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ABSTRACT

Agencies and policy makers are interested in constructing reliable estimates for areas with

small sample sizes, where areas often refer to geographic areas and demographic groups. The

estimation for such areas is known as small area estimation. Procedures based on models have

been used to construct estimates for the small area means, by exploiting auxiliary information.

Mixed models are suitable small area models because they combine different sources of infor-

mation and contain different sources of error. The models studied in this dissertation are unit

level generalized linear mixed models in situations where the mean of an auxiliary variable is

subject to estimation error. Different cases of auxiliary information are considered. Prediction

methods for the small area mean, estimation of the prediction mean squared error (MSE) and

confidence intervals (CIs) for the small area means are presented for the case when the response

variable is nonnormal. In the simulation studies, the response variable is binary.

In the first study, two methods for constructing small area mean predictions are considered.

The first method is based on the conditional distribution of the random area effects given the

response variables. The second method, called the ’plug-in method’ is based on the direct

substitution of the predicted random area effects into the small area mean expression. Using a

simulation study, we show that the ’plug-in’ predictor for the small area mean can have sizeable

bias.

The estimation of prediction MSE for small area models is complicated, particularly in a

nonlinear model setting. In the second study, the efficiency gains associated with the random

specification for the auxiliary variable measured with error are demonstrated. The prediction

MSE is smaller when additional auxiliary information is available and included in the estima-

tion. The effect of including auxiliary information, if available, in the estimation is smaller for
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the random mean model than for the fixed mean model for the covariates. A parametric fast

double bootstrap procedure is proposed for the estimation of the MSE of the predictor. The

proposed procedure has smaller bootstrap error than a classical fast double bootstrap proce-

dure with the same number of samples. We call the proposed procedure telescoping fast double

bootstrap.

Most small area studies, including the first two studies in this dissertation, focus on con-

structing predictors for the area means and on estimating the variance of the prediction errors.

The ultimate goal of this dissertation is to construct CIs for the small area means. The most

common CI is based on the estimated prediction MSE and approximates the distribution of

parameter estimates with a normal distribution. The coverage error for such an interval can

be large when the distribution of the parameter estimate is skewed and when the standard

error is poorly estimated. We present two sided CIs for the small area means of a binary

response variable. The estimation of the prediction error variance and the estimation of the

cutoff points are key components in the construction of confidence intervals for the small area

means. A linear approximation of the model is considered and a Taylor variance approximation

is presented for the prediction error variance. We compare the normal approximation method,

the percentile bootstrap method and the pivot-like bootstrap method for estimating the cutoff

points using a simulation study. Level one bootstrap and telescoping fast double bootstrap

methods are used to construct CIs for the small area means. Pivot-like bootstrap CIs perform

better than the percentile bootstrap CIs, with respect to the coverage errors. Double bootstrap

CIs perform well, but do not improve the coverage accuracy compared to the level one boot-

strap CIs. A method for constructing bootstrap CIs for a general level is proposed. The user

is given a degrees of freedom for the Student-t distribution and a standard error of the small

area mean prediction. The CI for the small area mean can be constructed in the common form

(θ̂i ± ζ1−α/2,i,dfise(θ̂i)), where i denotes the area, 1− α is the desired level, θ̂i is the predicted

small area mean, ζ1−α/2,i,dfi is the 100(1 − α/2)th quantile of the Student-t distribution with

given degrees of freedom dfi, and se(θ̂i) is the given standard error of θ̂i. The coverage of the

general bootstrap CI is comparable to the coverage of the level specific bootstrap CI.
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CHAPTER 1. INTRODUCTION

Procedures based on models have been used to construct estimates for the means of small

areas, by exploiting auxiliary information. We study nested models with a binary response,

stochastic covariates and random area effects. In the first paper we investigate predictors for

situations with different amounts of available information. We present bias and mean squared

error results for different prediction methods.

Statistical models containing fixed effects and random effects are called mixed models. In

the small area models, the area specific random effects explain the between area variations in

the data not explained by the fixed effects part of the model. Mixed models with unit level

auxiliary data have been used for small area estimation by a number of authors. Battese,

Harter, and Fuller (1988) use a linear mixed model to predict the area planted with corn and

soybeans in Iowa counties. Datta and Ghosh (1991) introduce the hierarchical Bayes predictor

for general mixed linear models. Larsen (2003) compared estimators for proportions based on

two unit level models, a simple model with no area level covariates and a model using the area

level information. Malec (2005) proposes Bayesian small area estimates for means of binary

responses using a multivariate binomial/multinomial model. Jiang (2007) reviews the classical

inferential approach for linear and generalized linear mixed models and discusses prediction

for a function of fixed and random effects. Ghosh et al (2009) consider a small area model

where covariates have unknown distribution. They assume the sample has been selected so

that weights ωij are available satisfying
∑ni

j=1 ωij = 1. They consider both hierarchical Bayes

and empirical Bayes (EB) estimators and suggest predictors for the small area proportions

of the form
∑ni

j=1 ωij p̃ij(xij), where p̃ij(xij) is either the hierarchical Bayes or EB predictor.

Ghosh and Sinha (2007) propose EB estimators for the small area means, where the covariates
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are subject to measurement error. Datta, Rao, and Torabi (2010) study a nested error linear

regression model with area level covariates subject to measurement error. They propose a

pseudo-Bayes predictor and a corresponding pseudo-empirical Bayes predictor of a small area

mean. Montanari, Ranalli, and Vicarelli (2010) consider unit level linear mixed models and

logistic mixed models, for binary response variable and fully known auxiliary information. Viz-

caino, Cortina, Morales Gonzalez (2011) derive small area estimators for labor force indicators

in Galicia, Spain, using a multinomial logit mixed model.

Jiang and Lahiri (2001) and Pfeffermann and Correa (2012) consider a unit level logistic

model and construct estimates for the small area proportions using the conditional distribu-

tion of the random area effects given the response variables. We consider a unit level mixed

logistic model and study two methods for constructing small area mean predictions. The first

method is based on the conditional distribution of the random area effects given the response

variables. The second method, called the ’plug-in method’ is based on the direct substitution

of the predicted random area effects into the small area mean expression. We show that the

’plug-in’ predictor for the small area mean can have sizeable bias.

The estimation of prediction mean squared error (MSE) for small area models is com-

plicated, particularly in a nonlinear model setting. In the second paper we study unit level

generalized linear mixed models under situations where the mean of an auxiliary variable is

subject to estimation error. The efficiency gains associated with the random specification for

the auxiliary variable measured with error are demonstrated. A parametric bootstrap proce-

dure is proposed for the mean squared error of the predictor based on a logit model. The

proposed procedure has smaller bootstrap error than a classical double bootstrap procedure

with the same number of samples.

Taylor methods have been shown to give good estimates of the prediction mean squared

error, for predicted small area means; see p. 103 in Rao (2003) for area level models and p.

139 in Rao (2003) for unit level models. When the direct estimates of small area means are
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nonlinear functions of the auxiliary information and the random area effects, the prediction

of the small area mean is no longer a linear function of the observations. Bootstrap methods

have been used for MSE estimators in this case. Double bootstrap methods reduce the order of

the bias in the bootstrap prediction MSE estimators. There are many studies reporting point

estimates for the small area means, as well as prediction MSE estimates. Ghosh, Sinha and

Kim (2006) consider an area level linear model with random auxiliary variable mean, estimated

jointly with the small area mean. Ybarra and Lohr (2008) consider an area level linear model

with auxiliary mean estimated with error. Datta, Rao and Torabi (2010), following Ghosh and

Sinha (2007), studied a nested error linear regression model with area level covariate subject

to measurement error.

Hall and Maiti (2006) consider linear area level models and a unit level binomial model with

fixed known covariates. They construct small area predictions for the logit of the small area

means and nonnegative, bias-corrected MSE estimates using a double bootstrap procedure.

Pfeffermann and Correa (2012) study a unit level binomial model with fixed known covariates

and suggest a bootstrap procedure in which the bias in the estimator is estimated as a function

of parameters and of a bootstrap estimator of bias.

Agencies and policy makers are often interested in confidence intervals for the small area

estimates. Most studies that report confidence intervals (CIs) for the small area means, report

for special cases of the Fay-Herriot model; see Hall and Maiti (2006), Chatterjee et al (2008),

Dass et al (2012), Diao et al (2014) and Yoshimori and Lahiri (2014). In the third paper, we

consider different procedures to estimate the small area mean prediction mean squared error

and to construct confidence intervals for the small area means.

Let θi be the area specific parameter of interest, where i denotes the area. Let a two-

sided α level confidence interval for θi be the interval I = (θLi, θU i), with desired coverage

1 − α = P (θi ∈ I). When P (θi < θLi) = P (θi > θU i) = α/2, I is called equal tailed α level

confidence interval for θi. Let θ̂i be the sample estimate of θi. If θLi = θ̂i − c, θU i = θ̂i + c and
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P (|θ̂i − θi| > c) = α, I is called symmetric α level confidence interval for θi. The difference

between the actual coverage rate of a confidence interval and the claimed value 1 − α is the

coverage error.

The most common confidence interval is based on the estimated MSE and approximating

the distribution of parameter estimates with a normal distribution. This confidence interval is

called a Wald-type confidence interval. The standard form of the α level Wald-type CI for θi

is (θ̂i ± ζα,ise(θ̂i)), where ζα,i is the normal percentile, for the desired α level, and se(θ̂i) is the

standard error of the estimate θ̂i, where se(θ̂i) can be computed using Taylor methods or using

bootstrap methods. The coverage error can be large when the distribution of the parameter

estimate is skewed and when the standard error is poorly estimated.

Because Wald-type confidence intervals (CIs) often have poor coverage, correction proce-

dures have been proposed. Correction of the coverage probability can be performed using

asymptotic expansions of the correction and of the interval endpoints, in an iterative method.

Diao et al (2014) construct second order correct confidence intervals for small area means based

on the Fay-Herriot model. They calibrate the cutoff points using asymptotic expansions in a

direct way, not involving resampling methods, where calibration refers to the bias adjustment

in the point or interval estimates.

Bootstrap methods were introduced to construct confidence intervals in an algorithmic fash-

ion, using fewer assumptions than those based on the normal approximation. Also, bootstrap

confidence intervals can be constructed for complicated models and data structures. Efron

(1983) introduced the bootstrap as a nonparametric tool for estimating standard errors and

biases. Confidence intervals require more effort than parametric estimation. Methods of im-

provements have been developed since Efron (1983), such as the bootstrap accelerated method,

bootstrap-t, iterated bootstrap and calibration, see Martin (1990), Hall (1992) and Shi (1992).
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Hall (1986) proposed pivot-like statistics to reduce the two-sided bootstrap CI coverage

error from O(m−1) to O(m−3/2), where m is the number of areas. Chatterjee et al (2008)

construct parametric bootstrap confidence intervals based on a pivot-like statistic and centered

around the small area predictions, for a generalization of the Fay-Herriot model. The area

specific confidence intervals constructed by the authors have error of order O(d3m−3/2), where

d is the number of model parameters and m is the number of small areas. Chatterjee et al.

(2008) state that if calibrated, their intervals would be O(d5m−5/2) order correct. Liu and

Diallo (2013) apply the method in Chatterjee et al(2008) and construct percentile parametric

bootstrap confidence intervals for survey-weighted small area proportions based on the Fay-

Herriot model.

The double bootstrap is a procedure designed to estimate the coverage error of a CI and

adjust the interval, based on the error estimate, in such a way that the coverage probability

improves. In the level one bootstrap, a large number of bootstrap samples are drawn. In the

double bootstrap, a large number of bootstrap samples are drawn for every level one bootstrap

iteration. Further nested levels of bootstrap samples can be drawn at every previous bootstrap

level in the iteration procedure. Hall (1986), Beran (1987), Loh ( 1987), Martin (1990), Shi

(1992), Davidson and Hinkley (1997), McCullough and Vidon (1998) and Nankervis (2005)

summarize the theory of bootstrap iteration for confidence intervals. The authors consider

basic, studentized, percentile and percentile-t confidence intervals, using pivot and pivot-free

methods. McCullough and Vidon (1998) and Nankervis (2005) use a pivot-like statistic and

correct the coverage rate of the two-sided equal-tailed and symmetric bootstrap confidence

intervals by estimating the cutoff points in the second bootstrap level. A uniform random

variable is constructed with realizations that are the proportions of the level two pivot values

less than the level one pivot values and the quantiles of this uniform random variable are used

to correct for the final cutoff points. In a Monte Carlo study, Nankervis (2005) compares the

empirical coverage rates for percentile and for studentized bootstrap confidence intervals, at

levels α = 0.1, 0.05, for the mean from samples from a normal and lognormal populations, and

for the cumulative impulse response in a second order autoregressive model (AR(2)). For the
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Gaussian example, the empirical coverage rates of the level one bootstrap CIs for the mean

and of the double bootstrap CIs for the mean are close to the nominal coverages, while for

the lognormal example, the bootstrap confidence intervals result in undercoverage, with better

coverage rates for the double bootstrap CIs for the mean. For the stationary Gaussian AR(2)

model, the errors in the coverage rates of the studentized bootstrap CIs are smaller than those

of the percentile intervals, and the double bootstrap improves the coverage rates for the level

one bootstrap CIs. Shi (1992) studied the method described in Nankervis (2005), with no

pivot-like statistic. Using Edgeworth expansions of the distributions and Cornish-Fisher inver-

sion of quantiles, Shi proves that the difference between the bootstrap CI endpoint limit and

the theoretical CI endpoint limit is Op(m
−3/2), and that the difference in probability coverage

between the bootstrap CI and the theoretical CI is O(m−1). Martin (1990) constructs double

bootstrap confidence intervals, using a coverage correction method based on the interpolation

between the estimated true coverages at several nominal levels close to the desired level. He

shows that the expected asymptotic length of the final intervals changes by an amount pro-

portional to the coverage error of the original interval. The author discusses the advantages of

bootstrap coverage-correction, such as the transformation invariance property of the percentile

CIs, the simplicity of implementing the percentile CIs since no variance estimator is needed,

and the asymptotic high-order coverage accuracy in CIs, and the disadvantages of bootstrap

coverage-correction, such as the computational expense.

Hall and Maiti (2006) construct two sided, equal-tailed, double bootstrap calibrated CIs.

The authors outline an algorithm for calibrating the CI coverage and constructing percentile

confidence intervals for the parameter of interest. Linear and nonlinear models are considered,

but the parameter of interest is always a linear function of the model parameters. For exam-

ple, they consider a binary response variable, with area mean ψ(θi), where ψ is the inverse

logit function and θi = fi(β) + bi = x′iβ + bi. The index i denotes the area and fi(β) is an

area specific known smooth function of the covariates xi and the vector of parameters β. The

random effects bi are independent and identically distributed with mean zero. The authors

assume that θi follows a normal distribution with mean x′iβ and variance ζ. The parameter
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of interest is θi = logit(ψ(x′iβ + bi)) = x′iβ + bi, the logit of the small area mean ψ(x′iβ + bi).

Hence, the parameter is a linear function of the area covariate xi and the area random effect

bi. The bootstrap CIs for θi are constructed using the estimated distribution of the bootstrap

predictions of θi. The authors state that the coverage error of the level one bootstrap CI is of

order O(m−2) and that the coverage error of the level two calibrated bootstrap CI is of order

O(m−3). A simulation study is conducted for the binary model, for m = 15 areas with sample

sizes in the range 48 to 287, vector of parameters β = (0, 1), and variance of random effects

ζ = 1. Bootstrap confidence intervals with nominal coverages α = 0.80, 0.90, 0.95 are con-

structed for θi, for different models. The simulation results show undercoverage for the normal

approximated CIs, good performance for the level one bootstrap CIs for α = 0.20, 0.10 and

undercoverage for the level one bootstrap CIs for α = 0.05. When the performance for the level

one bootstrap CI for θi was good, the calibrated double bootstrap CI either had no effect or

it produced overcoverage. When the level one bootstrap CI for θi undercovered, the calibrated

double bootstrap CI for θi corrected the coverage error, but it resulted in overcoverage.

Nested levels of bootstrap samples quickly become very costly. Several authors have consid-

ered analytical approximation to bootstrap distribution functions, to replace the inner levels of

resampling in iterated bootstrap procedures. Davison and Hinkley (1988) and Diccio, Martin

and Young (1992) proposed the use of saddlepoint approximations for constructing approxi-

mate iterated bootstrap CIs. Lee and Yong (1995) construct asymptotic iterated bootstrap

confidence intervals, replacing the need for a second bootstrap level. They construct two-sided

percentile CI with calibrated nominal coverage. The authors use Edgeworth expansions of the

coverage and the endpoints of the CIs.

Davidson and MacKinnon (2007) introduced a fast double bootstrap procedure for boot-

strap testing. Only one sample is drawn at the second bootstrap level. Giacomini et al. (2013)

provide key properties for fast double bootstrap methods, under regularity conditions. The

authors discuss applications of fast double bootstrap methods to assess the performance of

bootstrap estimators, test statistics and confidence intervals. Erciulescu and Fuller (2014)
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study a unit level binomial model and construct prediction mean squared error estimators for

the small area means using fast double bootstrap procedures. Chang and Hall (2014) study

the fast double bootstrap method described in Giacomini et al (2013) to produce third-order

accurate confidence intervals. The authors show that the performance of the fast double boot-

strap in reducing the order of magnitude of bias is comparable to the classic double bootstrap

method. The authors describe a calibration method for the confidence interval cutoff points

and show that the fast double bootstrap does not improve level one order of magnitude of

coverage error of the CIs.

1.1 Bootstrap Properties

Suppose that X1, X2, ..., Xn is a random sample from a distribution F and that θ is the

parameter of interest. Let θ̂ be a sample estimator of θ. The idea of bootstrap (Efron, 1979)

is to treat the sample X1, X2, ..., Xn as the population and to draw samples of size n, with re-

placement, from X1, X2, ..., Xn, denoted by X∗1 , X
∗
2 , ..., X

∗
n. The bootstrap estimate of θ̂ is θ̂∗,

a function of the bootstrap sample X∗1 , X
∗
2 , ..., X

∗
n. The procedure of drawing a sample of size n

from the original sample X1, X2, ..., Xn, treated as the population, is called the nonparametric

bootstrap, proposed by Efron (1979).

Assume that the form of distribution F is known and is determined by an unknown pa-

rameter ψ. The parametric bootstrap is the procedure of generating a sample of size n from a

distribution F̂ , defined by ψ̂, estimated from the original sample.

The bootstrap principle (p. 45 in Efron and Tibshirani, 1993) is that information on the

relationship between the true parameter θ and its estimator θ̂ can be obtained by treating θ̂ as

the true parameter value in question and looking at the relationship between θ̂ and θ̂∗, where

θ̂∗ is its bootstrap estimate. Based on the bootstrap principle, the distribution of θ̂∗ − θ̂ can

be used to approximate the sampling distribution of θ̂ − θ, and hence to construct CIs.
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Bootstrap theoretical basis. Our discussion follows Chapter 52 in Horowitz (2001).

Suppose that X1, X2, ..., Xn is a random sample from F . Let G = g(X1, X2, ..., Xn;F ) be the

parameter of interest, with distribution

GF,n(g) = P (G(X1, X2, ..., Xn;F ) ≤ g|F ),

and let the bootstrap estimate of GF,n(g) be

GF̂ ,n(g) = P (G(X∗1 , X
∗
2 , ..., X

∗
n; F̂ ) ≤ g|F̂ ),

where X∗1 , X
∗
2 , ..., X

∗
n is a bootstrap sample and F̂ is the empirical distribution of G.

Suppose that, as n→∞, F̂ falls into a neighbourhood, N , of F , with probability one. The

bootstrap is consistent if for any g and ε > 0, P (supg|GF̂ ,n(g)−GF,∞(g)| > ε)→ 0 as n→∞.

The consistency holds under the following conditions:

• for any distribution A ∈ N , GA,n must converge weakly to a limit GA,∞

• the convergence of GA,n must be uniform on N

• the function mapping A to GA,∞ must be continuous.

The validity of the bootstrap for a given paramater G is given by the existence of an

Edgeworth expansion for the statistic of interest. For example, a differentiable function of the

sample moments is a smooth and stable statistic. The parameter of interest in the bootstrap

methods should be a smooth function, details on the conditions are described in Bhattacharya

and Ghosh (1978).

1.2 Parametric Double Bootstrap Results

Consider the parametric bootstrap procedure. The parameter ψ is estimated by ψ̂, using

the original sample. Suppose B1 samples are generated from the a distribution F̂ , determined

by ψ̂, and let α∗k, k = 1, ..., B1 be the parameter of interest for the kth bootstrap sample. Given
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ψ̂, the α∗k are identically distributed. The parameter ψ is estimated by ψ∗k, using the bootstrap

sample k, for k = 1, ..., B1. In the double bootstrap, the level one procedure is repeated for each

level one bootstrap sample. For each level one bootstrap sample k, a new set of B2 samples

are generated, using ψ∗k. Let α∗∗kt , k = 1, ..., B1, t = 1, ..., B2 be the parameter of interest for the

kth level one bootstrap sample, tth level two bootstrap sample. Given ψ∗k, α
∗∗
kt are identically

distributed, for k=1,...,B1, t = 1, ..., B2. In the classic double bootstrap, both B1 and B2 are

large. In the classic fast double bootstrap, B2 = 1.

Let level one bootstrap estimator of α be

α̂∗ = B−1
1

B1∑
k=1

α∗k = ᾱ∗. (1.1)

Then the double bootstrap bias adjusted estimator of α is

α̂∗∗ = B−1
1

B1∑
k=1

(
2α∗k −B−1

2

B2∑
t=1

α∗∗k,t

)
, (1.2)

and a fast double bootstrap bias adjusted estimator of α is

α̂∗∗ = B−1
1

B1∑
k=1

(2α∗k − α∗∗k ) = 2ᾱ∗ − ᾱ∗∗. (1.3)

We present two results for the parametric double bootstrap procedure. In the first result

we show that, under suitable conditions, the expected value of the bias corrected double boot-

strap estimator does not change with a change in the number of level two samples. Chang and

Hall (2014) give a different proof for this result, showing that the order of magnitude of bias

reduction is comparable for the fast double bootstrap and for the classic double bootstrap. In

the second result we give an expression for the optimal number of level two bootstrap samples

needed to minimize the variance of the bootstrap estimator, given a fixed number of bootstrap

samples.

Result 1. Consider the parametric bootstrap procedure and let α be parameter of inter-

est, where α is a smooth function of an unknown parameter ψ. Let the distribution F be a

known smooth function of ψ and let the estimated distribution F̂ be a smooth function of ψ̂.
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Assume that the conditions given in Section 1.1 hold for G = α. Then, the expected value of

the additive bias corrected double bootstrap estimator does not change with a change in the

number of level two samples, B2, B2 ≥ 1.

Proof. The bootstrap estimated bias in the estimator of the parameter of interest, α, is

∆α = B−1
1

B1∑
k=1

(B−1
2

B2∑
t=1

α∗∗kt − α∗k),

and its expected value is

E(∆α) = E
(
B−1

1

∑B1
k=1

(
B−1

2

∑B2
t=1 α

∗∗
kt − α∗k

))

= E
(
E
(
B−1

1

∑B1
k=1B

−1
2

∑B2
t=1 α

∗∗
kt |ψ∗k

))
− E

(
B−1

1

∑B1
k=1 α

∗
k

)
.

Since α∗∗kt are identically distributed, given ψ∗k,

E(∆α) = E
(
E
(
B−1

1

∑B1
k=1 α

∗∗
k1|ψ∗k

))
− E

(
B−1

1

∑B1
k=1 α

∗
k

)

= E(B−1
1

∑B1
k=1 α

∗∗
k1 − α∗k),

for any B2.

The variance of the bootstrap estimator of α has two components. The first, that we call

between, is the variance one would obtain if one used an infinite number of bootstrap samples.

The second, that we call within, is the variability due to the fact that our set of bootstrap

samples is a sample of samples.

Result 2. Consider the parametric bootstrap procedure and let α be the parameter of

interest, where α is a smooth function of ψ. Let the distribution F be a known smooth

function of ψ and let the estimated distribution F̂ be a smooth function of ψ̂. Assume that

the conditions given in Section 1.1 hold for G = α. Then, given a fixed number of bootstrap
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samples, B, the within bootstrap variance of the bias corrected double bootstrap estimator is

minimized when the number of level two bootstrap samples,

B2 =

√√√√√ E
(
V (α∗∗|ψ∗)|ψ̂

)
4Vw(α∗)− 4Cw(α∗, α∗∗) + E

{
V
(
E(α∗∗|ψ∗)|ψ̂

)} , (1.4)

where

Vw(α∗) = E
(
V (α∗|ψ̂)

)
,

Vw(α∗∗) = E
{
V
(
E(α∗∗|ψ∗)|ψ̂

)}
+ E

(
V (α∗∗|ψ∗)|ψ̂

)
,

Cw(α∗, α∗∗) = E {C (α∗, E(α∗∗|ψ∗))} .

Proof. The double bootstrap, bias corrected, estimator of α is

α̂∗∗ = B−1
1

B1∑
k=1

α∗k −∆α = B−1
1

B1∑
k=1

2α∗k −B−1
1 B−1

2

B1∑
k=1

B2∑
t=1

α∗∗kt =: 2ᾱ∗ − ᾱ∗∗,

and the within bootstrap variance of α̂∗∗ is

Vw(α̂∗∗) = Vw(2ᾱ∗ − ᾱ∗∗)

= Vw(2ᾱ∗) + Vw(ᾱ∗∗)− 2Cw(2ᾱ∗, ᾱ∗∗)

= E
(
V (2B−1

1

∑B1
k=1 α

∗
k|ψ̂)

)
+ E

{
V
(
E(B−1

1

∑B1
k=1 ᾱ

∗∗
k |ψ∗k)|ψ̂

)}

+E
(
V (B−1

1 B−1
2

∑B1
k=1

∑B2
t=1 α

∗∗
kt |ψ∗k)|ψ̂

)
− 4E

{
C
(
ᾱ∗, E(B−1

1

∑B1
k=1 ᾱ

∗∗
k |ψ∗k)

)}
,

where ᾱ∗∗k = B−1
2

∑B2
t=1 α

∗∗
kt . Since α∗∗kt are identically distributed, given ψ∗k and α∗k are identi-

cally distributed, given ψ̂,

Vw(α̂∗∗) = 4B−1
1 E

(
V (α∗|ψ̂)

)
+B−1

1 E
{
V
(
E(α∗∗1 |ψ∗)|ψ̂

)}

+B−1
1 B−1

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
− 4B−1

1 E {C (α∗, E(α∗∗|ψ∗))}

= 4B−1
1 Vw(α∗) +B−1

1 E
{
V
(
E(α∗∗|ψ∗)|ψ̂

)}
+B−1

1 B−1
2 E

(
V (α∗∗|ψ∗)|ψ̂

)
− 4B−1

1 Cw(α∗, α∗∗).
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We would like to minimize Vw(α̂∗∗) with respect to the restriction B1B2 + B1 = B, where

B is a constant representing the total number of bootstrap samples.

To consider this problem as a Lagrangian multiplier problem, let

L(B1, B2, λ) = 4B−1
1 Vw(α∗)− 4B−1

1 Cw(α∗, α∗∗) +B−1
1 E

{
V
(
E(α∗∗|ψ∗)|ψ̂

)}

+B−1
1 B−1

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
+ λ(B1B2 +B1 −B)

where λ the Lagrangian multiplier. The resulting system of three equations is:

0 = −4B−2
1 Vw(α∗) + 4B−2

1 Cw(α∗, α∗∗)−B−2
1 E

{
V
(
E(α∗∗|ψ∗)|ψ̂

)}

−B−2
1 B−1

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
+ λ(B2 + 1)

0 = −B−1
1 B−2

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
+ λB1

0 = B1B2 +B1 −B.

The solution for B2 is (1.4) and

B1 = B


√√√√√ E

(
V (α∗∗|ψ∗)|ψ̂

)
4Vw(α∗)− 4Cw(α∗, α∗∗) + E

{
V
(
E(α∗∗|ψ∗)|ψ̂

)} + 1


−1

.
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CHAPTER 2. SMALL AREA PREDICTION OF THE MEAN OF A

BINOMIAL RANDOM VARIABLE

A paper in Survey Research Methods Section, JSM Proceedings

Andreea L. Erciulescu and Wayne A. Fuller

Abstract

Direct estimates for small areas or subpopulations may not be reliable because of small

sample sizes for such objects. Procedures based on implicit or explicit models have been used

to construct better estimates for given small areas, by exploiting auxiliary information. In

this paper we consider binary responses, and investigate predictors for situations with different

amounts of available information. We use generalized linear mixed models and present bias

and mean squared error results for different prediction methods.

2.1 Introduction

Procedures based on models have been used to construct estimates for small areas, by ex-

ploiting auxiliary information. In this paper, we study nested models with a binary response

and random area effects. These models form a subclass of generalized linear mixed models. We

also consider stochastic covariates.

Survey data often contain auxiliary variables with good correlation with the variable of

interest. However, area level auxiliary data may be incomplete. We consider three cases of

auxiliary information, when the covariates have known mean, when the covariates have un-

known distribution, and when the covariates have unknown random mean. For the last two
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cases, we describe estimation methods for the area mean of the auxiliary data. Because the

response variable is binary and the auxiliary information is not fixed, estimation and prediction

are not as straight forward as in linear mixed models.

Mixed models with unit level auxiliary data have been used for small area estimation by

a number of authors. Battese, Harter, and Fuller (1988) use a linear mixed model to predict

the area planted with corn and soybeans in Iowa counties. Datta and Ghosh (1991) introduce

the hierarchical Bayes predictor for general mixed linear models. Larsen (2003) compared es-

timators for proportions based on two unit level models, a simple model with no area level

covariates and a model using the area level information. Malec (2005) proposes Bayesian small

area estimates for means of binary responses using a multivariate binomial/multinomial model.

