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1. INTRODUCTION 

1.1 Motivation 

The problem of statistical inference arises when some aspect of the situation 

underlying the mathematical model is not known. The consequence of such a lack of 

knowledge is uncertainly as to the best behavior. 

To formalize this, consider a sample space X, a family {Pq : 0 G 0} of proba

bility distributions on X, and the set of all possible states of nature 0. Typically, 

when experiments are performed to obtain information about the experiments are 

designed so that the observations are distributed according to some probability dis

tribution which has 9 as an unknown parameter. In such situations, 9 will be called 

the parameter and 0 the parameter space. Let "V be the set of all possible decisions 

with a typical element denoted by d. We assume that a loss function L{6, d) has been 

specified, where L{6,d) represents the loss incurred if our decision is d when 9 is the 

parameter of the distribution from which we sampled. 

The problem is to determine a decision rule for each possible value of x. Math

ematically such a rule is a function 6, which assigns a decision d = 5(a:) to each 

possible value x E X, that is, a function whose domain is the set of values of X and 

whose range is the set of possible decisions, T>. If 6 is the decision rule we used and 

9 is the true value of the parameter, our loss is the random variable L(0,5(,Y)). 
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We can not hope to make the loss small for every possible sample, but we can 

try to make the loss small on the average. Hence we measure the goodness of 6 by 

the average loss, which we denote by r{d,6). Thus 

r { e , 5 )  =  E [ L i d , 8 { X ) ) ] .  

We refer to r(0,5) as the risk of 6 at ^ and the aim of statistical decision theory is 

the determination of a decision function 6 which minimizes the risk function in some 

sense. 

However, even for a given L, there will not, in general, exist a decision rule with 

uniformly smallest risk. So it is not clear what is meant by a best procedure. This 

kind of difficulty stems from the dependence of the risk function on 9. One possible 

way to avoid this difficulty is to remove the dependence by averaging out, in some 

sense, just as we average out the dependence on samples. Another way is to restrict 

the class of decision rules which possess a certain degree of impartiality and hope we 

can find the best procedure in this restricted class. 

However, none of these approaches is reliable in the sense that the resulting 

procedure is necessarily satisfactory. This suggests the possibility, at least as a first 

step, of not insisting on a unique solution, but asking only how far a decision problem 

can be reduced without loss of relevant information. 

A decision rule 6 can be eliminated from consideration, if there exists a decision 

rule 6^ which dominates 6 in the sense that 

r(^, y) < r(0,5) for all ^ 6 0 

< t'(0,6) at least one 0 6 0 

In this case 6 is said to be inadmissible; 6 is called admissible if no such dominating 
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s' exists. Clearly, if a decision rule turned out to be inadmissible, one would usually 

not want to use it. So admissibility is a desirable property which a good decision rule 

should possess. However, the verification of admissibility or inadmissibility is very 

difficult, in general, especially in nonparametric problems. Actually, the admissibility 

of many nonparametric decision rules is not known, even for rules that are used 

frequently in practice. 

Recently, Meeden, Ghosh and Vardeman [15] observed that the admissibility in 

nonparametric problems is closely related to the admissibility in finite population 

sampling, and they utilized this observation to prove the admissibility of many stan

dard nonparametric estimators. Cohen and Kuo [4] also apply a similar argument 

in showing that the empirical distribution function is an admissible estimator of the 

distribution function in finite population sampling. 

In Chapter 2, we will prove the admissibility of the rank-sum test, which may 

be the most frequently used test in two-sample nonparametric testing problems, as 

well as other well-known nonparametric decision rules using an argument similar to 

those mentioned above. 

Chapter 3 is mainly devoted to the discussion of the minimal complete class for 

various decision problems with a finite parameter space. 

A class C of decision procedures is said to be complete if for any 6 not in C, there 

exists 5' in C dominating it. A complete class is minimal if no proper subset of the 

class is complete. 

