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Abstract
Aims Root distributions determine crop nutrient access
and soil carbon input patterns. To date, root distribution
data are rare but needed to improve knowledge and
prediction of cropping system sustainability. In this
study, we sought to (i) quantify variation in maize (Zea
mays) and soybean (Glycine max) roots by depth and
environment across Iowa, USA and (ii) identify envi-
ronmental factors explaining the most variation.
Methodology Over three years we collected soil cores
from 0 to 210 cm in 16 maize and 12 soybean field
experiments at grain filling. Root mass, length, carbon
(C) and nitrogen (N) were determined at 30 cm incre-
ments, coupled with crop, soil, management, and
weather-related measurements.

Results Percentage of root mass located in the top 30 cm
varied from 52 to 94% in maize and 54–84% in soy-
bean. Variation in maize root distributions was strongly
associated with depth to water tables, variation in soy-
bean with soil physical attributes. Root C:N ratios were
highly variable with no depth-pattern, averaging 20 and
30 for soybean and maize, respectively. In both crops,
specific root lengths increased with depth to 60 cm, and
thereafter remained constant.
Conclusions Field studies of roots should consider
depth to water tables and soil moisture measurements,
as they influence vertical root distributions.

Keywords Rootmass . Root length . Root distribution .

Specific root length . Root nitrogen . C:N ratio .Water
table

Abbreviations
C Carbon
N nitrogen
SRL specific root length
US United States

Introduction

Crop roots are an important component of
agroecosystems. Roots influence soil carbon inputs
(McGranahan et al. 2014; Rasse et al. 2005), the bio-
logical activity of soil (Gregory 2006; Sokol and
Bradford 2019), and resistance of soil to erosion
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(Gyssels et al. 2005), all of which impact long-term
productivity of a system. While the absolute amount of
crop roots is significant, the vertical distribution of root
systems has substantial implications. The distribution of
roots controls when and where crops have access to
water and nutrients, and thus determines overall produc-
tivity and susceptibility of nutrients to leaching
(Dunbabin et al. 2003; Hammer et al. 2009; Tron et al.
2015). Total root mass is an important indicator of soil
carbon inputs (Farrar et al. 2012; Kätterer et al. 2011;
Russell et al. 2009), but recent studies have suggested
the location and quality of the inputs have significant
consequences for long term carbon storage and present
opportunities for large-scale carbon sequestration
(Dietzel et al. 2017; Kell 2012).

Understanding both genetic and environmental con-
trols of root distributions is critical when looking to
optimize crops for carbon sequestration or nutrient re-
tention (Kell 2011; Lynch 2013). Despite this impor-
tance, there is limited data and thus a poor understand-
ing of how crop roots behave in the field. While several
studies have compared crop roots under varying tillage
(e.g. Ball-Coelho et al. 1998; Dwyer et al. 1996; Fiorini
et al. 2018), fertilization (e.g. Kaspar et al. 1991; Qin
et al. 2005) and water (e.g. Follett et al. 1974;
Kuchenbuch and Barber 1988; Wang et al. 2003) re-
gimes, they are limited to few environments and mea-
sured variables. Additionally, they utilize varying meth-
odologies (date, position, and depth of sampling) mak-
ing it difficult to compare and synthesize studies to
move beyond descriptive results. Moreover, most field
root studies in the Midwest were done over 25 years ago
(see Table 1 in Ordóñez et al. 2018a). Both cultivars and
management practices have drastically changed since
that time, and while the effects on aboveground traits
have been well-documented,there is less information on
belowground aspects (Chen et al. 2014; Keep et al.
2016; Reyes et al. 2015; York et al. 2015).

Iowa is located in the center of the United States’
(US) Corn Belt region (Omernik 1987), an area domi-
nated by grain row crop production (USDA 2017). Iowa
leads the US in maize (Zea mays) and soybean (Glycine
max) production, with these two crops occuping ~75%
of the agricultural land in the state (USDA 2017). Re-
cent studies in Iowa have examined maize and soybean
root dynamics (Dietzel et al. 2017; Ordóñez et al.
2018b), but none has explored root distributions across
a wide range of environmental and management condi-
tions. Quantitative understanding of the extent and

causes of variation in root attributes is required to accu-
rately predict crop responses to changes in climate or
management. To our knowledge, no study has reported
crop root distributions across a wide range of environ-
ments sampled using consistent methodology. We
approached this study with the following objectives:

1. Quantify variation in root attributes by depth and
environment using consistent sampling methodolo-
gy applied over many environments.

2. Identify factors contributing to variation in root
attributes considering soil, management, and weath-
er variables.

To achieve our objectives, over a period of three
years we collected in- and between-row replicated
soil cores to 210 cm depth from 16 maize and 12
soybean field trials. We divided the cores into 30 cm
increments and determined root mass, length, and
carbon (C) and nitrogen (N) contents. This data was
augmented with various crop, soil, management, and
weather-related measurements. Based on previous
literature, our hypotheses were: (i) the C:N ratio of
roots will increase with depth (Dietzel et al. 2017;
Fiorini et al. 2018), (ii) the maximum rooting depth
will be strongly associated with the depth to the water
table (Ebrahimi-Mollabashi et al. 2019; Follett et al.
1974; Ordóñez et al. 2018b), (iii) the specific root
length (SRL) will increase with depth for both crops
(Allmaras et al. 1975), and (iv) decreasing tillage
intensity will cause roots to concentrate in the top
soil layer (Anderson 1988; Ball-Coelho et al. 1998).

Materials and methods

Experiments

Data were collected at Iowa State University Research
and Demonstration farms (Iowa State University 2018)
and long-term research sites (see Jarchow et al. 2015)
located across Iowa. Maize data were collected from
nine sites, and soybean from eight (Fig. 1).

Varieties were chosen each year to reflect modern
genetics available in the marketplace; a summary of
variety use can be found in Online Resource 1. All
maize plots received N fertilizer based on the site’s
maximum-return-to-N rate (Sawyer et al. 2006) ranging
from 160 to 210 kg N ha−1 and soybean received no N
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fertilizer. Other nutrients, weeds, and diseases were
managed adequately, while sub-surface drainage and
tillage managements were representative of the produc-
tion area (Fig. 1). For reference, maize grain yields
varied from 6.9 to 17.4 dryMg ha−1, and soybean varied
from 2.8 to 4.8. More details concerning yields can be
found in Online Resource 1.