Jiang (2007) reviews the classical inferential approach for linear and generalized linear mixed

models and discusses the prediction for a function of fixed and random effects. Ghosh et al

(2009) consider a small area model where covariates have unknown distribution. They assume

the sample has been selected so that weights ωij are available satisfying
∑ni

j=1 ωij = 1. They

consider both hierarchical Bayes and EB estimators and suggest predictors for the small area

proportions of the form
∑ni

j=1 ωij p̃ij(xij), where p̃ij(xij) is either the hierarchical Bayes or EB

predictor. Ghosh and Sinha (2007) propose EB estimators for the small area means, where the

covariates in the super-population are subject to measurement error. Datta, Rao, and Torabi

(2010) study a nested error linear regression model with area level covariates subject to mea-

surement error. They propose a pseudo-Bayes predictor and a corresponding pseudo-empirical

Bayes predictor of a small area mean. Montanari, Ranalli, and Vicarelli (2010) consider unit

level linear mixed models and logistic mixed models, for binary response variable and fully

known auxiliary information. Vizcaino, Cortina, Morales Gonzalez (2011) derive small area

estimators for labor force indicators in Galicia using a multinomial logit mixed model.
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2.2 Models

Consider a binomial response variable y, with realizations yij for m different areas and ni

different units within each area. That is yij |bi are independent, following a binomial distribu-

tion, with mean pij , where bi are the random area effects. Let xi be independent and identically

distributed stochastic vectors of auxiliary information, following a distribution Fxi , and let bi

be independent and identically distributed, with a density fb with mean 0 and variance σ2
b .

Then our unit level model is

yij = h(ηij) + eij , ηij = x′ijβ + bi, h(ηij) =
exp(ηij)

1 + exp(ηij)
(2.1)

for xij = (1, xij), i = 1, 2, ...,m and j = 1, 2, ...ni, where i is the index for area, and j is the

index for unit within area. We assume that bi and xij are mutually independent. Note that

the mean of yij given (xij , bi) is h(ηij) := pij(xij , bi). Under the assumptions of model (2.1),

the true small area mean of y is

θi =

∫
pij(xij , bi)dFxi(x), (2.2)

where Fxi(x) is the distribution of x in area i. Our objective is to construct predictions for θi.

An example of (2.1) is the simple unit level mean model for y

pα,ij =
exp(α+ bi)

1 + exp(α+ bi)
, (2.3)

where α is a location parameter and bi is the random area effect.

We will have use for an area level model for the vector of covariates xij = (1, xij), and

assume

µxi ∼ NI(µx,Σδδ), xi|µxi ∼ NI(µxi,Σεε). (2.4)

2.3 Estimation and Prediction

The models (2.1) and (2.3) are generalized linear mixed models (GLMMs) and estimates

for β, σ2
b , α and σ2

2b can be computed using R, by maximizing a Laplacian approximation to
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the likelihood. Note that the predicted random area effects and the estimated random effects

variance for model (2.3) differ from the estimated values under model (2.1), hence we denote

those for model (2.3) by b̂2 and σ̂2
2b, respectively.

We consider two methods for constructing predictions for θi. In the first method, the min-

imum mean squared error (MMSE) prediction method, we use the conditional distribution

f(bi|yij) to compute the unit means of y and then we integrate over the distribution of x

to compute the predictions for θi. In the second method, the ‘plug-in’ method, we directly

substitute the predicted random area effects vector b̂ in pij . As with the first method, we

integrate estimated pij over the estimated distribution of x to compute the predictions for θi.

We compare these two methods using a simulation study.

2.3.1 MMSE Prediction

If the parameters of the distributions are known, the MMSE predictor of bi as

b̂i =

∫ ∫
bi
∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni
t=1 f(yit|bi)fb(bi)dbi

dFxi(x). (2.5)

Let µxi be the area mean of xi. We present predictions for θi, for different cases of auxiliary

information, when µxi is known, when the distribution of x is unknown, and when µxi is un-

known random. For the first case we assume x is normally distributed with unknown variance.

For the second case, we estimate the distribution of xi following Ghosh et al (2009). For the

third case, we estimate the area mean of xi using an area level model for the vector of covariates

xij = (1, xij), given in (2.4).
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2.3.1.1 Covariate Mean Known

Consider the case when the mean of x is known for area i and the form of the distribution

is specified. Then, the MMSE predictor of the small area mean of y is

θ̂i =

∫ ∫
pij(xij , bi)

∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni

t=1 f(yit|bi)fb(bi)dbi
dFxi(x). (2.6)

In some finite population situations, the entire finite population of x values may be known and

the integral in (2.6) is the sum over the population. In practice it is often necessary to estimate

the parameters of the distribution Fxi .

2.3.1.2 Unspecified distribution for x

If µxi is unknown and treated as fixed, we estimate the distribution of x at point c using

the sample cumulative distribution function (CDF),
∑ni

j=1 ωijI(xij , c), where I(xij , c) is the

indicator function. For known parameters, the predicted small area mean of y is

p̄i =

ni∑
j=1

ωij

∫
pij(xij , bi)

∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni

t=1 f(yit|bi)fb(bi)dbi
. (2.7)

See Ghosh et al (2009) for an example of the approach.

2.3.1.3 No Auxiliary Information Used

Under model (2.3), for known parameters, the MMSE predictor of the small area mean of

y is

p̂i =

∫
pα,ij

∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni

t=1 f(yit|bi)fb(bi)dbi
, (2.8)

where pα,ij is defined in (2.3).
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2.3.1.4 Unknown Random Covariate Mean

Consider the model (2.1) for y and the linear mixed model for xij given in (2.4):

xij = µx + δi + εij , δi ∼ N(0, σ2
δ ), εij |δi ∼ N(0, σ2

ε ) (2.9)

A small area predictor of the mean of xi is

µ̂xi = µ̂x + γ̂xi(x̄i − µ̂x), (2.10)

where

µ̂x =
m∑
i=1

(σ̂2
δ + n−1

i σ̂2
ε )
−1x̄i, γ̂xi = (σ̂2

δ + n−1
i σ̂2

ε )
−1σ̂2

δ

and

σ̂2
ε =

(
m∑
i=1

(ni − 1)

)−1 m∑
i=1

ni∑
j=1

(xij − x̄i)2.

In (2.10), x̄i = n−1
i

∑ni
j=1 xij denotes the sample area mean of xi, and the variance of the

random area effects δi is estimated by σ̂2
δ , the REML estimate constructed as described in Rao

(2003, page 119).

Then a predictor of the small area mean of y is

θ̃i =

∫ ∫
pij(xij , bi)

∏ni
t=1 f(yit|bi)fb(bi)dbi∫ ∏ni

t=1 f(yit|bi)fb(bi)dbi
dF̃xi(x), (2.11)

where F̃x(x) is the estimator of Fx(x) with parameter µx predicted on the basis of model (2.4).

If Fx and fb are continuous distributions, there are many ways to approximate the integrals

in (2.2,2.5,2.6,2.7,2.8,2.11). Algorithms are available in R or one can create a finite discrete

approximation. We consider the normal distribution and let zk, k = 1, 2, ...K be a set of

numbers such that

1

K

K∑
k=1

(zk, z
2
k) = (0, 1) (2.12)

and the {zk} is an approximation for the normal distribution. For example, zk might be

ξ(k − 0.5K−1), k = 1, 2, ...,K − 1, with zK = ξ(k + 0.5K−1), where ξ(a) is the ath percentile
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of the normal distribution. The zk are standardized to have mean zero and variance one. Let

x∗ik = (1, x∗ik) and

x∗ik = µxi + zkσε and b∗k = σb ∗ zk. (2.13)

Then, the approximated random area predictions b̂i are

b̂i =

∑K
k=1 b

∗
k

∏ni
t=1 f(yit|b∗k)∑K

k=1

∏ni
t=1 f(yit|b∗k)

.

Approximations for the integral expressions in (2.2,2.6,2.7,2.8,2.11) are:

(i) true small area mean of y

θi = K−1
K∑
j=1

pij(x
∗
ij , bi); (2.14)

(ii) predicted small area mean of y with µxi known

θ̂i =
1

K

K∑
j=1

∑K
k=1 pik(x

∗
ij , b
∗
k)
∏ni
t=1 f(yit|b∗k)∑K

k=1

∏ni
t=1 f(yit|b∗k)

, (2.15)

where

x∗ij = µxi + zj σ̂ε, b
∗
k = σ̂b ∗ zk, f(yit|b∗k) = I[yit = 1]pit(xit, b

∗
k) + I[yit = 0](1− pit(xit, b∗k)),

and σ2
ε is estimated using the pooled within-area mean squared

σ̂2
ε = (

m∑
i=1

ni)
−1

m∑
i=1

ni∑
j=1

(xij − µxi)2;

(iii) predicted small area mean of y using area sample CDF for x

p̄i = n−1
i

ni∑
j=1

p̄ij = n−1
i

ni∑
j=1

∑K
k=1 pik(xij , b

∗
k)
∏ni
t=1 f(yit|b∗k)∑K

k=1

∏ni
t=1 f(yit|b∗k)

, (2.16)

where

b∗k = σ̂b ∗ zk, f(yij |b∗k) = I[yij = 1]pik(xij , b
∗
k) + I[yij = 0](1− pik(xij , b∗k));
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(iv) predicted small area mean of y using simple mean model for y

p̂i =

∑K
k=1 pα,ik(b

∗
2k)
∏ni
t=1 f(yit|b∗2k)∑K

k=1

∏ni
t=1 f(yit|b∗2k)

, (2.17)

where

b∗2k = σ̂2b ∗ zk, f(yit|b∗2k) = I[yij = 1]pik(b
∗
2k) + I[yij = 0](1− pik(b∗2k));

(v) predicted small area mean of y using predicted small area mean of x

θ̃i =
1

K

K∑
j=1

∑K
k=1 pik(x

∗
ij , b
∗
k)
∏ni
t=1 f(yit|b∗k)∑K

k=1

∏ni
t=1 f(yit|b∗k)

, (2.18)

where

x∗ij = µ̂xi + zj σ̂
∗
ε , b
∗
k = σ̂b ∗ zk, f(yit|b∗k) = I[yit = 1]pit(xit, b

∗
k) + I[yit = 0](1− pit(xit, b∗k)),

and

σ̂∗ε
2 = (

m∑
i=1

(ni − 1))−1
m∑
i=1

ni∑
j=1

(xij − x̄i)2.

In application, the parameters must be estimated. That is, pij(xij , bi) is replaced with

p̃ij(xij , bi) =
exp(x′ijβ̂ + bi)

1 + exp(x′ijβ̂ + bi)
,

σ̂2
b is estimated, and pα,ij(bi) is replaced with

p̃α,ij(bi) =
exp(α̂+ bi)

1 + exp(α̂+ bi)
.

2.3.2 Simulation Results, MMSE Method

We performed a simulation study for m = 36 areas in three groups of 12 areas, with sizes

ni ∈ {2, 10, 40} and unit level observations xij . Each sample, (y,x), is generated using model

(1) with σ2
b = 0.25, µx = 0, σ2

δ = 0.16, and σ2
ε = 0.36. Thus there is a random set of bi for each

MC sample. The vector of coefficients for the fixed effects is (β0, β1) = (−0.8, 1) and, for each

unit, the probability that yij = 1 is

pij =
exp(−0.8 + xij + bi)

1 + exp(−0.8 + xij + bi)
. (2.19)
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One thousand MC samples were generated satisfying the model. Let the estimation models be

• Model 1: Model (2.1)-(2.4), with known auxiliary mean µxi

• Model 2: Model (2.1), with unknown distribution for xij

• Model 3: Model (2.3), simple mean model for y

• Model 4: Model (2.1)-(2.4), with unknown random auxiliary mean µxi.

We fit the estimation models (2.1) and (2.3) as generalized linear mixed models (GLMMs),

with the binomial conditional distributions for the response. The model (2.4) for the covariate

xij is fit as a linear mixed model (LMM).

The true small area mean of y is given by (2.14) and the predicted area means of y in

the simulations are given in (2.15-2.18), with (β0, β1) and σ2
b estimated using GLMM in R.

The integrals were approximated with K = 50. The values x∗ik in (2.15) are constructed using

the known µxi and the estimated σ2
ε defined for (2.15). Similarly, the values x∗ik in (2.18) are

constructed using the predicted µxi and the estimated σ∗ε
2 defined for (2.18).

We denote the sample mean of y by ȳ. We computed the bias and the mean squared error

(MSE) for the predictors averaged over the 1000 samples, averaged over areas with the same

sample size, for the three different sample sizes.

Table 2.1 contains the estimated bias in predicting the small area mean yij as a percent of

the standard error of prediction, under the MMSE method. The results are organized in three

rows, corresponsing to the three different sample sizes considered in this study. The simulation

standard errors are presented in parentheses below the bias values. The estimator of the bias

in the predictor is the simulation mean of the difference between the model predictor and the

true parameter θ.
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Table 2.1: MC BIAS of Prediction Error as Percent of the Standard Error of Prediction, MC

BIAS of ȳij − θi as Percent of the Standard Error, and MC BIAS of b̂i − bi and MC BIAS of

b̂2i − b2i as Percents of the Standard Errors of Predictions

n θ̂ − θ1 p̄− θ2 p̂− θ3 θ̃ − θ4 ȳ − θ b̂− b b̂2 − b2

2 1.44 1.46 0.86 -0.24 -0.17 1.56 2.18

(1.16) (1.06) (1.15) (1.14) (0.93) (0.87) (0.88)

10 -1.62 -1.82 -1.64 -2.48 -1.60 0.69 0.71

(1.11) (1.07) (1.05) (1.08) (0.89) (0.96) (0.95)

40 0.37 0.16 0.12 -0.02 0.50 1.77 2.28

(0.96) (0.95) (0.94) (0.96) (0.90) (1.23) (1.01)

1. Model 1, known µxi
2. Model 2, unknown distribution for xij
3. Model 3, simple mean model for y

4. Model 4, unknown random µxi

The mean squared errors for the predictions of the mean of yij and predictions for the

random area effects bi are presented in Table 2.2. The MSEs are multiplied by one thousand

and are organized in three rows, corresponsing to the three different sample sizes considered in

this study. The simulation MSE standard errors are presented in parentheses below the MSE

values. The estimator of the MSE is the simulation mean of the squared difference between

the model predictor and the true parameter.

Because the estimated biases are small, relative to the standard error of prediction, the

variance of the prediction error is approximatly equal to the MSE. The smallest MSE corre-

sponds to the prediction error in predicting the mean of yij under Model 1, when the auxiliary

mean is known. Using Model 1 we estimate the sample variance of the auxiliary variable, and

use the known value for the covariate mean to construct the predicted area mean of yij . On the

other hand, for the case when the auxiliary mean is unknown and we make predictions based

on the simple mean model of y, we use no covariate information in predicting bi in (2.3).

For the case when the auxiliary mean is unknown, the smallest MSE comes from using

Model 4. Making predictions based on Model 4 involves making predictions for the unknown
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random covariate mean, using the estimated grand mean of x and estimated variance of x.

Using Model 2 gives smaller MSE than that of the simple mean model for large sample sizes,

but the simple mean model predictor is superior to that based on Model 4 for small sample sizes.

Table 2.2: MC MSE (x1000) of Prediction Errors for the Mean of yij , MC MSE (x1000) of

ȳij − θi, MC MSE (x1000) of b̂i − bi and MC MSE (x1000) of b̂2i − b2i

n θ̂ − θ1 p̄− θ2 p̂− θ3 θ̃ − θ4 ȳ − θ b̂− b b̂2 − b2

2 9.31 16.17 14.21 12.46 101.91 228.88 236.13

(0.12) (0.22) (0.18) (0.16) (1.09) (3.04) (3.15)

10 7.24 8.63 9.83 8.37 20.66 184.79 210.32

(0.10) (0.12) (0.13) (0.12) (0.27) (2.50) (3.01)

40 3.54 3.93 4.15 3.90 5.17 105.09 176.08

(0.05) (0.06) (0.06) (0.05) (0.07) (1.53) (2.48)

1. Model 1, known µxi
2. Model 2, unknown distribution for xij
3. Model 3, simple mean model for y

4. Model 4, unknown random µxi

2.3.3 Plug-in Method for bi

Because computer programs are available that give predictions of bi, one may be tempted to

‘plug-in’ the predicted value of bi into equation (2.14) to construct the predictor of θi. Let the

estimated coefficients for the fixed effects be β̂, α̂, and let the predicted values for the random

area effects be b̂, b̂2, for models (2.1) and (2.3), respectively. We construct the plug-in small

area mean prediction for the four methods by:

θ̂i,plugin = K−1
K∑
j=1

p̃ij(x
∗
ij , b̂i), where x∗ij = µxi + zj σ̂ε;

p̄i,plugin = n−1
i

ni∑
j=1

p̃ij(xij , b̂i);

p̂i,plugin =
exp(α̂+ b̂i2)

1 + exp(α̂+ b̂i2)
;
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and

θ̃i,plugin = K−1
K∑
j=1

p̃ij(x
∗
ij , b̂i), where x∗ij = µ̂xi + zj σ̂

∗
ε . (2.20)

2.3.4 Simulation Results, Plug-in Method for bi

We use the simulation setup of Section 2.3.2 and construct predictions of θi as defined in

Section 2.3.3. Table 2.3 contains the estimated biases of the prediction error as percent of the

standard error of prediction for the corresponding model. Some of the biases in the first four

columns of Table 2.3 are significantly different from zero and arise because pij(xij , bi) of (2.19)

is a nonlinear function of (xij , bi). The absolute values of the relative bias for the prediction

errors for the mean of yij decrease with the increase in sample size, corresponding to a decrease

in the variance of bi. The smallest absolute values for the relative prediction bias are for es-

timation Model 1 and estimation Model 2. The absolute biases for Model 1 and Model 2 are

comparable because the variance for Model 1 is smaller than the variance for Model 2. Model

1, Model 2 and Model 3 have the same variance of b̂ − b. The b̂2 associated with Model 3

estimation has a larger variance.

Table 2.3: MC BIAS of Prediction Error as Percent of the Standard Error of Prediction,

‘plug-in method’

n θ̂plugin − θ1 p̄plugin − θ2 p̂plugin − θ3 θ̃plugin − θ4

2 -3.49 -2.28 -5.88 -4.68

(1.18) (1.06) (1.16) (1.15)

10 -4.69 -4.65 -5.30 -5.39

(1.12) (1.08) (1.06) (1.09)

40 -1.02 -1.18 -1.24 -1.35

(0.97) (0.96) (0.95) (0.96)

1. Model 1, known µxi
2. Model 2, unknown distribution for xij
3. Model 3, simple mean model for y

4. Model 4, unknown random µxi

The MC MSE of prediction errors for the mean of yij constructed using the ‘plug-in’ method

are slightly larger than, but very close to, the values presented in Table 2.2. The procedure
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using estimated conditional mean is less biased and slightly more efficient than the ‘plug-in

method.’

Table 2.4: MC MSE (x1000) of Prediction Errors for the Mean of yij , ‘plug-in method’

n θ̂plugin − θ1 p̄plugin − θ2 p̂plugin − θ3 θ̃plugin − θ4

2 9.38 16.60 14.36 12.56

(0.13) (0.22) (0.19) (0.17)

10 7.29 8.72 9.89 8.43

(0.10) (0.12) (0.14) (0.12)

40 3.54 3.94 4.15 3.91

(0.05) (0.06) (0.06) (0.05)

1. Model 1, known µxi
2. Model 2, unknown distribution for xij
3. Model 3, simple mean model for y

4. Model 4, unknown random µxi

2.4 Conclusions

This work was motivated by real survey situations, in particular those where there is incom-

plete auxiliary information. In this paper we presented a unit level model for binomial response

variables, a specific case of a generalized linear mixed model, and constructed predictors for

the area means for different cases of auxiliary information. We showed that using the ‘plug-in’

method can lead to the sizeable bias in predictions.

We presented results for a simulation study, generating data from the unit level model. The

bias in the prediction errors was small, relative to the standard errors of the predictions for

the mean of yij . The results indicate that, generally, it is better to include auxiliary informa-

tion in the model and estimate the distribution, rather than to ignore the auxiliary information.
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CHAPTER 3. SMALL AREA PREDICTION UNDER ALTERNATIVE

MODEL SPECIFICATIONS

A modified paper submitted to Statistics in Transition and Survey Methodology

Andreea L. Erciulescu and Wayne A. Fuller

Abstract

Construction of small area predictors and estimation of the prediction mean squared error,

given different types of auxiliary information are illustrated for a unit level model. Of interest

are situations where the mean and variance of an auxiliary variable are subject to estimation

error. Fixed and random specifications for the auxiliary variables are considered. The efficiency

gains associated with the random specification for the auxiliary variable measured with error

are demonstrated. A parametric bootstrap procedure is proposed for the mean squared error

of the predictor based on a logit model. The proposed procedure has smaller bootstrap error

than a classical double bootstrap procedure with the same number of samples.

3.1 Introduction

Small area estimation can be more efficient than direct estimation in two ways. First, the as-

sumption that the area-to-area differences are random permits the use of prediction (shrinkage

estimators). Second, introducing auxiliary information through models provides the possibility

for efficiency gains. Typical auxiliary information is in the form of observations on variables

associated with the variable to be predicted. We are interested in situations in which the aux-

iliary variables are measured with error. The effect on estimation of measurement error in the

auxiliary variables depends on the nature of the statistical model.
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A number of papers consider sampling variability in the auxiliary variables. Ghosh, Sinha

and Kim (2006) and Torabi, Datta and Rao (2009) consider an area level linear model with

random auxiliary variable mean, estimated with error. The Ghosh, Sinha and Kim (2006)

random mean model is a special case of the multivariate model studied by Fuller and Harter

(1987). Ybarra and Lohr (2008) consider an area level linear model with fixed auxiliary mean

estimated with error. Datta, Rao and Torabi (2010), following Ghosh and Sinha (2007), studied

a nested error linear regression model with fixed area level covariate subject to measurement

error.

We study unit level generalized linear mixed models under situations where the mean of an

auxiliary variable is subject to estimation error. We propose a parametric bootstrap procedure

for prediction mean squared error estimation and compare the proposed procedure to a clas-

sical double bootstrap procedure using a simulation study. Estimation with different types of

auxiliary information is illustrated.

3.2 Unit Level Nonlinear Models

3.2.1 Introduction

Consider the unit level generalized linear mixed model

yij = g(xij ,β, bi) + eij , (3.1)

xij = µx + δi + εij =: µxi + εij , (3.2)

x̃ij′ = µxi + εij′ , (3.3)

i = 1, ...,m, where m is the number of areas and j = 1, ..., ni, where ni is the number of units

within area i. The vector (yij ,xij) is observed. In addition to xij , a vector of auxiliary infor-

mation, x̃ij′ , may be available, where j′ = 1, ..., n′i, n
′
i is the number of additional observations
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in area i. The vector of random variables (bi, δi, eij , εij) is unobserved, and β is the vector of

coefficients. Of interest is the small area mean of y

θi =

∫
g(xij ,β, bi)dFxi(x), (3.4)

where Fxi(x) is the distribution of x in area i. Also of interest is the prediction mean squared

error

αi = E(θ̂i − θi)2, (3.5)

where θ̂i is the predictor. The nature of the estimation-prediction problem is determined by

the distributional properties of the vector (bi, δi, eij , εij). The nonlinear model is more compli-

cated than the linear model for several reasons. First, parameter estimation is more difficult

because no closed form estimator exists. Likewise, closed form estimators of the mean squared

error do not exist. Lastly, the small area mean of the auxiliary variable is not sufficient for the

estimation of θi.

As an example of model (3.1), consider a Bernoulli response variable y, with realizations yij

for m different areas and ni different units within each area. To simplify the presentation, we

consider scalar xij for the remainder of our discussion. Let xij be independent and identically

distributed, following a distribution Fxi . Let bi be independent and identically distributed, with

a density fb with mean 0 and variance σ2
b and let δi be independent and identically distributed,

with a density fδ with mean 0 and variance σ2
δ . The mean of y given (xij , bi) is

g(xij ,β, bi) =
exp(x′ijβ + bi)

1 + exp(x′ijβ + bi)
, (3.6)

where xij = (1, xij), x̃ij′ = (1, x̃ij′) and β = (β0, β1)′. We assume that bi ∼ NI(0, σ2
b ) and that

the elements of (bi, δi, eij , εij) are mutually independent.

3.2.2 Predictors of θi

We present predictors of θi for model (3.6), under alternative specifications for xij and for

different levels of auxiliary information, given known parameters (σ2
b , σ

2
ε , σ

2
δ ,β, µx).
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3.2.2.1 Known Covariate Distribution

Let the distribution of xij be known. Then, given known parameters, the minimum mean

squared error (MMSE) predictor of the small area mean of y is

θ̂i = E
[
θ̂(b)|(xi,yi)

]
,

where xi = (xi,1, xi,2, ..., xi,ni),yi = (yi,1, yi,2, ..., yi,ni), and

θ̂(b) =

∫
x
g(x,β, b)dFx(x)

and

θ̂i =

∫
b θ̂(b)

∏ni
t=1 f(yit|xit, bi)f(xit|µxi)dFbi(b)∫

b

∏ni
t=1 f(yit|xit, bi)f(xit|µxi)dFbi(b)

. (3.7)

Since f(xit|µxi) is free of b, the predictor given in (3.7) simplifies to

θ̂i =

∫
b θ̂(b)

∏ni
t=1 f(yit|xit, bi)dFbi(b)∫

b

∏ni
t=1 f(yit|xit, bi)dFbi(b)

. (3.8)

In some finite population situations, the entire finite population of x values may be known

and the integral expression for θ̂(b) in (3.8) is the sum over the population. In the simulations

of Section 3.4 for this model we assume xij ∼ NI(µxi, σ
2
ε ) with µxi known and σ2

ε known.

3.2.2.2 Unknown, Unspecified Covariate Distribution

If the distribution of x is unknown, an estimate of the distribution of x at point c is given

by the sample cumulative distribution function (CDF),
∑ni

j=1wijI(xij , c), where I(xij , c) is the

indicator function and wij are sampling weights. Then, given known (σ2
b ,β), the predictor of

the small area mean of y is

θ̂i = E
[
θ̂i(b)|(xi,yi)

]
,

where

θ̂i(b) =

ni∑
j=1

wijg(xij ,β, bi)

and

θ̂i =

∫
b θ̂i(b)

∏ni
t=1 f(yit|xit, bi)dFbi(b)∫

b

∏ni
t=1 f(yit|xit, bi)dFbi(b)

. (3.9)

See Ghosh et al (2009) for an example using the sample CDF.
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3.2.2.3 Unknown, Unspecified Covariate Distribution, Additional Information

x̃i

Let a vector of additional information x̃i be available, where it is assumed x̃i and xi are

probability samples from the population of area i. Let wij be the sampling weights for the

combined sample. As in Section 3.2.2.2, an estimate of the distribution of x at point c is given

by the sample cumulative distribution function (CDF),
∑ni+n

′
i

j=1 wijI(xij , c). Then, given known

(σ2
b ,β), the predictor of the small area mean of y is

θ̂i = E
[
θ̂i(b)|(xi,yi, x̃i)

]
,

where

θ̂i(b) =

ni+n
′
i∑

j=1

wijg(xij ,β, bi)

and

θ̂i =

∫
b θ̂i(b)

∏ni
t=1 f(yit|xit, bi)dFbi(b)∫

b

∏ni
t=1 f(yit|xit, bi)dFbi(b)

. (3.10)

3.2.2.4 Unknown Random Covariate Mean

Assume the distribution of x for area i is Fxi , with unknown parameters (µxi, σ
2
ε ). Assume

µxi ∼ NI(µx, σ
2
δ ). Then, given known (σ2

b , σ
2
ε , σ

2
δ ,β, µx), the MMSE predictor of the small area

mean of y is

θ̂i = E
[
θ̂(b, δ)|(xi,yi)

]
,

where

θ̂(b, δ) =

∫
g(µx + δ + ε,β, b)dFε(ε)

and

θ̂i =

∫
b

∫
δ θ̂(b, δ)

∏ni
t=1 f(yit|xit, bi)f(xit|δi)dFδi(δ)dFbi(b)∫

b

∫
δ

∏ni
t=1 f(yit|xit, bi)f(xit|δi)dFδi(δ)dFbi(b)

. (3.11)

In the simulations of Section 3.4 we assume xij ∼ NI(µxi, σ
2
ε ).

3.2.2.5 Unknown Random Covariate Mean, Additional Information x̃i

Let the assumptions of Section 3.2.2.4 hold. Let x̃i information as described in Section

3.2.2.3 be available. Then, given known (σ2
b , σ

2
ε , σ

2
δ ,β, µx), the MMSE predictor of the small
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area mean of y is

θ̂i = E
[
θ̂(b, δ)|(xi,yi, x̃i)

]
,

where

θ̂(b, δ) =

∫
g(µx + δ + ε,β, b)dFε(ε),

θ̂i =

∫
b

∫
δ θ̂(b, δ)

∏ni
t=1 f(yit|xit, bi)f(xit|δi)

∏n
′
i

t′=1
f(x̃it′ |δi)dFδi(δ)dFbi(b)∫

b

∫
δ

∏ni
t=1 f(yit|xit, bi)f(xit|δi)

∏n
′
i

t′=1
f(x̃it′ |δi)dFδi(δ)dFbi(b)

.

In the simulations of Section 3.4 we assume x̃ij′ ∼ NI(µxi, σ
2
ε ), so µ̃xi = (n

′
i)
−1
∑n

′
i

j′=1
x̃ij′ is a

sufficient statistic for µxi and the predictor simplifies to

θ̂i =

∫
b

∫
δ θ̂(b, δ)

∏ni
t=1 f(yit|xit, bi)f(xit|δi)f(µ̃xi|δi)dFδi(δ)dFbi(b)∫

b

∫
δ

∏ni
t=1 f(yit|xit, bi)f(xit|δi)f(µ̃xi|δi)dFδi(δ)dFbi(b)

. (3.12)

3.2.3 Estimation

In practice, the vector of parameters ψ = (σ2
b , σ

2
ε , σ

2
δ ,β, µx) is not known and needs to be

estimated. Consider the model specified by (3.1), (3.2), (3.3), (3.6) and described in Section

3.2.2.5. The likelihood is

L(σ2
b , σ

2
ε , σ

2
δ ,β, µx|y,x, x̃) =

m∏
i=1

Li,

where

Li =
∫
bi

∫
δi

∏ni,n
′
i

j=1,j′=1
f(yij , xij , x̃ij′ |bi, δi, ψ)f(bi|ψ)f(δi|ψ)dδidbi

=
∫
bi

∏ni
j=1 f(yij |bi, xij ,β)f(bi|σ2

b )dbi
∫
δi

∏ni+n
′
i

j=1 f(x∗ij |δi, µx, σ2
ε )f(δi|σ2

δ )dδi,

and x∗ = (x, x̃) is the vector of all available auxiliary information.