From the definition, it is clear that if we find a complete class for a certain 

decision problem, we do not need to look outside this class to find a decision rule, 

because we can just do well inside the class. Thus the minimal complete class, if 
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it exists, provides the maximum possible reduction of decision rules from which to 

search for a good rule. 

As we noted earlier, admissibility is an optimal property, although in a very weak 

sense. So it is no surprise that if the minimal complete class exists, it is exactly the 

class of all admissible decision rules. That is, the collection of all admissible rules is 

the maximum possible reduction of decision rules. 

Even though, proving admissibility is not easy, it is well known that there is a 

close relationship between admissibility and being Bayes. A common route to showing 

that a decision rule is admissible is to establish a prior distribution against which 

the decision rule is unique Bayes. Actually, in a certain decision problem, where 0 is 

finite and the risk set S is bounded from below and closed from below, any admissible 

rule is Bayes and the admissible Bayes rules form a minimal complete class. Thus 

in this situation, we can concentrate our attention on finding the admissible Bayes 

rules. 

Recently a new mechanism, called the stepwise Bayes approach, was developed 

to find admissible rules, see Johnson [9], Hsuan [8], Meeden and Ghosh [14], and 

Brown [3]. When a prior distribution does not have support on the whole parameter 

space, the Bayes procedure often yields a collection of decision rules, rather than a 

unique decision rule. This collection is usually a mixture of admissible as well as inad

missible decision rules. The stepwise Bayes procedure applies the Bayes procedure in 

a stepwise manner to extract a subcollection at each step from a collection of decision 

rules which was obtained in the earlier step. They showed that this mechanism is 

successful in obtaining every admissible rule when the parameter space is finite and 

the loss function is strictly convex. However, the proof of admissibility is based on 
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the uniqueness at each step, which is guaranteed by strictly convex loss. Thus if we 

drop the assumption that the loss is strictly convex, then there is no way to prove 

that the resulting decision rule is admissible. 

In Chapter 3, we will modify the stepwise Bayes procedure to present the minimal 

complete class without the assumption of a strictly convex loss function when the 

parameter space is finite and the risk set S is closed from below and bounded from 

below. 

In Section 1.2 we review, without proofs, various complete classes and introduce 

the stepwise Bayes procedure. We will also give the necessary definitions. 

1.2 Preliminary 

1.2.1 Complete Class Theorem in Finite Problems 

Decision theory consists of three basic elements: a nonempty set, 0, here as

sumed to be finite, of possible states of nature, sometimes called the parameter space, 

a nonempty set, V of decisions, and a loss function L(6,d), a real-valued function 

defined on 0 x Î?. A statistical decision problem is a triple, (&,!), L), coupled with 

an experiment involving a random variable X whose distribution Pq depends on the 

unknown ^ E 0. A statistician should choose decision rules from T>*, the set of all 

possible decision rules. 

Definition 1.1 A nonrandomized decision rule 6 is a measurable function from X 

into V. Using 6 means that if .Y = x is observed, then is the decision which 

will be taken. A randomized decision rule 8*{x,-) is, for each x £ X, a. probability 
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distribution on V. Using 6* means that if % = x is observed, then a decision d Ç.V 

will be chosen by the probability distribution 6*(z, 

The risk function of a randomized decision rule 5* is defined to be 

r{e,S*)= f  ! L[B,d)dS*[x,d)dPQ{x) 
JX 

Definition 1.2 A decision rule S' is said to be at least as good as a rule 6, 'dr(d,6') < 

r{9,6) for all 0 € 0. A decision rule 5' is said to be better than 6, if < r(0,6) 

for all ^ € 0 and < r(0,5) for at least one 0, A rule 6' is said to be equivalent 

to a rule S, if r(ff,6^) = r{6,6) for all 6 E Q. 