Measurements

Roots were sampled using a hydraulic-driven soil probe
(Giddings Machine Company, Colorado USA) with a
6.2 cm inner diameter core to a depth of 210 cm. Root
sampling was timed to coincide with peak root mass for
maize (R2; Amos and Walters 2006) and soybean (R5;
Stanley et al. 1980). Across the field trials and years this
occurred from 65 to 105 days after planting. Soil cores
were taken to a depth of 210 cm to ensure the maximum
rooting depth was captured. All plots were part of larger
experiments, and one core was taken in each of three
plots arranged in randomized complete block designs,

except for Site 8 (Crawfordsville; Fig. 1) which had
only two replicates. Individual plot sizes ranged from
360 to 3600 m2. Within a plot, cores were taken from a
representative row with standard plant densities. A site-
year combination is hereafter referred to as an environ-
ment. All environments (16 maize, 12 soybean) had
cores sampled from a planted row, while a subset (11
maize, 10 soybean) had an additional core taken half-
way between planted rows (online resource 1).
Between-row cores were not taken in all environments
due to weather and/or time constraints. All environ-
ments and crops had 76 cm row spacing, except for Site
3 (Nashua; Fig. 1) in which soybeans had 25.4 cm row
spacing. In summary, each environment was represented
by three in-row soil cores (except for Site 8), with a
subset of environments having an additional three
between-row soil cores. All experiments were instru-
mented with soil moisture and temperature sensors
(METER Group, Pullman Washington USA) at 15 and
45 cm depths (see Togliatti et al. 2017) and water table
sensors (METER Group) at 3 m depths. All field trials

Fig. 1 Geographic distribution of the nine experimental locations
included a range of water managements (triangles: nonartificial
drainage; circles: subsurface drainage at 1.2 m depth) and tillages
(red:tilled; yellow:no-till) located on soils classified as having poor

to very good soil drainage (SSURGO 2018); more details about
site managements are available in the supplementary materials
*Irrigated site with only maize
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were part of a yield forecasting network (Forecast and
Assessment of Cropping Systems 2018) that utilizes
environment-specific calibrated Agricultural Production
SIMulator (APSIM) models (Keating et al. 2003).

Soil samples were soaked in a solution of sodium
hexametaphosphate ((NaPO3)6; 10 g L−1) to break up
soil aggregates. Following 10 min of soaking, samples
were placed in tube and sprayed with a mixutre of
pressurized water and air. Floating roots were recovered
using a 530 um sieve. Remaining organic particles were
separated from live roots using tweezers, and root tis-
sues were stored at 4 °C in a 70/30 alcohol-water solu-
tion until scanning using an Epson Perfection V800
photo Pro Scanner (Seiko Epson Corporation, Japan)
with a transparent poly-methyl-methacrylate tray. Im-
ages were aquired at 720 DPI and analyzed using
WinRHIZO Pro software (Regent Instruments Inc.,
Quebec Canada). Samples were then dried at 60 degrees
Celcius for 72 h, weighed, and ground. The percent C
and N by mass of ground root samples was determined
on combined in- and between-row samples from each
plot using a Vario Micro Cube CHNS Elemental Ana-
lyzer (Elementar Americas). Soil texture data was mea-
sured on in-row cores from each plot using laser diffrac-
tometry (Miller and Schaetzl 2012) with a Malvern
Mastersizer 3000 and a HydroEV attachment
(Malvern Panalytical Ltd., UK) on 30 cm soil depth
increments. Soil C was measured in 30 cm soil
depth increments at each site in 2014/2015. Pedo-
transfer functions utilizing soil texture and soil C
measurements were used to calculate bulk density
and plant-available-water for each soil layer using
the appropriate equations. (Saxton and Rawls 2006).

Statistics

Data processing

All data manipulation and graphics were done in R
version 3.5.2 (R Core Team 2013) with the tidyverse
(Wickham 2017), readxl (Wickham and Bryan 2018),
viridis (Garnier 2018) and lubridate (Grolemund and
Wickham 2011) packages. Variables potentially re-
lated to crop root variation were measured and/or
calculated (Table 1). Missing data were interpolated
using predictions from the calibrated APSIM models
(see Measurements Section).

We described the vertical distribution of root mass in
the soil profile using three methods. Firstly, we fit a

variety of non-linear models to the cumulative root mass
by depth for each environment (Archontoulis and
Miguez 2015) using the nlstools package (Baty et al.
2015). Based on Akaike’s information criterion (AIC;
Bozdogan 1987) we chose a modified-logistical func-
tion (Fan et al. 2016), from which we extracted the
maximum depth of rooting and the depth at which
90% of the total root mass had accumulated (Schenk
and Jackson 2002). Secondly, we fit a normalized ex-
ponential decay function using depth increment as a
continuous variable for each replicate. Lastly, we calcu-
lated the percentage of total root mass found in the top
30 cm in each replicate. In this study, we were interested
in investigating how relative root distributions are af-
fected by the environment, rather than the absolute
amount of roots. However, in our dataset the absolute
and relative amount of root mass in the top 30 cm were
linearly related for both crops (Online Resource 1).

Data analyses

Tillage was evaluated as both a continuous and cate-
gorical variable. For categorical analyses, sites were
classified as binary (tilled, no-till; Fig. 1); this variable
is subsequently referred to as tillage class. For analysis
as a continuous variable, the tillage intensity was
assigned a value based on the amount of residue re-
maining on the soil surface at planting (unpublished
data), with 1 representing 100% of the residue remain-
ing on the surface (no-till), 5 representing complete
burial of residue (moldboard plowing). Intermediate
values corresponded to practices falling between these
two extremes (e.g. discing, field cultivation, chisel
plowing, strip tillage). Drainage was assigned a cate-
gorical value based on whether the site had artificial
drainage tile installed (yes, no; Fig. 1). Differences in
maize N fertilizer management were described using
two categories: method of application (broadcast ver-
sus injected) and timing (all applied at planting versus
split-application), and were treated as fixed effects.
All sites received maximum-return-to-N rates
(Sawyer et al. 2006), so the exact amount of N applied
was not included in the analyses.

The effect of fixed continuous (tillage intensity, depth
increment) and categorical (crop, drainage, tillage class,
N application method, N application timing) variables
on responses was assessed using a mixed model with
environment as a random effect and a combination of
fixed effects and their interactions as appropriate
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(online resource 1) using the lme4 (Bates et al. 2015)
and lmerTest (Kuznetsova et al. 2017) packages. Vari-
ance components were assessed bymanually calculating
the ratio of environmental to total variance.