Notice that the likelihood L(σ2
b , σ

2
ε , σ

2
δ ,β, µx|y,x, x̃) factors into L(σ2

b ,β|y) and

L(σ2
ε , σ

2
δ , µx|x, x̃). Hence, the parameters (σ2

ε , σ
2
δ , µx) can be estimated separately from the

parameters (σ2
b ,β). The estimation of (σ2

ε , σ
2
δ , µx) is based on maximizing the likelihood for

the linear mixed model specified in (3.2) and (3.3). In the simulation study, we construct the

estimated generalized least squares estimator for µx and REML estimates for σ2
ε and σ2

δ , using

the lmer function, in R.
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The estimation of (σ2
b ,β) is based on maximizing the likelihood for the generalized linear

mixed model specified in (3.1) and (3.6). There is no closed form expression for the likelihood

and no exact form of the estimating equations. Two commonly used methods of estimation are

based on pseudo-likelihood and on integral approximation. In the simulation study, we use the

integral approximation method in the glmer function, in R, that uses the Laplace approxima-

tion to the likelihood.

3.2.4 Bootstrap MSE Estimation

In this section we consider estimation of the MSE of θ̂i as a predictor of θi. Let ψ be the

parameter that defines the distribution of the sample observations, and let ψ̂ be an estimator

of ψ. Let α be a vector of parameters of interest and let α∗ be a parametric bootstrap (sim-

ulation) estimator of α. For the models considered in Section 3.2.2, let αi be the MSE of the

prediction error for area i, as defined in (3.5). For the nonlinear small area model with known

distribution for xij , the vector of parameters is ψ = (σ2
b ,β). For the nonlinear small area

models with unknown random µxi, the vector of parameters is ψ = (σ2
b ,β, σ

2
ε , µx, σ

2
δ ). Because

there is no closed form expression for the prediction MSE given in (3.5), we consider boot-

strap MSE estimation. Hall and Maiti (2006) constructed nonnegative, bias-corrected MSE

estimates using a double bootstrap procedure. They considered area level models and a unit

level binomial model with fixed known covariates. Pfeffermann and Correa (2012) suggested a

bootstrap procedure in which the bias in the estimator is estimated as a function of parameters

and of a bootstrap estimator of bias.

A sample generated with ψ and random number seed r is said to be created with data

generator (ψ, r), denoted DG(ψ, r). Let B1 bootstrap samples be generated using random

number seeds r1,1, r1,2, ..., r1,B1 . Let ψ∗k be the estimator of ψ from the kth bootstrap sample
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generated using DG(ψ̂, r1,k). The bootstrap estimator of prediction MSE for area i is

α̂∗i = B−1
1

B1∑
k=1

(θ̂∗i,k − θ∗i,k)2 =: B−1
1

B1∑
k=1

α∗i,k = ᾱ∗i , (3.13)

where θ∗i,k is the true small area mean generated for the kth bootstrap sample, θ̂∗i,k is the sample

predictor of θ∗i,k and α∗i,k is the prediction squared error for the kth bootstrap sample. The

estimator (3.13) is called the level-one bootstrap estimator.

In the double bootstrap, a sample estimator, denoted by α∗∗i , is generated using ψ∗ from

the level-one generated sample. Typically a large number of α∗∗i is generated for each α∗i and

the bias adjusted estimator is

α̃∗∗i = B−1
1

B1∑
k=1

2α∗i,k −B−1
1 B−1

2

B1∑
k=1

B2∑
t=1

α∗∗i,k,t. (3.14)

where α∗∗i,k,t is generated using DG(ψ∗k, r2,k,t), B1 is the number of level-one bootstrap sam-

ples, B2 is the number of level-two bootstrap samples per level-one sample, and the r2,k,t, k =

1, 2, ..., B1, t = 1, 2, ..., B2, are independent random numbers, independent of r1,k.

We use a double bootstrap estimator based on the work of Davidson and MacKinnon (2007)

who give a fast double bootstrap procedure for bootstrap testing. See also Giacomini, Politis

and White (2013). In the fast double bootstrap, a single α∗∗i is generated for each α∗i . Let

r2,1, r2,2, ..., r2,B1 be a second independent sequence of random numbers. Given the sequence

of random numbers, define α∗∗i,k to be calculated from data generated with DG(ψ∗k, r2,k). The

(classic) double bootstrap estimator used in this study is

α̃∗∗i,C = B−1
1

B1∑
k=1

(2α∗i,k − α∗∗i,k) = 2ᾱ∗i − ᾱ∗∗i . (3.15)

To construct an even more efficient bootstrap estimator, define α∗i,k,2 to be calculated from

data generated with DG(ψ̂, r2,k). Then a bias adjusted (double bootstrap) estimator is

α̂∗∗i = B−1
1

B1∑
k=1

(α∗i,k + α∗i,k,2 − α∗∗i,k), (3.16)
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where the quantity α∗∗i,k − α∗i,k is a one-degree-of-freedom estimator of the bias. If one uses r2,1

as r1,2, r2,2 as r1,3, etc., a form of (3.16) becomes

α̃∗∗i,T = B−1
1

∑B1
k=1(α∗i,k + α∗i,k+1 − α∗∗i,k), (3.17)

where α∗i,k+1 is generated with DG(ψ̂, r1,k+1) and α∗∗i,k is generated with DG(ψ∗k, r1,k+1). We

call the estimator (3.17) a telescoping bootstrap because it is of the form (3.16) using lagged

values of α∗i,k. If the use of r2,k in place of an independent random number results in positive

correlation between α∗i,k and α∗∗i,k−1, then α̃∗∗i,T will have smaller simulation variance than α̃∗∗i,C

of (3.15).

3.3 Simulations

In the simulation study we consider m = 36 areas with unit level observations xij in three

groups of 12 areas, with sizes ni ∈ {2, 10, 40}. The number of additional unit level observations

is n′i = 10, for each area i. Each sample, (y,x, x̃), is generated using model (3.1 - 3.3) with

σ2
b = 0.25, µx = 0, σ2

δ = 0.16, and σ2
ε = 0.36. The vector of coefficients for the fixed effects is

(β0, β1) = (−0.8, 1) and, for each unit, the probability that yij = 1 is

g(xij ,β, bi) =
exp(−0.8 + xij + bi)

1 + exp(−0.8 + xij + bi)
. (3.18)

The population mean of g(xij ,β, bi) is 0.334 with variance 0.029. An area with µxi = 0.4 has

mean 0.412 with variance 0.028. Four hundred Monte Carlo samples were generated satisfying

the model.

The estimation models are:

• Model 1: Specified by (3.1) and (3.6) and described in Section 3.2.2.1. Known normal

distribution for xij . The distribution of yit is

f(yit|xit, bi) = I(yit, 1)g(xit,β, bi) + I(yit, 0)(1− g(xit,β, bi)),

where I(yit, .) is the indicator function defined in Section 3.2.2.2, and g(xit,β, bi) is defined

in (3.18). The distribution of b is N(0, 0.25).
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• Model 2: Specified by (3.1) and (3.6) and described in Section 3.2.2.2. Unknown, un-

specified distribution of x.

• Model 2*: Specified by (3.1) and (3.6) and described in Section 3.2.2.3. Unknown, un-

specified distribution of x, observed x̃ = (x̃1, x̃2, ..., x̃m).

• Model 3: Specified by (3.1), (3.2), (3.6) and described in Section 3.2.2.4. Unknown

random auxiliary mean µxi. Distributions of y and b are same as those for Model 1. The

distribution of x is given in Section 3.2.2.4.

• Model 4: Specified by (3.1), (3.2), (3.3), (3.6) and described in Section 3.2.2.5. Unknown

random auxiliary mean µxi, observed x̃ = (x̃1, x̃2, ..., x̃m).

The models are fitted as generalized linear mixed models (GLMMs), using the lmer, glmer

functions in the lme4 package in R. The true small area mean of y is given by (3.4) and the

predicted area means of y are given in (3.8 - 3.12), with estimated (µx, β0, β1, σ
2
b , σ

2
δ , σ

2
ε ). The

integrals in (3.4, 3.8 - 3.12) were approximated using a 26-point approximation to the normal

distribution.

3.3.1 Refinement of Prediction MSE Estimators

We bound the estimator of σ2
δ by

Kδ,s = 0.5
[
V̂ (σ̂2

δ |σ2
δ = 0)

]0.5
,

where V̂ (σ̂2
δ |σ2

δ = 0) is the estimated variance of σ̂2
δ , given σ2

δ = 0. The bound was suggested

in Wang and Fuller (2003). Because of the large degrees of freedom for σ̂2
ε , we set Kδ,s equal

to the true value of 0.008 in the simulations,

Kδ,s = 0.5

[
2m(m− 1)−1(

m∑
i=1

((ni + n′i)
−1σ2

ε )
−2)−1

]0.5

= 0.008.

Similarly, we bound the estimator of σ2
b by

Kb,s = 0.5
[
V (σ̂2

b |σ2
b = 0)

]0.5
= 0.006.
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The proportion of sample estimators σ̂2
b that hit the bound is 0.025, the proportion of level one

estimators of σ̂2∗
b that hit the bound is 0.111. If σ̂2

b,k = 0.006 we set α∗∗i,k equal to α∗i,k. That is,

the estimated bias is zero for such samples.

Using (3.15), one can obtain an unacceptable double bootstrap prediction MSE estimator,

where the estimated bias for a sample is greater than the estimate. In practice, one would

increase the number of bootstrap samples. Rather than build such a procedure into our Monte

Carlo algorithm, we defined bounds for the estimator.

Thus, the final estimator is

α̂∗∗i,C =


1.60ᾱ∗i , if ᾱ∗i

−1ᾱ∗∗i > 1.60

0.83ᾱ∗i , if ᾱ∗i
−1ᾱ∗∗i < 0.83

α̃∗∗i,C , otherwise ,

(3.19)

where 0.83 and 1.60 are the 0.025 and 0.975 points of the chi-square distribution with 199 (B1−

1) degrees of freedom, and α̃∗∗i,C is defined in (3.15). The analogous definition holds for the tele-

scoping estimator of (3.16). See Hall and Maiti (2006) for an alternative definition of the direct

double bootstrap estimates.

The proportions of sample estimators of α̂∗∗i,T that hit the lower bound defined in (3.19) are

0.016, 0.016 and 0.013, for the areas of sizes 2, 10 and 40, respectively. The proportions of

sample estimators of α̂∗∗i,T that hit the upper bound defined in (3.19) are 0.026, 0.069 and 0.084,

for the areas of sizes 2, 10 and 40, respectively. Due to larger variability in the classic double

bootstrap estimators, the proportions of sample estimators of α̂∗∗i,C that hit the lower bound

defined in (3.19) are 0.058, 0.048 and 0.041, for the areas of sizes 2, 10 and 40, respectively,

and the proportions of sample estimators of α̂∗∗i,C that hit the upper bound defined in (3.19) are

0.155, 0.201 and 0.183, for the areas of sizes 2, 10 and 40, respectively.
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3.3.2 MSE for Different Types of Auxiliary Information

The coefficient of variation for σ̂2
b calculated for the 400 Monte Carlo samples is about 0.64,

approximately the CV of a Chi-square with five degrees of freedom. The Monte Carlo relative

bias of the estimator of σ̂2
b is about −0.12, which is approximately equal to eighteen Monte

Carlo standard errors.

Table 3.1 contains estimates of α = MSE for fixed and random models with different

amounts of auxiliary information. The simulation MSE standard errors are presented in paran-

theses below the MSE values. The smallest MSE is for Model 1, where the covariate distribution

is known. The next smallest MSE is for Model 4, where the form of the covariate distribution

is known, the covariate mean is random and the auxiliary information is available. The largest

MSE if for Model 2, where the covariate distribution is not specified. The small area mean

predictor for Model 3 is the conditional expected value formula given in (3.11). Notice that

in the construction of the small area predictor for Model 4, given in (3.12), the conditioning

is also on the additional source of information, x̃, available for the areas. By including the

ten additional unit level observations, the estimated MSE is closer to the MSE of the known

distribution case than to the MSE for the case with no additional information.

The extra observations on xij represent additional information available about the distribu-

tion of x for the area. Hence, the large gain in efficiency associated with x̃ for sample size two

(compare 10.94 for Model 2∗ to 17.29 for Model 2). Model 3 differs from Model 2 in that the

distribution of xij is assumed to be normal and the area mean is also assumed to be normally

distributed. Adding these distributional assumptions changes the MSE from 17.29 to 13.22 for

sample size two. The effect of added information is much smaller for the random µxi models

(Models 2∗ and 4) than for the fixed µxi models (Models 2 and 3).
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Table 3.1: MSE for Different Types Auxiliary Information (Entries Multiplied by 103)

Size ȳ Model 1 Model 2 Model 2*A Model 3 Model 4

2 102.14 9.88 17.29 10.94 13.22 10.72

(6.13) (0.71) (1.24) (0.79) (0.92) (0.76)

10 20.15 7.15 8.56 7.87 8.26 7.76

(1.40) (0.52) (0.63) (0.57) (0.60) (0.56)

40 5.14 3.46 3.81 3.74 3.78 3.72

(0.37) (0.25) (0.27) (0.27) (0.27) (0.27)
Model 1: known distribution for xij , Model 2: unknown distribution for xij , with no x̃, Model

2*A: unknown distribution for xij , with observed x̃, Model 3: random µxi, with no x̃ , Model

4: random µxi, with observed x̃

3.3.3 Monte Carlo Properties of Prediction MSE Estimators

The relative performances of bootstrap prediction MSE estimators under the different types

of auxiliary information are similar. Therefore, we only present properties of prediction MSE

estimators for Model 4, where the area mean µxi is random and auxiliary information x̃ is

available.

Table 3.2 contains results for (α̂∗, α̂∗∗T , α̂
∗∗
C ) for the three area sample sizes, in groups of five

lines. Each line is the average of the results for the 12 areas with the same sample size. The

first line is the Monte Carlo estimates of the prediction MSE, α̂. The next four lines are of the

bias relative to the mean, the coefficient of variation, the bias relative to the standard deviation

and the bias relative to the standard error. The definitions are

RelBias =
∑12

is=1(α̂EST.,is − α̂.,is)/
∑12

is=1 α̂.,is,

CV =
∑12

is=1

√
(400− 1)−1

∑400
ζ=1(α̂ESTζ,is − α̂EST.,is )2/

∑12
is=1 α̂.,is,

Bias/sd =
∑12

is=1(α̂EST.,is − α̂.,is)/
∑12

is=1

√
(400− 1)−1

∑400
ζ=1(α̂ESTζ,is − α̂EST.,is )2,

Bias/se = Bias/(20sd),

where ζ indexes the Monte Carlo samples, i denotes an area from a group of areas of sample

size s, α̂.,is = (400)−1
∑400

ζ=1 α̂ζ,is is the average of the Monte Carlo prediction error estimators,

α̂EST.,is = (400)−1
∑400

ζ=1 α̂
EST
ζ,is is the average of the bootstrap prediction MSE estimators, and

α̂EST ∈ {α̂∗, α̂∗∗T , α̂∗∗C } is the bootstrap estimator for an area.
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Table 3.2: Monte Carlo Properties of Prediction MSE Estimators

(B1 = 200, B2 = 1 and 400 MC Samples, Variances Multiplied by 103)

size α̂∗ α̂∗∗T α̂∗∗C
2 V (θ̂ − θ) 10.723 10.723 10.723

RelBias -0.143 -0.058 -0.062

CV (α̂) 0.403 0.456 0.477

Bias/sd -0.355 -0.127 -0.130

Bias/se -7.097 -2.537 -2.609

10 V (θ̂ − θ) 7.758 7.758 7.758

RelBias -0.133 -0.032 -0.039

CV (α̂) 0.318 0.365 0.385

Bias/sd -0.417 -0.087 -0.102

Bias/se -8.336 -1.738 -2.034

40 V (θ̂ − θ) 3.721 3.721 3.721

RelBias -0.082 0.016 0.009

CV (α̂) 0.222 0.260 0.286

Bias/sd -0.372 0.062 0.032

Bias/se -7.430 1.249 0.636

The estimated prediction MSEs have CV’s of about 40%, 32% and 22% for 200 bootstrap

samples for sample sizes 2, 10, and 40, respectively. In all cases the telescoping double boot-

strap, denoted with a subscript T, has lower MSE than the classic double bootstrap, denoted

with a subscript C. The estimators α̂∗∗T and α̂∗∗C have the same bias if the bound (3.19) is not

used. The double bootstrap reduces the absolute value of the bias for all the sample sizes.

However, the absolute bias of the double bootstrap is about 6% of the true value for sample

size 2.

3.3.4 Efficiency of Bootstrap Procedures

The variance of the bootstrap estimator of θ has two components. The first, that we call

between, is the variance one would obtain if one used an infinite number of bootstrap samples.

The second, that we call within, is the variability due to the fact that our set of bootstrap
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samples is a sample of samples. In this section, we estimate the between and the within vari-

ance components of the variance of a bootstrap estimator of the prediction MSE. Consider the

parametric bootstrap method, with the difference bias correction method. The performance

of the classic double bootstrap, the classic fast double bootstrap and telescoping fast double

bootstrap methods are compared.

We estimate the components for Model 4, where the area mean µxi is random and auxiliary

information x̃ is available. For each Monte Carlo sample, two independent sets of B1 = 100

level one bootstrap samples are generated using the estimated vector of parameters ψ̂ based

on the Monte Carlo sample and two independent sequences of random seeds r1,k, k = 1, ..., B1,

for the first set, and r′1,k, k = 1, ..., B1, for the second set. For each level one bootstrap sample,

three independent sets of B2 double bootstrap samples are generated using the estimated vector

of parameters ψ∗ based on the level one bootstrap sample:

• For the classic double bootstrap, B2 = 2 and the two sequences of random seeds r21,k

and r22,k, k = 1, ..., B1, for the first set are independent of the two sequences of random

seeds r′21,k and r′22,k, k = 1, ..., B1, for the second set.

• For the classic fast double bootstrap, B2 = 1 and the sequence of random seeds r2,k,

k = 1, ..., B1, for the first set is independent of the sequence of random seeds r′2,k, k =

1, ..., B1, for the second set.

• For the telescoping fast double bootstrap, B2 = 1 and the sequences of random seeds are

r1,k and r′1,k, k = 2, ..., B1, used in the level one bootstrap.

The sets of random seeds r1,k, r
′
1,k, r2,k, r

′
2,k, r21,k, r

′
21,k, r22,k, r

′
22,k are independent. Define

Vw(αEST ) = E
(
V (αEST |ψEST )

)
,

Vb(α
EST ) = V

(
E(αEST |ψEST )

)
,

VT (αEST ) = Vw(αEST ) + Vb(α
EST ),

where αEST ∈ {α̂∗, α̂∗∗T , α̂∗∗C } and ψEST ∈
{
ψ̂, ψ∗

}
.
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Let ζ index the Monte Carlo samples and let i denote an area within a group of areas

of sample size s. Let (α∗ζ,k,is, α
∗∗
T,ζ,k,is, α

∗∗
C,ζ,k,is) be the level one bootstrap and fast double

bootstrap prediction MSE values for the first set of bootstrap samples and let

(α∗2ζ,k,is, α
∗∗2
T,ζ,k,is, α

∗∗2
C,ζ,k,is) be the level one bootstrap and fast double bootstrap prediction MSE

values for the second set of bootstrap samples. The estimated total variance of a bootstrap

prediction MSE estimator, averaged over the areas of sample size s, is

V̂ EST
T = (400)(12)−1

12∑
is=1

(399)−1
400∑
ζ=1

(ᾱESTζ,,̇is − ¯̄αEST,̇,̇is )2

 , (3.20)

where αEST ∈ {α∗, α∗∗T , α∗∗C },

ᾱESTζ,,̇is = B−1
1

B1∑
k=1

αESTζ,k,is

and

¯̄αEST,̇,̇is = 400−1
400∑
ζ=1

B−1
1

B1∑
k=1

αESTζ,k,is.

The within variance component for B1 = 100 is estimated by half of the mean of squared

differences between the two prediction MSE values,

V̂ EST
w = (12)−1

12∑
is=1

(400)−1
400∑
ζ=1

(αESTζ,is − αEST2,ζ,is)
2

 /2, (3.21)

where αEST ∈ {α∗, α∗∗T , α∗∗C } and αEST2 ∈
{
α∗2, α

∗∗2
T , α∗∗2C

}
.

The variance components for the bootstrap prediction MSE estimators (α̂∗, α̂∗∗T , α̂
∗∗
C ) are

given in Table 3.3 for (B1 = 100, B2 = 1). The estimated between variance component is the

difference between the estimated total variance and the estimated within variance component.

Using the estries in Table 3.3, we compare the performance of the level one bootstrap, the

performance of the fast classic double bootstrap and the performance of the fast telescoping

double bootstrap. The between component for the level one bootstrap is about 80% to 86%

of the between component for the double bootstrap procedures. This is not surprising as bias

reduction procedures often increase the variance. The bootstrap sampling variance, the within

component, for the classic double bootstrap is about four times that of the level one bootstrap.
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Table 3.3: Estimated Variance Components for Variance of Estimated Prediction MSE

(Within is for (B1 = 100, B2 = 1). All Variances Multiplied by 106)

Source of Variation Size α̂∗ α̂∗∗T α̂∗∗C
Between 2 17.8860 22.2159 22.2159

Within 2.0985 3.9029 10.9261

Total 19.9845 26.1188 33.1420

Between 10 5.5618 6.8598 6.8598

Within 1.0991 2.3235 5.5663

Total 6.6609 9.1833 12.4260

Between 40 0.5440 0.6303 0.6303

Within 0.2642 0.6133 1.3417

Total 0.8082 1.2437 1.9720

The telescoping bootstrap is 1.8 to 2.3 times as efficient as the classic double bootstrap.

The performance of the classic double bootstrap estimator changes when the number of

level two bootstrap samples is greater than one. For B2 ≥ 1, the within variance of α∗∗C has

two components corresponding to the variance of the conditional mean of α∗∗C given ψ∗ and to

the level two bootstrap sampling variance.

Define α∗ and α∗∗ to be the level one bootstrap and the classic double bootstrap sample

random variables with realizations the values of the bootstrap prediction MSE, for a Monte

Carlo sample and for a specific area. The within variance for the classic double bootstrap MSE

estimator is a function of the variance of α∗, the variance of α∗∗ and the covariance between

α∗ and α∗∗. Define

Vw(α∗) = E
(
V (α∗|ψ̂)

)
, (3.22)

Vw(α∗∗) = E
{
V
(
E(α∗∗|ψ∗)|ψ̂

)}
+ E

(
V (α∗∗|ψ∗)|ψ̂

)
,

Cw(α∗, α∗∗) = E {C (α∗, E(α∗∗|ψ∗))} .

The within variance components for (α∗, α∗∗) and the corresponding within covariance

component are given in Table 3.4 for (B1 = 1, B2 = 1). Using the entries in this table, one can
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calculate the variance of classic double bootstrap prediction MSE estimator for B1 level one

samples combined with B2 level two samples for each level one sample,

Vw(α̂∗∗C) = 4B−1
1 Vw(α∗) +B−1

1 E
{
V
(
E(α∗∗|ψ∗)|ψ̂

)}

+B−1
1 B−1

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
− 4B−1

1 Cw(α∗, α∗∗).

Let (α∗1, α∗∗11 , α∗∗12 ) be the realizations of (α∗, α∗∗) for the level one bootstrap and classic

double bootstrap, for the first set of bootstrap samples, and let (α∗2, α∗∗21 , α∗∗22 ) be the real-

izations (α∗, α∗∗) for the level one bootstrap and fast double bootstrap, for the second set of

bootstrap samples. The within variance of α∗ for B1 = 1 is estimated by

̂Vw(α∗) = 100(12)−1
12∑
is=1

(400)−1
400∑
ζ=1

(α∗ζ,is − α∗2,ζ,is)2

 /2.

Define a11, a21, a31 for the first set of bootstrap samples to be

a11 = α∗1,

a21 = 0.5(α∗∗11 + α∗∗12 ),

a31 = α∗∗11 − α∗∗12 ,

and define a12, a22, a32 for the second set of bootstrap samples to be

a12 = α∗2,

a22 = 0.5(α∗∗21 + α∗∗22 ),

a32 = α∗∗21 − α∗∗22 .

Let the average of (a11, a21, a31, a12, a22, a32) over the bootstrap samples be

(ā11, ā21, ā31, ā12, ā22, ā32). The within covariance for B1 = 100 is estimated by half of the mean

of the product of the differences between the two average values of the prediction MSE at the

two bootstrap levels,

Ĉovw,100(α∗, α∗∗) = (12)−1
12∑
is=1

(400)−1
400∑
ζ=1

(ā11,is − ā12,is)(ā21,is − ā22,is)

 /2.

The within covariance for B1 = 1 is estimated by

Ĉovw(α∗, α∗∗) = 100Ĉovw,100(α∗, α∗∗).
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The within variance of α∗∗ for B1 = 100 is estimated by one half of the mean of squared

differences between the two statistics ā21 and ā22,

V̂w,100(α∗∗) = (12)−1
12∑
is=1

(400)−1
400∑
ζ=1

(ā21,is − ā22,is)
2

 /2.

The variance component of the bootstrap variance of α∗∗ due to level two bootstrap sampling,

for B1 = 100, is estimated by one fourth of the mean of squared differences between the two

statistics ā31 and ā32,

̂
E100

(
V (α∗∗|ψ∗)|ψ̂

)
= (12)−1

12∑
is=1

(400)−1
400∑
ζ=1

(ā31,is − ā32,is)
2

 /4,

and for B1 = 1 is estimated by

̂
E
(
V (α∗∗|ψ∗)|ψ̂

)
= 100

̂
E100

(
V (α∗∗|ψ∗)|ψ̂

)
.

The variance component of the bootstrap variance of α∗∗ corresponding to the variance of the

conditional mean of α∗∗ given ψ∗, for B1 = 100, is estimated by the difference between the

estimated total level two within variance of α∗∗ and one half of the estimated within variance

in α∗∗ due to bootstrap sampling,

̂
E100

{
V
(
E(α∗∗|ψ∗)|ψ̂

)}
= V̂w(α∗∗)−

̂
E
(
V (α∗∗|ψ∗)|ψ̂

)
/2,

and for B1 = 1 is estimated by

̂
E
{
V
(
E(α∗∗|ψ∗)|ψ̂

)}
= 100

̂
E100

{
V
(
E(α∗∗|ψ∗)|ψ̂

)}
.

Table 3.4: Estimated Within Bootstrap Variance and Covariance of the Bootstrap Prediction

MSE (B1 = 1, B2 = 1, Entries Multiplied by 106)

̂Vw(α∗)
̂

E
(
V (α∗∗|ψ∗)|ψ̂

) ̂
E
{
V
(
E(α∗∗|ψ∗)|ψ̂

)} ̂Cw(α∗, α∗∗)

2 209.2073 192.4625 71.2836 1.9917

10 109.1077 93.4928 28.5335 0.4580

40 26.1292 22.0451 6.3739 -0.3074
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Table 3.5 contains estimates of the within variance components for the classic double boot-

strap prediction MSE estimator α̂∗∗C and for the telescoping double bootstrap prediction MSE

estimator α̂∗∗T , for different double bootstrap designs, that is for different combinations of B1

level one samples combined with B2 level two samples for each level one sample. The choice

of (B1, B2) pair has an effect on the estimated within variance of the bootstrap prediction

MSE estimator. For the parameters in the simulation study, the optimal number of bootstrap

samples is B2 = 0.45; see Appendix A. That is, for a given number of bootstrap samples B,

the fast double bootstrap with B2 = 1 minimizes the variance of the classic double bootstrap

prediction MSE estimator. In practice it is better to use a large number of bootstrap samples

at level one and one bootstrap sample at level two, than to use a large number of bootstrap

samples at level one and a large number of bootstrap samples at level two.

Table 3.5: Estimated Within Bootstrap Variance of the Bootstrap Prediction MSE. Entries

Multiplied by 106

Classic Telescoping

ni V100,1 V1000,1 V5000,1 V100,50 V100,1 V1000,1 V5000,1

2 10.9261 1.0926 0.2185 9.0400 3.9029 0.3903 0.0781

10 5.5663 0.5566 0.1113 4.6500 2.3235 0.2324 0.0465

40 1.3417 0.1342 0.0268 1.1256 0.6133 0.0613 0.0123

Consider the prediction MSE estimators for the areas of size ni = 2. Using the results in

Tables 3.5 and 3.3, we conclude that increasing the number of bootstrap samples to B1 = 1000

reduces the within variance component to about 3.0% of the total variance for the classic

method and to about 1.4% of the total variance for the telescoping method. For the classic

bootstrap method based on a total of 200 samples, the estimated within variance component

is about 33% of the total variance for the design (B1 = 100, B2 = 1). For the classic bootstrap

method based on a total of 10000 samples, the estimated within variance component is about

0.7% of the total variance for the design (B1 = 5000, B2 = 1) and about 27.3% of the total

variance for the design (B1 = 100, B2 = 50).



52

3.3.4.1 Equal Efficiency Bootstrap Designs

We give bootstrap sample sizes such that the bootstrap variance of the estimated predic-

tion MSE is the same under different bootstrap sampling procedures. Table 3.6 contains the

number of level one bootstrap samples needed in the classic bootstrap method in order to pro-

duce prediction MSE estimates as efficient as the prediction MSE estimates produced using the

telescoping bootstrap method with (B1 = 100, B2 = 1). The last column in Table 3.6 contains

the total number of bootstrap samples for each procedure, for each design.