Definition 1.3 Suppose that 0 consists of t-points, 0 = ' ' ', set 5, 

contained in A;-dimensional Euclidean space , is called the risk set where 

S = {{vi, - • ' iVli) : for some 6 G = r(Û^,S) for i = 1, 2 , . .  . , k }  

Definition 1.4 Let u = • • •, be in 7Z^. We denote the set Qu as 

Qu = ^ < "i for i = 

Definition 1.5 A point u is said to be a lower boundary point of a convex set 

S C if Qu n 5 = {u}, where S is the closure of S. The set of lower boundary 

points of a convex set S is denoted by A(«S). 



7 

Definition 1.6 A convex set S C 7^^ is said to be closed from below if A(<S) C S. 

If we consider a nonrandomized decision rule (5(a:) as a probability distribution 

which is degenerated at ci = S{x), a nonrandomized rule is a special case of a ran

domized decision rule. Thus we may drop the adjective "randomized" for the class 

of all possible decision rules. On the other hand, the randomized decision rules are 

normally of interest only from a theoretical point of view. The randomized rules will 

rarely be recommended for actual use. 

Note that if a risk set 5 is a convex subset of where the convexity of S 

is usually obtained by considering the randomized decision rules, and u E 5, then 

Qix is the set of risk points as good as u, Qu ~ {u} is the set of risk points better 

than u, and the elements of X{S) lead to admissible decision rules, that is, if the risk 

set is bounded from below and closed from below, a risk point {u} is admissible, if 

and only if u G A(<S). Thus there is no reason to consider decision rules other than 

those corresponding to points in A(5). Hence the question is how we can find the 

decision rules whose risk points are in A(<S). Theorem 1.1 gives a partial answer to 

this question. 

Theorem 1.1 If a risk set S is hounded from below and closed from below, then X(S) 

is a subset of risk points arising from Bayes decision rules. 

Note that not all Bayes risk points need be in A(5). However, Theorem 1.1 

provides a useful tool for calculating A(«S). That is, if a decision rule is admissible, 

then the rule is Bayes against some prior distribution. Thus we have the following 

corollary. 
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Corollary 1.1 (The Complete Class Theorem) If, for a given decision prob

lem (0, V, L) with finite Q, the risk set S is bounded from below and closed from below, 

then the class of all Bayes rules is complete and the admissible Bayes rules form a 

minimal complete class. 

Throughout this section, we assumed that the risk set was bounded from below 

and closed from below. Therefore it is of interest to observe the conditions which 

ensure the assumptions. The following Lemma gives a condition that guarantees S 

is indeed bounded from below. 

Lemma 1.1 /I risk set S C is bounded from below if 

L(Oi,d) > —K > —CO for all d eV and i = 

The condition in Lemma 1.1 is always satisfied as long as we use nonnegative 

loss function. Hence we can always assume the risk set is bounded from below. The 

crucial assumption about the risk set is that it is closed. Note that if S is closed, 

then.A(5) is a subset of S. Thus one can verify that S is closed from below by 

showing that it is closed. To show that S is closed, it is useful to consider the 

set 5o = {(</ii • • • ,yfi) : for some d 6 V,yi = L(Oi,d) for z = 1,2 ..., k}, set of loss 

points. 

Lemma 1.2 If So C is closed and bounded, then the risk set S is also closed 

and bounded 
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There are many conditions under which the set of loss points is closed and 

b ounded. For example, if P is finite, or V is compact subset of % and L{9,d) is 

continuous in d for each 0 6 0, then clearly So is closed and bounded, and hence S 

is closed and bounded. Indeed only in a few cases statistical decision problem fail to 

have a closed and bounded risk set. Note that the closed and bounded set has a nice 

property, namely, existence of Bayes rules. 

Lemma 1.3 Suppose that 0 = {^1' ' ' ' rwt set S is closed from below 

and bounded. Then, for every prior distribution tt on Q, a Bayes rule with respect to 

TT exists. 

In view of existence of Bayes rules, a lower semicontinuous loss function, that 

is, for each 0 E Q, {d ^ V : L{9,d) < c} is a closed subset of V for all real number c, 

is important in statistical decision problem. If 0 is finite, P is a compact subset of 

TZ, and Z is a lower semicontinuous function, then the risk set is closed and bounded 

from below, and for every prior distribution TT, there exist a Bayes rule against TT. 