We fit predictive models to both the depth to 90%
root mass accumulation and the percentage of root mass
in the top 30 cm of soil, using the predictors in Table 1.
We chose to use the percentage of root mass in the top
30 cm of soil because root mass in this layer demon-
strated the largest raw and relative variation compared to
root mass in other layers (Fig. 4). In-row cores were
available for more environments compared to between-

row cores, so we used only the in-row data. Additionally
root length and root mass were highly correlated
(Pearson’s r = 0.92), so we restricted predictive model
fitting to root mass data. For this analysis we eliminated
the single irrigated site with only maize data (Site 7
Muscatine, Fig. 1). To investigate the most important
predictors (Table 1) of the two responses (depth to 90%
root accumulation, percentage in top 30 cm), we fit three
predictive models. We performed a partial-least-squares
(PLS) regression in R using the pls package (Mevik
et al. 2018) selecting the number of components that
resulted in the lowest average leave-one-out root-mean-

Table 1 Summary of crop, management, weather, and soil variables used to explain variation in root distributions

Units Range in Values Across Environments

Maize Soybean

Crop

Crop biomass at root sampling (R2 maize, R5 soybean) Mg ha−1 17.1–29.4 5.8–11.0

Total root mass 0–210 cm kg ha−1 195–880 115–625

Management

Tillage intensity; 1 = no-tillage, 5 =mold-board plowing Categorical 1–4 1–4

Crop seeding rate Seeds m−2 8.0–8.8 25–47

Weather

Days† saturated (30 cm increments; Fig. 3) a days* 0–95 0–90

Days† with optimum b soil moisture 0–30 cma %* 31–92 51–98

Days† with deficit b soil moisture 0–30 cma %* 0–68 0–44

Days† with excessive b soil moisture 0–30 cma %* 0–18 0–19

Soil temperature 0–30 cma,d† 0C* 18–27 18–24

Average growing season air temperature d† °C 19.9–24.1 20.1–23.9

Yearly average air temperature d °C 8.5–12.9 8.5–12.0

Growing-degree-daysd†, Tbase = 10 °C, Tmax = 30 °C °C-days 812–1157 793–1102

Precipitationd† Mm 137–572 76–557

Radiationd† MJ m−2 1529–2134 1333–2215

Soil

Avg. water table depth 1–3 weeks before samplinga cm* 115–240 113–218

Organic matter 0–30 cm %* 2.9–5.1 3.5–5.0

Organic matter 0–180 cm mean %* 1.0–2.7 1.1–2.7

Total plant available water 0–180 cmc mm* 79–370 266–370

Bulk density 0–30 cmc g cm−3* 1.14–1.44 1.14–1.32

Bulk density 0–180 cmc mean g cm−3* 1.31–1.52 1.31–1.52

aMeasured data supplemented with modelled data when necessary
bOptimal soil moisture was defined as 80 to 120% of field capacityc

c Calculated using texture-based pedotransfer functions (Saxton and Rawls 2006)
d From weather station located on each site (https://mesonet.agron.iastate.edu/)

†From 10 days after planting to day of root sampling

*Plot data were averaged within an environment/site
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squared-error (RMSE), with feature importance estimat-
ed using the caret package (Kuhn 2018). Ridge-
regressions both without (Hoerl and Kennard 1970)
and with a least absolute shrinkage and selection
operator (LASSO; Tibshirani 2011) were done using
the glmnet package (Friedman et al. 2010). All pre-
dictors were centered and scaled before model
fitting to eliminate effects of measurement units.
Many of the potential model predictors (Table 1)
were highly correlated. Features included in the
prediction models were analyzed for collinearity
using the corrplot package (Wei and Simko 2017),
eliminating one predictor from pairs with absolute
correlations larger than 0.60. A complete description
of feature selection for each response variable is
included in supplementary material (online resource
1). We also calculated Pearson’s correlation coeffi-
cient of the response with each predictor using the
cor function of base R.

We chose to only report model fits on the percent
mass in the soil surface because (i) it is easily
interpreted, (ii) it is often reported, (iii) the predictive
models for both responses were similar.

Results

The 2016 growing season followed average trends in
both precipitation and temperature, 2017 was dry with a
warm spring and early planting, and 2018 was wet with
a cool spring leading to late planting, followed by a
warmer-than-average growing season (Fig. 2 top
panels). The varying precipitation patterns across loca-
tions and years coupled with varying drainage manage-
ments resulted in a range of soil water conditions (Fig. 2
bottom panel). The percentage of the growing season
with optimum, deficit, and excess water in the top 30 cm
for maize and soybean is found in Table 1
(visualizations in online resource 1).

Root carbon-to-nitrogen ratios

Depth did not have a significant effect on maize root
C:N ratios, with a mean profile value of 30 (n = 288,
sd = 8; Fig. 3). For soybean, depth was significant when
considering the entire profile (n = 146, p < .001), but
this was driven by small sample sizes below 150 cm
(n = 4; a minimum of 2.5 mg of roots were required for
analysis). When these values were excluded, depth was

no longer significant, with a mean C:N ratio of 20 (sd =
2). The environment (site-year) contributed a third of the
total variance in both maize and soybean C:N ratios, and
models including the random effects of environment fit
significantly better than ones without (p < .001). Till-
age, tillage intensity, N fertilizer placement and timing,
and drainage did not affect C:N ratios (maize or soy-
bean), and predictive models produced poor fits.

Root mass and length

In-row values of root mass were highest in the top
30 cm (2.6 and 1.4 Mg ha−1 for maize and soybean,
respectively; Fig. 4). Between rows, maize and soy-
bean root mass was lower (0.7 and 0.6 Mg ha−1,
respectively) compared to in-row values, and the
mass was more evenly distributed across the profile.
When root mass in each sampling position was
normalized to the value in the top layer and com-
pared across environments, maize and soybean did
not exhibit statistically different exponential decay
parameters (online resource 1). The sampling posi-
tion significantly affected the decay parameter (p
< .001), with in-row root mass decreasing 1.5 times
faster than between-row. The change in decay pa-
rameter between sampling positions was slightly
more dramatic in maize compared to soybean (p =
0.04). The maximum rooting depth, as predicted by
the fitted modified logistic equation, did not vary by
crop, position, or their interaction, with a mean
value of 153 cm (online resource 1).

Root length followed the same general patterns as
root mass. Overall, the specific root length (SRL; ratio
of root length to root mass) for both crops was higher for
between-row samples compared to in-row samples, with
the difference being largest in the top layer. For both
sampling positions, SRLwas lowest in the surface layer,
intermediate from 30 to 60 cm, but from 60 to 180 cm
the ratio did not significantly change with depth for
either crop (Table 2). Including the random effect of
environment significantly improved model fits in the
top layer (p = 0.03 and p < .001 for maize and soybean,
respectively), but not below 60 cm where it accounted
for <5% of the total variation. In the top 30 cm, soybean
root ratios were not significantly affected by tillage
class, tillage intensity, N fertilizer placement or timing,
or drainage. In both sampling positions, maize SRL
increased as tillage intensity increased (SRL increased
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by an estimated 5 m g−1 from no-till to discing; p = 0.04)
but were unaffected by drainage.