Table 3.6: Equal Efficiency Bootstrap Procedures

Bootstrap Method/Design ni B1 Total

Telescoping (100, 1) 2 100 200

Classic (B1, 1) 280 560

Classic (B1, 50) 232 11832

Telescoping (100, 1) 10 100 200

Classic (B1, 1) 240 480

Classic (B1, 50) 200 10200

Telescoping (100, 1) 40 100 200

Classic (B1, 1) 219 438

Classic (B1, 50) 184 9384

3.4 Summary

We used a simulation study of a unit level logistic model to compare the impact of different

levels of auxiliary information. The minimum mean squared error (MMSE) predictors for the

small area means were obtained by conditioning on the information available for an area. That

information is the unit level response realizations, the unit level covariate observations, and

the, sometimes available, additional unit level auxiliary information. We considered fixed and

random mean models for the covariates, as well as known and unknown distribution for the co-

variates. The prediction MSE is smaller when the covariate distribution is specified. Also, the



53

prediction MSE is smaller when additional auxiliary information is available and included in

the estimation. The effect of including auxiliary information in the estimation is much smaller

for the random mean model than for the fixed mean model for the covariates.

We presented a parametric double bootstrap procedure for the prediction MSE for unit level

logistic models. The fast double bootstrap procedure, where the number of level-two bootstrap

samples is B2 = 1, has superior bootstrap efficiency relative to classic double bootstrap proce-

dure with B2 > 1. The double bootstrap reduces the prediction MSE estimation bias to 60 to

80% of that of the level one bootstrap. The double bootstrap increases the standard error of

the prediction MSE estimator by 13 to 17% relative to that of the level one bootstrap.
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3.5 Appendix A. Optimal Number of Bootstrap Samples at Level Two

Given a fixed number of bootstrap samples, B, the within bootstrap variance of the bias

corrected double bootstrap estimator is minimized when the number of level two bootstrap

samples,

B2 =

√√√√√ E
(
V (α∗∗|ψ∗)|ψ̂

)
4Vw(α∗)− 4Cw(α∗, α∗∗) + E

{
V
(
E(α∗∗|ψ∗)|ψ̂

)} , (3.23)

where

Vw(α∗) = E
(
V (α∗|ψ̂)

)
,

Vw(α∗∗) = E
{
V
(
E(α∗∗|ψ∗)|ψ̂

)}
+ E

(
V (α∗∗|ψ∗)|ψ̂

)
,

Cw(α∗, α∗∗) = E {C (α∗, E(α∗∗|ψ∗))} .

Proof. The double bootstrap, bias corrected, estimator of α is

α̂∗∗ = B−1
1

B1∑
k=1

α∗k −∆α = B−1
1

B1∑
k=1

2α∗k −B−1
1 B−1

2

B1∑
k=1

B2∑
t=1

α∗∗kt =: 2ᾱ∗ − ᾱ∗∗,

and the within bootstrap variance of α̂∗∗ is

Vw(α̂∗∗) = Vw(2ᾱ∗ − ᾱ∗∗)

= Vw(2ᾱ∗) + Vw(ᾱ∗∗)− 2Cw(2ᾱ∗, ᾱ∗∗)

= E
(
V (2B−1

1

∑B1
k=1 α

∗
k|ψ̂)

)
+ E

{
V
(
E(B−1

1

∑B1
k=1 ᾱ

∗∗
k |ψ∗k)|ψ̂

)}

+E
(
V (B−1

1 B−1
2

∑B1
k=1

∑B2
t=1 α

∗∗
kt |ψ∗k)|ψ̂

)
− 4E

{
C
(
ᾱ∗, E(B−1

1

∑B1
k=1 ᾱ

∗∗
k |ψ∗k)

)}
,

where ᾱ∗∗k = B−1
2

∑B2
t=1 α

∗∗
kt . Since α∗∗kt are identically distributed, given ψ∗k and α∗k are identi-
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cally distributed, given ψ̂,

Vw(α̂∗∗) = 4B−1
1 E

(
V (α∗|ψ̂)

)
+B−1

1 E
{
V
(
E(α∗∗1 |ψ∗)|ψ̂

)}

+B−1
1 B−1

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
− 4B−1

1 E {C (α∗, E(α∗∗|ψ∗))}

= 4B−1
1 Vw(α∗) +B−1

1 E
{
V
(
E(α∗∗|ψ∗)|ψ̂

)}
+B−1

1 B−1
2 E

(
V (α∗∗|ψ∗)|ψ̂

)
− 4B−1

1 Cw(α∗, α∗∗).

We would like to minimize Vw(α̂∗∗) with respect to the restriction B1B2 + B1 = B, where

B is a constant representing the total number of bootstrap samples.

To consider this problem as a Lagrangian multiplier problem, let

L(B1, B2, λ) = 4B−1
1 Vw(α∗)− 4B−1

1 Cw(α∗, α∗∗) +B−1
1 E

{
V
(
E(α∗∗|ψ∗)|ψ̂

)}

+B−1
1 B−1

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
+ λ(B1B2 +B1 −B)

where λ the Lagrangian multiplier. The resulting system of three equations is:

0 = −4B−2
1 Vw(α∗) + 4B−2

1 Cw(α∗, α∗∗)−B−2
1 E

{
V
(
E(α∗∗|ψ∗)|ψ̂

)}

−B−2
1 B−1

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
+ λ(B2 + 1)

0 = −B−1
1 B−2

2 E
(
V (α∗∗|ψ∗)|ψ̂

)
+ λB1

0 = B1B2 +B1 −B.

The solution for B2 is (3.23) and

B1 = B


√√√√√ E

(
V (α∗∗|ψ∗)|ψ̂

)
4Vw(α∗)− 4Cw(α∗, α∗∗) + E

{
V
(
E(α∗∗|ψ∗)|ψ̂

)} + 1


−1

.
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CHAPTER 4. BOOTSTRAP CONFIDENCE INTERVALS FOR SMALL

AREA MEANS

A paper to be submitted for publication

Andreea L. Erciulescu and Wayne A. Fuller

Abstract

Most small area studies focus on constructing predictors for the area means and on esti-

mating the variance of the prediction errors. However, agencies and policy makers are often

interested in confidence intervals for the small area predictors. We present two sided confidence

intervals for the small area means of a binary response variable. We consider unit level data and

stochastic covariates. The estimation of the prediction error variance and the estimation of the

cutoff points are key components in the construction of confidence intervals for the small area

means. A linear approximation of the model is considered and a Taylor variance approxima-

tion is presented for the prediction error variance. We compare different bootstrap estimation

methods for the cutoff points using a simulation study.

4.1 Introduction

Procedures based on models have been used to construct estimates for the means of small

areas, by exploiting auxiliary information. Agencies and policy makers are often interested

in confidence intervals for the small area estimates. In this paper, we study nested models

with a binary response, stochastic covariates and random area effects. We consider different

procedures to estimate the small area mean prediction mean squared error and to construct

confidence intervals for the small area means.
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Taylor methods have been shown to give good estimates of the prediction mean squared

error (MSE), for predicted small area means based on linear models; see p. 103 in Rao (2003)

for area level models and p. 139 in Rao (2003) for unit level models. There are many studies re-

porting point estimates for the small area means, as well as prediction MSE estimates. Ghosh,

Sinha and Kim (2006) consider an area level linear model with random auxiliary variable mean,

estimated jointly with the small area mean. Ybarra and Lohr (2008) consider an area level lin-

ear model with auxiliary mean estimated with error. Datta, Rao and Torabi (2010), following

Ghosh and Sinha (2007), studied a nested error linear regression model with area level covariate

subject to measurement error. When the direct estimates of small area means are nonlinear

functions of the auxiliary information and of the random area effects, the prediction of the

small area mean is no longer a linear function of the observations. Bootstrap methods have

been used for MSE estimators in this case. Erciulescu and Fuller (2014) consider a nonlinear

unit level model where the mean of the auxiliary variable is measured with error. The authors

construct small area predictions for the small area means of a binary response variable and

present double bootstrap prediction MSE estimates.

Hall and Maiti (2006) consider a linear area level model and a unit level binomial model

with fixed known covariates. They construct small area predictions for the logit of the small

area means and nonnegative, bias-corrected MSE estimates using a double bootstrap procedure.

Pfeffermann and Correa (2012) study a unit level binomial model with fixed known covariates

and suggest a bootstrap procedure in which the bias in the estimator is estimated as a function

of parameters and of a bootstrap estimator of bias.

Most studies that report confidence intervals (CIs) for the small area means, report for

special cases of the Fay-Herriot model; see Hall and Maiti (2006), Chatterjee et al. (2008),

Dass et al. (2012), Diao et al. (2014) and Yoshimori and Lahiri (2014). Hall (1986) proposed

pivot-like statistics to reduce the two-sided bootstrap CI coverage error relative to the normal

approximated CI coverage error, from O(m−1) to O(m−3/2), where m is the number of areas.

Chatterjee et al. (2008) construct parametric bootstrap confidence intervals based on a pivot-
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like statistic and centered around the small area predictions. The authors consider a general

linear mixed model with unknown random effects variance and unknown sampling variance.

The area specific parametric bootstrap prediction intervals constructed by Chatterjee et al.

(2008) have error of order O(d3m−3/2), where d is the number of model parameters and m is

the number of small areas. Chatterjee et al. (2008) state that if calibrated, their intervals would

be O(d5m−5/2) order correct, where calibration refers to the bootstrap bias adjustment in the

point or interval estimates. Liu and Diallo (2013) apply the method in Chatterjee et al.(2008)

and construct percentile parametric bootstrap confidence intervals for survey-weighted small

area proportions based on the Fay-Herriot model.

Hall and Maiti (2006) construct two sided, equal-tailed, double bootstrap calibrated CIs.

The authors outline an algorithm for calibrating the CI coverage and constructing percentile

confidence intervals for the parameter of interest. Linear and nonlinear models are considered,

but the parameter of interest, θi, is always a linear function of the model parameters. The

bootstrap CIs for θi are constructed using the estimated distribution of the bootstrap predic-

tions of θi. The authors state that the coverage error of the level one bootstrap CI is of order

O(m−2) and that the coverage error of the level two calibrated bootstrap CI is of order O(m−3).

A simulation study is conducted for the binary model and bootstrap confidence intervals with

nominal coverages 1− α = 0.80, 0.90, 0.95 are constructed for θi, for different models.

Davidson and MacKinnon (2007) introduced a fast double bootstrap procedure for boot-

strap hypothesis testing. Only one sample is drawn at the second bootstrap level. Giacomini

et al. (2013) provide key properties for the fast double bootstrap methods, under regularity

conditions. The authors discuss applications of fast double bootstrap methods to assess the

performance of bootstrap estimators, test statistics and confidence intervals. Erciulescu and

Fuller (2014) study a unit level binomial model and construct prediction mean squared error

estimators for the small area means using fast double bootstrap procedures. Chang and Hall

(2014) study the fast double bootstrap method described in Giacomini et al (2013) to produce

third-order accurate confidence intervals. Chang and Hall (2014) show that the performance
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of the fast double bootstrap in reducing the order of magnitude of bias is comparable to the

classic double bootstrap method. The authors describe a calibration method for the confidence

interval cutoff points and show that the fast double bootstrap does not improve level one order

of magnitude of coverage error of the CIs.

In this paper we present bootstrap confidence intervals for the small area mean constructed

using parametric single and double bootstrap methods. The model of primary interest is the

unit level logistic model. Stochastic covariates and different cases of auxiliary information are

considered. Different estimators for the prediction error variance, including a Taylor approxi-

mation and bootstrap estimators, and different estimators for the cutoff points of the CIs for

the small area means (proportions) are compared in a simulation study.

4.2 Models

Define the unit level generalized linear mixed model (ULGLMM) by

yij = g(xij ,β, bi) + eij ,

xij = µx + δi + εij =: µxi + εij ,

µ̃xi = µxi + ui,

(4.1)

for i = 1, ...,m, where m denotes the number of areas and j = 1, ..., ni, where ni denotes the

number of units within area i. Assume that the random area effects bi are independent and

identically distributed, with a density fb with mean and variance (0, σ2
b ), respectively. Assume

that the sampling errors eij are independent (0, σ2
eij) random variables, independent of bk, for

all i, j and k. Assume σ2
eij = σ2

ek
2
ij , for known constants kij and assume the vector (bi, eij) is

independent of xkt for all i, j, k, and t.

The relationship between the response vector yi = (yi1, ..., yini) and the explanatory vector

xi = (xi1, ..., xini) and the random area effects bi need not be a linear function. We assume

that g(xij ,β, bi) is a continuous, with continuous partial derivatives with respect to the vector

of fixed effects coefficients β and with respect to the random area effects bi.
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The small area mean of x, µxi can be fixed or random, known or unknown. If µxi is random,

assume that the area effects δi are independent and identically distributed, with a density fδ

with mean and variance (0, σ2
δ ), respectively. Assume that the sampling errors εij are indepen-

dent and identically distributed, with mean and variance (0, σ2
ε ), respectively, independent of

δk, for all i, j and k.

Auxiliary information about µxi is denoted by µ̃xi. Assume that the sampling errors ui are

independent and identically distributed, with mean and variance (0, σ2
u), respectively, and as-

sume that the auxiliary information µ̃x = (µ̃x1, ..., µ̃xm) is independent of x = (x1,x2, ...,xm),

where xi = (xi1, xi2, ..., xini) is the covariate information for area i .

Let θi be the small area mean of y,

θi =

∫
g(x,β, bi)dFxi(x), (4.2)

where Fxi(x) is the distribution of x in area i.

4.2.1 Small Area Mean Prediction for the Unit Level Linear Mixed Model

Consider first the case when g(xij ,β, bi) is a linear function of the parameters. Assume µxi

is fixed and known. Then the unit level linear mixed model (ULLMM) is

yij = xijβ + bi + eij , (4.3)

where xij = (1, xij), bi ∼ NI(0, σ2
b ), eij ∼ NI(0, σ2

eij) and σ2
eij = σ2

ek
2
ij , for known constants

kij . The small area mean of y is

θi = x̄Niβ + bi, (4.4)

where x̄Ni is the population mean of x for area i. Let

β̂ =

(
m∑
i=1

x′iV
−1
i xi

)−1( m∑
i=1

x′iV
−1
i yi

)
(4.5)
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be the best linear unbiased estimator (BLUE) of β, for Vi = σ2
b1ni1

′
ni + σ2

eDiag(k2
ij), where

1ni denotes the vector of length ni with entries equal to one and Diag(k2
ij) denotes the ni × ni

diagonal matrix with diagonal entries k2
ij . The variance of the β̂ is

V (β̂) =

(
m∑
i=1

x′iV
−1
i xi

)−1

. (4.6)

In practice, the vector of parameters (σ2
b , σ

2
e) needs to be estimated. Let parameters (σ2

b , σ
2
e) be

estimated by (σ̂2
b , σ̂

2
e), where, for example, (σ̂2

b , σ̂
2
e) are REML estimators. Then the empirical

best linear unbiased predictor (EBLUP) of θi is

θ̂EBLUPi = x̄Niβ̂ + b̂i = x̄Niβ̂ + γ̂i(ȳi − x̄iβ̂), (4.7)

where

γ̂i = σ̂2
b

σ̂2
b +

 m∑
j=1

k−2
ij

−1

σ̂2
e

−1

and

(ȳi, x̄i) =

 m∑
j=1

k−2
ij

−1
m∑
j=1

k−2
ij (yij , xij)

is the sample weighted mean of (y,x), for area i.

The Prasad and Rao (1990) expression for the prediction MSE is

MSE(θ̂EBLUPi − θi) = g1i + g2i + g3i, (4.8)

where g1i is the prediction MSE when the parameters (β, σ2
b , σ

2
e) are known, g2i is due to the es-

timation of the vector β, and g3i is due to the estimation of the variance components, σ2
b and σ2

e .

Prasad and Rao (1990) derive an estimator of the prediction MSE, with bias of order

o(m−1),

ˆMSE(θ̂EBLUPi − θi) = ĝ1i + ĝ2i + 2ĝ3i, (4.9)
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where ĝ1i, ĝ2i, ĝ3i are functions of the estimated variance components, σ̂2
b , σ̂

2
e . Extension of the

result to kij 6= 1 gives

ĝ1i = γ̂i

(∑m
j=1 k

−2
ij

)−1
σ̂2
e ,

ĝ2i = (1− γ̂i)2x̄NiV̂ (β̂)x̄
′
Ni,

ĝ3i =

(
σ̂2
b +

(∑m
j=1 k

−2
ij

)−1
σ̂2
e

)
V̂ (γ̂i),

where

V̂ (γ̂i) =

σ̂2
b +

 m∑
j=1

k−2
ij

−1

σ̂2
e

−4σ̂4
b

 m∑
j=1

k−2
ij

−2

V̂ (σ̂2
e) +

 m∑
j=1

k−2
ij

−2

σ̂4
e V̂ (σ̂2

b )


and V̂ (β̂) is defined in (4.6). The estimation of γi

(∑m
j=1 k

−2
ij

)−1
σ2
e requires care because the

bias in the typical estimator of γi is O(m−1). The third term, ĝ3i appears twice in the expres-

sion for ˆMSE(θ̂EBLUPi − θi) due to a bias correction in the first term g1i.

Using the fact that ū2
yi := (ȳi − x̄iβ̂)2 is an approximately unbiased estimator for σ2

b +(∑m
j=1 k

−2
ij

)−1
σ2
e , an alternative estimator for g3i is

ĝ3i =

σ̂2
b +

 m∑
j=1

k−2
ij

−1

σ̂2
e

−4σ̂4
b

 m∑
j=1

k−2
ij

−2

V̂ (σ̂2
e) +

 m∑
j=1

k−2
ij

−2

σ̂4
e V̂ (σ̂2

b )

 ū2
yi,

(4.10)

see Fuller (1990). The estimator (4.9) does not depend directly on the area-specific data yi.

However, the estimator (4.9) with (4.10) depends on the area-specific data yi.

Lahiri and Rao (1995) show that the estimator (4.9) is robust to departures from normality

of the random area effects, but not to normality of the sampling errors. Alternative expressions

for the estimated MSE and extensions are given by Fuller and Harter (1987), Fuller (1990),

Datta and Lahiri (2000), and Wang and Fuller (2003). Datta, Rao and Smith (2005) give
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results of an extensive study of mean squared error estimators for different estimators of σ2
b

and different distributions of the random effects.

4.2.1.1 Small Area Mean Prediction for µxi in ULGLMM

Let a model for xij be of the form given in (4.1)

xij = µx + δi + εij ,

µ̃xi = µxi + ui.
(4.11)

The observations are x̃i = (xi, µ̃xi), with sampling errors ε̃i := (εi, ui). The number of obser-

vations in area i is ni + 1. The fixed parameter is µx. The constants kij =: a−2
ijx equal 1 for

j = 1, .., ni and k for j = ni + 1, where k = σ2
ε /σ

2
u is assumed to be known. Hence, the estima-

tion and prediction expressions in (4.5, 4.6, 4.7, 4.9, 4.10) are appropriate for the ULLMM for x̃.

Let parameters (σ2
δ , σ

2
ε ) be estimated by (σ̂2

δ , σ̂
2
ε ). Let µ̂x be the empirical BLUE of µx

defined in (4.5)

µ̂x =

(
m∑
i=1

1′V̂ −1
ix 1

)−1( m∑
i=1

1′V̂ −1
ix x̃i

)
, (4.12)

for V̂ix = σ̂2
δ1ni1

′
ni + σ̂2

εDiag(k2
ij). The variance of µ̂x given in (4.6) is estimated by V̂ (µ̂x),

V̂ (µ̂x) =

(
m∑
i=1

1′V̂ −1
xi 1

)−1

. (4.13)

The EBLUP of µxi, the small area mean of the auxiliary variable, is µ̂xi defined in (4.7),

µ̂xi = µ̂x + δ̂i = µ̂x + γ̂ix(¯̃xi − µ̂x), (4.14)

where γ̂ix = σ̂2
δ (σ̂

2
δ + a−1

i.x σ̂
2
ε )
−1, ¯̃xi =

∑ni
j=1 aijxa

−1
i.x x̃ij and ai.x =

∑ni
j=1 aijx.

The estimated variance of µ̂xi is V̂ (µ̂xi) and is derived in the form of (4.9) with (4.10),

V̂ (µ̂xi) = ĝ1i + ĝ2i + 2ĝ3i, (4.15)
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where

ĝ1i = γ̂ixa
−1
i.x σ̂

2
ε ,

ĝ2i = (1− γ̂ix)2V̂ (µ̂x),

ĝ3i = (σ̂2
δ + a−1

i.x σ̂
2
ε )
−4
(
σ̂4
δa
−2
i.x V̂ (σ̂2

ε ) + a−2
i.x σ̂

4
ε V̂ (σ̂2

δ )
)
ū2
ix ,

where ū2
ix := (¯̃xi − µ̂x)2.

4.2.1.2 Small Area Mean Prediction for y in ULGLMM

Small area mean predictors for the unit level model in (4.1), with nonlinear g(xij ,β, bi) func-

tion, with fully known auxiliary information have been studied in Jiang and Lahiri (2001), Mon-

tanari, Ranalli and Vicarelli (2010), Lopez-Vizcaino, Lombardia-Cortina, Morales-Gonzalez

(2011), and Pfeffermann and Correa (2012). The model with different amounts of available

information was studied in Erciulescu and Fuller (2013).

Jiang and Lahiri (2001) and Pfeffermann and Correa (2012) consider the inverse logit

g(xij ,β, bi) function and construct estimates for the small area proportions using the condi-

tional distribution of the random area effects given the response variables. Erciulescu and Fuller

(2013) consider the inverse logit g(xij ,β, bi) function and study two methods for constructing

small area mean (proportion) predictions. The first method is based on the conditional distri-

bution of the random area effects given the response variables. The second method, called the

’plug-in method’ is based on the direct substitution of the predicted random area effects into

the small area mean expression. They showed that the ’plug-in’ predictor for the small area

mean can have sizeable bias.

We present predictors of θi for model (4.1), under alternative specifications for xij and for

different levels of auxiliary information.
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Known µxi

Let the small area mean of xij be fixed, known. The unit level information (yij ,xij) is

observed, for all i = 1, ...,m, j = 1, .., ni. Then, given known parameters for model (4.1),

(σ2
b , σ

2
ε ,β, µxi), and a sample (x,y), the minimum mean squared error (MMSE) predictor of

the small area mean of y is

θ̂i = E
[
θ̂(b)|(xi,yi)

]
,

where xi = (xi,1, xi,2, ..., xi,ni),yi = (yi,1, yi,2, ..., yi,ni), and

θ̂(b) =

∫
ε
g(µxi + ε,β, b)dFε(ε)

and

θ̂i =

∫
b θ̂(b)

∏ni
t=1 f(yit|xit, b)f(xit|µxi)dFbi(b)∫

b

∏ni
t=1 f(yit|xit, b)f(xit|µxi)dFbi(b)

. (4.16)

Since f(xit|µxi) is free of b, the predictor given in (4.16) simplifies to

θ̂i =

∫
b θ̂(b)

∏ni
t=1 f(yit|xit, b)dFbi(b)∫

b

∏ni
t=1 f(yit|xit, b)dFbi(b)

. (4.17)

Unknown Fixed µxi, Additional Information µ̃xi

Let the small area mean of xij be fixed, unknown. The area level information (yi,xi, µ̃xi)

is observed, for all i = 1, ...,m. Then, given known parameters for model (4.1), (σ2
b , σ

2
ε ,β, µxi),

and a sample (x̃ = (x, µ̃x),y), the minimum mean squared error (MMSE) predictor of the

small area mean of y is

θ̂i = E
[
θ̂(b)|(xi,yi, µ̃xi)

]
,

where xi = (xi,1, xi,2, ..., xi,ni),yi = (yi,1, yi,2, ..., yi,ni), and

θ̂(b) =

∫
ε
g(µxi + ε,β, b)dFε(ε)

and

θ̂i =

∫
b θ̂(b) (

∏ni
t=1 f(yit|xit, b)f(xit|µxi)) f(µ̃xi|µxi)dFbi(b)∫

b (
∏ni
t=1 f(yit|xit, b)f(xit|µxi)) f(µ̃xi|µxi)dFbi(b)

. (4.18)
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Since f(xit|µxi) and f(µ̃xi|µxi) are free of b, the predictor given in (4.18) simplifies to

θ̂i =

∫
b θ̂(b)

∏ni
t=1 f(yit|xit, b)dFbi(b)∫

b

∏ni
t=1 f(yit|xit, b)dFbi(b)

. (4.19)

For model (4.3), when g(xij ,β, bi) = (1, xij)
′β + bi, θ̂(b) defined for (4.16) and (4.18) is

θ̂(b) =

∫
ε
((1, µxi + ε)′β + b)dFε(ε) = (1, µxi)

′β + b

and

θ̂i =

∫
b((1, µxi)

′β + b)
∏ni
t=1 f(yit|xit, b)dFbi(b)∫

b

∏ni
t=1 f(yit|xit, b)dFbi(b)

= (1, µxi)
′β + E(bi|yi,xi). (4.20)

Unknown Random µxi, Additional Information µ̃xi

Consider model (4.1) with unknown random µxi. The area level information (yi,xi, µ̃xi) is

observed, for all i = 1, ...,m. Then, given known parameters for model (4.1), (σ2
b , σ

2
ε , σ

2
δ ,β, µx),

and a sample (x̃ = (x, µ̃x),y), the minimum mean squared error (MMSE) predictor of the

small area mean of y is

θ̂i = E
[
θ̂(b, δ)|(xi,yi, µ̃xi)

]
,

where xi = (xi,1, xi,2, ..., xi,ni),yi = (yi,1, yi,2, ..., yi,ni), and

θ̂(b, δ) =

∫
ε
g(µx + δ + ε,β, b)dFε(ε)

and

θ̂i =

∫
b

∫
δ θ̂(b, δ) (

∏ni
t=1 f(yit|xit, b)f(xit|δi)) f(µ̃xi|δi)dFδi(δ)dFbi(b)∫

b

∫
δ (
∏ni
t=1 f(yit|xit, b)f(xit|δi)) f(µ̃xi|δi)dFδi(δ)dFbi(b)

. (4.21)
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For model (4.3), when g(xij ,β, bi) = (1, xij)
′β + bi, θ̂(b, δ) defined for (4.21) is

θ̂(b, δ) =

∫
ε
((1, µx + δ + ε)′β + b)dFε(ε) = (1, µx + δ)′β + b

and

θ̂i =

∫
b

∫
δ((1, µx + δ)′β + b) (

∏ni
t=1 f(yit|xit, b)f(xit|δi)) f(µ̃xi|δi)dFδi(δ)dFbi(b)∫

b

∫
δ (
∏ni
t=1 f(yit|xit, b)f(xit|δi)) f(µ̃xi|δi)dFδi(δ)dFbi(b)

=

∫
δ(1, µx + δ)′β (

∏ni
t=1 f(yit|xit, b)f(xit|δi)) f(µ̃xi|δi)dFδi(δ)∫

b

∫
δ (
∏ni
t=1 f(yit|xit, b)f(xit|δi)) f(µ̃xi|δi)dFδi(δ)dFbi(b)

+

∫
b b (
∏ni
t=1 f(yit|xit, b)f(xit|δi)) f(µ̃xi|δi)dFbi(b)∫

b

∫
δ (
∏ni
t=1 f(yit|xit, b)f(xit|δi)) f(µ̃xi|δi)dFδi(δ)dFbi(b)

= (1, µx + E(δi|(xi, µ̃xi)))′β + E(bi|yi,xi). (4.22)

4.2.2 Estimation

In practice, the parameters σ2
b ,β, σ

2
ε , µxi are not known and need to be estimated. Consider

the model specified by (4.1) and (4.11), under the different cases of auxiliary information pre-

sented in Section 4.2.1. The parameters (σ2
ε , µxi) are estimated separately from the parameters

(σ2
b ,β), see Erciulescu and Fuller (2014).

The estimation of (σ2
b ,β) is based on maximizing the likelihood for the generalized linear

mixed model specified in (4.1). There is no closed form expression for the likelihood and no

exact form of the estimating equations. Two commonly used methods of estimation are based

on pseudo-likelihood and on integral approximation. In the simulation study, we use the inte-

gral approximation method in the glmer function, in R, that uses the Laplace approximation

to the likelihood.
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4.2.2.1 Known µxi

For the case when µxi is known, the sampling variance σ2
ε is estimated by the pooled

within-area mean squared

σ̂2
ε =

(∑
ni

)−1
m∑
i=1

ni∑
j=1

(xij − µxi)2. (4.23)

4.2.2.2 Unknown Fixed µxi, Additional Information µ̃xi

For the case when µxi is unknown fixed and additional information µ̃xi is observed, the

estimated small area mean of x is

µ̂xi =
σ2
ux̄i + n−1

i σ2
ε µ̃xi

σ2
u + n−1

i σ2
ε

=
k−1x̄i + n−1

i µ̃xi

k−1 + n−1
i

, (4.24)

and the estimated sampling variance is

σ̂2
ε = (

m∑
i=1

ni)
−1

 m∑
i=1

ni∑
j=1

(xij − µ̂xi)2 + k
m∑
i=1

(µ̃xi − µ̂xi)2

 . (4.25)

The estimated variance of µ̂xi is

V̂ (µ̂xi) =
σ̂2
un
−1
i σ̂2

ε

σ̂2
u + n−1

i σ̂2
ε

= σ̂2
ε (ni + k)−1. (4.26)

4.2.2.3 Unknown Random µxi, Additional Information µ̃xi

For the case when µxi is unknown random and additional information µ̃xi is observed, the

estimation of (σ2
ε , σ

2
δ , µx) is based on maximizing the likelihood for the linear mixed model

specified in (4.11). In the simulation study, we construct the estimated weighted least squares

estimator for µx and REML estimates for σ2
ε and σ2

δ , using the lmer function, in R.
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4.3 Bootstrap MSE Estimators

In this section we consider bootstrap estimation of the MSE of θ̂i as a predictor of θi. Let

αi = E(θ̂i − θi)2 (4.27)

be the prediction MSE for θ̂i and let α̂i be an estimator of αi. For model (4.1) and known

µxi, the prediction MSE for θ̂i is a function of the parameters ψ = (σ2
b ,β, σ

2
ε ). For model

(4.1) and unknown fixed µxi, the prediction MSE for θ̂i is a function of the parameters ψ =

(σ2
b ,β, σ

2
ε , µxi). For model (4.1) and unknown random µxi, the prediction MSE for θ̂i is a

function of the parameters ψ = (σ2
b ,β, σ

2
ε , µx, σ

2
δ ). For nonlinear g(xij ,β, bi), there is no closed

form expression of the type (4.27) for αi. In this section we consider bootstrap estimation of

αi. Hall and Maiti (2006) showed that

E(α̂i) = αi +m−1Bi(ψ) +O(m−2), (4.28)

where Bi is a smooth function of its arguments. The bootstrap estimate of the distribution of

ψ is consistent for the distribution of ψ. Therefore, the bootstrap estimate of the distribution

of αi is consistent for the distribution of αi and a smooth function of ψ̂, and the conditions for

use of the bootstrap hold for αi.