1.2.2 The Stepwise Bayes Procedure 

Let A' be a random variable which takes on values in some finite sample space 

X. The (T-algebra of measurable sets is the power set of X, that is, the collection of 

all subsets of X. Let {fff'-OsQ} be a family of possible probability functions for 

X where © = We assume that for each x £ X, there exists at least 

one O j  G 0 such that f Q . [ x )  >  0. Consider the problem of estimating some real 

valued function of 0, say 7(0), with some nonnegative strictly convex loss function 
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L { 0 ,  d ) .  For this statistical decision problem, we take the decision space V  to be some 

bounded interval of real numbers which contains the range space of 7. 

The usual Bayes approach uses one prior distribution to obtain a decision rule. 

If the support of the prior distribution is the whole parameter space, we call it regular 

prior, then the Bayes rule is uniquely defined and admissible. However, if this is not 

the case, the Bayes approach can result in a collection of decision rules rather than 

a unique rule. This collection of Bayes rules usually consists of admissible as well as 

inadmissible decision rules. 

The stepwise Bayes procedure extracts a subcollection from the collection of 

Bayes rules to find an admissible decision rule using the following simple observation. 

Let TT = • • •,be a prior distribution on 0, and g{x : tc) = 53^=1 be 

the marginal distribution of A' under tt. Let A = {z 6 % : g(x,-!v) > O},0(7r) = 

e 0 : TTj- > 0}, and 0(7r,A) = 6 0 — 0(7r) ; /^.(x) = 0 for all z E % — A j. 

We assume that A" — A is nonempty. Note that 0 — 0(7r) is nonempty as well 

by the previous assumption. Then the risk of a decision rule 5 is 

r i O , 6 )  -  L { 9 , S { x ) ) f 0 { x )  +  ^  L { 9 , 6 ( x ) ) f 0 ( x ) .  

xÇA xÇiX — ti 

Consider now the restricted problem where ® 6 A and ^ 6 0—0(7r)—0(7r, A). 

For this restricted problem, the family of possible distributions is {/^ : 9 € 0 —0(7r) — 

0(7r, A)} where for x E % — A, 

and 

c(^) = 53 > 0. 

x e X - A  
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Suppose that 5 is a Bayes rule against tt. We denote 8 the restriction of 8 to 

% — A. Then 8 is admissible if and only if 8 is admissible for the restricted problem. 

Hence, if 8 is admissible, then 8 is Bayes for the restricted problem with respect 

to a prior distribution which concentrates its mass on the set 0 — 0(7r) — 0(7r, A). 

Thus, if we again apply Bayes procedure for the restricted problem, we can extract 

a subcollection from the collection of the Bayes rules. The stepwise Bayes procedure 

utilizes this observation to obtain an admissible decision rule by applying the Bayes 

procedure in this manner. 

Theorem 1.2 If 8 is admissible, then there exists a nonempty set of prior distribu

tions TT^ = j/rj, ' " j , ' " , such that 

(i) ©(tt^) Pi ©(tt-? ) = 0/or a l l i : ^ j .  

( i i )  / /A^  =  £  X :  )  >  o | ,  and for i = 2 , . . .  ,m .  A '  =  | a :  :  x  ^  A-) '  

and g{x,'!r^) > o| , then each A' is nonempty and ^• 

(iii) For a: G \'',8{x) is the unique value of d which minimizes 

53 L { O , d ) f 0 { x ) T r \ e ) / g { x  :  tt'). 
0 G © ( 7 r ^ )  

Conversely if there exists a set of prior distributions tt^ , • • •, tt"' which satisfies 

(i) and (ii), then the decision rule 8 given in (iii) is admissible. 