Predictors of root distributions

Within a crop, all three predictive models produced
similar RMSE values. All models identified the water
table as the strongest predictor for maize, while it had
minimal importance in soybean. The LASSO regression
results are presented as they allow predictor effects to
shrink to 0, and correlations of predictors with the root
distribution are included for reference (Fig. 5). In maize,
water-related factors including average water table
depth and surface soil water status were consistently
important predictors. For soybeans, the water-holding
capacity of the soil profile (as calculated by pedo-
transfer functions; Saxton and Rawls 2006) was identi-
fied as the most important predictor by all models,

although water-related factors (water table, drought
days) were also important.

Discussion

This study provides new data on maize and soy-
bean vertical root distributions across different en-
vironments and management systems. This data can
greatly assist parameterization of crop models ap-
plied in the US Corn Belt, help agronomists esti-
mate soil carbon and nitrogen balances (Brye et al.
2002; Poffenbarger et al. 2017), and aid in
predicting crop responses to changing climates
and management (Hatfield et al. 2013). Our consis-
tent measurement protocol allowed us to find asso-
ciations between vertical root distributions and en-
vironmental variables. Below we discuss key find-
ings by root attribute.

Fig. 2 Variation in precipitation (top left panel), temperature (top
right panel) and (bottom panel) number of days a soil layer was
saturated from crop emergence through root sampling; white lines

indicate water table depths averaged two weeks prior to root
sampling in maize plots (for soybean see Online Resource 1); Site
ID numbers are provided in Fig. 1
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Root mass

Interestingly, the normalized root distribution profile
within a sampling position was the same for soybean
and maize, indicating qualitative categorization of root
types (taproot versus fibrous) do not translate to distinct
quantitative categories (Fig. 4). This certainly merits
further exploration, and more direct comparisons of
other crop rooting patterns across many different envi-
ronments are needed. The average maximum rooting
depth found in our study (153 cm) is only slightly
deeper than those reported by others (Fan et al. 2017;
Ordóñez et al. 2018b), and is similar to the rooting depth
reported in the Soil Survey Geographic Database
(SSURGO 2018). While the average root mass distribu-
tions did not vary by crop, the factors driving differences
in distributions were distinct for maize compared to
soybean (Fig. 5). This is unsurprising, considering these
two crops have fundamentally different growth patterns.
Structurally, maize root systems consist of many first

order roots (tap, seminal, nodal) while soybeans have
only one (tap; Lynch 2013; Rich and Watt 2013). Ad-
ditionally, soybean varieties grown in Iowa are indeter-
minate (Archontoulis et al. 2014a, b) and their roots
continue growing for approximately one month after
maize roots have stopped (Ordóñez et al. 2018b). These
different growth habits affect when roots are sensitive to
certain environmental conditions. In-season compara-
tive measurements of root mass distributions would
allow more detailed parsing of these effects.

We found that the strongest predictor of relative
maize root investment in the top 30 cm of the soil is
the average depth to the water table two weeks before
maximum crop mass is achieved; deeper water tables
are associated with roots more evenly distributed
vertically throughout the soil profile. This expands
recent finding from Ordóñez et al. (2018b) regarding
the strong relationship between maximum root depth
and water table depth. The response is also consistent
with the results reported by a Minnesota field study

Fig. 3 Root carbon and nitrogen contents and their ratio by depth and crop, lines represent replicates, bold bars represent means for each
layer
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(Follett et al. 1974), providing further support that
water tables are a major predictor of maize root
distributions in the Midwest. This has important im-
plications for field studies, especially plant breeding
programs seeking to select for root traits; water tables
must be accounted for when selecting genotypes in
fields, especially in the US Corn Belt that has shallow
water tables (Fan et al. 2013). Our results also dem-
onstrate measuring or modeling the soil water status
in the top 30 cm is important when assessing root

responses to treatments. While weather, manage-
ment, and general soil variables are often available
and easy to report, the addition of water table and
surface soil moisture measurements should be includ-
ed in field studies of roots. Additionally, crop models
should incorporate the effects of water tables on root
distributions to accurately capture root responses to
changes in weather patterns or management
(Hartmann et al. 2017; Ebrahimi-Mollabashi et al.
2019; Kimball et al. 2019).

Fig. 4 Between- (light) and in-row (dark) measurements of root mass, length, and their ratio averaged within (thin lines) and across (bold
lines) environments; root mass and length panels include the mean percent roots found in a given profile increment

Table 2 Specific root lengths (m g−1) observed compared to Midwestern literature values (Allmaras et al. 1975; Follett et al. 1974; Bonifas
and Lindquist 2009; see Online Resource 2)

Maize Soybean

Sampling Position In-Row Between-Row In-Row Between-Row

Literature Values* 5-164 17-33

Surface, 0–30 cm 65 136 94 133

Sub-surface, 60–180 cm 136 157 184 208
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Contrary to our hypothesis, while the importance of
tillage was not trivial, it was a minor factor in describing
relative root investments in the top 30 cm of the soil for
both maize and soybean. Tillage and soil moisture are
often confounded, with zero-tillage soils exhibiting high
soil moistures compared to tilled soils. Previous studies
have been unable to tease apart whether roots concen-
trate in the top layers in no-till systems due to high bulk
densities restricting root penetration, or higher soil mois-
ture fostering root growth (Anderson 1988; Ball-Coelho
et al. 1998). Our observations suggest in Iowa, moisture
status of the top 30 cm is more important than tillage
history in determining maize root investments (Fig. 5).
This could be because in Iowa soils, the change in bulk
density when converting to no-till systems is less drastic
than changes associated with controlled wheel traffic
(Kaspar et al. 1991; Logsdon and Karlen 2004). We
did find reduced tillage was associated with increased
maize SRL in the top 30 cm, consistent with other
studies (Anderson 1988; Fiorini et al. 2018). The SRL
has consequences for the root system’s surface area and
water uptake calculations (Huth et al. 2012), so this
result is important to consider in modeling.

In soybean, the direct relationship between the
soil profile’s water-holding capacity and surface root
investment was weak. However it does suggest that
as the soil profile can hold more water, soybeans
invest less roots in the surface. Again, our statistical

models indicated many factors must be considered
when predicting root responses.

Root C:N ratios

The high plot-to-plot variability in C:N ratios, poor
predictive model fits, and lack of relationship with depth
in our study imply field-scale measurements are not
meaningful for predicting C:N root ratios. Our data
suggest C:N ratios respond strongly to the micro-
environments induced by soil heterogeneity (Stueffer
et al. 2006). Until further research on this subject is
available, assuming a constant crop-based value for all
depths and environments may be sufficient. Our mean
values for soybean (20) and maize (30) match general
patterns of higher C:N ratios in grasses compared to
legumes, with our maize value closely matching previ-
ous studies (Dietzel et al. 2017; Fiorini et al. 2018).