Define DG(ψ, r), for the vector of parameters ψ and the random number seed r, to be

the generator for a sample from the model of interest. In the level one bootstrap, B1 samples

are generated using the vector of random number seeds r1 = {r1,1, r1,2, ..., r1,B1}. Let ψ̂ be an

estimator of ψ for the original sample and let ψ∗k be the estimator of ψ from the kth bootstrap

sample generated using DG(ψ̂, r1,k). Let θ∗i,k be the true small area mean for the kth bootstrap

sample and let θ̂∗i,k be the sample predictor of θ∗i,k. Then, the level one bootstrap estimator of

the prediction MSE for area i is

α̂∗i = B−1
1

B1∑
k=1

(θ̂∗i,k − θ∗i,k)2 =: B−1
1

B1∑
k=1

α∗i,k = ᾱ∗i , (4.29)

where α∗i,k is the prediction squared error for the kth bootstrap sample.
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In the double bootstrap, a sample estimator α∗∗i,k,t is generated using ψ∗k from the level

one generated sample k = 1, 2, ..., B1, for t = 1, 2, ..., B2, where B2 is the number of level two

bootstrap samples per level one sample. Typically a large number of α∗∗i,k,t is generated for each

α∗i,k and the bias adjusted estimator is

α̃∗∗i = B−1
1

B1∑
k=1

(2α∗i,k −B−1
2

B2∑
t=1

α∗∗i,k,t). (4.30)

where α∗∗i,k,t is generated using DG(ψ∗k, r2,k,t) and the r2,k,t, k = 1, 2, ..., B1, t = 1, 2, ..., B2, are

independent random numbers, independent of r1,k. The estimator (4.30) is called the classic

double bootstrap estimator of αi and the bootstrap bias correction method is called the differ-

ence bootstrap bias correction method.

Based on the work of Davidson and MacKinnon (2007) and Giacomini, Politis and White

(2013), we construct a classic fast double bootstrap estimator of αi, with B2 = 1. Let r2,k be a

second sequence of independent random numbers, independent of r1,k, for k = 1, 2, ..., B1 and

define α∗∗i,k to be calculated from data generated with DG(ψ∗k, r2,k). Notice that a single α∗∗i,k is

generated for each ψ∗i,k, for k = 1, 2, ..., B1. The classic fast double bootstrap estimator of the

prediction MSE for area i is

α̃∗∗i,C = B−1
1

B1∑
k=1

(2α∗i,k − α∗∗i,k) = 2ᾱ∗i − ᾱ∗∗i . (4.31)

Erciulescu and Fuller (2014) proposed a more efficient double bootstrap estimator,

α̃∗∗i,T = B−1
1

∑B1
k=1(α∗i,k + α∗i,k+1 − α∗∗i,k), (4.32)

where α∗i,k+1 is generated with DG(ψ̂, r1,k+1) and α∗∗i,k is generated with DG(ψ∗k, r1,k+1). They

called the estimator (4.32) a telescoping fast double bootstrap estimator.

Let α̂Tayi be an alternative estimator of αi, typically based on Taylor expansions. For

example, for a linear function g(xij ,β, bi), α̂
Tay
i could be the Taylor estimator given in (4.9).

Let αTay∗i,k , for k = 1, 2, ..., B1, be the level one bootstrap values for α̂Tayi . Then, the level one
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bootstrap estimated bias in α̂Tayi is

∆̂∗αTay ,i = B−1
1

B1∑
k=1

(αTay∗i,k − α̂Tayi ), (4.33)

and a bias corrected level one bootstrap estimator of the prediction MSE for area i is obtained

by subtracting the estimated bias in α̂Tayi from the bootstrap estimator of the prediction MSE

for area i to give

α̂∗i,∆ = ᾱ∗i − ∆̂∗αTay ,i. (4.34)

Let αTay∗∗,Ci,k and αTay∗∗,Ti,k , for k = 1, 2, ..., B1, be the level two classic and telescoping bootstrap

values for α̂Tayi , respectively. The level two bootstrap estimated bias in α̂Tayi , for the classic

fast double bootstrap procedure, is

∆̂∗∗,C
αTay ,i

= B−1
1

B1∑
k=1

(3αTay∗i,k − αTay∗∗,Ci,k − 2α̂Tayi ), (4.35)

and a classic fast double bootstrap estimator of the prediction MSE for area i is

α̂∗∗,Ci,∆ = ᾱ∗i − ∆̂∗∗,C
αTay ,i

. (4.36)

Similarly, the level two bootstrap estimated bias in α̂Tayi , for the fast telescoping double

bootstrap procedure, is

∆̂∗∗,Tay
αT ,i

= B−1
1

B1∑
k=1

(3αTay∗i,k − αTay∗∗,Ti,k − 2α̂Tayi ), (4.37)

and a fast telescoping double bootstrap estimator of the prediction MSE for area i is

α̂∗∗,Ti,∆ = ᾱ∗i − ∆̂∗∗,T
αTay ,i

. (4.38)

4.4 Linear Approximation of the ULGLMM

In this section, we construct a linear approximation of the model (4.1) and use the approx-

imation to approximate the predicted small area mean of y. The method is illustrated for the

general case when µxi is unknown and random, and additional information µ̃xi is observed.
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A Taylor approximation for the function g(xij ,β, b) expanded about (β̂, 0) is

yij ≈ g(xij , β̂, 0) + hβ,ij(xij , β̂, 0)(β − β̂) + hbi,ij(xij , β̂, 0)bi + eij , (4.39)

where (β̂
′
, σ̂2

b ) are estimates of (β′, σ2
b ) based on model (4.1), hβ,ij(xij , β̂, 0) is the partial

derivative of g(xij ,β, bi) with respect to β, evaluated at (xij , β̂, 0) and hbi,ij(xij , β̂, 0) is the

partial derivative of g(xij ,β, bi) with respect to bi, evaluated at (xij , β̂, 0).

Suppose that the distribution Fxi(x) is defined by the first two moments of x. Suppose that

the integral in (4.2) can be approximated numerically, using a set of numbers zk, k = 1, 2, ...,K

and a set of weights wk, k = 1, 2, ...,K, by

θi ≈
K∑
k=1

wkg(µxi + zkσε,β, bi). (4.40)

For Fxi(x) the normal distribution, the numerical approximation is described in Appendix D.

To simplify the approximation (4.39) and later approximations, we replace hβ,ij(xij , β̂, 0)

and hbi,ij(xij , β̂, 0) by averages,

yij ≈ g(xij , β̂, 0) + h̄β,i(µ̂xi, σ̂ε, β̂, 0)(β − β̂) + h̄b,i(µ̂xi, σ̂ε, β̂, 0)bi + eij , (4.41)

where (µ̂xi, σ̂ε) is an estimator of (µxi, σε) and

h̄β,i(µ̂xi, σ̂ε, β̂, 0) :=

K∑
k=1

wk
∂g(µxi + zkσε,β, bi)

∂β
|
(µ̂xi,σ̂ε,

ˆβ,0)

h̄b,i(µ̂xi, σ̂ε, β̂, 0) :=

K∑
k=1

wk
∂g(µxi + zkσε,β, bi)

∂bi
|
(µ̂xi,σ̂ε,

ˆβ,0)
. (4.42)

Using expression (4.41), the predicted random area effect for area i is

h̄b,i(µ̂xi, σ̂ε, β̂, 0)b̂i = γ̃iūyi, (4.43)



75

where

γ̃i =
(
h̄2
b,i(µ̂xi, σ̂ε, β̂, 0)σ̂2

b + n−1
i σ̃2

ei

)−1
h̄2
b,i(µ̂xi, σ̂ε, β̂, 0)σ̂2

b ,

uy,ij = yij − g(xij , β̂, 0),

ūyi = n−1
i

∑ni
j=1 uy,ij and σ̃2

ei is the estimated model sampling variance of y based on the linear

approximation in (4.41).

Using a Taylor approximation for the function g(xij ,β, b), with respect to the parameters

(β, σε, bi, µxi), about (β̂, σ̂ε, 0, µ̂xi), the small area mean of y in (4.40) is approximated by

θi ≈
K∑
k=1

wkg(µ̂xi + zkσ̂ε, β̂, 0) + h̄µxi(µ̂xi, σ̂ε, β̂, 0)(µxi − µ̂xi)

+ h̄σε,i(µ̂xi, σ̂ε, β̂, 0)(σε − σ̂ε) + h̄β,i(µ̂xi, σ̂ε, β̂, 0)(β − β̂) + h̄b,i(µ̂xi, σ̂ε, β̂, 0)bi, (4.44)

where

h̄µxi(µ̂xi, σ̂ε, β̂, 0) :=

K∑
k=1

wk
∂g(µxi + zkσε,β, bi)

∂µxi
|
(µ̂xi,σ̂ε,

ˆβ,0)
,

h̄σε,i(µ̂xi, σ̂ε, β̂, 0) :=

K∑
k=1

wk
∂g(µxi + zkσε,β, bi)

∂σε
|
(µ̂xi,σ̂ε,

ˆβ,0)
, (4.45)

and h̄β,i(µ̂xi, σ̂ε, β̂, 0) and h̄b,i(µ̂xi, σ̂ε, β̂, 0) are defined in (4.42).

The small area mean prediction

θ̂i =
∑K

k=1wkg(µ̂xi + zkσ̂ε, β̂, b̂i),

≈
∑K

k=1wkg(µ̂xi + zkσ̂ε, β̂, 0) + h̄b,i(µ̂xi, σ̂ε, β̂, 0)b̂i,

(4.46)

for b̂i defined in (4.43).

In (4.44), the mean of the dependent variable yi is approximated by a linear function of

(σε, µxi,β, bi). Therefore, expressions analogous to (4.8) and (4.9) can be derived for the pre-

diction mean squared error, and for the estimated prediction mean squared error, respectively.
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Using the approximations in (4.44) and (4.46), the prediction error θ̂i − θi is approximated by

θ̂i − θi = h̄µxi(µ̂xi, σ̂ε, β̂, 0)(µ̂xi − µxi) + h̄σε,i(µ̂xi, σ̂ε, β̂, 0)(σ̂ε − σε)

+ h̄β,i(µ̂xi, σ̂ε, β̂, 0)(β̂ − β) + h̄b,i(µ̂xi, σ̂ε, β̂, 0)(b̂i − bi). (4.47)

The variance of the approximation (4.47) depends on the model and the parameter esti-

mates. The vector (µ̂xi, σ̂ε, β̂) is constructed as described in Section 4.2.2. The ū2
yi, defined in

(4.43), is an approximate estimator for h̄2
b,i(µ̂xi, σ̂ε, β̂, 0)σ2

b + n−1
i σ2

ei. A Taylor MSE estimator

for the prediction error (4.47) of type (4.9) with kij = 1 is

ˆMSE(θ̂i − θi) = ĝ1i(σ̂
2
b , σ̃

2
ei) + ĝ2i(σ̂

2
b , σ̃

2
ei) + 2ĝ3i(σ̂

2
b , σ̃

2
ei), (4.48)

where

ĝ1i(σ̂
2
b , σ̃

2
ei) = γ̃in

−1
i σ̃2

ei,

ĝ2i(σ̂
2
b , σ̃

2
ei) = (1− γ̃i)2h̄

′

β,i(µ̂xi, σ̂ε, β̂, 0)V̂ (β̂)h̄β,i(µ̂xi, σ̂ε, β̂, 0) + h̄2
σε,i

(µ̂xi, σ̂ε, β̂, 0)V̂ (σ̂ε)

+h̄2
µxi(µ̂xi, σ̂ε, β̂, 0)V̂ (µ̂xi),

ĝ3i(σ̂
2
b , σ̃

2
ei) =

(
h̄4
b,i(µ̂xi, σ̂ε, β̂, 0)σ̂4

bn
−2
i V̂ (σ̂2

ei) + n−2
i σ̂4

eiV̂ (h̄2
b,i(µ̂xi, σ̂ε, β̂, 0)σ̂2

b )
)
ū2
yi(

h̄2
b,i(µ̂xi, σ̂ε, β̂, 0)σ̂2

b + n−1
i σ̃2

ei

)4 ,

V̂ (h̄2
b,i(µ̂xi, σ̂ε, β̂, 0)σ̂2

b ) = h̄4
b,i(µ̂xi, σ̂ε, β̂, 0)V̂ (σ̂2

b ),

γ̃i and σ̃2
ei are defined for (4.43), h̄β,i(µ̂xi, σ̂ε, β̂, 0) and h̄b,i(µ̂xi, σ̂ε, β̂, 0) are defined in (4.42),

h̄µxi(µ̂xi, σ̂ε, β̂, 0) and h̄σε,i(µ̂xi, σ̂ε, β̂, 0) are defined in (4.45), V̂ (σ̂ε) is the estimated variance

of σ̂ε, V̂ (β̂) is the estimated covariance matrix of β̂, V̂ (σ̂2
ei) is the estimated variance of the σ̂2

ei,

V̂ (µ̂xi) is the estimated variance of µ̂xi and V̂ (σ̂2
b ) is the estimated variance of σ̂2

b .

For model (4.1) with unknown µxi, the area mean of x, µxi, is estimated/predicted based on

the linear mixed model for x̃ given in (4.11), as described in Section 4.2.2. Given the indepen-

dence assumptions for the random area effects b, the sampling errors ε and the observations x,
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described for model (4.1), the variance covariance matrix for the vector of area level informa-

tion (ūy,i, ¯̃xi) has zero off-diagonal elements, where (ūy,i, ¯̃xi) = (n−1
i

∑ni
j=1 uy,ij , n

−1
i

∑ni
j=1 x̃ij),

for uy,ij defined for (4.43) and x̃ij defined for model (4.11). Moreover, the estimated vector of

parameters (β̂, σ̂2
b ) is independent from the estimated σ2

ε , as described in Section 4.2.2. There-

fore, the covariance terms associated with the estimation of (µxi, σε,β, bi) are zero in expression

(4.48).

If we ignore the estimation error in σ̂2
ε and the estimation error in σ̃2

ei in constructing the

Taylor estimators (4.15, 4.48), the terms ĝ2i(σ̂
2
b , σ̃

2
ei), ĝ3i(σ̂

2
b , σ̃

2
ei) in (4.48) become

ĝ2i(σ̂
2
b , σ̃

2
ei) = (1−γ̃i)2h̄

′

β,i(µ̂xi, σ̂ε, β̂, 0)V̂ (β̂)h̄β,i(µ̂xi, σ̂ε, β̂, 0)+h̄2
µxi(µ̂xi, σ̂ε, β̂, 0)V̂ (µ̂xi) (4.49)

with

V̂ (µ̂xi) = γ̂ixa
−1
i.x σ̂

2
ε + (1− γ̂ix)2V (µ̂x) + 2(σ̂2

δ + a−1
i.x σ̂

2
ε )
−4a−2

i.x σ̂
4
εV (σ̂2

δ )ū
2
ix

and

ĝ3i(σ̂
2
b , σ̃

2
ei) =

(n−1
i σ̃2

ei)
2h̄4
b,i(µ̂xi, σ̂ε, β̂, 0)V̂ (σ̂2

b )ū
2
yi(

h̄2
bi,i

(µ̂xi, σ̂ε, β̂, 0)σ̂2
b + n−1

i σ̃2
ei

)4 , (4.50)

respectively. The approximate estimated variance of the ML (or REML) estimated variance

components σ̂2
δ and σ̂2

b are

V̂ (σ̂2
δ ) = 2(m− 1)−1m

[
m∑
i=1

(
σ̂2
δ + a−1

i.x σ̂
2
ε

)−2

]−1

, (4.51)

and

V̂ (σ̂2
b ) = 2(m− 1)−1m

[
m∑
i=1

h̄4
b,i(µ̂xi, σ̂ε, β̂, 0)

(
h̄2
b,i(µ̂xi, σ̂ε, β̂, 0)σ̂2

b + n−1
i σ̃2

ei

)−2
]−1

, (4.52)

where ai.x is defined for (4.14). The estimators are based on the expression (21) given in Wang

and Fuller (2003). The steps are illustrated in Appendix A.

The approximation (4.39) is not a typical bivariate Taylor expansion of the g(xij ,β, bi)

function because it has an approximation error of O(1). However, h̄µxi(µxi,β, σε, 0),
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h̄β,i(µxi,β, σε, 0), h̄bi,i(µxi,β, σε, 0) and h̄σε,i(µxi,β, σε, 0) are continuous differentiable func-

tions of the parameters (µxi,β, σε). Therefore, given root-m consistent estimators

(µ̂xi, β̂, σ̂ε, σ̂b, σ̂e)− (µxi,β, σε, σb, σe) = Op(m
−0.5),

the expression for ˆMSE(θ̂i − θi) of (4.48) converges to a limiting quantity. Furthermore, the

difference between ˆMSE(θ̂i − θi) defined by (4.48) and its limiting value is Op(m
−0.5). Hence,

the conditions required to use the bootstrap to estimate the quantiles of the distribution of

(4.54) below with V̂ (θ̂i − θi) = ˆMSE(θ̂i − θi) defined by (4.48) hold.

4.5 Symmetric two-sided (1− α)-level CI

Let model (4.1) hold, let θi be the small area mean defined in (4.2) and let θ̂i be the predicted

small area mean defined in (4.17,4.19,4.21) for different cases of auxiliary information. In this

section we consider the general model with µxi unknown random and construct a symmetric

two-sided (1 − α)-level CI for the area mean θi. The confidence level (1 − α) represents the

percentage of the hypothetically observed CIs that would hold the true value of the area mean θi.

We consider the percentile method and the pivot-like method to construct CIs. The percentile

CIs are based on the bootstrap distributions of the bootstrap prediction errors θ̂∗i,k − θ∗i,k, and

θ̂∗∗i,k − θ∗∗i,k. The pivot-type, two-sided, symmetric, CI of nominal level 1− α is of the form(
θ̂i ± ζ̂i,α

√
V̂ (θ̂i − θi)

)
, (4.53)

where the notation defines the interval

(
θ̂i − ζ̂i,α

√
V̂ (θ̂i − θi), θ̂i + ζ̂i,α

√
V̂ (θ̂i − θi)

)
, ζ̂i,α is

determined by the procedure and V̂ (θ̂i − θi) is an estimator of the variance of θ̂i − θi. We con-

sider bootstrap estimators and Taylor estimators of V̂ (θ̂i − θi). The cutoff point ζi,α is specific

to the area i and to α. Different methods of estimating the cutoff points ζi,α are presented next.
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4.5.1 Wald-type Symmetric (1− α)-level CI for the Small Area Mean

The pivot-type CIs are constructed using the statistic

T̂i :=
θ̂i − θi√
V̂ (θ̂i − θi)

. (4.54)

Given V̂ (θ̂i−θi), one can approximate the distribution of T̂i by the standard normal distribution

and estimate the cutoff point ζi,α by the 100(1 − α)% standard normal distribution quantile,

ζ̂i,α,z. Let

IW =

(
θ̂i ± ζ̂i,α,z

√
V̂ (θ̂i − θi)

)
(4.55)

denote the basic Wald-type confidence interval for the area mean θi.

In the next subsections, bootstrap methods to estimate ζi,α are described.

4.5.2 Level one Bootstrap Symmetric (1− α)-level CI for the Small Area Mean

In the level one bootstrap, B1 bootstrap samples are generated using the estimated para-

maters (σ̂2
b , β̂, µ̂x, σ̂

2
δ , σ̂

2
ε ) and a set of random seeds r1. The bootstrap small area mean θ∗i

is computed using (4.2). The parameter estimates of (σ̂2
b , β̂, µ̂xi, σ̂

2
ε ) for a bootstrap sample

k, k = 1, ..., B1, are denoted by (σ2∗
bk ,β

∗
k, µ
∗
xik, σ

2∗
εk ). The predicted small area mean for the

bootstrap sample k is denoted by θ̂∗ik, and computed using (4.21).

4.5.2.1 Percentile Method

The distribution of the prediction error θ̂i − θi is estimated by the distribution of the

bootstrap prediction errors θ̂∗i,k − θ∗i,k, k = 1, ..., B1. A percentile symmetric, two-sided, level

one bootstrap CI with nominal coverage (1− α) is

Ip1 :=
(
θ̂i ± ζ̂p,i,α

)
, (4.56)
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where the cutoff point is the 100(1 − α)th quantile of the bootstrap estimated distribution of

the absolute value of the level one bootstrap prediction error,

ζ̂p,i,α = |θ̂∗ − θ∗|i,([(1−α)B1]+1),

where we denote the integer-part function by [.] and the ordered value by (.).

4.5.2.2 Pivot-like Method

For the kth bootstrap sample, let the estimated prediction MSE for θ̂∗ik be as in (4.48) and

denoted by (σ∗i,Taylor)
2
k, where

(σ∗i,Taylor)
2
k = ĝ1i(σ

2∗
bk , σ

2∗
eik) + ĝ2i(σ

2∗
bk , σ

2∗
eik) + 2ĝ3i(σ

2∗
bk , σ

2∗
eik), (4.57)

and

ĝ1i(σ
2∗
bk , σ

2∗
eik) = γ∗ikn

−1
i σ2∗

eik,

ĝ2i(σ
2∗
bk , σ

2∗
eik) = (1− γ∗ik)2h̄

′

β,i(µ
∗
xik, σ

∗
εk,β

∗
k, 0)V̂ (β∗k)h̄β,i(µ

∗
xik, σ

∗
εk,β

∗
k, 0)

+h̄2
σε,i

(µ∗xik, σ
∗
εk,β

∗
k, 0)V̂ (σ∗ε ) + h̄2

µxi(µ
∗
xi, σ

∗
ε ,β

∗
k, 0)V̂ (µ∗xik),

ĝ3i(σ
2∗
bk , σ

2∗
eik) =

(
h̄4
b,i(µ

∗
xik, σ

∗
εk,β

∗
k, 0)σ4∗

bkn
−2
i V̂ (σ2∗

eik)
)
ū2∗
yik(

h̄2
b,i(µ

∗
xik, σ

∗
εk,β

∗
k, 0)σ2∗

bk + n−1
i σ2∗

eik

)4

+

(
n−2
i σ4∗

eikV̂ (h̄2
b,i(µ

∗
xik, σ

∗
εk,β

∗
k, 0)σ2k

b
∗)
)
ū2∗
yik(

h̄2
b,i(µ

∗
xik, σ

∗
εk,β

∗
k, 0)σ2∗

bk + n−1
i σ2∗

eik

)4 ,

V̂ (h̄2
b,i(µ

∗
xik, σ

∗
εk,β

∗
k, 0)σ2k

b
∗) = h̄4

b,i(µ
∗
xik, σ

∗
εk,β

∗
k, 0)V̂ (σ2k

b
∗),

where γ∗ik and σ2∗
eik are defined for (4.43), h̄β,i(µ

∗
xik, σ

∗
εk,β

∗
k, 0) and h̄b,i(µ

∗
xik, σ

∗
εk,β

∗
k, 0) are de-

fined in (4.42), h̄
µ∗xik,σ

∗
εk,β

∗
k,0)

and h̄σε,i(µ
∗
xik, σ

∗
εk,β

∗
k, 0) are defined in (4.45), V̂ (σ∗εk) is the es-

timated variance of σ∗εk based on (4.41), and V̂ (β∗k) is the estimated covariance matrix of
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the estimated parameters β∗k based on (4.1),V̂ (σ2∗
eik) is the estimated variance of the σ2∗

eik and

V̂ (µ∗xik) is the estimated variance of µ∗xik, V̂ (σ2k
b
∗) is the estimated variance of σ2k

b
∗. Estima-

tion of the parameters (µ∗xik, σ
∗
εk,β

∗
k) and of the variance of µ∗xik is specific to the model and

described in Section 4.2.2.

Let

T̂ ∗i,k =
θ̂∗i,k − θ∗i,k√
V̂ (θ̂∗i,k − θ∗i,k)

, (4.58)

where V̂ (θ̂∗i,k − θ∗i,k) = (σ∗i,Taylor)
2
k be the level one bootstrap pivot-like statistic.

The distribution of (4.54) is estimated by the distribution of (4.58) and the symmetric,

two-sided, level one bootstrap CI, based on the pivot-like statistic T ∗ik, is

I1 :=
(
θ̂i ± ζ̂i,α,Bσ̂i,Taylor

)
, (4.59)

where the cutoff point ζi,α is estimated by the 100(1 − α)th quantile of bootstrap estimated

distribution of the absolute value of the level one bootstrap statistic,

ζ̂i,α,B = |T ∗|i,([(1−α)B1]+1),

and σ̂i,Taylor =

√
V̂ (θ̂i − θi) is the square root of the Taylor MSE estimator defined in (4.48).

4.5.3 Double Bootstrap Symmetric (1− α)-level CI for the Small Area Mean

In the fast double bootstrap, one bootstrap sample is generated for each set of estimated

paramaters (σ2∗
bk ,β

∗
k, µ
∗
xk, σ

2∗
δk, σ

2∗
ε ). The double bootstrap small area mean θ∗∗i,k is computed

using (4.2). The parameter estimates of (σ̂2
b , β̂, µ̂xi, σ̂

2
ε ) for the double bootstrap sample gener-

ated for the level one bootstrap sample k are denoted by (σ2∗∗
bk ,β

∗∗
k , µ

∗∗
xik, σ

2∗∗
εk ). The predicted

small area mean for the double bootstrap sample generated for the level one bootstrap sample

k is denoted by θ̂∗∗ik , and computed using (4.21).
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4.5.3.1 Percentile Method

For bootstrap sample k, let the double bootstrap prediction errors be θ̂∗∗i,k−θ∗∗i,k, k = 1, ..., B1.

The double bootstrap symmetric (1−α)-level CI, constructed using the percentile method, is

Ip2 :=
(
θ̂i ± ζ̂p,i,α

)
, (4.60)

where the cutoff point is

ζ̂p,i,α = |θ̂∗ − θ∗|
i,([B−1

1

∑B1
k=1 I(|θ̂

∗∗
i,k−θ

∗∗
i,k|<|θ̂∗−θ∗|i,([(1−α)B1]+1))B1]+1)

.

Recall that |θ̂∗ − θ∗|i,([(1−α)B1]+1) is the 100(1 − α)th quantile of the bootstrap estimated dis-

tribution of the absolute value of the level one bootstrap prediction error θ̂∗ − θ∗, and the

cutoff point used for the level one bootstrap confidence interval using the percentile method.

The double bootstrap adjustment in the cutoff point is based on the proportion of double

bootstrap prediction errors θ̂∗∗i,k − θ∗∗i,k that are smaller than |θ̂∗ − θ∗|i,([(1−α)B1]+1), denoted by

B−1
1

∑B1
k=1 I(|θ̂∗∗i,k − θ∗∗i,k| < |θ̂∗ − θ∗|i,([(1−α)B1]+1)).

4.5.3.2 Pivot-like Method

For bootstrap sample k, the Taylor estimated prediction MSE for θ̂∗∗ik is approximated as

in (4.48) and denoted by (σ∗∗i,Taylor)
2
k, where

(σ∗∗i,Taylor)
2
k = ĝ1i(σ

2∗∗
bk , σ

2∗∗
eik ) + ĝ2i(σ

2∗∗
bk , σ

2∗∗
eik ) + 2ĝ3i(σ

2∗∗
bk , σ

2∗∗
eik ), (4.61)



83

and

ĝ1i(σ
2∗∗
bk , σ

2∗∗
eik ) = γ∗∗ik n

−1
i σ2∗∗

eik ,

ĝ2i(σ
2∗∗
bk , σ

2∗∗
eik ) = (1− γ∗∗ik )2h̄

′

β,i(µ
∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0)V̂ (β∗∗k )h̄β,i(µ

∗∗
xik, σ

∗∗
ε ,β

∗∗
k , 0)

+h̄2
σε,i

(µ∗∗xik, σ
∗∗
εk ,β

∗∗
k , 0)V̂ (σ∗∗εk ) + h̄2

µxi(µ
∗∗
xik, σ

∗∗
ε ,β

∗∗
k , 0)V̂ (µ∗∗xik),

ĝ3i(σ
2∗∗
bk , σ

2∗∗
eik ) =

(
h̄4
b,i(µ

∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0)σ4∗∗

bk n
−2
i V̂ (σ2∗∗

eik ) + n−2
i σ4∗∗

eik V̂ (h̄2
b,i(µ

∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0)σ2∗∗

bk )
)
ū2∗∗
yik(

h̄2
b,i(µ

∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0)σ2∗∗

bk + n−1
i σ2∗∗

eik

)4 ,

V̂ (h̄2
b,i(µ

∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0)σ2k

b
∗∗) = h̄4

b,i(µ
∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0)V̂ (σ2k

b
∗∗),

where γ∗∗ik and σ2∗∗
eik are defined for (4.43), h̄β,i(µ

∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0) and h̄b,i(µ

∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0) are

defined in (4.42), h̄µxi(µ
∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0) and h̄σε,i(µ

∗∗
xik, σ

∗∗
εk ,β

∗∗
k , 0) are defined in (4.45), V̂ (σ∗∗ε )

is the estimated variance of σ∗∗εk based on (4.41), and V̂ (β∗∗k ) is the estimated covariance matrix

of the estimated parameters β∗∗k based on (4.1), V̂ (σ2∗∗
eik ) is the estimated variance of the σ2∗∗

eik ,

V̂ (µ∗∗xik) is the estimated variance of µ∗∗xik and V̂ (σ2k
b
∗∗) is the estimated variance of σ2k

b
∗∗. Es-

timation of the parameters (µ∗∗xik, σ
∗∗
εk ,β

∗∗
k ) and of the variance of µ∗∗xik is specific to the model

and described in Section 4.2.2.