Essentially Theorem 1.2 says that the class of stepwise Bayes rules forms a 

minimal complete class under the conditions we stated above. It also should be noted 
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that ordinary Bayes rules can be treated as a special class of stepwise Bayes rules 

where m = 1, and a stepwise Bayes rule with respect to (tt^,• • •,tt"^) is necessarily 

a Bayes rule with respect to 7r\ but it need not be Bayes with respect to = 

^ J • • * ^ TTir • 

Example 1.1 This example is due to Hsuan [8]. Let X  be hypergeometrically dis

tributed with population size iV = 3, subpopulation size M = 3^ (where 6 stands 

for the proportion of defectives), and sample size n = 2. Thus the sample space 

X = {0,1,2}, and the parameter space 0 = |o,|, |,l|. Assume that V = [0,1], 

and our loss is the squared error loss. We pick a prior distribution ^,0,0^ 

Then = {0,1} and the posterior distribution is t : ^ { 6 \ x  = 0) = 

Tr^[9\ x  = 1) = (0,1,0,0). Hence any decision rule satisfying 8 { x  = 0) = and 

S(x = 1) = I is a Bayes rule against ttK NOW we put = (0,0,1,0), then A^ = {2} 

and (^ = 2) = (0,0,1,0). A Bayes rule against tt^ satisfies S(x = 2) = 

Therefore 6(x = 0) = ^,6{x = 1) = ^ and 6(x = 2) = | is the stepwise Bayes rule 

against ^7r^,7r^j and it is admissible. 

Throughout this section, we have assumed that the parameter space is finite 

and the loss is strictly convex. A general theory of the stepwise Bayes approach is 

not developed yet, but the assumptions can be relaxed in some cases. For example, 

Johnson [9] found the minimal complete class in the problem of estimating a binomial 

parameter with the squared error loss, when the parameter space is compact not finite, 

using the stepwise Bayes argument. We can also replace the assumption of strictly 

convex loss by the uniqueness of the stepwise Bayes rule. For example, we have the 
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following. 

Theorem 1.3 ^ unique stepwise Bayes rule is admissible. 

The following simple example shows that the uniqueness is essential in admissi

bility proof. 

Example 1.2 Suppose X = {^2,^2} and 0 = {0,1}. Let /^_Q(a;) = 1 or 0 as 

X = or .T = X2, and ^ for all z G %. Consider the problem of 

estimating 9 when T> = [0,1] and the loss is 

L ( $ , d )  =  <  
0 if |g - (f| < ^ 

1 otherwise. 

Then the family of prior distributions tt^ = (1,0) and = (0,1) yields the 

family of stepwise Bayes rules : 0 < 5(a;]^) < g and ^ < 6(^2) < 1 j. In particular, 

ô*(x) = 0 or 1 as X = or a: = 12 is a stepwise Bayes rule against (7r^,7r^) and 

r { 6  =  0 , ( 5 * )  =  0 , r ( ^  =  1 , 5 * )  =  g .  L e t  5 o  =  j  f o r  a :  =  x - ^  a n d  ( 5 o  =  1  f o r  x  —  X 2 ,  

then r(9,6o) = 0 for all 0. Thus 6* is dominated by 6o-



14 

2. ADMISSIBLE NONPARAMETRIC TESTS 

2.1 Introduction 

We recall the definition of admissibility of a statistical test. Let % be a sample 

space, B a <r-algebra of subsets of and 0 a parameter space. Let Pq be a probability 

measure on B. We assume a random variable X is distributed in X according to P^, 

with 9 an unknown element of 0, and we want to test the hypothesis H : 6 E Qo 

against the alternative K : Û E Q — Qo where 0o is a nonempty proper subset of 

0. A test (/) is a fî-measurable function on X to the closed interval [0,1], with the 

interpretation that if we observe %, we reject H with probability ^(-Y). The test (f)o 

is said to be admissible if there does not exist a test <f> such that 

H^,4>o) > ^(6,4)) for all ^ G 0 (2.1) 

with strictly inequality at least one ^6 0, where r ( 6 , ( j ) )  =  J  L ( d , ( ^ ) d P f f  and L  is our 

loss. If the loss is "0-1", then = J (pdP^ for all 9 G 0o, and 1—r(^, (f>) = J <f>dPff 

for all 0 G 0 — 00. Thus (2.1) becomes 

/ <i>dP$ < J 4>oàPQ for all 9 6 Qq 

J <f>dP0 > f (f>odP0 for all 0 G 0 - 00 

Now we consider a two-sample problem. Let Xj,• • •,JCmj and Yi,---,Yn be 

random samples from unknown distributions F and G, respectively, which are as
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sumed to belong to 0, some family of distributions. We wish to test the hypothesis 

