
BONDS NDE USING STIMULATED INFRARED THERMOGRAPHY 

P.M. Delpech, D.M. Boscher, F. Lepoutre, 
A.A. Deom and D.L. Balageas 

Office National dEtudes et de Recherches Aerospatiales (ONERA) 
Division de Thermophysique 
29 avenue de la Division Lederc 
Chatillon, France 92320 

INTRODUCTION 

Among all the photothermal techniques that have appeared since some years, the 
photothermal radiometry is very attractive because of its noncontact and rapid-scanning ability 
[1,2]. In our laboratory, we developed pulsed stimulated infrared (IR) thermography [3]. Due to 
the relatively low refreshment frequency of the currently used IR cameras, the application of the 
method was restricted to low thermal conductors. In particular, we applied it to carbon/epoxy 
composites [4,5]. Some new developments of the data reduction procedure were presented last 
year [6] to use this technique with good heat conductors. Satisfactory results were obtained in the 
case of delaminations in C/C composites. We present here an improvement of this data reduction 
procedure which is able now to work with any kind of material. We will focus our attention on 
the especially difficult case of the characterization of adhesive joints in metallic structures. 

The new data reduction procedure is explained in the second section and tested on 
aluminium sampies containing calibrated air gaps. This test proves that this method is able to 
work quantitatively in real time. Finally in the last section, we present the application of this 
procedure to metal-metal stuck lap joints sampies. In these metallic sampies, the two-dimentional 
effects (2-D) are often present and can strongly modify the thermal resistance images. 
Nevertheless, we will show that our monodimensional (l-D) procedure is able to identify rather 
reliable information. 

DA TA REDUCTION PROCEDURE FOR GOOD CONDUCTORS 

The isothermal model 

Let us consider a two layer sampie of total thickness e, with a non perfect thermal 
contact at the interface, located at a depth e1 (see fig. la). We set: 
e2 = e-e1, and Cl> C2 the volumic heat capacities of the first and second layers respectively. At 

every time after the pulsed heat deposition, the temperature distribution can be represented by 
the sketch of fig. 1 b. If we take into account the fact that the thermal resistance of the defect is 
much larger than the thermal resistances of the two layers (which have high conductivities), 
each layer may be considered as isothermal, with temperatures T1(t) in the first layer and T2(t) 
in the second one. With these assumptions, the energy conservation leads to the following 
equations: 

(1) 
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Fig. 1. Model used for defect identification in the case of high conductive materials. 
a. Sampie composed of two layers (subscript 1 and 2) with non perfect contact at 

the interface located at depth el. 
b. Temperature profile in the samp1e of fig. La after a pulsed heat deposition at 

z=O. 

(2) 

in which Q is the fluence. 

In the case of a Dirac he at pulse, the initial temperatures (t=O) in the two layers are : 

Using equations (1) and (2), one obtains: 

the solution of which is : 

(3) 

This solution can beextended to the case of a square pulse of finite duration 't (Duhamel 
theorem) and this extended temperature Tl can be normalized (TI*) using the temperature Tloo 

reached at very large times with no heat los ses : 

(4) 

A data reduction procedure can be proposed for the identification of the depth el and the 
thermal resistance R of the bond. According to eq. (4), the thermo gram (see figure 2), in 
semilogarithmic scale, Log(Tl *)=Log(Tl *(t=O»+st, is a straight line of slope s, 
s=-(Clel +C2e2)1RClel C2e2 and of ordinate at the origin : 
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Fig. 2. Semi-logarithmic representation of the normalized temperature at the surface of the 
sample as a function of time 

The depth of the interface verifies the relation: 

e . h K (Clel+C2e2) 1 e = wH = ex 't -
I Cl 't TI*(O) s p RClelC2e2 ' 

1+C2 K 

which allows an iterative determination of the depth el, once sand Tl *(t=O) have been 
experimentally determined on the graph LogTl* = f(t). The procedure starts with the value el = 
e/2 and stops when two successive values are c10se enough. In practice, five iterations are 
sufficient for a convergence beuer than 10-3. Finally, the thermal resistance R 
characterizing the bond is given by the relation: 

R - CIQ+C2e2 
- sClelC2e2 

Let us note that generally el is known and there is just to identify R. 

Procedure to reach the adiabatic temperature Tloo 

Let us recall that to use the very simple feature of figure 2, it is necessary to reach the 
experimental value of Tloo. Pratically Tloo cannot be determined directly from the thermogram 
because the caracteristic time of convective los ses is of the order of a few tens of seconds. Thus, 
the experiment must not exceed this time and typically we used 20 seconds. But, if the thermal 
resistance of the bond is important the adiabatic temperature is not reached at this time. 

Actually, it is always possible to determine Tloo from the temperature TI(t) at any 
time t provided that, (i) heat losses have not affected Tl (t) and, (ii) the signal to noise ratio is 
large enough. To improve the first point (i), we stop the analysis of the thermogram at a time 
tmax. It is difficult to find a universal criterion for the choice of tmax. Generally we look at the 
thermogram of a particular pixel and we choose tmax as the limit over which a decrease 
characteristic of the beginning of the heat losses appears. To improve the second point (ii), let us 
recall that our experimental thermo gram is given by 

TI(t) = a + b.e (-c.t) (5) 

from which we have to deduce a, band c. 

If we call T Imax the temperature at t = tmax, we can write : 

t1T = T -Tmax = b.( e (-c.t) - e (-c.tmax» (6) 

which is a function of only band c . 
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Now we calculate a weighted integral of i1T : 
tmax 

1= fi1Te<-p.t)dt 
tmin 

in wh ich tmin is roughly the time of the end of the heat pulse. 