Let

T̂ ∗∗i,k =
θ̂∗∗i,k − θ∗∗i,k√
V̂ (θ̂∗∗i,k − θ∗∗i,k)

, (4.62)

where V̂ (θ̂∗∗i,k − θ∗∗i,k) = (σ∗∗i,Taylor)
2
k be the double bootstrap pivot-like statistic.

Following Chang, J. and Hall, P. (2014), a double bootstrap CI for θi constructed using the

pivot-like method is

I2 :=
(
θ̂i ± ζ̂i,α,DBσ̂i,Taylor

)
, (4.63)
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where the cutoff point is estimated by the 100B−1
1

∑B1
k=1 I(|T ∗∗i,k| < |T ∗|i,([(1−α)B1]+1))

th quantile

of bootstrap estimated distribution of the absolute value of the level one bootstrap statistic,

ζ̂i,α,DB = |T ∗|
i,([B−1

1

∑B1
k=1 I(|T

∗∗
i,k|<|T ∗|i,([(1−α)B1]+1))B1]+1)

and σ̂i,Taylor is defined for (4.59).

The level one bootstrap cutoff point is estimated by the 100(1−α)th quantile of the bootstrap

estimated distribution of the absolute value of the level one bootstrap statistic T ∗i . The double

bootstrap cutoff point is estimated by the 100B−1
1

∑B1
k=1 I(|T ∗∗i,k| < |T ∗|i,([(1−α)B1]+1))

th quantile

of the bootstrap estimated distribution of the absolute value of the level one bootstrap statistic

T ∗i . Hence, the double bootstrap bias correction in the level of the confidence interval is

d1,α,i := 1− α−B−1
1

B1∑
k=1

I(|T ∗∗i,k| < |T ∗|i,([(1−α)B1]+1)). (4.64)

4.5.4 General Purpose Statistic for CI

The CI endpoints depend on the level. Hence the confidence interval in, for example (4.55),

needs to be constructed separately, for each α. We now introduce a method of constructing CIs

applicable for a set of α′s. We propose constructing the CI cutoff points using the quantiles of

a multiple of Student-t distribution. The multiple τi and the degrees of freedom dfi are to be

estimated.

4.5.4.1 Level One Bootstrap Symmetric (1− α)-level CI

Let T ∗i,k be the statistic defined in (4.58), where i denotes the area and k denotes the

bootstrap sample and let (4.59) be the level one bootstrap symmetric (1−α)-level CI for θi. We

assume that the level one bootstrap CI cutoff point ζi,α,B is approximated by the 100(1−α/2)th

quantile of a Student-t distribution with degrees of freedom dfi, ζi,α,B = qt,dfi,1−α/2. Let

qi,B = ζ̂i,α,B (4.65)
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be a vector of level one bootstrap CIs cutoff points defined for (4.59), where α is a vector of CI

levels of interest. Let qtdfi be the vector of quantiles of a Student-t distribution with degrees

of freedom dfi,

qtdfi := F−1
tdfi

([1−α/2]), (4.66)

where Ftdfi is the Student-t distribution with dfi degrees of freedom.

Assume that

qi,B = τiqtdfi + eq,i,B,

where eq,i,B is the error in qi,B due to estimation and approximation. Then, the parameters

τi and dfi are estimated by minimizing an objective function Qi(qi,B, τi, dfi) with respect to τi

and dfi. Let the objective function be

Qi(qi,B, τi, dfi) := (qi,B − τiqtdfi)Vq
−1
i (qi,B − τiqtdfi)

′, (4.67)

where Vqi is the variance covariance matrix of τiqtdf i . Using Bahadur (1966) representation,

Vqi is the l × l matrix with entries

Vq
r,c
i =

(1− αr/2) ∧ (1− αc/2)− (1− αr/2)(1− αc/2)

ftτi,dfi (F
−1
tτi,dfi

(1− αr/2))ftτi,dfi (F
−1
tτi,dfi

(1− αc/2))
, r = 1, 2, ..., l, c = 1, 2, ..., l,

where l is the length of α, ∧ denotes the or binary operator, ftτi,dfi denotes the multiple of a

Student-t density with parameters τi and dfi and Ftτi,dfi denotes the multiple of a Student-t

distribution with parameters τi and dfi.

Let (τ̂i,B, d̂f i,B) be the solution to the minimization problem. Then the level one bootstrap

CI is

I1,General :=
(
θ̂i ± qt,d̂f i,B ,1−α/2ŝei

)
, (4.68)

where 1−α is the level of interest, ŝei = τ̂i,Bσ̂i,Taylor, and θ̂i and σ̂i,Taylor are defined for (4.59).
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4.5.4.2 Double Bootstrap Symmetric (1− α)-level CI

Let T ∗∗i,k be the statistic defined in (4.62), where i denotes the area and k denotes the

bootstrap sample and let (4.63) be the double bootstrap symmetric (1−α)-level CI for θi. We

assume that the double bootstrap CI cutoff point ζi,α,DB is the 100(1 − α/2)th quantile of a

Student-t distribution with degrees of freedom dfi, ζi,α,DB = qt,dfi,1−α/2. Let

qi,DB = ζ̂i,α,DB (4.69)

be the vector of level one bootstrap CIs cutoff points, as defined for (4.63), where α is a vector

of CI levels of interest. Assume that

qi,DB = τiqtdfi + eq,i,DB,

where eq,i,DB is the error in qi,DB due to estimation and approximation. Then, the parameters

τi and dfi are estimated by minimizing the objective function Qi(qi,DB, τi, dfi) defined in (4.67)

with respect to τi and dfi.

Let (τ̂i,DB, d̂fDB) be the solution to the minimization problem. Then the double bootstrap

CI is

I2,General :=
(
θ̂i ± qt,d̂f i,DB ,1−α/2ŝei

)
, (4.70)

where 1−α is the level of interest, ŝei = τ̂i,DBσ̂i,Taylor, and θ̂i and σ̂i,Taylor are defined for (4.59).

4.6 Simulations

In the simulation study there are m = 36 areas with unit level observations xij in three

size groups. Two sample configurations are used. In the first, there are 12 areas of size ni = 2,

12 areas of size ni = 10 and 12 areas of size ni = 40. In the second, there are 12 areas of

size ni = 10, 12 areas of size ni = 12 and 12 areas of size ni = 40. Each sample, (y,x, µ̃x) =

((y11, y12, ..., ymnm), (x11, x12, ..., xmnm), (µ̃x1, µ̃x2, ..., µ̃xm)), is generated using model (4.1) with

σ2
b = 0.25, σ2

ε = 0.36, σ2
uσ
−2
ε = k = 0.10 and kij = 1, for all i = 1, ..., 36, j = 1, ..., ni. For all the
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cases of auxiliary information considered in the study, the area means of x are generated from

a normal distribution with mean µx = 0 and variance σ2
δ = 0.16. The within-area distribution

of xij is normal with mean µxi and variance σ2
ε . The distribution of µ̃xi is normal with mean

µxi and variance σ2
u. The distribution of b is normal with mean 0 and variance σ2

b . The vector

of coefficients for the fixed effects is (β0, β1) = (−0.8, 1) and, for each unit, the probability that

yij = 1 is

g(xij ,β, bi) =
exp(−0.8 + xij + bi)

1 + exp(−0.8 + xij + bi)
. (4.71)

The distribution of yij is

f(yij |xij , bi) = I(yij , 1)g(xij ,β, bi) + I(yij , 0)(1− g(xij ,β, bi)),

where I(yij , .) is the indicator function, and g(xit,β, bi) is defined in (4.71).

The population mean of g(xij ,β, bi) is 0.334 with variance 0.029. An area with µxi = 0.4

has mean 0.412 with variance 0.028. Eight hundred Monte Carlo samples were generated for

some statistics with four hundred Monte Carlo samples for most statistics. For each Monte

Carlo sample, four hundred level one bootstrap samples and one double bootstrap sample per

level one sample were generated.

The estimation models for different types of auxiliary information are:

• Model 1: Specified by (4.1) with (4.71) and normal distribution for x. The small area

mean of x, µxi is known. The Taylor approximation of the g(xij ,β, bi) function in (4.44)

and (4.46) is about (µxi, σ̂ε, β̂, 0).

• Model 2: Specified by (4.1) with (4.71) and normal distribution for x. The small area

mean of x, µxi is unknown and fixed. The Taylor approximation of the g(xij ,β, bi) func-

tion in (4.44) and (4.46) is about (µ̂xi, σ̂ε, β̂, 0).
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• Model 3: Specified by (4.1) with (4.71) and normal distribution for x. The small area

mean of x, µxi is unknown and random. The Taylor approximation of the g(xij ,β, bi)

function in (4.44) and (4.46) is about (µ̂xi, σ̂ε, β̂, 0).

The Taylor approximation of the prediction MSE is computed using (4.48) with (4.49) and

(4.50) with the expressions for the derivatives of the g(xij ,β, bi) function of (4.71) being

h̄β,i(µ̂xi, σ̂ε, β̂, 0) =
∑K

k=1wk

[
g(µ̂xi + zkσ̂ε, β̂, 0)(1− g(µ̂xi + zkσ̂ε, β̂, 0)(1, µ̂xi + zkσ̂ε)

′
]
,

h̄b,i(µ̂xi, σ̂ε, β̂, 0) =
∑K

k=1wk

[
g(µ̂xi + zkσ̂ε, β̂, 0)(1− g(µ̂xi + zkσ̂ε, β̂, 0)

]
,

h̄µxi(µ̂xi, σ̂ε, β̂, 0) =
∑K

k=1wk

[
g(µ̂xi + zkσ̂ε, β̂, 0)(1− g(µ̂xi + zkσ̂ε, β̂, 0)

]
β̂1,

and the expression for the sampling variance of y being

σ̃2
ei =

[
K∑
k=1

wkg(µ̂xi + zkσ̂ε, β̂, 0)

][
1−

K∑
k=1

wkg(µ̂xi + zkσ̂ε, β̂, 0)

]
. (4.72)

The models are fitted as generalized linear mixed models (GLMMs), using the lmer, glmer

functions in the lme4 package in R by restricted maximum likelihood (REML) and Laplace

approximation to the likelihood. The R output from fitting the models includes the estimates

of (β0, β1, σ
2
b , µx, σ

2
δ , σ

2
ε ) and the estimated variances of β̂, µ̂x. The true small area mean of y is

given by (4.2) and the predicted area means of y are given by (4.17, 4.19, 4.21), with estimated

(β0, β1, σ
2
b , µx, σ

2
δ , σ

2
ε ). The integrals in (4.2, 4.17, 4.19, 4.21) are approximated using a 26-point

approximation to the normal distribution and the approximation in (4.40) is based on the same

26-points.
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The estimation procedure for dfi and τi described in Section 4.5.4 is implemented for a set

of three α′s, α = (0.1, 0.05, 0.01) with a working matrix

Vqi(τi = 1, df i = 5) =


0.0074 0.0073 0.0072

0.0073 0.0368 0.0362

0.0072 0.0362 0.0729

 .

The Nelder-Mead (1965) method is used to minimize Qi(., τi, df i) in (4.67). The coverage

probability of the confidence intervals is estimated by

N−1
N∑
t=1

I (θi,t ∈ It) ,

where N is the number of Monte Carlo samples and It represents a symmetric confidence in-

terval of the type presented in Section 4.5.

4.6.1 Refinement of Estimators

The estimators of the variance components σ2
b , σ

2
δ may be zero. In the first simulation,

where ni ∈ {2, 10, 40}, the estimator of σ2
b is bounded by Kb,s = 0.006 and the the estimator of

σ2
δ is bounded by Kδ,s = 0.008. If σ̂2

b,k = 0.006 we set α∗∗i,k equal to α∗i,k, for k = 1, .., B1. In the

second simulation, where ni ∈ {10, 20, 40}, the estimator of σ2
b is bounded by Kb,s = 0.005 and

the the estimator of σ2
δ is bounded by Kδ,s = 0.007. If σ̂2

b,k = 0.005 we set α∗∗i,k equal to α∗i,k,

for k = 1, .., B1. The bounds are somewhat larger than those suggested in Wang and Fuller

(2003).

The estimator of the prediction MSE αi given in (4.32) may be nonpositive. In the simula-

tion studies, the estimator of αi is bounded using the procedure in Erciulescu and Fuller (2014).

4.6.2 Results

Monte Carlo (MC) properties of the estimated parameters (σ̂2
b , β̂, µ̂x, σ̂δ, σ̂ε) are presented

in Tables 4.1 and 4.2. The simulation values for (σ2
b ,β, µx, σδ, σε) are given in parentheses. The
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MC absolute bias in β̂ and the MC absolute bias in σ̂2
ε are less than two MC standard errors.

The MC absolute bias in µ̂x is significant, being approximately equal to 2.3 MC standard errors,

and the MC absolute bias in σ̂2
δ is significant, being approximately equal to 3.0 standard errors.

This is not surprising because the REML estimates are known to have smaller bias than the

maximum likelihood estimators for the variance components, but are not necessarily unbiased

estimates of the variance components; see Bates (2008). Also, there are no explicit expressions

for the finite-sample properties for the empirical BLUE µ̂x.

Consider simulation Model 1, when µxi is known. In the simulation study with sample size

configuration ni ∈ {2, 10, 40}, the proportion of sample estimators σ̂2
b that hit the bound is

0.0275 and the proportion of level one estimators σ̂2∗
b that hit the bound is 0.1154. The coef-

ficient of variation for σ̂2
b calculated for 800 Monte Carlo samples is about 0.6, approximately

the CV of a Chi-square with five degrees of freedom. The Monte Carlo absolute bias of the esti-

mator of σ̂2
b is about 0.0168, which is approximately equal to three Monte Carlo standard errors.

In the simulation study with sample size configuration ni ∈ {10, 20, 40}, the proportion of

sample estimators σ̂2
b that hit the bound is 0.0150, the proportion of level one estimators σ̂2∗

b

that hit the bound is 0.0670. The coefficient of variation for σ̂2
b calculated for 400 Monte Carlo

samples is about 0.57, approximately the CV of a Chi-square with six degrees of freedom. The

Monte Carlo absolute bias of the estimator of σ̂2
b is about 0.012, which is less than 2 Monte

Carlo standard errors.

Consider simulation Models 2 and 3, when µxi is unknown and µ̃xi observed. The pro-

portion of sample estimators σ̂2
b that hit the bound is 0.0275 and the proportion of level one

estimators σ̂2∗
b that hit the bound is 0.1097 for Model 2 and 0.1099 for Model 3. The difference

in the proportion of level one estimators σ̂2∗
b that hit the bound for Models 1, 2 and 3 is due to

the different estimated model parameters used to generate the samples. For Model 1, (σ2
ε ) is

estimated as in (4.23), for Model 2, (σ2
ε ) is estimated as in (4.25) and for Model 3, (µx, σδ, σ

2
ε )

is estimated using REML. The coefficient of variation for σ̂2
b calculated for 400 Monte Carlo
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Table 4.1: Monte Carlo Properties of the Estimated Parameters, µxi known

MC ni σ̂2
b (0.25) β̂0(−0.80) β̂1(1.00) σ̂ε(0.36)

800 {2, 10, 40} median 0.2128 -0.7990 1.0032 0.3616

(Model 1) mean 0.2332 -0.7973 1.0035 0.3614

sd 0.1502 0.1389 0.1553 0.0209

se 0.0053 0.0049 0.0055 0.0007

400 {10, 20, 40} median 0.2221 -0.8048 1.0041 0.3625

(Model 1) mean 0.2380 -0.8050 1.0096 0.3612

sd 0.1368 0.1306 0.1417 0.0195

se 0.0068 0.0065 0.0071 0.0010

samples is about 0.65, approximately the CV of a Chi-square with five degrees of freedom. The

Monte Carlo absolute bias of the estimator of σ̂2
b is about 0.0152, which is equal to two Monte

Carlo standard errors.

The parameters (σ2
b ,β) are estimated by maximizing the Laplace approximation of the

likelihood, and are estimated separately from the estimation of (µx, σ
2
δ , σ

2
ε ), see Section 4.2.2.

Therefore, the differences in the Monte Carlo properties of (σ̂2
b , β̂) reported in Tables 4.1 and

4.2 are due to the different Monte Carlo samples only. Pfeffermann and Correa (2012) study

a unit level logit model with two known covariates, m = 30 areas and ni = 25 observations

in each area. The authors report simulation results for the parameters (σ2
b ,β), estimated by

maximizing the Laplace approximation of the likelihood. The results in Pfeffermann and Cor-

rea (2012) show small but significant bias in the model parameters (σ2
b ,β).

Properties of h̄bi, h̄βi,2, h̄µxi , γ̂i, ĝ1i, averaged by the sample size and over the Monte Carlo

samples are presented in Tables 4.3 and 4.4. The vector h̄βi has length two. The first element

of h̄βi is h̄bi and represents the multiplier for the estimated variance of the estimated intercept

in model (4.1),β̂0, in expression (4.48). The second element of h̄βi represents the multiplier for

the estimated variance of the estimated x coefficient in model (4.1), β̂1, in expression (4.48).

We denote the second element of h̄βi by h̄βi,2.
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Table 4.2: Monte Carlo Properties of the Estimated Parameters,

µxi unknown, µ̃xi observed, N = 400

σ̂2
b (0.25) β̂0(−0.80) β̂1(1.00) µ̂x(0.00) σ̂δ(0.16) σ̂ε(0.36)

µxi fixed median 0.2087 -0.7915 0.9986 0.3603

(Model 2) mean 0.2348 -0.7892 0.9988 0.3625

sd 0.1521 0.1368 0.1585 0.0258

se 0.0076 0.0068 0.0079 0.0013

µxi random median 0.2087 -0.7915 0.9986 0.0092 0.1642 0.3590

(Model 3) mean 0.2348 -0.7892 0.9988 0.0076 0.1679 0.3590

sd 0.1521 0.1368 0.1585 0.0669 0.0520 0.0204

se 0.0076 0.0068 0.0079 0.0033 0.0026 0.0010

Since the simulation population mean of g(xij ,β, bi) is approximately 0.3, the expected

value of σ̃2
ei is approximately 0.21. Notice that the expression for h̄bi in (4.72) is close to the

expression for σ̃2
ei in (4.72). Hence, we would expect that the expected value of h̄bi to be close

to 0.21. The Monte Carlo mean of h̄bi is about 0.20. The average value of h̄βi,2 is about 0.03,

for all the areas and for all the models considered in the simulation study. Hence, the greatest

contribution to the g2i term in (4.48) is the estimated variance of β̂0. For the models with un-

known µxi, the average value of h̄µxi is about 0.20 for all the areas. This is because h̄µxi = β̂1h̄bi

and β̂1 is close to 1, see (4.72). The differences in the properties of the intermediate statistics

h̄bi, h̄βi,2, h̄µxi , γ̂i are due to the different predictors of µxi and the different estimators of σ2
ε

for Models 1, 2, and 3.

In the fourth column in Tables 4.3 and 4.4 are properties of the estimated g1i term, the

largest of the three terms in the estimated prediction MSE of (4.48). The expression for ĝ1i is a

function of the estimated γi, the estimated σ2
ei and the area sample size ni, see (4.48). The ĝ1i

decreases with an increase in sample size. The estimated γi is a function of h̄b,i(µ̂xi, σ̂ε, β̂, 0),

given in (4.72), and the estimated σ2
ei, given in (4.72), is a function of g(µ̂xi, σ̂ε, β̂, 0) given in

(4.71). Since µ̂xi and σ̂ε differ for Models 1, 2, and 3, the MC properties of ĝ1i in Tables 4.3

and 4.4 differ for Models 1, 2, and 3, too.
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For the models with unknown µxi, the small area mean of x is estimated/predicted to be µ̂xi

and the variance of µ̂xi is estimated, see Section 4.2.1 and 4.2.2. Given known σ2
ε and unknown

fixed µxi, V (µ̂xi) given in (4.25) is equal to (0.0300, 0.0180, 0.0072) for ni = (2, 10, 40). The

results in Table 4.4 indicate a MC absolute bias in V̂ (µ̂xi), for fixed µxi, less than two MC

standard errors, for ni = (2, 10, 40). Given known parameters µx, σ
2
δ , σ

2
ε and unknown random

µxi, V (µ̂xi) given in (4.15) is approximately equal to (0.0253, 0.0162, 0.0069) for ni = (2, 10, 40).

The theoretical bias in V̂ (µ̂xi) is o(m−1). The results in Table 4.4 indicate a MC absolute bias

in V̂ (µ̂xi), for random µxi, approximately equal to (4.56, 2.87, 0.80) MC standard errors, for

ni = (2, 10, 40). The estimated V (µ̂xi) is lower, with lower MC standard error, for the model

with random µxi than for the model with fixed µxi. The component of the estimated prediction

MSE of the area mean of y for Models 2 and 3 that is not due to the estimation of the param-

eters β, σ2
b , is ĝ1i + h̄2

µxi V̂ (µ̂xi). The MC mean of ĝ1i + h̄2
µxi V̂ (µ̂xi) is lower for Model 3 than for

Model 2, showing the efficiency gain associated with the random specification for mean of the

auxiliary variable. The MC mean of ĝ1i + h̄2
µxi V̂ (µ̂xi) is lower for Model 1, when µxi is known,

than for Model 3. These results are consistent with the results in Erciulescu and Fuller (2014).
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Table 4.3: Monte Carlo Properties of Intermediate Statistics,

µxi known (Entries Multiplied by 103)

ni h̄bi h̄βi,2 γ̂i ĝ1i

800 MC Samples 2 mean 198.3756 28.6705 76.3877 8.2382

(Model 1) sd 25.3333 69.5531 44.8755 5.1152

se 0.8957 2.4591 1.5866 0.1808

10 mean 198.1536 27.9012 275.0239 5.9159

sd 25.3668 68.8024 128.7306 2.9829

se 0.8969 2.4325 4.5513 0.1055

40 mean 199.1922 31.2796 566.7435 3.0531

sd 24.9419 70.0753 182.9751 1.0996

se 0.8818 2.4775 6.4691 0.0389

400 MC Samples 10 mean 197.8696 29.0197 184.4065 7.2084

(Model 1) sd 25.3205 69.2630 136.9015 4.0727

se 1.2660 3.4631 6.8451 0.2036

20 mean 197.6387 28.2339 357.4052 5.3032

sd 25.3083 68.5454 155.8462 2.4743

se 1.2654 3.4273 7.7923 0.1237

40 mean 198.6496 31.7173 582.8685 3.1340

sd 25.0471 69.7743 165.2565 1.0233

se 1.2524 3.4887 8.2628 0.0512
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Table 4.4: Monte Carlo Properties of Intermediate Statistics,

µxi unknown, µ̃xi observed (400 MC Samples, Entries Multiplied by 103)

ni h̄bi h̄βi,2 γ̂i ĝ1i V̂µxi h̄µxi
µxi fixed 2 mean 198.8480 32.0193 77.0395 8.3373 30.2064 197.6681

(Model 2) sd 26.8505 75.8948 45.8172 5.2690 2.1527 37.1846

se 1.3425 3.7947 2.2909 0.2635 0.1076 1.8592

10 198.4142 28.2986 276.1925 5.9448 18.1238 197.2436

sd 26.1575 71.5878 130.3471 3.0174 1.2916 36.7650

se 1.3079 3.5794 6.5174 0.1509 0.0646 1.8383

40 199.8571 31.9783 567.8212 3.0659 7.2495 198.7973

sd 25.0977 71.4102 184.9909 1.1088 0.5167 36.5318

se 1.2549 3.5705 9.2495 0.0554 0.0258 1.8266

µxi random 2 mean 201.8742 27.4370 78.1215 8.5050 25.6851 200.8600

(Model 3) sd 19.2271 52.0755 45.6473 5.0780 1.8519 33.1381

se 0.9614 2.6038 2.2824 0.2539 0.0926 1.6569

10 199.8413 27.5617 277.7639 6.0057 16.3248 198.6924

sd 23.6765 63.5487 130.3923 2.9892 1.0100 35.2189

se 1.1838 3.1774 6.5196 0.1495 0.0505 1.7609

40 200.2392 31.0950 568.4912 3.0724 6.9056 199.1907

sd 24.3353 68.7389 184.8713 1.1020 0.3893 36.0782

se 1.2168 3.4369 9.2436 0.0551 0.0195 1.8039
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4.6.2.1 Prediction MSE Properties

Let α̂Taylor be the Taylor prediction MSE estimator given in (4.48). The two bootstrap

bias correction methods presented in Section 4.3 are

• Bias Correction 1. In this method, the bootstrap bias is estimated by the difference

in the level two sample estimator of αi and the level one sample estimator of αi. The

bias adjusted bootstrap estimators of αi using this method are given in expressions (4.29

- 4.32), in Section 4.3. This method is called the difference bootstrap bias correction

method.

• Bias Correction 2. In this method, the bias adjusted bootstrap estimators of αi are

obtained by subtracting the estimated bootstrap bias in α̂Taylori , computed using the

difference bootstrap bias correction method at the corresponding bootstrap level, from

the bootstrap sample estimate of αi. The bias adjusted bootstrap estimators of αi using

this method are given in expressions (4.34 - 4.38), in Section 4.3.

Let (α̂∗, α̂∗∆, α̂
∗∗
T , α̂

∗∗
∆,T ) be the bootstrap prediction MSE estimators in Section 4.3,

• α̂∗ is the level one bootstrap MSE estimator given in (4.29)

• α̂∗∆ is the bias corrected level one bootstrap MSE estimator given in (4.34) that uses

method Bias Correction 2

• α̂∗∗T is the telescoping bias corrected double bootstrap MSE estimator given in (4.32) that

uses method Bias Correction 1

• α̂∗∗∆,T is the telescoping bias corrected double bootstrap MSE estimator given in (4.38)

that uses method Bias Correction 2.

Table 4.5 contains Monte Carlo properties of (α̂Taylor, α̂∗, α̂∗∆, α̂
∗∗
T , α̂

∗∗
∆,T ), organized by the three

area sample sizes, in groups of five lines, for the simulation Model 2. The results presented in

Table 4.5 are similar for all the models and for the two sample size configurations considered in

the simulation study. Appendix E contains tables for other configurations. Each line in Table

4.5 is the average of the results for the 12 areas with the same sample size. The first line is the
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Monte Carlo estimate of the prediction MSE, α̂. The next four lines are of the bias relative to

the mean, the coefficient of variation, the bias relative to the standard deviation and the bias

relative to the Monte Carlo standard error. The definitions are

RelBias =
∑12

is=1(α̂EST.,is − α̂.,is)/
∑12

is=1 α̂.,is,

CV =
∑12

is=1

√
(N − 1)−1

∑N
ζ=1(α̂ESTζ,is − α̂EST.,is )2/

∑12
is=1 α̂.,is,

Bias/sd =
∑12

is=1(α̂EST.,is − α̂.,is)/
∑12

is=1

√
(N − 1)−1

∑N
ζ=1(α̂ESTζ,is − α̂EST.,is )2,

Bias/se = Bias/(
√
Nsd),

where N is the number of Monte Carlo samples, α̂EST ∈
{
α̂Taylor, α̂∗, α̂∗∆, α̂

∗∗
T , α̂

∗∗
∆,T

}
is the

prediction MSE estimator for an area, ζ indexes the Monte Carlo samples, i denotes an area

within a group of areas of sample size s, α̂.,is = (N)−1
∑N

ζ=1 α̂ζ,is is the average of the Monte

Carlo prediction error estimators, and α̂EST.,is = (N)−1
∑N

ζ=1 α̂
EST
ζ,is is the average of the predic-

tion MSE estimators.

The Taylor estimated prediction MSE has CV of about 53%, 42% and 32% for sample sizes

2, 10, and 40, respectively. The level one bootstrap estimated prediction MSE has CV of about

41%, 32% and 20% for 400 bootstrap samples for sample sizes 2, 10, and 40, respectively. The

level one bootstrap estimated prediction MSE using method Bias correction 2 has similar CV

to the CV of the Taylor estimated prediction MSE. In the simulation study in Pfeffermann and

Correa (2012), for the logit model, B1 = 100, B2 = 100 and m = 30 areas, each of size ni = 25.

The parametric bootstrap estimated prediction MSE in Pfeffermann and Correa (2012) has an

average CV of about 30%, for the level one bootstrap, and an average CV of about 26− 73%,

for the different double bootstrap methods considered, where the CVs are averaged over the

areas.

Recall that the Taylor estimated prediction MSE in (4.48) is constructed based on the ap-

proximation (4.39). Even if the approximation (4.39) has an approximation error of O(1), the

Taylor estimated prediction MSE in (4.48) performs well in the simulation studies. The CV of

the Taylor estimated prediction MSE in (4.48) is not much greater than the CV of the boot-
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strap estimated prediction MSE. The absolute relative bias of the Taylor estimated prediction

MSE in (4.48) is smaller than the absolute relative bias of the level one bootstrap estimated

prediction MSE using method Bias correction 1 and close to the absolute relative bias of the

level one bootstrap estimated prediction MSE using method Bias correction 2.

The double bootstrap reduces the absolute value of the bias for all sample sizes, relative to

the level one bootstrap. The absolute relative bias of the double bootstrap using either method

Bias correction 1 or method Bias correction 2 is not larger than 4%, among all the models

and the sample sizes considered in the simulation. The absolute relative bias of the double

bootstrap using method Bias correction 2 is less than 2% for the sample sizes considered in

the simulation. The results are comparable with the results in Pfeffermann and Correa (2012).

In the simulation in Pfeffermann and Correa (2012), the average percent of the absolute

relative bias in the parametric double bootstrap estimator is in the range 1.1% to 4.6%, with

the largest value being 15.6%, for the different bootstrap bias correction methods. Datta et

al. (2005) propose second-order accurate approximations to the mean squared error of model-

based small area estimators, for the Fay-Herriot model, without using resampling methods.

In a simulation study, the authors consider a basic area level model without covariates and

m = 15 areas divided into five groups of unequal sample sizes. The average relative bias in the

prediction MSE estimator based on the REML estimates, is about 1.8−2.6%, in absolute value.