H : F{x) = G(x) for all x against the alternative K : F{x) ^ G(x) for some x. If we 

have some information about F and G, for example, the two distributions are normal 

with a common variance, we may use the Uniformly Most Powerful Unbiased test, 

which is the usual Student's (-test. However, if the distributions are not normal, then 

this test may be a poor choice. 

The nonparametric two-sample problem arises when we do not make any as

sumptions concerning the forms of the underlying distributions. That is, we assume 

that 0 is set of all possible distribution functions on the real line. 

Meeden, Ghosh, and Vardeman [15] recently demonstrated that there is a close 

relationship between admissibility in nonparametric problems and admissibility in 

finite population sampling. They showed that both problems are related to admis

sibility for multinomial problems and to prove admissibility it was enough to con

sider the subfamily of 0 consisting of all discrete distributions with at most a finite 

number of jumps. This suggests that to find an admissible test for the two-sample 

nonparametric problem stated above we should first consider the problem of testing 

H : p = q against the alternative K : p ^ q, where and 

are random samples from multinomial{l,p) and multinomial{l,q), respectively, and 

P  =  ( P h - - - , P k ) ^ Q  =  (91, 

This multinomial testing problem was studied extensively by Matthes and Truax 

[13]. They characterized a complete class for testing the hypothesis that the parame

ter in the multivariate exponential distribution lies in a linear subspace of the natural 

parameter space, which is applicable to this multinomial testing problem. In Section 

2.2, we review, without proof, these results. 
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For the two-sample nonpar ametric problem stated above, - • •, and 

( Vj • • •, the two vectors of order statistics for the two samples are sufficient 

and complete and we can restrict our attention to tests based on these order statis

tics. Note that if we assume that F and G are continuous, then the problem is invari

ant under the group Ç of all transformations gy (•'^(1)'' " ' ̂ {Tn)'^(l)'" ''^(n)) ~ 

such that Y? is continuous and strictly 

increasing. This follows from the fact that these transformations preserve both 

the continuity of the distributions and the property of two variables being ei

ther identically distributed or not. The maximal invariant under Q is the set of 

ranks (Ri,-• •, Rm, Rm+l^'" i ^m+n)^ where Ri < R2 < • • • < Rm are ranks 

of the order statistics of A'^'s in the total sample of iV = m n observations 

and Rrji-\-\ < ^m-f-2 < ••• < Rm+n are the ranks of the order statistics of 

the Y^s. That is T'(zj^) = T(z2) implies zj = 5(22) some g E G, where 

z = So the 

invariance principle leads us to consider rank tests for this problem. 

Let us consider a linear rank statistic L  =  c^(i(R^), where a(l),- • • , a { N )  

and C]^, • • •, Cjy are two sets of N constants such that the numbers within each set are 

not all the same. The constants a(l), • •• ,a(N) are called the scores and cj^, • • •, 

are termed the regression constants. We can generate many statistics by choosing 

a(i)'s and Cj's in a suitable manner. For example, if 

0 for i = 1,2,... ,m 
"i = (2.2) 

1 for i = m + 1,..., m n 

and 

a { i )  =  i  for t = 1,2,..., iV, (2.3) 
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then L becomes Rjj^rni which is the well-known Mann-Whitney-Wilcoxon 

test or rank sum test. 

The linear rank tests which are most commonly applied to this two-sample non-

parametric problem are the rank sum test and the Fisher-Yates test. It is well known 

that these tests have certain optimum properties in the class of all rank test, see e.g., 

Ferguson [6] and Lehmann [12]. 