(7) 

The purpose of this integral is to reduce the noise by increasing the weight of the 
temperature at the beginning of the thermogram and, on the contrary, to decrease the weight at 
the end of the thermogram which is much more noisy. 

Finally to eliminate b from equation (7), it is necessary to evaluate I for two values 
of p (PI and P2) and to ca1culate the ratio I(pt)!I(P2) which depends only on c. The choice of PI 
and P2 is not critical, but these two values must be chosen as different as possible, keeping in 
mi nd that if P2 is too large the ca1culation of I(P2) will not be an exact integral but, actually, a 
finite sum of a few images: we generally take PI = l/tmax and P2 = 2PI. We have shown with 
numerical simulation that this procedure reproduces quite well the complete thermogram even if 
Tloo is experimentally totally unknown. 

Experimental check of the data reduction 

Our procedure is normally efficient if the I-D assumption is verified. We have prepared a 
sampie made of two 1 mm thick AI plates separated by a known calibrated air gap varying from 
10 to 120 11m ( ± 10 11m) (see Fig.3a). The surface of the sampie covered by a black paint was 
illurninated uniformly by the heat source [3,6]. The IR images were recorded during 20 sand the 
data reduction procedure was applied to each pixel. Figures 3 band c give images of the depth 
location of the air gap ( in 11m ) and of the thermal resistance ( air gap thickness in 11m). 

The two images are in very good agreement with the geometry of the sampie. Note that 
these images are not a complete view of the sampie but are limited to the part in which the air 
gap thickness varies between 40 and 120 11m. We can now use our system for real stuck 
sampies. 

a 

b c 

Fig.3. Sampie made of two aluminium plates (I mm thick) separated by a corner of air. 
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a. Schematic cross section of the sampIe. The air gap thickness increases from 
10Ilm to 120llm . 

b. Location of the air gap (in 11m) beneath the surface. 
c. Thermal resistance of the air gap expressed in thickness of air (11m). 



a 

b 

Fig.4. Sampie made of two aluminium plates (Imm thick) partially stuck with a very 
thin si ab of glue. 
a. Schematic cross section of the sampie. The thickness of the glue is less than 
10Jlm, the thickness of the air gap in the middle of the sampie is equal to 
100Jlm. 
b. Thermal resistance of the air gap expressed in thickness of air (Jlm). 

QUANTITATIVE IMAGES OF AIR GAPS IN ALUMINIUM STUCK SAMPLES 

We prepared samples of aluminium AG5 made of two flat sheets (1 mm thick) stuck 
together with Cyanolit® glue. The stuck area represents approximately 30 percent of the total 
surface. The thickness of the glue cannot be measured precisely but is cenainly less than 10 Jlm. 
It must be noticed that this glue is quite porous. A thickness of 100 Jlm of the air gap was 
measured in the middle of the part which is non stuck using a metallographie microscope (see 
FigAa). 

Figure 4 gives the thermal resistance image obtained using the data reduction 
described in seetion 2. The low thermal resistance appearing in the upper part corresponds to the 
stuck area while in the bottom of the figure, the value of the air gap thickness is in good 
agreement with the microscopic measurements. It must be noticed that the thermal resistance 
determined in the stuck area seems to be too large taking into account the fact that the glue is very 
thin and its thermal conductivity is, at least, ten times larger than the one of air. We have 
attributed this dis agreement to the large amount of air included in the stuck part. 

Finally, we prepared a few stuck sampies of aluminium AG5 flat sheets with a 
reinforced stick film used in aeronautical industry (Ciba®). The thickness of the glue was 
measured with a metallographie microscope and we found 400Jlm on one side of the sampie and 
l00Jlm on the other side. A lack of glue was created in the center of the sampie. Once again, the 
method described previously was used and images in thermal resistance were obtained. 

Figure 5 gives the thermal resistance images obtained by decreasing the value of the 
time tmax at which we stopped the data reduction. From left to right of figure 5 we took tmax = 
16 s, 12 sand 8 s. For the two largest times tmax , the lack of glue does not appear clearly while 
it is quite weil revealed at tmax = 8 s. This effect is due to the high conductivity of Aluminium 
which produces a 2-D heat flow at times larger than ten seconds and then totally hides the 
structure of the defect. This result shows that our I-D procedure is able to provide a qualitative 
2-D image provided that good thermograms can be recorded at short times. But actually the 
procedure does not give the exact value of the thermal resistance: for instance we do not see on 
figure 5 the variation of the thickness of the air gap in the unstuck area as one goes from the left 
side to the right side ( which was present in the sampie due to the fact that we used two different 
thicknesses of glue on the two stuck sides). 
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Fig. 5 Sampie made of two alumini um plates (1 mm thick) partially stuck with 
calibrated slabs of glue on its two sides. 

a. Schematic cross section of the sampie. The thickness of the glue is equal to 
100/lm on the right side and 400/lm on the left side. The thickness of the air 
gap in the middle of the sampie cannot be measured. 
b. Thermal resistance of the air gap expressed in thickness of air (/lm). 

CONCLUSION 

We described a monodimensional data reduction of IR camera images to provide in 
real time the values of the depth profile and the thermal resistance of bonds in metallic stuctures. 

The method is quantitative when the lateral heat diffusion extension is small 
compared to the surface occupied by the defects. If the unbonded regions are located on small 
areas, it is still possible to obtain the location of the thermal resistances, but their values are 
strongly affected by the 2-D effects. It is then necessary to use a more sophisticated model wh ich 
is still in progress in our laboratory to remain compatible with a short time processing. 
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