FK(K∗

b |θ̂
∗

b), b = 1, 2, · · · , B.
4. Let ul

K , uu
K be, respectively, the lower and upper α/2 sample quantiles of

U∗

Kb, b = 1, · · · , B. The 100(1−α)% calibrated prediction interval can obtained

by solving for K
˜

and K̃ in FK(K
˜
|θ̂) = ul

K and FK(K̃|θ̂) = uu
K , respectively.
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(a) Old group (b) New group

Fig 7. Weibull distribution predictions and prediction intervals for the cumulative number of future
failures. Number of units in risk set: Old 449, New 199.

6.3. Prediction Results. In this section, we present the results for predicting the
cumulative number of failures for the population of transformers that are at risk,
based on the Weibull distribution regression model with the stratification cutting
at year 1987. Figure 7 shows the predictions for the cumulative number of failures
and 90% and 95% pointwise prediction intervals separately for the Old and the New
groups. Note the difference in the size of the risk sets for these two groups. Figure 8
gives similar predictions for the Old and New groups combined. Figure 9 shows
predictions and 90% and 95% pointwise prediction intervals for manufacturers MA
(New group) and MB (Old group).

7. Sensitivity Analysis and Check for Consistency.

7.1. Sensitivity Analysis. The prediction interval procedures account only for
statistical uncertainty. Model uncertainty (e.g., the data might be from either the
Weibull or lognormal or some other distribution) is also an important source of
the uncertainty for the prediction. In some situations, the model uncertainty can
dominate statistical uncertainty, especially when the sample size is large. Thus,
when data or engineering knowledge do not unambiguously define the model, it
is important to do a sensitivity analyses for the predictions by perturbing model
assumptions.

Distribution assumption. We did sensitivity analyses to assess the effect that
the assumed underlying distribution has on predictions. Figure 10 compares the
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Fig 8. Weibull distribution predictions and prediction intervals for the cumulative number of future
failures with the Old and New groups combined. 648 units in risk set.
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Fig 9. Weibull distribution predictions and prediction intervals for the cumulative number of future
failures for manufacturers MA and MB. Number of units in the risk set: MA 37, MB 44.
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Fig 10. Sensitivity analysis for the effect that transformer lifetime distribution assumption has on
the predicted cumulative number of future failures.

predicted cumulative number of future failures and the corresponding 90% predic-
tion intervals for the lognormal and Weibull distributions. For the Old group, the
predictions are not highly sensitive to the distribution assumption. Predictions for
the New group are, however, somewhat sensitive to the distribution assumption.
This difference is partly due to a larger amount of extrapolation for the New group
than the Old group over next 10 years. As is generally the case with extrapolation
in time, the lognormal predictions are more optimistic that the Weibull predictions.

Cutting year. We also did sensitivity analyses to assess the effect that using dif-
ferent Old/New cut points has on predictions. The results are shown in Figure 11.
Changes to the cutting year have little effect in the Old group. The results in the New
group are more sensitive to this choice. Note that in Figure 11b, the prediction inter-
vals for cutting year 1990 get wider than other cutting years when time is increasing.
This is caused by the fact that there is only one failure in the MC.ME.Other New
group if cutting year 1990 is used, and thus the random weighted bootstrap samples
have more variabilities than using other cutting year. As mentioned in Section 4.1,
we use 1987 as the cut year; this is on the pessimistic side of the sensitivity analysis
results for the New group.

7.2. Check for Consistency. As a part of the model diagnostics, a check for the
consistency of the model was done to assess the prediction precision of the model.
Generally, we would like to do this by holding out more recent failures when building
the prediction model and then using the model to predict “future” failures that have
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Fig 11. Sensitivity analysis for the effect that cutting year for the MC transformers has on the
mean predicted number of failures.

already occurred. In our transformer application, however, there is not enough data
to do this. Instead we used model parameter estimates based on all of the data for
this check. To do the check, we moved the data-freeze date back to 1994 and those
units entering after 1994 are added into the risk set when they enter service. Then,
we used our model to predict the fraction of units failing from 1994 to 2007. Figure 12
gives a plot of the predicted fraction failing and the corresponding nonparametric
estimates based on the Turnbull nonparametric estimator. Figure 12 also shows 90%
pointwise prediction intervals. The zigzag in the prediction intervals is caused by
the new units entering into the risk set over the time period. The prediction results
agree reasonably well with the nonparametric estimate. The slight disagreement in
the New group (well within the prediction bounds) is due to a small difference in
the behavior of the units that failed before and after the assumed 1994 data-freeze
point for the check.

8. Discussion and Areas for Future Research. In this paper, we developed
a generic statistical procedure for the reliability prediction problem. This prediction
interval procedure has broader applications, such as in field reliability prediction for
warranty data (i.e., Ion et al. [7] where only point predictions were given).

In our data analyses, we found that some transformers manufactured by particular
manufacturers, for example, MA, tend to have shorter lives. We suggested that the
company should pay particular attention to these transformers.

Although the prediction intervals for the individual transformers are often too
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Fig 12. Back check of the model: parametric predictions compared with Turnbull nonparametric
estimates.

wide to be directly useful to determine when a transformer should be replaced,
the quantitative information does provide a useful ranking for setting priorities in
maintenance scheduling and for selecting transformers that need special monitoring
attention or more frequent inspections to assess their health. The prediction intervals
for the cumulative number of failures over time for the population of the transformers
is most useful for capital planning.

The prediction intervals for individual transformers tend to be wide. If usage
and/or environmental information for the individual transformers were available
(e.g., load and ambient temperature history), it would be possible to build a better
predictive model that would more accurately predict individual lifetimes. Models in
Nelson [15] and Duchesne [5] can be used in this direction. Further developments
would, however, be needed to compute appropriate prediction interval procedures.

If engineering knowledge can provide information about the shape parameter of
the lifetime distribution of the transformer or regression coefficients, the Bayesian
approach could be used to take advantage of the prior information and could narrow
the width of the prediction intervals.

The transformer dataset used in our study contained limited information about
causes of failure. As explained in Section 2.1, however, the predominant failure
mechanism is related to degradation of the paper-like insulating material. In other
prediction problems there can be multiple causes of failure. Particularly when these
failure modes behave differently, have different costs, or when the information is for
engineering-change reasons, it is important analyze and predict the failure modes
separately (e.g., using methods similar to traditional competing risk analysis). In
these applications such an extension raises some interesting technical challenges such
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as dealing with dependency among the failures modes that one would expect in field
data. For example, it is easy to show that there will be positive dependence between
failure mode lifetime distributions when analysis is done in terms of time in service
when failure are driven by the amount of use and there is use-rate variability in the
population.

This paper has focused on the prediction of transformer life. There are many
other potential applications for this kind of work, ranging from aging aircraft to
consumer products. There are also important links the important area of System

Health Management. In our experience, each life-time prediction problem requires
somewhat different lifetime modeling tools and methods, but the basic idea for
prediction of using the distribution of remaining life for individual units in the
population that are at risk, is a constant.
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