Hall and Maiti (2006) (HM) conducted a simulation study for the binary model. They

denoted the model by M4. In the simulation study, HM considered m = 15 areas with sample

sizes in the range 48 to 287, vector of parameters β = (0, 1), and variance of random effects

σ2
b = 1. HM considered known µxi and constructed parametric double bootstrap prediction

MSE estimators for the area parameter θCi , where θCi is the inverse logit of the small area

mean of y, using different bootstrap bias correction methods. In the simulation study in HM,

B1 = 100 and B2 = 50. HM report a relative bias in the double bootstrap estimator of about

13%, which is approximately 70% larger than the absolute relative bias reported in Table 4.5,
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and a CV of about 43%, larger than the CV reported in 4.5. Our results are not directly

comparable with the results in HM, because our parameter of interest θi is the small area mean

of a binary response variable, while the HM parameter of interest θCi is the inverse logit of

the small area mean of a binary response variable. The true simulation value for σ2
b in HM

is four times larger than the true simulation value for σ2
b in our simulation study (EF). The

area sample sizes in HM are larger than the area sample sizes in EF. Hence, the estimated CV

of σ̂2
b in HM is about 0.37 and the estimated CV of σ̂2

b in EF is about 0.60. The large bias

in the double bootstrap estimator in HM may be due to different estimators for the random

effects variance. HM use maximum likelihood for M4 and EF use a Laplace approximation

to the likelihood for the random effects variance in the model for y, and restricted maximum

likelihood for the random effects variance in the model for x.

Table 4.5: Monte Carlo Properties of Prediction MSE Estimators,

µxi unknown and fixed, µ̃xi observed

(B1 = 400, B2 = 1, N = 400, Variances Multiplied by 103)

Taylor Level 1 Level 2

ni α̂T α̂∗ α̂∗∆ α̂∗∗T α̂∗∗∆,T
2 V (θ̂ − θ) 10.9678 10.9678 10.9678 10.9678 10.9678

RelBias -0.0341 -0.1052 -0.0146 -0.0207 0.0083

CV (α̂) 0.5263 0.4088 0.5211 0.4523 0.6777

Bias/sd -0.0647 -0.2573 -0.0281 -0.0458 0.0122

Bias/se -1.2945 -5.1464 -0.5618 -0.9169 0.2436

10 V (θ̂ − θ) 7.9540 7.9540 7.9540 7.9540 7.9540

RelBias -0.0111 -0.1182 -0.0101 -0.0232 0.0179

CV (α̂) 0.4235 0.3164 0.4258 0.3520 0.5819

Bias/sd -0.0263 -0.3734 -0.0237 -0.0658 0.0307

Bias/se -0.5261 -7.4679 -0.4740 -1.3166 0.6145

40 V (θ̂ − θ) 3.9343 3.9343 3.9343 3.9343 3.9343

RelBias 0.0425 -0.1176 -0.0395 -0.0332 -0.0160

CV (α̂) 0.3152 0.2020 0.3482 0.2251 0.5914

Bias/sd 0.1350 -0.5822 -0.1135 -0.1474 -0.0270

Bias/se 2.6994 -11.6449 -2.2693 -2.9473 -0.5395
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4.6.2.2 Confidence Intervals for the Small Area Means

Let IB,∆, IDBT,∆, IB and IDBT be confidence intervals given in (4.55), using the bootstrap

prediction MSE estimators α∗∆, α
∗∗
∆,T , α

∗, α∗∗T given in (4.34, 4.32, 4.29, 4.32). Table 4.6 contains

the average empirical coverages of the CIs IB,∆, IDBT,∆, IB, IDBT for α = 0.05, for each area

group, by sample size. Properties of the estimated lengths of the CIs IB,∆, IDBT,∆, IB, IDBT

for α = 0.05, for each area group, by sample size, are presented in Appendix E.

Table 4.6: Empirical Coverages for 95% Wald-type CIs,

Bootstrap Estimated Prediction MSE (B1 = 400, B2 = 1)

ni IB,∆ IDBT,∆ IB IDBT
µxi known 2 88.6 88.7 88.1 86.7

10 90.5 90.3 89.9 87.9

800 MC Samples 40 92.6 92.0 91.8 89.9

µxi fixed 2 90.2 90.2 89.6 88.2

µ̃xi observed 10 91.0 90.9 90.7 89.2

400 MC Samples 40 91.7 91.7 91.3 89.7

µxi random 2 90.2 90.2 89.7 88.3

µ̃xi observed 10 91.0 90.9 90.3 89.1

400 MC Samples 40 91.6 91.6 91.4 89.7

µxi known 10 91.3 91.2 91.0 89.8

20 92.4 92.4 92.2 90.7

400 MC Samples 40 93.3 93.2 93.1 91.7

The Wald-type CIs using the bootstrap prediction MSE estimators result in undercoverage.

The empirical coverages increase with the increase in sample size, but do not reach the desired

nominal level. The bias correction method Bias Correction 2 in the level one bootstrap and

in the double bootstrap MSE estimator improves the coverage of the bootstrap CIs, relative

to the coverages of the bootstrap CIs computed using the bootstrap MSE estimators using

Bias Correction 1. The coverages of the telescoping double bootstrap CIs are similar to the

coverages of the level one bootstrap CIs.

For each area i, we constructed 90%, 95% and 99% confidence intervals using the different

methods described in Section 4.5, based on Taylor estimators for the prediction MSE. Recall
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that IW is the Wald-type CI based on the pivot-like method, Ip1 is the level one bootstrap CI

based on the percentile method and I1 is the level one bootstrap CI based on the pivot-like

method. Let Ip2T be the telescoping double bootstrap CI based on the percentile method and

I2T be the telescoping double bootstrap CI based on the pivot-like method. Tables 4.7 and 4.8

contain the average empirical coverages of the CIs IW , Ip1, I1, Ip2T , I2T for each α level and for

each area group, by sample size, for all the models considered in the simulation. Monte Carlo

properties of the estimated lengths of the CIs IW , Ip1, I1, Ip2T , I2T for each α level and for each

area group, by sample size, for simulation Model 2 are presented in Table 4.9; see Appendix E

for results on the estimated lengths of the CIs for the simulation Models 1 and 3, and for the

different sample size configuration considered in the study.

The Wald-type CIs using the pivot-like method have undercoverage of about 2 − 7% for

ni = 2, with better coverage for the simulation configuration with ni = 10, 20, 40 and for the

models with unknown µxi. The empirical coverages increase with the increase in sample size,

resulting in undercoverage of less 1.0% for ni = 40 and overcoverage of less than 0.3% for

ni = 40. The results agree with the results for model M4 in the simulations in Hall and Maiti

(2006). The authors report undercoverages of about 1− 8% for 80%, 90%, 95% Wald-type CIs

for the studied parameter θCi , for model M4.

The level one bootstrap CIs and the double bootstrap CIs based on the percentile method

result in undercoverage. The level one bootstrap pivot-type CIs have coverage close to the

nominal coverage for α = 0.10, 0.05. The coverages of the double bootstrap pivot-type CIs are

similar to the coverages of the level one bootstrap pivot-type CIs.

Hall and Maiti (2006) construct percentile bootstrap confidence intervals with nominal cov-

erages 1 − α = 0.80, 0.90, 0.95, for the parameter θCi , for model M4. The HM simulation

results show good performance for the level one percentile bootstrap CIs for α = 0.20, 0.10

and undercoverage for the level one bootstrap CIs for α = 0.05. This can be explained by the

distribution for the parameter of interest and by the area sample size. HM assume that θCi is a
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linear function of (xi, bi,β) and its simulation values are generated from a normal distribution.

The parameter of interest in our study is θi in (4.2) with (4.71), hence, a nonlinear function

of (xij , bi,β). Therefore, the estimated bootstrap distribution of θCi is less skewed than the

estimated bootstrap distribution of θi in (4.2) with (4.71). Also, the HM simulation set-up is

based on areas of sample size larger than 48, while the largest sample size for the areas in our

simulation set-up is 40. The results in Tables 4.7 and 4.8 show that the coverage of the level

one percentile bootstrap CI for θi in (4.2) with (4.71) increases with the increase in sample size.

The results in Table 4.7 show that the 99% pivot-type CIs have undercoverage of about

0.7− 1.6% for the configuration ni = 2, 10, 40 and the simulation Models 1 and 2, when µxi is

fixed. By increasing the area sample sizes to 10, 20, 40 in the second simulation configuration,

the undercoverage of the 99% pivot-type CIs is reduced to 0.3% for ni = 2 and the overcoverage

of the 99% pivot-type CIs is 0.2% for ni = 40, when µxi is random; see Table 4.8.

The estimated length and the estimated variance of the estimated length of the pivot-type

bootstrap CIs are larger than the corresponding values for the Wald-type CIs, but also the

coverage for the pivot-type bootstrap CIs is better than the coverage for the Wald-type CIs.

For all the CIs IW , Ip1, I1, Ip2T , I2T , the empirical coverage increases, with the increase in the

estimated length. See Appendix F for graphical representations of empirical coverage versus

estimated length. The coverage of the double bootstrap CIs is similar to the coverage of the

level one bootstrap CIs, while the estimated variability of the estimated length of the double

bootstrap CIs is increased.
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Table 4.7: Empirical Coverages (B1 = 400, B2 = 1)

Wald-type Level 1 Level 1 Level 2 Level 2

Pivot Percentile Pivot Percentile Pivot

100(1− α)% ni IW Ip1 I1 Ip2T I2T

µxi known 90% 2 83.4 82.2 91.0 83.2 91.7

10 86.1 83.6 90.8 85.4 91.9

800 MC Samples 40 89.4 86.0 89.8 87.5 91.0

95% 2 88.8 88.0 95.2 87.8 94.6

10 91.6 89.8 95.2 89.9 94.9

40 94.1 91.8 94.6 92.2 94.9

99% 2 94.3 94.0 97.4 92.2 96.5

10 95.9 95.2 97.7 94.2 96.9

40 98.0 97.0 98.4 96.5 98.0

µxi unknown fixed 90% 2 84.8 84.0 89.9 85.2 90.9

µ̃xi observed 10 86.9 84.6 89.9 86.1 90.9

400 MC Samples 40 89.1 86.0 88.9 87.3 90.4

95% 2 90.3 89.6 94.7 90.0 94.5

10 91.8 90.6 94.5 90.6 94.4

40 93.8 91.2 94.0 92.0 94.4

99% 2 96.0 95.5 97.9 94.3 97.0

10 96.6 95.8 98.0 95.0 97.3

40 98.3 97.4 98.4 96.8 97.9

µxi unknown random 90% 2 85.3 83.2 90.0 84.4 90.5

µ̃xi observed 10 86.6 84.5 89.7 85.9 90.8

400 MC Samples 40 89.2 85.9 89.0 87.1 90.2

95% 2 90.6 89.4 94.8 89.3 94.4

10 92.2 90.4 94.4 90.8 94.3

40 94.1 91.2 94.0 91.8 94.3

99% 2 96.0 95.3 97.8 94.3 97.1

10 96.7 96.0 97.9 95.3 97.2

40 98.3 97.3 98.3 96.7 97.8
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Table 4.8: Empirical Coverages, µxi known (B1 = 400, B2 = 1, N = 400)

Wald-type Level 1 Level 1 Level 2 Level 2

Pivot Percentile Pivot Percentile Pivot

100(1− α)% ni IW Ip1 I1 Ip2T I2T

90% 10 88.2 85.8 91.0 86.8 92.2

20 88.2 86.4 90.1 87.8 91.6

40 90.3 88.1 90.6 88.9 91.7

95% 10 92.6 90.9 95.7 91.2 95.8

20 93.2 92.0 95.5 92.5 95.8

40 95.0 92.9 95.3 93.2 95.7

99% 10 97.0 96.3 98.7 95.7 98.0

20 97.9 97.2 98.9 96.9 98.3

40 98.7 97.8 99.2 97.6 98.8

Table 4.9: Properties of Estimated Length of CIs,

µxi unknown and fixed, µ̃xi observed (B1 = 400, B2 = 1, N = 400, Entries Multiplied by 103)

Wald-type Level 1 Level 1 Level 2 Level 2

Pivot Percentile Pivot Percentile Pivot

100(1− α)% ni IW Ip1 I1 Ip2T I2T

90% 2 mean 325.4 314.8 374.5 327.4 394.9

sd 27.0 22.4 29.0 24.4 32.1

10 mean 284.1 268.9 313.3 282.5 334.0

sd 19.2 15.7 20.6 17.6 23.5

40 mean 207.8 191.4 209.4 200.6 221.4

sd 10.0 7.4 10.5 8.9 12.6

95% 2 mean 387.8 376.3 470.8 382.6 483.3

sd 32.1 26.7 37.0 29.2 41.0

10 mean 338.5 321.6 390.5 331.8 408.9

sd 22.9 18.8 25.9 21.4 30.2

40 mean 247.7 229.2 256.1 237.3 268.4

sd 11.9 8.9 13.1 10.9 15.8

99% 2 mean 509.6 494.7 707.6 483.0 682.8

sd 42.2 35.7 62.2 39.0 69.2

10 mean 444.9 424.1 581.8 424.6 586.6

sd 30.1 25.5 43.5 30.2 53.5

40 mean 325.5 301.9 362.9 306.3 373.8

sd 15.6 12.1 20.8 15.9 27.2



105

In Section 4.5 we define the difference between the single bootstrap distribution and the

double bootstrap distribution of the pivot-like statistics T ∗, T ∗∗, respectively, evaluated at the

final cutoff point used to construct the level one bootstrap CI for the area mean; see d1 defined

for (4.63). Properties of d1 for Model 2 are presented in Table 4.10. The results in Table (4.10)

are similar to results on properties of d1 for Models 1 and 3, and for the different sample size

configuration considered in the study; see Appendix E. The Monte Carlo average correction in

the double bootstrap CI is not significantly different from zero; results consistent with the pre-

vious results where the coverages of the double bootstrap CIs were similar to the coverages of

the level one bootstrap CIs. The average absolute values of d1 are higher for the 90% CIs than

for the 95% and 99% CIs. The average values of d1 are negative for the 90% and 95% CIs and

positive for the 99% CIs, suggesting heavier tail for the distribution of the pivot-like statistic

T ∗, than the tail for the distribution of T ∗∗; results consistent with the previous results where

the coverage error for the 99% CIs was higher than the coverage error for the 90% and 95% CIs.

Table 4.10: Properties of Estimated Correction in Double Bootstrap CIs,

µxi unknown and fixed, µ̃xi observed (B1 = 400, B2 = 1, N = 400, Entries Multiplied by 103)

ni 90% 95% 99%

2 mean -5.6984 -2.5943 0.7750

sd 18.1342 13.0431 6.0635

se 0.9067 0.6522 0.3032

10 mean -6.9031 -2.8688 1.1198

sd 20.4628 14.8211 7.0856

se 1.0231 0.7411 0.3543

40 mean -5.9479 -1.9255 1.5396

sd 20.6586 14.8019 7.2238

se 1.0329 0.7401 0.3612

4.6.2.3 General Purpose Statistic for CI

We construct general (1 − α)% bootstrap CIs using an estimated multiple of a Student-t

distribution, as described in Section 4.5.4. The empirical coverages of the general bootstrap CIs

are presented in Table 4.11 for the simulation models considered in the study. See Appendix
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E for results on the estimated lengths of the general bootstrap CIs. The results are similar

to the results in Tables 4.7 and 4.8, for the bootstrap CIs constructed for a specific α. The

novelty of this method is that it enables the user to construct bootstrap CIs at a set of confi-

dence levels at once, without implementing the computationally intensive bootstrap for every α.

Table 4.11: Empirical Coverages for Bootstrap CIs, Estimated Distribution of |T ∗|
(B1 = 400, B2 = 1)

Level 1 Level 2

MC Samples ni 90% 95% 99% 90% 95% 99%

800 µxi known 2 91.2 95.0 97.5 91.6 94.6 96.8

10 90.8 95.2 97.7 91.7 95.0 97.1

40 89.7 94.7 98.5 90.8 95.0 98.2

400 µxi unknown fixed 2 89.8 94.5 97.9 90.8 94.5 97.4

µ̃xi observed 10 89.7 94.5 98.0 90.6 94.5 97.6

40 88.8 94.2 98.4 90.1 94.7 98.2

400 µxi unknown random 2 90.0 94.8 97.8 90.4 94.5 97.4

µ̃xi observed 10 89.6 94.4 97.9 90.5 94.5 97.5

40 89.0 94.1 98.4 89.9 94.5 98.2

400 µxi known 10 90.7 95.7 98.7 91.9 95.9 98.2

20 90.1 95.5 98.9 91.1 96.0 98.5

40 90.6 95.3 99.2 91.4 95.8 99.0

Let τ̂i,B, d̂f i,B be the estimated parameters of the Student-t distribution defined for (4.68),

for the level one bootstrap, and let τ̂i,DB,T , d̂f i,DB,T be the estimated parameters of the Student-

t distribution defined for (4.70), for the telescoping double bootstrap. The Monte Carlo prop-

erties of τ̂i,B, d̂f i,B, τ̂i,DB,T and d̂f i,DB,T , for the simulation Model 2 are presented in Table 4.12;

see Appendix E for results on the Monte Carlo properties of τ̂i,B, d̂f i,B, τ̂i,DB,T and d̂f i,DB,T

for simulation models 1 and 3, and for the different sample size configuration. Table 4.12

contains the MC 5th quantile and the MC 50th quantile of the estimated distribution of the

estimated bootstrap parameters τ̂i,B, d̂f i,B, τ̂i,DB,T and d̂f i,DB,T . Also, the the percentage of

MC estimated values of d̂f i,B and d̂f i,DB,T , greater than 500, are reported in Table 4.12. The

estimated parameters τ̂i,B, d̂f i,B, τ̂i,DB,T and d̂f i,DB,T increase with an increase in sample size,

with larger values for the double bootstrap than for the level one bootstrap. The MC median of
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(d̂f i,B, d̂f i,DB,T ) is approximately (7, 18), (7, 14) and (12, 23), for the sample sizes 2, 10 and 40.

The MC median of (τ̂i,B, τ̂i,DB,T ) is approximately (0.84, 0.95), (0.85, 0.96) and (0.92, 0.99), for

the sample sizes 2, 10 and 4. The estimated multiple parameter (τ̂i,B, τ̂i,DB,T ) increases with

an increase in the estimated degrees of freedom (d̂f i,B, d̂f i,DB,T ); see Appendix F for graphical

representations of the estimated parameters of the Student-t distribution.

Table 4.12: Monte Carlo Properties of Estimated Parameters for the Student-t Distribution,

µxi unknown and fixed, µ̃xi observed (B1 = 400, B2 = 1, N = 400 )

Level1 Level 2 Level1 Level 2

ni d̂f i,B d̂f i,DB,T τ̂i,B τ̂i,DB,T
5th quantile 2 3.5310 3.7240 0.6882 0.7213

10 3.6388 3.3597 0.7014 0.7086

40 4.5278 3.6756 0.7615 0.7382

50th quantile 2 6.9599 17.6029 0.8418 0.9488

10 7.4205 14.0913 0.8544 0.9550

40 11.9556 22.6981 0.9167 0.9894

% greater than 500 2 3.8125 30.0625

10 5.4375 27.8750

40 13.9375 33.4583

4.6.3 Alternative Methods and Simulation Results

Alternative Taylor MSE estimators were constructed using the g3i term in (4.9) and using a

Beale type estimator for the g1i term in (4.9). The alternative Taylor MSE estimators indicated

less bias and larger variance for the areas of small sample size. Using the expression (4.10) rela-

tive to using the expression defined for (4.9), the correlation between the ĝ1i and ĝ3i is reduced

and the correlation between the prediction error θ̂EBLUPi −θi and the estimated prediction MSE

ˆMSE(θ̂EBLUPi − θi) is increased, leading to less extreme values of statistics of the form (4.54).

Hence, the coverages of the CIs constructed with the proposed Taylor MSE estimator in (4.48)

were better than the coverages of the CIs constructed with the alternative Taylor MSE estima-

tors. The results agree with the results in Fuller (1990). The author proposes two prediction

MSE estimators for the true small area value of a normal response variable. The first proposed

estimator is the unconditional prediction MSE estimator, using a g3i term of the form in (4.9).
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The second proposed estimator is the conditional prediction MSE, a function of the area specific

data, using a g3i term of the form (4.10). In the simulation study, Fuller (1990) considers 1000

Monte Carlo samples and a range of error variance from 0.021 to 0.211. The coverages of the

95% CIs constructed using the conditional estimator for the prediction MSE are close to the

nominal coverages for the simulation model with normal errors and greater variance of the true

values, and greater than the nominal coverages for the simulation models with smaller variance

of the true values. The CIs constructed using the unconditional prediction MSE estimator have

greater coverage error than the CIs constructed using the conditional prediction MSE estimator.

Alternative double bootstrap (1−α)% CIs were constructed. One double bootstrap method

corrects for the bias in the coverage level of the level one bootstrap CI using the average of

the differences in the level one bootstrap and level two bootstrap distributions of the pivot-like

statistics evaluated at the cutoff points of the level one bootstrap CI and the double bootstrap

CI. Another double bootstrap method is based on estimating the cutoff point using local fitting.

The normal quantiles of the level one bootstrap distribution of the pivot-like statistic evaluated

at five cutoff points are regressed on the level two bootstrap distribution of the pivot-like statis-

tic evaluated at five cutoff points. The set of five cutoff points are equally spaced around and

centered at the normal 100(1−α)th quantile. The simulation results indicated no improvement

in the coverage of the double bootstrap CIs constructed with the alternative methods over the

coverages of the CIs constructed with the method described for (4.63).

We conducted two simulation studies with different values for σ2
b . For the case when

σ2
b = 0.49, the number of samples with estimated σ2

b equal to the bound is zero and the

bootstrap CIs have overcoverage of about 0.2 to 1.9. For the case when σ2
b = 0.0064, the

proportion of samples with estimated σ2
b equal to the bound increases to about 63%, resulting

in larger coverage errors for the 90% and 95% bootstrap CIs, than the coverage errors for the

CIs constructed when σ2
b = 0.25.
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In this paper we constructed bootstrap CIs for the small area predictions. Using similar

methods to the ones described in Section 4.5, we constructed bootstrap CIs for the model pa-

rameters β and σ2
b . For β1, normal approximated CIs resulted in undercoverage of less than

3% and the level one pivot-type bootstrap CIs resulted in undercoverage of less than 2%. For

β2, normal approximated CIs resulted in undercoverage of less than 1.25% and the level one

pivot-type bootstrap CIs resulted in overcoverage of less than 0.25%. For σ2
b , chi-squared ap-

proximated CIs resulted in coverage error of less than 3% and the level one pivot-type bootstrap

CIs resulted in undercoverage in the range 2.6% to 7.5%.

4.7 Summary

We study a nonlinear unit level model, with binary response variable. Taylor prediction

MSE estimators are presented, for a linear approximation of the model. We propose a new

bootstrap bias correction method for the small area mean prediction MSE estimator that re-

duces the bias in the estimators, for areas of small sample size, at a cost of increasing the

variance.

Basic CIs, based on the normal approximation of the parameter, and bootstrap CIs for the

small area mean are presented. Basic CIs, based on the normal approximation of the parameter

have empirical coverages lower than the desired nominal level. The pivot-type bootstrap CIs

have smaller coverage error than the percentile bootstrap CIs. Double bootstrap CIs perform

well, but do not improve the coverage accuracy compared to the level one bootstrap CIs; results

consistent with the results in Chang and Hall (2014).

A general purpose procedure is proposed for CIs. The procedure is based on a multiple of a

Student-t distribution. The degrees of freedom for the Student-t distribution and the standard

error of the small area mean prediction are produced. Given the degrees of freedom for the

Student-t distribution and the standard error of the small area mean prediction, a CI for the

small area mean can be constructed in the common form (θ̂i± ζ1−α/2,ise(θ̂i)), where ζ1−α/2,i,dfi
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is the 100(1−α/2)th quantile of the Student-t distribution with given degrees of freedom dfi, i

denotes the area, 1−α is the desired level, and se(θ̂i) is the given standard error of θ̂i. The cov-

erage of the general bootstrap CI is comparable to the coverage of the level specific bootstrap CI.
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4.8 Appendix A. Estimated Variance of the Variance of Random Area

Effects

4.8.1 Model for x̃

Let ri := ūix − (µx − µ̂x), for ūix defined for (4.15). Then E(r2
i ) = σ2

δ + a−1
i.xσ

2
ε and

V ar(r2
i ) = 2(σ2

δ + a−1
i.xσ

2
ε )

2, where ai.x =
∑ni

j=1 aijx, as defined for (4.14). Following Wang and

Fuller (2003),

σ̂2
δ =

m∑
i=1

w2i

[
m(m− 1)−1(r̂2

i − a−1
i.x σ̂

2
ε ),
]

where w2i are area specific weights and r̂i := ūix. Let

Mbb :=

m∑
i=1

w2i

[
m(m− 1)−1r̂2

i ,
]
,

be the component of σ̂2
δ that does not depend on the estimated variance component σ̂2

ε . If we

ignore the variance of σ̂2
ε , then V̂ (σ̂2

δ ) ≈ V̂ (Mbb) and

V̂ (Mbb) =

m∑
i=1

w2
2i

[
m(m− 1)−12(σ̂2

δ + a−1
ix σ̂

2
ε )

2.
]

The optimal choice of weights w2i is

w2i,opt =

(
m∑
i=1

[
(σ̂2
δ + a−1

ix σ̂
2
ε )
−2
])−1 [

(σ̂2 + a−1
ix σ̂

2
ε )
−2
]
.

The maximum likelihood estimator is approximately equal to the estimator with optimal

weights. Using w2i,opt, the estimated variance V̂ (σ̂2
δ ) becomes

V̂ (σ̂2
δ ) = 2(m− 1)−1m

(
m∑
i=1

[
(σ̂2
δ + a−1

ix σ̂
2
ε )
−2
])−1

.

4.8.2 Model for y

Let ai := ūyi−h̄β,i(β−β̂). Then E(a2
i ) ≈ h̄2

bi,i
σ2
b+n−1

i σ2
e and V ar(a2

i ) ≈ 2(h̄2
bi,i
σ2
b+n−1

i σ2
e)

2.

Following Wang and Fuller (2003),

σ̂2
b =

m∑
i=1

w2i

[
m(m− 1)−1(â2

i − σ̃2
ei)h̄

−2
bi,i
,
]
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where w2i are area specific weights, âi := ūyi − h̄β,i(β̂ − β̂) = ūyi and σ̃2
ei = n−1

i σ̃2
e . Let

Mbb :=
m∑
i=1

w2i

[
m(m− 1)−1â2

i h̄
−2
bi,i
,
]
,

be the component of σ̂2
b that does not depend on the estimated variance component σ̃2

ei. If we

ignore the variance of σ̃2
ei, then V̂ (σ̂2

b ) ≈ V̂ (Mbb) and

V̂ (Mbb) =
m∑
i=1

w2
2i

[
m(m− 1)−12(h̄2

bi,i
σ̂2
b + n−1

i σ̃2
e)

2h̄−4
bi,i
.
]

The optimal choice of weights w2i is

w2i,opt =

(
m∑
i=1

[
(h̄2
bi,i
σ̂2
b + n−1

i σ̃2
e)
−2h̄4

bi,i

])−1 [
(h̄2
bi,i
σ̂2
b + n−1

i σ̃2
e)
−2h̄4

bi,i

]
.

The maximum likelihood estimator is approximately equal to the estimator with optimal

weights. Using w2i,opt, the estimated variance V̂ (σ̂2
b ) becomes

V̂ (σ̂2
b ) = 2(m− 1)−1m

(
m∑
i=1

[
(h̄2
bi,i
σ̂2
b + n−1

i σ̃2
e)
−2h̄4

bi,i

])−1

.
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4.9 Appendix B. Alternative Double Bootstrap Methods

We outline two double bootstrap calibration methods for constructing symmetric (1 − α)-

level CIs. One method estimates the bias in the confidence interval level by the average biases

in level one and level two levels, and the other is a calibration method based on local fitting

for the estimation of cutoff points.

For this methods, the T statistics are scaled by the level one bootstrap standard deviation

of |T ∗i |

σ̂∗i,B = 2−1|T ∗|i,([.95B1]+1),

where |T ∗|i,([.95B1]+1) denotes the 95% quantile point of |T ∗i |. Let the pivot-type statistics be

T̂ ∗i,k,1 := T̂ ∗i,k/σ̂
∗
i,B, T̂

∗∗
i,k,1 := T̂ ∗∗i,k/σ̂

∗
i,B.

Calibration - averaging biases.

Let F ∗(ζ)i = B−1
1

∑B1
k=1 I(|T ∗i,k,1| < ζ) be the estimated distribution of the level one statistic

T ∗i,1 and let F ∗∗(ζ)i = B−1
1

∑B1
k=1 I(|T ∗∗i,k,1| < ζ) be the estimated distribution of the level two

statistic T ∗∗i,1 . Let a CI be

I22 :=
(
θ̂i ± ζ̂i,C σ̂i,T σ̂∗i,B

)
, (4.73)

where

x1,i,α = F ∗−1
i (1− α),

x2,i,α = F ∗−1
i

[
F ∗∗i (F ∗−1

i (1− α))
]

= F ∗i
−1(F ∗i (x1)− d1),

d1,i,α = F ∗i (x1)− F ∗∗i (x1),

d2,i,α = F ∗i (x2)− F ∗∗i (x2),

d3,i,α = 0.5(d1 + d2),

ζ̂i,C = F ∗i
−1(F ∗i (x1)− d3).
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Notice that x1 is the estimated cutoff point ζ̂i,α in (4.59), d1,i,α is the estimated bias in the

level one confidence interval level in (4.64), and x2 is the estimated cutoff point ζ̂i,C in (4.63) .

Calibration - local fitting.

We estimate the distribution functions of the scaled bootstrap statistics T ∗i,1 and T ∗∗i,1 at five

points, ζ = 1.8, 1.9, 2.0, 2.1, 2.2. Let xk
∗
i be the normal quantiles for F ∗i (ζ) and let xk

∗∗
i be the

normal quantiles for F ∗∗i (ζ).