In Section 2.3, we will discuss the admissibility of these tests as well as other 

linear rank statistics in the class of all test. 

In Section 2.4, we will prove the admissibility of the Kruskal-Wallis test for the 

one-way layout problem. 

2.2 Testing for the Multivariate Exponential Distribution 

2.2.1 Complete Class Theorem 

Let A' = • • • iX^) be a A;-dimensional random vector from the distribution 

f  e^^\(dx)  
J A 

where A is a finite measure on T Z ^ ,  9  =  '  "  ' , % ) ,  and 6 x  = Let 0 

denote the natural parameter space and Go be a r-dimensional linear subspace(r < k) 

of In this section, we will consider the test of the null hypothesis H : 6 Ç Gfl Go

lf we write the sample space as x where X = TV, y = a sample point 

as {x,y), and the parameter point as the pair {d,u)) where 0 is an r-vector , and w 

is a (& — r)-vector, the hypothesis can be put into the canonical form H : u = 0, hy 

an orthogonal linear transformation. Hence we are interested in testing H : u} = 0 
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against A' : u; 7^ 0 where 9 is considered to be a nuisance parameter. The goal is to 

find a complete class of tests for this problem. 

The case of no nuisance parameters, that is r = 0, was considered by Birnbaum 

[2]. Although his proof involved the restriction that the probability distribution 

is absolutely continuous, he showed that the class of tests which accept the null 

hypothesis when Y is in some convex set in ^ is a complete class. That is, is a 

complete class where is the collection of all tests such that 

0 y G into 

1 y e C 

and ( f )  is randomized on the boundary of C, where C  is a convex set in JV. 

We now give a brief summary of the proof of this result. Let B denote the set 

of all Bayes tests; that is 6 B if and only if there exists a prior distribution ^ such 

that ^lisa Bayes solution with respect to (. Birnbaum then proved the following two 

results. 

Theorem 2.1 B is a subset 

Lemma 2.1 Let 4>i(y) = 0 on a convex set Aj^, and 4>i(y) = 1 elsewhere. Let ^ 

(t>o in the regular sense, that is lim^_,^ (j)^{y)dy = 4'o{y)dy for any bounded 

subset A of the sample space y. Then lim^_^^ (f>i = (f>o except on a set of Lebesgue 

measure zero. Furthermore <^0 G and except on a set of Lebesgue measure zero, 

4>o{y) = < 
0 on Ao = lim^_,QQ 

1 elsewhere 



19 

Because of Wald [21], Theorem 2.1, together with Lemma 2.1 shows that the 

class is essentially complete. From this result and the completeness property 

of the family of exponential distributions, we see that the class of tests which have 

convex acceptance region is a complete class. 

The case r > 0 was considered by Matthes and Truax [13]. The presence of 

nuisance parameters complicates the problem, but we can use the conditional measure 

on Y determined by A for a fixed x G X to eliminate the nuisance parameters. Note 

that the resulting conditional measure also belongs to the exponential family. Thus 

applying Birnbaum's theorem, a collection of tests 4>x{y)i whose acceptance region is 

convex in y for each .r-section of 3^, may form a complete class. However, the crux 

of the matter is the fact that considered as a function on X y.y^(j> may not be jointly 

measurable. 

Matthes and Truax utilized these ideas to find a complete class for testing H : 

w = 0 against K\(jJ ^ 0 and gave some additional results on the admissibility of 

certain tests within this class. 

