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Differential eddy-current probes are attractive because of their 
insensitivity to lift-off effects. By using two similar coils wound in 
opposition we have a sensor that detects variations in the magnetic field 
along a line joining their centers. The impedance plane response of a 
differential probe to a flaw is rather more complicated than the signal from 
a single winding probe, but this is a price one must be prepared to pay for 
nullifying the lift-off signal. 

We have developed a three dimensional probe-flaw model to predict 
eddy-current signals based on a volume integral formulation[1]. In extending 
the model to deal with differential and other multi-winding probe 
configurations, we have taken, as a starting point for this development, a 
three coil system suggested recently as a benchmark problem for the 
evaluation of electromagnetic numerical modeling codes[2]. The coil 
arrangement is larger than would be typical of an NDE probe but the scale 
permits controlled and accurate measurements to be made[3,4] as an 
independent check on the code predictions. The probe consists of an 
air-cored excitation coil 44mm. 0/D, 36mm. I/D, enclosing a pair of matched 
sensor coils connected in differential mode (Figure 1). A 3mm. thick 
dielectric slab separates the base of the coil support from the workpiece. 
This slab has no significant effect on the field therefore the excitation 
coil has a fixed effective lift-off of 8mm. 

Although the benchmark problem examines the probe response due to a 
surface slot in a finite conducting slab, we have, instead, computed the 
signals due to a similar flaw in a half-space conductor (Figure 2). It is 
possible to adapt the present method for finite slab problems but this 
introduces edge effect complications that we wish to avoid. Instead we shall 
highlight an effective method for calculating the differential signal. This 
aspect of the problem is of particular interest because it has proved to be 
very difficult to determine this signal using finite element methods[2]. 
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. Fig. 1. Differential eddy-current probe. Dimensions are in mm . 
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Fig . 2 . Slot in slab of austenitic steel 

VOLUME INTEGRAL APPROACH 

Assuming the material has a uniform conductivity ao and contains a 
scatterer of conductivity a(r), then we define P(r) = [a(r)- a0]E(r) as the 
induced electric current dipole moment of the flaw. A formal solution of 
Maxwell's equations for the electric field in the flawed conductor can then 
be written as 

E(r) = _E(il(r) + f <](eel(rir'). P(r')dr' , 
}flaw 

(1) 

where .E(il(r) is the incident field and the integral represents the scattered 
field . In this form ve need a <;yadic Green's function <](eel(rir') that 
transforms the electric source P(r) into an electric field satisfying the 
correct interface conditions at the surface of the conductor and that 
vanishes as lrl -+ oo. An equation for the source distribution P( f) is found 
by multiplying by a( f)- ao to give, 
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P(r) = p<i>(r) + v(r)o-o f a<••>(rir') · P(r')dr', 
}flaw 

where v(r) = [o-(r)- o-0 ]/o-0 and .P(il(r) = [o-(r)- o-0J_E(il(r). 

(2) 

An approximate numerical solution of (2) can be found using the method 
of moments to transform the integral equation into a discrete form[S] . The 
resulting matrix equation is then solved by applying a conjugate gradient 
algorithm[6]. This procedure has been used both in calculating the induced 
magnetisation of the ferrite cores of eddy-current probes[!] and for 
computing the probe responses due to flaws[7]. Although the discrete 
representation of (2) requires a dense matrix, the symmetry properties of the 
Green's function are reflected in the matrix structure which means that we do 
not have to store every individual element on the computer. For example the 
free-space Green's function is dependent on x - x', y- y' and z- z1 , 

consequently its matrix representation has a Toeplitz structure. In (2), the 
Green's function can be written as a sum of two terms, one of which is x-x', 
y- y', z- z' dependent and the other is x- x', y- y1 , z + z' dependent. (2) 
therefore contains a combination of convolutional and a correlational 
integrals. As a result we can develop an approximate matrix representation 
of the integrals which allows us to perform matrix-vector products using fast 
Fourier transforms[!]. 

First the unknown vector, P(r), is expanded in terms of the 
three-dimensional pulse functions, with cells whose dimensions are Ox, Oy and 
Oz. Thus, 

where z0 is the z-coordinate of the lowest level of the flaw region. 
pulse function, Pj(s), is defined by 

P·(s)={ 1, if j-~::;s<j+! 
1 0, otherw~se. 

(3) 

The 

(4) 

To complete the discretization, the same pulse functions are used for 
testing. We take moments of the field by multiplying (2) by the pulse 
functions and then integ~ating over each cell. This yields a linear system 
for the solution vector Pklm, 

Nz-1 Ny-1 Nz-1 

P1;~ = h1m- Vklm L L L GmM(k- K,l- L) · PKLM, (5) 
K=O L=O M=O 

where the matrix elements are give~ in terms of the two dimensional Fourier 

transform of the Green's function G( z, z'), by 

GmM(k- K,l- L) = OxOyO"o !100 T (k k )[sin(kxOx/2)] 2 [sin(kyOy/2)] 2 

471" 20z -oo mM x, y kxOx/2 kyOy/2 

·e- j(kz5z(k-K}+ky5y(l-L) dkx dky. (6) 

T mM is the result of the integrations with respect to z and z', given by 
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I"'- ( ') dz G(ee) z, Z , (7) 

where Zm = zo + mt5z, m = 0,1, ... ,Nz -1. 