We denote the double bootstrap interval by

I3 :=
(
θ̂i ± ζ̂i,C σ̂i,T σ̂∗i,B

)
, (4.74)

where ζ̂i,C is the area specific double bootstrap bias corrected cutoff point constructed in the

local fitting method.

Algorithm (Extended to 4 or 5 points).

If x∗k,i,ζ=2 ≤ x∗∗k,i,ζ=2, fit the regression E ((x∗i ,x
∗∗
i )′|ζ) = (13⊗I(2×2), ζ1:3⊗12)β and estimate

the parameters β.

If x∗k,i,ζ=2 > x∗∗k,i,ζ=2, fit the regression E ((x∗i ,x
∗∗
i )′|ζ) = (13⊗I(2×2), ζ3:5⊗12)β and estimate

the parameters β.

Let x∗∗i,C = 2β̂0,i − β̂1,i + β̂2,iζ be the double bootstrap calibrated cutoff points that define

the double bootstrap estimated distribution function. The final ζ̂i,C cutoff point is the solution

to 1.96 = 2β̂0,i − β̂1,i + β̂2,iζC .

The estimated standard error of the prediction error is ĉi = 1.96−1ζ̂i,C σ̂i,T σ̂
∗
i,B and the

length of the interval I3 is 2ĉi.
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4.10 Appendix C. Two-sided (1− α)-level CIs for other Model Parameters

We compute two-sided (1−α)-level CIs for the variance component σ2
b and for the vector of

fixed effects coefficients, β. Let (β̂, σ̂2
b ) be the estimated vector of parameters (β, σ2

b ). Level one

bootstrap samples are generated using the vector (β̂, σ̂2
b ) and bootstrap estimates are denoted

by (β̂
∗
k, σ̂b

2
k
∗), for k = 1, ..., B1. Similarly, double bootstrap samples are generated using the

vector (β̂
∗
k, σ̂b

2
k
∗) and double bootstrap estimates are denoted by (β̂

∗∗
k , σ̂b

2
k
∗∗), for k = 1, ..., B1.

4.10.1 Random Effects Variance Component

The 100(1 − α)% Wald CI for σ2
b would be σ̂2

b ± zα/2
√
V̂ (σ2

b ), symmetric about σ̂2
b , where

V̂ (σ2
b ) is defined in (4.52). However, under the assumption of normality of the data, the

distribution of a variance component is a chi-squared distribution, which is not symmetric.

Moreover, the number of degrees of freedom for the estimation of σ2
b is small. Hence, we con-

struct Satterthwaite-type CIs. The pivot-type CIs are constructed using the statistic R̂σ :=
σ̂2
b

σ2
b
.

Basic CIs for σ2
b are constructed by aproximating the distribution of R̂σ by a Chi-squared

distribution, with ν degrees of freedom. The degrees of freedom parameter is estimated as

ν̂ = 2

(
σ̂2
b/
√
V̂ (σ2

b

)2

and the basic (1− α)-level CI for σ2
b is

(
ν̂σ̂2

b

χ2
ν̂,1−α/2

,
ν̂σ̂2

b

χ2
ν̂,α/2

)
. (4.75)

Bootstrap pivot-type CIs are based on the bootstrap distributions of the single and double

bootstrap estimates of the pivot-type statistic R̂∗σ,k :=
σ̂b

2
k
∗

σ̂2
b

and R̂∗∗σ,k :=
σ̂b

2
k
∗∗

σ̂b
2
k
∗ , respectively.

Also, percentile CIs for σ2
b are constructed, based on the distribution of the bootstrap prediction

errors σ̂2∗
b − σ̂2

b .

4.10.2 Fixed Effects Coefficients

Percentile CIs for β are constructed, based on the bootstrap distributions of the bootstrap

prediction errors β̂
∗
k − β̂, β̂

∗∗
k − β̂

∗
k. Also, pivot-type CIs for β are constructed, using the

statistic T̂i := (β̂ − β)V̂ −1/2(β̂), where V̂ (β̂) is the estimated variance of the estimated vector
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of coefficients β from the model fit for y, using R. Bootstrap pivot-type CIs are based on the

bootstrap distributions of the single and double bootstrap estimates of the pivot-type statistic

T̂ ∗k := (β̂
∗
k − β̂)V̂ −1/2(β̂

∗
k) and T̂ ∗∗i,k := (β̂

∗∗
k − β̂

∗
k)V̂

−1/2(β̂
∗∗
k ), respectively.

4.10.3 Simulation Results: Confidence Intervals for the Model Parameters

We construct 90%, 95% and 99% confidence intervals for (σ2
b ,β) using different bootstrap

methods described in Section 4.5. Also, Wald-type CI based on the pivot-like method, denoted

IW are constructed. Recall that I1 is the level one pivot-type bootstrap CI. The empirical

coverages are given in Table 4.13. The CIs for the parameters σ2
b , β0 lead to undercoverage.

Basic CIs for σ2
b given in (4.75) perform best, bootstrap CIs lead to undercoverage. Basic CIs

for β given in perform well, but level one bootstrap CIs perform best.

Table 4.13: Empirical Coverages for Bootstrap CIs

(µxi known, B1 = 400 and 800 MC Samples)

100(1− α)% IW I1

90% β0 86.25 88.00

β1 89.75 90.25

σ2
b 93.00 86.50

95% β0 92.00 94.00

β1 93.75 95.00

σ2
b 94.50 88.25

99% β0 97.50 97.25

β1 99.00 99.00

σ2
b 97.75 91.50
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4.11 Appendix D. Numerical Integration

There are many ways to approximate the integrals in (4.2, 4.17, 4.19, 4.21). The algorithms

available in R are very slow. We create a finite discrete approximation using a set of numbers

zk, k = 1, 2, ...,K and a set of weights wk, k = 1, 2, ...,K such that

K∑
k=1

wk(zk, z
2
k, z

3
k, z

4
k) ≈ (0, 1, 0, 3). (4.76)

The {zk, wk} is an approximation for the normal distribution. See Erciulescu and Fuller

(2013) forK = 50 and wk = 1/K, for all k. We reduce the error in the numerical approximation,

by considering unequal weights wk and a set of K = 26 points. Let the set of points be

z = ±(0.1, 0.306, 0.525, 0.758, 0.998, 1.259, 1.519, 1.69, 1.80, 1.95, 2.26, 2.5, 2.9)

and let the set of weights w be the set

(0.08, 0.08, 0.08, 0.07, 0.06, 0.05, 0.03, 0.01, 0.01, 0.01, 0.008, 0.007, 0.005),

with each of the elements repeated twice.

The approximations for the integral expressions in (4.2, 4.17, 4.19, 4.21), when the param-

eters are estimated, are:

(i) true small area mean of y

θi =

K∑
k=1

wkg(x∗ik,β, bi), (4.77)

where x∗ik = µxi + zkσε.

(ii) predicted small area mean of y with known µxi

θ̂i =

∑K
k=1wk

∑K
k=1wkg(x∗ik,β, b

∗
k)
∏ni
t=1 f(yit|xit, b∗k)∑K

k=1wk
∏ni
t=1 f(yit|xit, b∗k)

, (4.78)

where x∗ik = µxi + zkσ̂ε and b∗k = zkσ̂b.
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(iii) predicted small area mean of y with unknown, fixed µxi and auxiliary information µ̃x

θ̂i =

∑K
k=1wk

∑K
k=1wkg(x∗ik,β, b

∗
k)
∏ni
t=1 f(yit|xit, b∗k)∑K

k=1wk
∏ni
t=1 f(yit|xit, b∗k)

, (4.79)

where x∗ik = µ̂xi + zkσ̂ε and b∗k = zkσ̂b.

(iv) predicted small area mean of y with unknown random covariate mean and auxiliary information

µ̃x

θ̂i =

∑K
k=1wd

∑K
k=1wk

∑K
k=1wkg(µx + δ∗k + ε∗k,β, b

∗
k)
∏ni
t=1 f(yit|xit, b∗k)f(xit|δ∗d)f(µ̃xi|δ∗k)∑K

k=1wk
∑K

k=1wk
∏ni
t=1 f(yit|xit, b∗k)f(xit|δ∗k)f(µ̃xi|δ∗k)

,

(4.80)

where ε∗k = zkσ̂ε , b∗k = zkσ̂b and δ∗k = zkσ̂δ.
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4.12 Appendix E. Additional Simulation Results

Table 4.14: Monte Carlo Properties of Prediction MSE Estimators,

µxi known (B1 = 400, B2 = 1, N = 800 , Variances Multiplied by 103)

Taylor Level 1 Level 2

ni α̂T α̂∗ α̂∗∆ α̂∗∗T α̂∗∗∆,T
2 V (θ̂ − θ) 9.7234 9.7234 9.7234 9.7234 9.7234

RelBias -0.0515 -0.1260 -0.0295 -0.0339 -0.0067

CV (α̂) 0.5614 0.4503 0.5573 0.4998 0.6888

Bias/sd -0.0923 -0.2802 -0.0534 -0.0680 -0.0103

Bias/se -1.8462 -5.6047 -1.0686 -1.3599 -0.2064

10 V (θ̂ − θ) 7.2419 7.2419 7.2419 7.2419 7.2419

RelBias -0.0203 -0.1355 -0.0168 -0.0352 0.0164

CV (α̂) 0.4443 0.3425 0.4485 0.3815 0.5930

Bias/sd -0.0460 -0.3961 -0.0376 -0.0927 0.0276

Bias/se -0.9208 -7.9221 -0.7518 -1.8546 0.5530

40 V (θ̂ − θ) 3.5974 3.5974 3.5974 3.5974 3.5974

RelBias 0.0552 -0.1155 -0.0353 -0.0248 -0.0139

CV (α̂) 0.3238 0.2176 0.3599 0.2419 0.6024

Bias/sd 0.1711 -0.5308 -0.0975 -0.1029 -0.0227

Bias/se 3.4220 -10.6155 -1.9502 -2.0576 -0.4540
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Table 4.15: Monte Carlo Properties of Prediction MSE Estimators,

µxi known (B1 = 400, B2 = 1, N = 400, Variances Multiplied by 103)

Taylor Level 1 Level 2

ni α̂T α̂∗ α̂∗∆ α̂∗∗T α̂∗∗∆,T
10 V (θ̂ − θ) 7.2575 7.2575 7.2575 7.2575 7.2575

RelBias 0.0108 -0.1146 -0.0131 -0.0297 0.0114

CV (α̂) 0.3910 0.2841 0.3773 0.3057 0.5304

Bias/sd 0.0277 -0.4034 -0.0348 -0.0971 0.0215

Bias/se 0.5540 -8.0681 -0.6965 -1.9425 0.4302

20 V (θ̂ − θ) 5.3147 5.3147 5.3147 5.3147 5.3147

RelBias -0.0060 -0.0911 -0.0116 -0.0056 -0.0025

CV (α̂) 0.3170 0.2364 0.3216 0.2538 0.4648

Bias/sd -0.0190 -0.3852 -0.0360 -0.0221 -0.0054

Bias/se -0.3795 -7.7048 -0.7198 -0.4415 -0.1089

40 V (θ̂ − θ) 3.3877 3.3877 3.3877 3.3877 3.3877

RelBias 0.1110 -0.0462 0.0229 0.0317 0.0340

CV (α̂) 0.2825 0.1904 0.3011 0.2060 0.5041

Bias/sd 0.3930 -0.2427 0.0759 0.1537 0.0675

Bias/se 7.8593 -4.8544 1.5179 3.0741 1.3493
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Table 4.16: Monte Carlo Properties of Prediction MSE Estimators,

µxi unknown, random, µ̃xi observed

(B1 = 400, B2 = 1, N = 400, Variances Multiplied by 103)

Taylor Level 1 Level 2

ni α̂T α̂∗ α̂∗∆ α̂∗∗T α̂∗∗∆,T
2 (θ̂ − θ) 10.7758 10.7758 10.7758 10.7758 10.7758

RelBias -0.0182 -0.1057 -0.0145 -0.0197 0.0064

CV (α̂) 0.5070 0.4142 0.4957 0.4594 0.5771

Bias/sd -0.0360 -0.2551 -0.0292 -0.0428 0.0111

Bias/se -0.7196 -5.1017 -0.5841 -0.8559 0.2226

10 V (θ̂ − θ) 7.8867 7.8867 7.8867 7.8867 7.8867

RelBias -0.0023 -0.1181 -0.0098 -0.0213 0.0170

CV (α̂) 0.4198 0.3199 0.4202 0.3574 0.5550

Bias/sd -0.0055 -0.3691 -0.0233 -0.0595 0.0307

Bias/se -0.1097 -7.3830 -0.4662 -1.1907 0.6133

40 V (θ̂ − θ) 3.9183 3.9183 3.9183 3.9183 3.9183

RelBias 0.0474 -0.1168 -0.0418 -0.0312 -0.0224

CV (α̂) 0.3135 0.2042 0.3465 0.2286 0.5848

Bias/sd 0.1513 -0.5719 -0.1207 -0.1365 -0.0384

Bias/se 3.0260 -11.4380 -2.4148 -2.7303 -0.7673
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Table 4.17: Properties of Estimated Length of 95% Wald-type CIs

Bootstrap Estimated Prediction MSE

(B1 = 400, B2 = 1, Entries Multiplied by 103)

ni IB,∆ IDBT,∆ IB IDBT
µxi known 2 352.4 352.0 347.3 328.2

sd 29.3 29.1 28.8 26.8

800 MC Samples 10 307.0 306.1 302.4 282.5

sd 20.4 20.1 19.9 18.5

40 221.1 220.5 218.9 205.7

sd 9.2 9.1 8.9 8.7

µxi unknown fixed 2 382.2 381.9 377.1 358.2

µ̃xi observed sd 27.3 27.1 26.8 24.8

400 MC Samples 10 326.4 325.5 321.9 303.3

sd 19.1 18.9 18.7 17.4

40 231.3 230.7 229.0 216.7

sd 8.9 8.7 8.6 8.3

µxi unknown random 2 379.0 378.8 373.3 354.2

µ̃xi observed sd 27.6 27.4 27.0 24.9

400 MC Samples 10 325.0 324.1 320.4 301.3

sd 19.3 19.1 18.8 17.4

40 230.9 230.2 228.7 216.1

sd 9.0 8.8 8.6 8.4

Table 4.18: Properties of Estimated Length of 95% Wald-type CIs,

µxi known, Bootstrap Estimated Prediction MSE

(B1 = 400, B2 = 1, N = 400 MC Samples, Entries Multiplied by 103)

ni IB,∆ IDBT,∆ IB IDBT
10 313.1 312.1 309.1 293.1

sd 16.7 16.5 16.4 15.9

20 272.3 271.1 269.4 255.8

sd 12.1 11.9 11.7 11.6

40 223.3 222.5 221.3 211.2

sd 7.6 7.4 7.4 7.5
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Table 4.19: Properties of Estimated Length of CIs,

µxi known (B1 = 400, B2 = 1, N = 800, Entries Multiplied by 103)

Wald-type Level 1 Level 1 Level 2 Level 2

Pivot Percentile Pivot Percentile Pivot

100(1− α)% ni IW Ip1 I1 Ip2T I2T

90% 2 300.8 289.3 374.6 301.3 398.9

sd 27.9 24.0 29.2 26.2 33.1

10 268.6 252.3 309.2 265.7 332.8

sd 19.6 16.7 20.9 18.7 24.4

40 199.7 182.8 202.9 192.3 215.8

sd 9.9 7.7 10.5 9.1 12.6

95% 2 358.4 345.5 487.5 350.2 500.5

sd 33.2 28.6 38.1 31.3 43.7

10 320.1 301.7 394.3 311.0 415.5

sd 23.4 20.0 27.0 22.8 32.6

40 238.0 218.7 249.8 226.9 263.1

sd 11.8 9.2 13.1 11.2 16.2

99% 2 471.0 454.3 795.2 440.1 750.5

sd 43.7 38.2 73.3 41.9 82.0

10 420.7 398.2 624.0 396.4 625.1

sd 30.7 26.7 50.4 31.4 63.1

40 312.8 288.6 362.5 293.1 375.3

sd 15.5 12.3 22.1 16.2 30.2
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Table 4.20: Properties of Estimated Length of CIs,

µxi known (B1 = 400, B2 = 1, N = 400, Entries Multiplied by 103)

Wald-type Level 1 Level 1 Level 2 Level 2

Pivot Percentile Pivot Percentile Pivot

100(1− α)% ni IW Ip1 I1 Ip2T I2T

90% 10 275.6 257.9 298.7 268.9 315.2

sd 17.0 13.8 16.1 15.1 18.1

20 235.4 224.8 250.4 234.5 263.9

sd 12.1 10.0 12.1 11.2 13.9

40 199.8 184.8 199.1 191.8 207.9

sd 8.3 6.4 8.2 7.4 9.7

95% 10 328.4 308.3 373.1 316.4 387.5

sd 20.2 16.6 19.7 18.5 23.1

20 280.5 268.9 309.2 277.5 323.0

sd 14.4 11.9 15.0 13.7 17.9

40 238.0 221.2 242.7 227.7 251.9

sd 9.9 7.7 10.1 9.2 12.2

99% 10 431.5 406.2 569.2 406.1 571.4

sd 26.6 22.4 35.1 26.2 45.3

20 368.7 355.1 458.5 359.0 472.0

sd 18.9 16.3 27.1 20.1 38.0

40 312.8 291.2 343.4 294.8 353.0

sd 13.0 10.5 17.2 13.7 24.2



125

Table 4.21: Properties of Estimated Length of CIs,

µxi unknown, random, µ̃xi observed (B1 = 400, B2 = 1, N = 400, Entries Multiplied by 103)

Wald-type Level 1 Level 1 Level 2 Level 2

Pivot Percentile Pivot Percentile Pivot

100(1− α)% ni IW Ip1 I1 Ip2T I2T

90% 2 mean 326.2 310.6 373.1 322.8 392.9

sd 25.9 22.4 27.5 24.5 30.6

10 mean 284.4 267.2 311.9 280.8 332.4

sd 18.9 15.7 20.2 17.7 23.1

40 mean 207.9 191.0 208.6 200.1 220.6

sd 9.9 7.4 10.4 8.9 12.4

95% 2 mean 388.8 370.4 467.9 376.0 479.4

sd 30.9 26.8 34.7 29.1 38.6

10 mean 338.8 319.4 388.2 329.8 407.0

sd 22.6 18.9 25.4 21.6 29.8

40 mean 247.8 228.6 255.0 236.9 267.2

sd 11.8 8.9 12.9 10.9 15.7

99% 2 mean 510.9 487.2 700.8 475.7 675.0

sd 40.6 35.9 58.7 39.3 65.4

10 mean 445.3 420.4 576.0 420.7 583.0

sd 29.6 25.5 42.7 30.0 53.4

40 mean 325.6 300.8 359.5 305.4 370.1

sd 15.5 12.1 20.5 16.0 27.5

Table 4.22: Properties of Estimated Correction in Double Bootstrap CIs,

µxi known (B1 = 400, B2 = 1, N = 800, Entries Multiplied by 103)

ni 90% 95% 99%

2 mean -4.1406 -0.7906 1.7964

sd 24.2739 17.2583 8.1619

se 0.8582 0.6102 0.2886

10 mean -5.1445 -1.0937 1.8839

sd 23.3405 16.7615 8.1570

se 0.8252 0.5926 0.2884

40 mean -5.4354 -1.4211 1.9721

sd 20.4117 15.0533 7.4614

se 0.7217 0.5322 0.2638



126

Table 4.23: Properties of Estimated Correction in Double Bootstrap CIs,

µxi known (B1 = 400, B2 = 1, N = 400, Entries Multiplied by 103)

ni 90% 95% 99%

10 mean 2.3292 3.9630 3.6922

sd 18.5940 14.0947 7.5062

se 0.9297 0.7047 0.3753

20 mean 0.6792 2.6703 3.5312

sd 18.7010 13.9082 7.3816

se 0.9351 0.6954 0.3691

40 mean -0.4760 1.8370 3.1318

sd 17.7089 13.1627 6.9726

se 0.8854 0.6581 0.3486

Table 4.24: Properties of Estimated Correction in Double Bootstrap CIs,

µxi unknown, random, µ̃xi observed (B1 = 400, B2 = 1, N = 400, Entries Multiplied by 103)

ni 90% 95% 99%

2 mean -4.7036 -1.9922 1.0443

sd 18.4035 13.2826 6.3164

se 0.9202 0.6641 0.3158

10 mean -5.1042 -1.8594 1.2703

sd 19.6573 14.3928 6.8010

se 0.9829 0.7196 0.3400

40 mean -4.7833 -1.5099 1.7562

sd 19.1674 13.9510 6.8994

se 0.9584 0.6976 0.3450

Table 4.25: Properties of the Length of Bootstrap CIs, Estimated Distribution of |T ∗|,
µxi known (B1 = 400, B2 = 1, N = 800)

Level 1 Level 2

ni 90% 95% 99% 90% 95% 99%

2 375.6 485.6 796.9 398.0 499.1 759.2

sd 29.0 38.1 72.6 33.2 42.6 80.0

10 309.0 394.4 624.5 331.4 415.5 631.6

sd 20.8 26.9 49.8 24.5 31.5 61.5

40 202.4 250.3 363.6 214.0 263.7 381.8

sd 10.4 13.0 21.7 12.6 15.7 28.9
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Table 4.26: Properties of the Length of Bootstrap CIs, Estimated Distribution of |T ∗|,
µxi known (B1 = 400, B2 = 1, N = 400)

Level 1 Level 2

ni 90% 95% 99% 90% 95% 99%

10 297.7 374.3 569.5 312.7 389.0 578.0

sd 16.0 19.6 34.5 17.9 22.3 43.4

20 249.4 310.4 459.4 261.6 324.4 478.4

sd 12.0 14.9 26.5 13.8 17.4 36.2

40 198.3 243.2 345.5 205.9 252.5 360.4

sd 8.2 10.0 16.7 9.5 11.8 22.7

Table 4.27: Properties of the Length of Bootstrap CIs, Estimated Distribution of |T ∗|,
µxi unknown, µ̃xi observed (B1 = 400, B2 = 1, N = 400)

Level 1 Level 2

ni 90% 95% 99% 90% 95% 99%

µxi fixed 2 374.7 470.1 708.9 392.6 483.0 694.4

sd 28.9 36.9 61.7 32.1 40.3 67.4

10 312.9 390.8 582.6 331.7 409.6 595.5

sd 20.4 25.8 43.0 23.4 29.5 51.7

40 208.8 256.4 364.8 219.4 268.7 381.9

sd 10.5 12.9 20.4 12.4 15.3 26.1

µxi random 2 373.1 467.4 702.1 390.2 479.5 687.0

sd 27.4 34.8 58.0 30.4 38.2 63.4

10 311.4 388.5 577.2 330.1 407.5 592.1

sd 20.1 25.3 42.2 23.1 29.1 51.7

40 208.1 255.1 361.6 218.6 267.4 378.6

sd 10.3 12.8 20.1 12.3 15.2 26.2

Table 4.28: Monte Carlo Properties of Estimated Parameters for the Student-t Distribution,

µxi known (B1 = 400, B2 = 1, N = 800)

Level1 Level 2 Level1 Level 2

ni d̂f i,B d̂f i,DB,T τ̂i,B τ̂i,DB,T
5th quantile 2 2.5917 2.7925 0.5822 0.6241

10 2.8811 2.7729 0.6209 0.6442

40 3.9344 3.2953 0.7215 0.7044

50th quantile 2 4.5886 8.9194 0.7500 0.8786

10 5.2679 8.9194 0.7882 0.9048

40 9.4680 15.9400 0.8910 0.9724

% greater than 500 2 1.91 21.15

10 2.75 20.73

40 10.13 29.12
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Table 4.29: Monte Carlo Properties of Estimated Parameters for the Student-t Distribution,

µxi known (B1 = 400, B2 = 1, N = 400)

Level1 Level 2 Level1 Level 2

ni d̂f i,B d̂f i,DB,T τ̂i,B τ̂i,DB,T
5th quantile 10 3.0797 2.9619 0.6498 0.6612

20 3.3748 2.9558 0.6785 0.6718

40 4.2962 3.5061 0.7456 0.7194

50th quantile 10 6.5805 10.3262 0.8354 0.9239

20 8.2943 12.5356 0.8763 0.9490

40 13.5966 21.5902 0.9296 0.9824

% greater than 500 10 5.7917 22.6458

20 9.6042 25.7083

40 16.7917 33.3750

Table 4.30: Monte Carlo Properties of Estimated Parameters for the Student-t Distribution,

µxi unknown, random, µ̃xi observed (B1 = 400, B2 = 1, N = 400)

Level1 Level 2 Level1 Level 2

ni d̂f i,B d̂f i,DB,T τ̂i,B τ̂i,DB,T
5th quantile 2 3.5632 3.7073 0.6911 0.7209

10 3.6564 3.3276 0.7035 0.7127

40 4.6181 3.8659 0.7684 0.7446

50th quantile 2 7.2393 19.3179 0.8462 0.9536

10 7.6596 15.6088 0.8611 0.9585

40 12.7143 28.7083 0.9200 0.9913

% greater than 500 2 4.4583 31.5417

10 6.2292 28.6667

40 14.5833 36.0208
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4.12.1 Results for Model 1, Different Variance of Random Effects

Two simulation studies using the sample set of 400 Monte Carlo samples and the same

two sets of 200 bootstrap samples as described in the simulation set-up in the introduction to

Section 4.5 are considered, for two different random effects variance parameters, σ2
b = 0.0064

and σ2
b = 0.4900. For the first choice, 63% of the sample estimates σ̂2

b are equal to the lower

bound value. For the second choice, no sample estimates σ̂2
b are equal to the lower bound value.

Empirical coverages for the general bootstrap pivot-type CIs for the area means are presented

in Table 4.31.

The 90% and 95% bootstrap CIs have larger coverage error when σ2
b = 0.0064 than the CIs

constructed when σ2
b = 0.25, but 99% bootstrap CIs have coverage closer to the nominal level

when σ2
b = 0.0064 than the coverage of the CIs constructed when σ2

b = 0.25. The bootstrap

CIs constructed when σ2
b = 0.49 have overcoverage of about 0.2% to 1.9%.

Table 4.31: Empirical Coverages for Level one Bootstrap CIs, Estimated Distribution of |T ∗|
(µxi known, 400 MC Samples, B1 = 400, B2 = 1)

ni 90% 95% 99%

σ2
b = 0.0064 2 89.0 93.8 98.5

10 88.7 93.4 98.3

40 91.0 95.2 98.9

σ2
b = 0.49 2 91.8 96.9 99.6

10 91.1 96.6 99.6

40 90.2 95.4 99.2
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4.13 Appendix F. Plots for the Simulation Results for Model 2

Figure 4.1: CIs for the Small Area Means: Empirical Coverage versus Estimated Length
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Figure 4.2: General CIs for the Small Area Means: Estimated Parameters for the Student-t

Distribution
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CHAPTER 5. SUMMARY

This dissertation investigates unit level models when the covariate mean is measured with

error. Different cases of auxiliary information are considered. Prediction methods for the small

area mean, estimation of the prediction mean squared error (MSE) and confidence intervals

(CIs) for the small area means are presented for the case when the response variable is binary.

These results are important to agencies and policy makers interested in constructing reliable

estimates for areas with small sample sizes.

The small area estimation literature has grown considerably in the past few decades. How-

ever, most investigations are for linear models with known covariate mean. Small area studies

for cases when the covariate mean is measured with error are summarized in Chapter 1. In

Chapter 2, two methods for constructing small area mean predictions are compared. The first

method is based on the conditional distribution of the random area effects given the response

variables. The second method, called the ’plug-in method’ is based on the direct substitution

of the predicted random area effects into the small area mean expression. The ’plug-in method’

is easier to implement and has been used in many studies. The MMSE prediction involves

numerical integration, but given the recent computational power this should not be difficult.

In a simulation study, we show that the ’plug-in’ predictor for the small area mean can have

sizeable bias, while the bias in the MMSE prediction error was small, relative to the standard

errors of the prediction for the small area mean.

In Chapter 3, we demonstrate the efficiency gains associated with the random specification

for the auxiliary variable measured with error. The prediction mean squared error (MSE) is

smaller when the area mean for the covariates is predicted based on a random mean model
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for the covariates than when area mean for the covariates is estimated based on a fixed mean

model for the covariates. The prediction MSE is smaller when additional auxiliary information

is available and included in the estimation. It is shown that the effect of including auxiliary

information, if available, in the estimation is smaller for the random mean model than for the

fixed mean model for the covariates.

There is challenge in estimating the prediction MSE for the small area mean of a nonnor-

mal response variable because there is no closed form expression for the prediction MSE. In

Chapter 3 we propose a parametric fast double bootstrap procedure to estimate the prediction

MSE for the small area mean of a binary response variable. Analysis of variance results are

presented for the variance of the estimated prediction MSE, using a simulation study. The

proposed procedure has smaller bootstrap error than a classical fast double bootstrap proce-

dure with the same number of samples. In Chapter 4 we investigate a different bootstrap bias

correction method that reduces the bias in the level one bootstrap MSE estimators, at the cost

of increasing the variance.

The studies in the literature described in Chapter 1 on small area models for nonnormal

response propose prediction MSE estimators for the area means, but do not investigate the

constructions of CIs for the small area means. In Chapter 4 we present two sided confidence

intervals (CIs) for the small area means of a binary response variable. The basic CIs are con-

structed using a normal approximation for the distribution of the parameter. It is shown that

the basic CIs for the small area mean, constructed using different estimators for the prediction

MSE, have empirical coverages lower than the desired nominal level. Pivot-type bootstrap CIs

perform better than the percentile bootstrap CIs, with respect to the coverage errors. Double

bootstrap CIs perform well, but do not improve the coverage accuracy compared to the level

one bootstrap CIs. A method for constructing bootstrap CIs for a general level is proposed.

The user is given a degrees of freedom for the Student-t distribution and a standard error of

the small area mean prediction. This enables the user to construct CIs for the small area mean

for any desired nominal level without having to repeat the computationally intensive bootstrap
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procedure. The coverage of the general bootstrap CI is comparable to the coverage of the level

specific bootstrap CI.
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