In contrast to other studies, we did not find a signif-
icant depth effect, which could be due to several factors
including timing of sampling, cleaning methodology,
and/or differences in soil increments studied. In other
studies (Dietzel et al. 2017; Fiorini et al. 2018) the
increase in C:N ratio with depth was driven by differ-
ences within the top 30 cm, where they utilized smaller
depth increments than we did (5 and 10 cm increments).
By sampling in 30 cm increments to a deeper depth
(210 cm versus 55 and 100 cm), we may not have been

Fig. 5 Correlations and scaled importance of predictors based on LASSO regressionmodels for the relative amount of rootmass allocated to
the top 30 cm of the soil
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able to detect the small differences that occur within the
top 30 cm. However, the increases in C:N ratio with
depth Dietzel et al. (2017) and Fiorini et al. (2018) found
were small compared to the variation we observed in our
more extensive environment sampling. Fiorini et al.
(2018) found contradicting effects of tillage on C:N
ratios with respect to maize and soybean, and in our
study we did not see a significant tillage effect (Fig. 3).

Specific root lengths

For all sampling positions and depths, the average
SRL for maize in our study was in accordance with
Midwestern literature, but our measured values were
much higher forsoybean compared to literature
(Table 2) (Allmaras et al. 1975; Follett et al.
1974;Bonifas and Lindquist 2009). This could be
due to breeders in-directly selecting for higher
SRLs, higher planting densities used in modern pro-
duction systems driving root architectural changes
(Cardwell 2010; Duvick 2005), differing methodol-
ogies for quantifying root lengths (Himmelbauer
et al. 2004), or simply due to the cultivars used in
our field studies. Our results again demonstrate the
necessity for comparing root measurements collect-
ed using identical methodologies. In both crops, the
SRLs increased with depth, but this was driven by
differences in the top 60 cm of the soil. Below
60 cm, the ratio did not change. Measurements taken
below 60 cm can therefore be extrapolated to deeper
depths when necessary.

Sampling position

Unsurprisingly, sampling position had a drastic ef-
fect on observed root distributions and characteris-
tics (Fig. 4). The shape of the root profile signifi-
cantly changed depending on where the sample was
taken relative to the planted row. While the total
profile’s root mass can be adjusted to account for
the sampling position (Ordóñez et al. 2018a), it is
not valid to assume the same correction for mass
by layer (online resource 1). In-row samples exhib-
ited larger variation in root mass and length com-
pared to between-row samples; depending on the
researcher’s goal this information can help inform
where to sample relative to the planted row (York
2018). The sampling position also influenced the
observed SRL but did not affect the vertical SRL

pattern. Sampling away from rows may lead to a
lower estimate of SRL compared to in-row, howev-
er the difference is smaller than the difference be-
tween changes with depth. It is therefore more
important to capture the changes in SRLs by depth
than by sampling position.

Conclusions

This dataset relates the relative vertical distribution of
crop root systems with their growing environment. We
observed large variation in how roots are distributed
throughout the soil profile, and found the drivers of this
variation were unique for maize compared to soybean.
For maize, water-related measurements, including water
table depths and surface soil moisture, are important
predictors this variation. For soybean, soil physical at-
tributes - water-holding capacity, organic matter content
- were more important. However, the range of factors
contributing to the overall variability in root distribu-
tions suggest integrated tools that incorporate multiple
factors and their interactions should be used for
predicting crop root vertical distributions. We found
our field-collected data did not support common quali-
tative root distinctions, reiterating the need for large-
scale and standardized root data collection. Our dataset
offers a unique resource for model testing, and due to the
range in weather, soil, and managements represented it
is applicable for production environments across the US
Corn Belt. Large-scale assessments of genotype-
environment-management root interactions are needed,
and this study can help guide those efforts. For example,
ensuring a consistent water table and measuring surface
soil moisture can better isolate and identify genetically-
controlled differences in roots in a field environment.

Acknowledgements The authors gratefully acknowledge
Katherine Goode, Ranae Dietzel, and Rafael Martinez-Feria for
statistical advice, and Isaiah Huber for map making. Patrick Ed-
monds provided invaluable help with the planning and execution
of field studies and processing of samples, and all stationmanagers
were generous in their time and resources to facilitate data collec-
tion from their sites. We also thank numerous undergraduates for
assistance in sample collection and processing. We sincerely thank
Ranae Dietzel and Max Kuhn for providing support in profession-
al development activities that directly led to this work. This work
was funded by the Foundation for Food and Agricultural Research
(FFAR; Project title: Improving simulation of soil water dynamics
and crop yields in the US Corn Belt), the Iowa Soybean Associ-
ation, the Plant Sciences Institute of Iowa State University, and
USDA-NIFA Hatch project IOW03814.

Plant Soil



References

Allmaras RR, Nelson WW, Voorhees WB (1975) Soybean and
corn rooting in southwesternMinnesota: I. water-uptake sink.
Soil Sci Soc Am Proc 39:764–770. https://doi.org/10.2136
/sssaj1975.03615995003900040045x

Amos B, Walters DT (2006) Maize root biomass and net
Rhizodeposited carbon. Soil Sci Soc Am J 70:1489.
https://doi.org/10.2136/sssaj2005.0216

Anderson EL (1988) Tillage and N fertilization effects on maize
root growth and root:shoot ratio. Plant Soil 108:245–251.
https://doi.org/10.1007/BF02375655

Archontoulis SV, Miguez FE (2015) Nonlinear regression models
and applications in agricultural research. Agron J 107:786–
798. https://doi.org/10.2134/agronj2012.0506

Archontoulis SV, Miguez FE, Moore KJ (2014a) Evaluating
APSIM maize, soil water, soil nitrogen, manure, and soil
temperature modules in the Midwestern United States.
Agron J 106:1025–1040. https://doi.org/10.2134
/agronj2013.0421

Archontoulis SV, Miguez FE, Moore KJ (2014b) A methodology
and an optimization tool to calibrate phenology of short-day
species included in the APSIM PLANTmodel: application to
soybean. Environ Model Softw 62:465–477. https://doi.
org/10.1016/j.envsoft.2014.04.009

Ball-Coelho BR, Roy RC, Swanton CJ (1998) Tillage alters corn
root distribution in coarse-textured soil. Soil Tillage Res 45:
237–249. https://doi.org/10.1016/S0167-1987(97)00086-X

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear
mixed-effects models using lme4. J Stat Softw 67:1–48.
https://doi.org/10.18637/jss.v067.i01

Baty F, Ritz C, Brutsche M et al (2015) AToolbox for Nonlinear
Regression in R : The Package nlstools. J Stat Softw 66.
https://doi.org/10.18637/jss.v066.i05

Bonifas KD, Lindquist JL (2009) Effects of nitrogen supply on the
root morphology of corn and velvetleaf. J Plant Nutr 32:
1371–1382. https://doi.org/10.1080/01904160903007893