The incident electric field _E(i)(f) has a simple closed form integral 
Fourier representation for a cylindrical air-cored coil[1]. By taking 
moments of this form using pulse functions, it is found that the excitation 
vector J>(i)(f) is given by 

p~;L = jnlk2vktm jr [00 p~:T(krP2)- Pi:T(krpi) ·[ _kk l 
27rDz Loo krAoA(Ao +A) Ox 

·(e-.Aozb _ e-.Aoza)(e>.z•+I _ e>.z•) 

. sin(kxDx/2) sin(kyt5y/2) -j[k%(6%k-xo)+k.{6yl-y0 )]dk dk 
kxDx /2 kyDy /2 e x Y' 

where A6 = k;, + k;- w2J-Lofo, A2 = k; + k;- iwJ-LoUo, Zb and Za are the top and 
bottom of the drive coil, Pl and P2 are the inner and outer coil radii, 
respectively, and 

:T(s) = l ph(ps) dp = 2: [Jl(s)Ho(s)- Jo(s)Hl(s)], 

where Jo and J1 are Bessel functions of the first kind and Ho and H 1 are 
Struve functions. 

DIFFERENTIAL PROBE RESPONSE 

(8) 

(9) 

Suppose that the flaw lies in an incident field produced by an 
excitation coil and that, as a result, there is an induced current dipole 
density P at the flaw. This dipole distribution may be regarded as the 
source of the scattered electric field, .E<•>(r). Suppose also that the 
scattered field is detected by a pair of coils connected in opposition. If 
J, is the current density of coil t, where t = 1,2 then the induced emf v; in 
coil t is given by 

I,V, = -1 .E<•>(r). J,(r)dr 
coil, 

t = 1,2 

This may also be expressed in a more compact notation as 

t = 1,2 

Using the reciprocity principle we also have 

I, v; = - < E, I j> > t = 1,2 

where E, is the field due to the source J,. Hence the differential probe 
response is given by 
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~v Vi-V2 
- < e1 - e2 I P > 
_ f ~e(r). P(r)dr, 

}flaw 
t = 1,2 

(10) 

(11) 

(12) 

(13) 



where e, = E,j I, and lle = e1 - e2. Transforming to a discrete form, P(r) is 
approximated by a pulse function sum using (3). Substituting the discrete 
approximation of the dipole density into our expression for the differential 
probe response, equation (13), and integrating over the volume elements gives 

N,-1 Ny-1 N,-1 

ll V = -CxDyCz L L L lleklm · Pklm (14) 
k=O 1=0 m=O 

where 

(15) 

NUMERICAL RESULTS 

The flaw region, Figure 2, was discretized by dividing the slot into 64 
elements along the length, 4 across the slot, and 8 layers. The elements are 
of equal size along each dimension, the number constrained to be powers of 2. 
This discretization gives 2048 volume e~ements. At each element our unknown 
is the electric current dipole moment, P, which has three components. 
Therefore, the total number of unknowns in this discretized problem is 6144. 
The first stage of the solution involves calculating the matrix elements, 
taking advantage of the Toeplitz structure of the matrix to avoid repeated 
calculation of the same numerical result. 

The matrix element calculations need to be carried out only once for a 
given set of mesh and electromagnetic parameters. The flaw shape can now be 
varied by changing the normalized conductivity of each volume element. This 
allows the study of various shaped defects inside the flaw region without 
recomputing the matrix. 

The test piece (Figure 2) is made of austenitic steel type 18-10MO with 
a conductivity of uo = 1.7 x 106 S/m and a relative permeability J.Lr = 1. The 
inspection frequency was 500 Hz. The probe parameters shown in Figure 1 are 
now used in calculating two fields, one for the driving coil and one for the 
two sensing coils. These fields need only be computed once to get the 
response for any number of probe positions. We performed two scans, one 
perpendicular to the slot, the other parallel to it. The fields for the 
perpendicular scan took 160 CPU seconds (2.7 min) 1 to compute, while the 
fields for the parallel scan took twice as long partly because more points 
were considered. 

The incident field from the driving coil, equation (8), is used as the 
right hand~ide of the linear system described by (5) and then solved for the 
unknowns, Pklm• using a conjugate gradient algorithm. The resulting solution 
is now used in (14) to compute the differential voltage llV. A perpendicular 
scan can be performed by starting with the probe centered on the flaw and 
calculating the differential voltage at 1mm. increments through 40mm. total 
displacement. The results of such a numerical scan are presented in 
Figure 3. The axes are scaled by a constant term a, which depends on the 
product of the number of turns in the driving and sensing coils. It took 
approximately 120 CPU seconds to compute each point shown. 

1 All CPU times quoted are on a 10 MIP workstation using a 26 MFLOP array processor for implementing 
the FFTs. 
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Fig. 4 . Probe response for scan parallel to slot. 

Figure 4 shows the numerical results for a scan parallel to the slot. 
Again this scan started with the probe centered on the flaw and incremented 
the position 1mm. at a time through 60mm. It took approximately 250 CPU 
seconds to compute each point for this configuration. 

Figure 5 compares the results of the differential voltage calculations 
with experimental data[4]. The experimental data available to the authors 
does not contain absolute phase information or absolute magnitude 
information, so the data has been normalized to (1,0) for the parallel scan 
results and (0,1) for the perpendicular case. The normalization point was 
chosen to be the point of maximum magnitude of signal. The experimental data 
shown was collected on a 30mm thick plate, 330mm long in the dimension of the 
slot length, 285mm in the dimension of the width[3]. The numerical results 
show reasonable agreement with the experimental results, even though the 
calculation assumes a half-space conductor. Because the skin depth (~ 17mm) 
is of the same magnitude as the slab thickness, reflection of the bottom 
surface of the slab cannot be neglected if accurate predictions are required. 
However, the half-space approximation gives a reasonable indication of the 
probe response. 
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Fig. 5. Comparison between experimental and numerical signals. 

SUMMARY 

We have demonstrated that the volume integral approach provides an 
efficient way of solving for the response of differential eddy-current probes 
over slots in half-spaces. The approach can be modified to solve for the 
response in finite slabs without any large computational overhead. The 
results compare favorably with experimental measurements. 
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