Bozdogan H (1987) Model selection and Akaike’s information
criterion (AIC): the general theory and its analytical exten-
sions. Psychometrika 52:345–370. https://doi.org/10.1007
/BF02294361

Brye KR, Gower ST, Norman JM, Bundy LG (2002) Carbon
budgets for a prairie and agroecosystems: effects of land
use and interannual variability. Ecol Appl 12:962–979.
https://doi.org/10.1890/1051-0761(2002)012[0962
:CBFAPA]2.0.CO;2

Cardwell VB (2010) Fifty years of Minnesota corn production:
sources of yield Increase1. Agron J 74:984. https://doi.
org/10.2134/agronj1982.00021962007400060013x

Chen X, Zhang J, Chen Y et al (2014) Changes in root size and
distribution in relation to nitrogen accumulation duringmaize
breeding in China. Plant Soil 374:121–130. https://doi.
org/10.1007/s11104-013-1872-0

Dietzel R, LiebmanM, Archontoulis S (2017) A deeper look at the
relationship between root carbon pools and the vertical dis-
tribution of the soil carbon pool. SOIL 3:139–152.
https://doi.org/10.5194/soil-3-139-2017

Dunbabin V, Diggle A, Rengel Z (2003) Is there an optimal root
architecture for nitrate capture in leaching environments?

Plant Cell Environ 26:835–844. https://doi.org/10.1046
/j.1365-3040.2003.01015.x

Duvick DN (2005) Genetic progress in yield of United States
maize (Zea mays L.). Maydica 50:193–202

Dwyer LM, Ma BL, Stewart DWet al (1996) Root mass distribu-
tion under conventional and conservation tillage. Can J Soil
Sci 76:23–28. https://doi.org/10.4141/cjss96-004

Ebrahimi-Mollabashi E, Huth N, Holzworth D et al (2019)
Enhancing APSIM to simulate excessive moisture effects
on root growth. Field Crops Res 236:58–67. https://doi.
org/10.1016/j.fcr.2019.03.014

Fan Y, Li H, Miguez-Macho G (2013) Global patterns of ground-
water. Science 339(80):940–944. https://doi.org/10.1126
/science.1229881

Fan J, McConkey B, Wang H, Janzen H (2016) Root distribution
by depth for temperate agricultural crops. Field Crops Res
189:68–74. https://doi.org/10.1016/j.fcr.2016.02.013

Fan Y, Miguez-Macho G, Jobbágy EG et al (2017) Hydrologic
regulation of plant rooting depth. Proc Natl Acad Sci 114:
10572–10577. https://doi.org/10.1073/pnas.1712381114

Farrar J, HawesM, Jones D et al (2012) How roots control the flux
of carbon to the rhizosphere. Ecology 84:827–837.
https://doi.org/10.1890/0012-9658(2003)084[0827
:HRCTFO]2.0.CO;2

Fiorini A, Boselli R, Amaducci S, Tabaglio V (2018) Effects of
no-till on root architecture and root-soil interactions in a
three-year crop rotation. Eur J Agron 99:156–166.
https://doi.org/10.1016/j.eja.2018.07.009

Follett RF, Allmaras RR, Reichman GA (1974) Distribution
of corn roots in Sandy soil with a declining water table
1 . Ag ron J 66 : 288 . h t t p s : / / d o i . o rg / 10 . 2134
/agronj1974.00021962006600020030x

Forecast and Assessment of Cropping Systems (FACTS) (2018)
Available online at https://crops.extension.iastate.edu/facts/.
Accessed 2018

Friedman J, Hastie T, Tibshirani R (2010) Regularization Paths for
Generalized Linear Models via Coordinate Descent. J Stat
Softw 33. https://doi.org/10.18637/jss.v033.i01

Garnier S (2018) Viridis: default color maps from “matplotlib”. R
package version 0.5.1

Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better
understanding of soil science? Eur J Soil Sci 57:2–12.
https://doi.org/10.1111/j.1365-2389.2005.00778.x

Grolemund G, Wickham H (2011) Dates and Times Made Easy
with lubridate. J Stat Softw 40. https://doi.org/10.18637/jss.
v040.i03

Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots
on the resistance of soils to erosion by water: a review. Prog
Phys Geogr 29:189–217. https://doi.org/10.1191
/0309133305pp443ra

Hammer GL, Zinselmeier C, Schussler J et al (2009) Can
changes in canopy and/or root system architecture ex-
plain historical maize yield trends in the U.S. Corn Belt?
Crop Sci 49:299–312

Hartmann A, Šimůnek J, Aidoo MK et al (2017) Implementation
and application of a root growth module in HYDRUS.
Vadose Zone J 17. https://doi.org/10.2136/vzj2017.02.0040

Hatfield JL, Cruse RM, Tomer MD (2013) Convergence of agricul-
tural intensification and climate change in the Midwestern
United States: implications for soil and water conservation.
Mar FreshwRes 64:423–435. https://doi.org/10.1071/MF12164

Plant Soil

https://doi.org/10.2136/sssaj1975.03615995003900040045x
https://doi.org/10.2136/sssaj1975.03615995003900040045x
https://doi.org/10.2136/sssaj2005.0216
https://doi.org/10.1007/BF02375655
https://doi.org/10.2134/agronj2012.0506
https://doi.org/10.2134/agronj2013.0421
https://doi.org/10.2134/agronj2013.0421
https://doi.org/10.1016/j.envsoft.2014.04.009
https://doi.org/10.1016/j.envsoft.2014.04.009
https://doi.org/10.1016/S0167-1987(97)00086-X
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v066.i05
https://doi.org/10.1080/01904160903007893
https://doi.org/10.1007/BF02294361
https://doi.org/10.1007/BF02294361
https://doi.org/10.1890/1051-0761(2002)012<0962:CBFAPA>2.0.CO;2
https://doi.org/10.1890/1051-0761(2002)012<0962:CBFAPA>2.0.CO;2
https://doi.org/10.2134/agronj1982.00021962007400060013x
https://doi.org/10.2134/agronj1982.00021962007400060013x
https://doi.org/10.1007/s11104-013-1872-0
https://doi.org/10.1007/s11104-013-1872-0
https://doi.org/10.5194/soil-3-139-2017
https://doi.org/10.1046/j.1365-3040.2003.01015.x
https://doi.org/10.1046/j.1365-3040.2003.01015.x
https://doi.org/10.4141/cjss96-004
https://doi.org/10.1016/j.fcr.2019.03.014
https://doi.org/10.1016/j.fcr.2019.03.014
https://doi.org/10.1126/science.1229881
https://doi.org/10.1126/science.1229881
https://doi.org/10.1016/j.fcr.2016.02.013
https://doi.org/10.1073/pnas.1712381114
https://doi.org/10.1890/0012-9658(2003)084<0827:HRCTFO>2.0.CO;2
https://doi.org/10.1890/0012-9658(2003)084<0827:HRCTFO>2.0.CO;2
https://doi.org/10.1016/j.eja.2018.07.009
https://doi.org/10.2134/agronj1974.00021962006600020030x
https://doi.org/10.2134/agronj1974.00021962006600020030x
https://crops.extension.iastate.edu/facts/
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1111/j.1365-2389.2005.00778.x
https://doi.org/10.18637/jss.v040.i03
https://doi.org/10.18637/jss.v040.i03
https://doi.org/10.1191/0309133305pp443ra
https://doi.org/10.1191/0309133305pp443ra
https://doi.org/10.2136/vzj2017.02.0040
https://doi.org/10.1071/MF12164


Himmelbauer ML (2004) Estimating length, average diameter and
surface area of roots using two different image analyses
systems. Plant Soil 260:111–120.

Hoerl AE, Kennard RW (1970) Ridge regression: biased estima-
tion for nonorthogonal problems. Technometrics 12:55–67.
https://doi.org/10.1080/00401706.1970.10488634

Huth N, Bristow K, Verburg K (2012) SWIM3: model use, cali-
bration, and validation. Trans ASABE 55:1303–1313.
https://doi.org/10.13031/2013.42243

Iowa State University (2018) ISU Research and Demonstration
Farms. Available online at https://www.farms.ag.iastate.
edu/). Accessed 2018

Jarchow ME, Liebman M, Dhungel S et al (2015) Trade-offs
among agronomic, energetic, and environmental perfor-
mance characteristics of corn and prairie bioenergy cropping
systems. GCB Bioenergy 7:57–71. https://doi.org/10.1111
/gcbb.12096

Kaspar TC, Brown HJ, Kassmeyer EM (1991) Corn root distribu-
tion as affected by tillage, wheel traffic, and fertilizer place-
ment. Soil Sci Soc Am J 55:1390. https://doi.org/10.2136
/sssaj1991.03615995005500050031x

Kätterer T, Bolinder MA, Andrén O et al (2011) Roots contribute
more to refractory soil organic matter than above-ground
crop residues, as revealed by a long-term field experiment.
Agric Ecosyst Environ 141:184–192. https://doi.org/10.1016
/J.AGEE.2011.02.029

Keating B, Carberry P, Hammer G et al (2003) An overview of
APSIM, a model designed for farming systems simulation.
Eur J Agron 18:267–288. https://doi.org/10.1016/S1161-
0301(02)00108-9

Keep NR, SchapaughWT, Prasad PVV, Boyer JE (2016) Changes
in physiological traits in soybean with breeding advance-
ments. Crop Sci 56:122. https://doi.org/10.2135
/cropsci2013.07.0499

Kell DB (2011) Breeding crop plants with deep roots: their role in
sustainable carbon, nutrient and water sequestration. Ann Bot
108:407–418

Kell DB (2012) Large-scale sequestration of atmospheric carbon
via plant roots in natural and agricultural ecosystems: why
and how. Philos T R Soc B 367:1589–1597. https://doi.
org/10.1098/rstb.2011.0244

Kimball BA, Boote KJ, Hatfield JL et al (2019) Simulation of
maize evapotranspiration: an inter-comparison among 29
maize models. Agric For Meteorol 271:264–284.
https://doi.org/10.1016/J.AGRFORMET.2019.02.037

Kuchenbuch RO, Barber SA (1988) Significance of temperature
and precipitation for maize root distribution in the field. Plant
Soil 106:9–14. https://doi.org/10.1007/BF02371189

Kuhn M (2018) Caret: classification and regression training
Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest

Package: Tests in Linear Mixed Effects Models. J Stat Softw
82. https://doi.org/10.18637/jss.v082.i13

Logsdon SD, Karlen DL (2004) Bulk density as a soil quality
indicator during conversion to no-tillage. Soil Tillage Res 78:
143–149. https://doi.org/10.1016/J.STILL.2004.02.003

Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize
water and N acquisition bymaize root systems. Ann Bot 112:
347–357. https://doi.org/10.1093/aob/mcs293

McGranahan DA, Daigh AL, Veenstra JJ et al (2014) Connecting
soil organic carbon and root biomass with land-use and

vegetation in temperate grassland. Sci World J 2014:1–9.
https://doi.org/10.1155/2014/487563

Mevik B-H, Wehrens R, Hovde Liland K (2018) Pls: partial least
squares and principal component regression

Miller BA, Schaetzl RJ (2012) Precision of soil particle size
analysis using laser Diffractometry. Soil Sci Soc Am J 76:
1719. https://doi.org/10.2136/sssaj2011.0303

Omernik JM (1987) Ecoregions of the conterminous United
States. Ann Assoc Am Geogr 77:118–125. https://doi.
org/10.1111/j.1467-8306.1987.tb00149.x

Ordóñez RA, Castellano MJ, Hatfield JL et al (2018a) A solution
for sampling position errors in maize and soybean root mass
and length estimates. Eur J Agron 96:156–162. https://doi.
org/10.1016/j.eja.2018.04.002

Ordóñez RA, Castellano MJ, Hatfield JL et al (2018b) Maize and
soybean root front velocity and maximum depth in Iowa,
USA. Field Crops Res 215:122–131. https://doi.org/10.1016
/j.fcr.2017.09.003

Poffenbarger HJ, Barker DW, Helmers MJ et al (2017) Maximum
soil organic carbon storage in Midwest U.S. cropping sys-
tems when crops are optimally nitrogen-fertilized. PLoS One
12:e0172293. https://doi.org/10.1371/journal.pone.0172293

Qin R, Stamp P, Richner W (2005) Impact of tillage and banded
starter fertilizer on maize root growth in the top 25 centime-
ters of the soil. Agron J 97:674–683. https://doi.org/10.2134
/agronj2004.0059

R Core Team (2013) R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna

Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon
mostly root carbon? Mechanisms for a specific
stabilisation. Plant Soil 269:341–356. https://doi.
org/10.1007/s11104-004-0907-y

Reyes A,Messina CD, Hammer GL et al (2015) Soil water capture
trends over 50 years of single-cross maize (Zea mays L.)
breeding in the US corn-belt. J Exp Bot 66:7339–7346.
https://doi.org/10.1093/jxb/erv430

Rich SM, Watt M (2013) Soil conditions and cereal root system
architecture: review and considerations for linking Darwin
and weaver. J Exp Bot 64:1193–1208. https://doi.
org/10.1093/jxb/ert043

Russell AE, Cambardella CA, Laird DA et al (2009) Nitrogen
fertilizer effects on soil carbon balances in Midwestern U.S.
agricultural systems. Ecol Appl 19:1102–1113. https://doi.
org/10.1890/07-1919.1

Sawyer J, Nafziger E, Randall G, et al (2006) Concepts and
rationale for regional nitrogen rate guidelines for corn. Iowa
State Univ Ext

Saxton KE, Rawls WJ (2006) Soil water characteristic estimates
by texture and organic matter for hydrologic solutions. Soil
Sci Soc Am J 70:1569. https:/ /doi.org/10.2136
/sssaj2005.0117

Schenk HJ, Jackson RB (2002) The global biogeography of roots.
Ecol Monogr 72:311–328. https://doi.org/10.1890/0012-
9615(2002)072[0311:TGBOR]2.0.CO;2

Soil Survey Staff, Natural Resources Conservation Service,
Uniteds States Department of Agriculture. (2018) Soil
Survey Geographic (SSURGO) Database. Available online
at https://sdmdataaccess.sc.egov.usda.gov. Accessed 2018

Sokol NW, BradfordMA (2019)Microbial formation of stable soil
carbon is more efficient from belowground than

Plant Soil

https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.13031/2013.42243
https://www.farms.ag.iastate.edu/
https://www.farms.ag.iastate.edu/
https://doi.org/10.1111/gcbb.12096
https://doi.org/10.1111/gcbb.12096
https://doi.org/10.2136/sssaj1991.03615995005500050031x
https://doi.org/10.2136/sssaj1991.03615995005500050031x
https://doi.org/10.1016/J.AGEE.2011.02.029
https://doi.org/10.1016/J.AGEE.2011.02.029
https://doi.org/10.1016/S1161-0301(02)00108-9
https://doi.org/10.1016/S1161-0301(02)00108-9
https://doi.org/10.2135/cropsci2013.07.0499
https://doi.org/10.2135/cropsci2013.07.0499
https://doi.org/10.1098/rstb.2011.0244
https://doi.org/10.1098/rstb.2011.0244
https://doi.org/10.1016/J.AGRFORMET.2019.02.037
https://doi.org/10.1007/BF02371189
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1016/J.STILL.2004.02.003
https://doi.org/10.1093/aob/mcs293
https://doi.org/10.1155/2014/487563
https://doi.org/10.2136/sssaj2011.0303
https://doi.org/10.1111/j.1467-8306.1987.tb00149.x
https://doi.org/10.1111/j.1467-8306.1987.tb00149.x
https://doi.org/10.1016/j.eja.2018.04.002
https://doi.org/10.1016/j.eja.2018.04.002
https://doi.org/10.1016/j.fcr.2017.09.003
https://doi.org/10.1016/j.fcr.2017.09.003
https://doi.org/10.1371/journal.pone.0172293
https://doi.org/10.2134/agronj2004.0059
https://doi.org/10.2134/agronj2004.0059
https://doi.org/10.1007/s11104-004-0907-y
https://doi.org/10.1007/s11104-004-0907-y
https://doi.org/10.1093/jxb/erv430
https://doi.org/10.1093/jxb/ert043
https://doi.org/10.1093/jxb/ert043
https://doi.org/10.1890/07-1919.1
https://doi.org/10.1890/07-1919.1
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.1890/0012-9615(2002)072<0311:TGBOR>2.0.CO;2
https://doi.org/10.1890/0012-9615(2002)072<0311:TGBOR>2.0.CO;2
https://sdmdataaccess.sc.egov.usda.gov


aboveground input. Nat Geosci 12:46–53. https://doi.
org/10.1038/s41561-018-0258-6

Stanley CD, Kaspar TC, Taylor HM (1980) Soybean top and root
response to temporary water tables imposed at three different
stages of growth. Agron J 72:341–346. https://doi.
org/10.2134/agronj1980.00021962007200020021x

Stueffer JF, De Kroon H, During HJ (2006) Exploitation of
environmental Hetergeneity by spatial division of labor
in a clonal plant. Funct Ecol 10:328. https://doi.
org/10.2307/2390280

Tibshirani R (2011) Regression shrinkage and selection via the
lasso: a retrospective. J R Stat Soc Ser B (Statistical
Methodol) 73:273–282. https://doi.org/10.1111/j.1467-
9868.2011.00771.x

Tron S, Bodner G, Laio F et al (2015) Can diversity in root
architecture explain plant water use efficiency? A modeling
study. Ecol Model 312:200–210. https://doi.org/10.1016/j.
ecolmodel.2015.05.028

Togliatti K, Archontoulis SV, Dietzel R, Puntel L, VanLoocke A
(2017) How does inclusion of weather forecasting impact in-
season crop model predictions? Field Crops Res 214:261–
272.

United States Department of Agriculture (USDA) (2017) Quick
Stats 2.0. U.S. Department of Agriculture, National

Agricultural Statistics Service, Washington DC. https:://
quickstats.nass.usda.gov/ Accessed Dec 2018

Wang F, Fraisse CW, Kitchen NR, Sudduth KA (2003) Site-
specific evaluation of the CROPGRO-soybean model on
Missouri claypan soils. Agric Syst 76:985–1005. https://doi.
org/10.1016/S0308-521X(02)00029-X

Wei T, Simko V (2017) R package “corrplot”: visualization of a
correlation matrix (Version 0.84)

Wickham H (2017) Easily install and load the “Tidyverse”
tidyverse

Wickham H, Bryan J (2018) readxl: Read Excel Files
York LM (2018) Phenotyping crop root crowns: general guidance

and specific protocols for maize, wheat, and soybean. In:
Methods in molecular biology. Humana Press, New York,
NY, pp 23–32

York LM, Galindo-Castaneda T, Schussler JR, Lynch JP (2015)
Evolution of US maize (Zea mays L.) root architectural and
anatomical phenes over the past 100 years corresponds to
increased tolerance of nitrogen stress. J Exp Bot 66:2347–
2358. https://doi.org/10.1093/jxb/erv074

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Plant Soil

https://doi.org/10.1038/s41561-018-0258-6
https://doi.org/10.1038/s41561-018-0258-6
https://doi.org/10.2134/agronj1980.00021962007200020021x
https://doi.org/10.2134/agronj1980.00021962007200020021x
https://doi.org/10.2307/2390280
https://doi.org/10.2307/2390280
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1016/j.ecolmodel.2015.05.028
https://doi.org/10.1016/j.ecolmodel.2015.05.028
http://quickstats.nass.usda.gov
https://doi.org/10.1016/S0308-521X(02)00029-X
https://doi.org/10.1016/S0308-521X(02)00029-X
https://doi.org/10.1093/jxb/erv074

	Maize root distributions strongly associated with water tables in Iowa, USA
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Experiments
	Measurements
	Statistics
	Data processing
	Data analyses


	Results
	Root carbon-to-nitrogen ratios
	Root mass and length
	Predictors of root distributions

	Discussion
	Root mass
	Root C:N ratios
	Specific root lengths
	Sampling position

	Conclusions
	References