Let (ji) £ [0,1] be a measurable function on % x [y. The test 4> is said to have 

convex acceptance sections if there exists a measurable set C C X xy, each of whose 

z-sections are closed and convex in y, and 

On the boundary of C { x ) , 4 >  may be randomized. The family of all tests with convex 

acceptance section will be denoted by The marginal distribution of X and 

conditional distribution of Y given X = x determined by A will be denoted by u and 
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^ { d y \ x ) ,  respectively. Thus, the marginal density of X  with respect to u  is given by 

f e'^yfi(dy,x), (2.4) 
j y  

and the conditional density of Y  given X  = x, with respect to / i ( d y , x )  is 

P u j { y \ x ) =  ë ^ y  j  é ^ y n [ d y \ x )  .  (2.5) 

Theorem 2.2 Let il' any test of H :u/ = 0. Then there exists a test <j> E 

the property that for each w 6 0, 

J ( f ) { x , y )  e ' ^ y f i ( d y ; x )  >  j  H x , y )  é ^ y n { d y \ x )  [ v ]  (2 .6)  

with equality in case w =  0.  

Note that if we multiple both sides of (2.6) by [/ é'^y^i{dy,x)]~^, then the integrals 

in (2.6) become the conditional powers of the two test, as the conditional density 

(2.5) shows. Thus, we can always find a test <j) G ij) which is at least as good as 4'-

Eventually we have a complete class for the problem by the completeness property 

of the exponential family. 

2.2.2 Admissibility 

In general the verification of admissibility or inadmissibility of a test is very dif

ficult. In particular the question of admissibility of tests in $2? i® quite complicated 
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as well, but there are a few cases in which the admissibility question can be satis

factorily answered. In what follows we briefly summarize some of the discussion of 

Matthes and Truax. 

One such case is when w is real. Suppose that there is a test V' which is at least 

as good as a test (f) G ^j). Because of the Theorem 2.2, we may assume, without loss 

of generality, tp 6 Then by the continuity property of the power function, 

for all (g,w) e 0 (2.7) 

with equality whenever w = 0. Applying the completeness argument to (2.7) yields 

/  i i ' -  4 > ) n ( d y ; x )  =  0  [ v ]  (2 .8 )  
j y  

Then (2.8) together with the validity of the inequality (2.7) for all w = 0 in the 

neighborhood of the origin shows that for each 0,Jy y('i' — cj)) e^^dX = 0. Again, 

completeness yields 

I  y { i ' i x , y )  -  < ( ) { x , y ) ) n { d y , x )  =  0  [ u ] .  (2.9) 
j y  

Since the conditional tests accepts the null hypothesis on the intervals of the real line 

and the interval is determined by the size and "center of gravity", it must be the case 

that i' = (f>. Thus we have the following Lemma. 

Lemma 2.2 Suppose that w is real {r = k — 1), then $2? (/te minimal complete 

class for the problem. 

Another case is when A has finite support. In this case, u also has finite support 

and it can be shown that, if every x-section of (f) is an admissible test for the simple 
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hypothesis w = 0, then (f> is admissible for the composite hypothesis as well. So to 

prove admissibility of a test (j> E it suffices to show that each a;-section of (j) is 

admissible for testing the simple hypothesis when the dominating measure // has finite 

measure, which is closely related to proving admissibility of tests whose acceptance 

regions are convex. Stein [20] gave the sufficient condition for admissibility of tests 

with closed convex acceptance regions. If we apply Stein's theorem to this case, 

when the parameter space for w is the full k -- r Euclidean space, a test (t>o whose 

acceptance region is closed and convex for each its x-section is admissible. But Stein's 

theorem can not be applied to a convex acceptance region with randomization on the 

boundary, if the conditional measure does not assign measure zero to the boundary 

of the convex sets. However Matthes and Truax gave a more valuable result for this 

case. 

Lemma 2.3 Let Y he a random variable having density 

P u j { y )  = c(w)  e'^y 

with respect to a dominating measure y. in y. Suppose that /x has finite measure. 

Then, for testing the null hypothesis u) = 0, a test (f) is admissible if and only if the 

set C = {y Ç. y : 4>(y) < 1} is convex, and for every y which is not an extreme point 

o f  C,4>(y)  =  0.  

Returning to the case of a composite hypothesis, we suppose A has finite support. 

Probably the most important case of this is the multinomial case. 
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Theorem 2.3 Let 4> be a test and let C = {(z,y) : (j){x,y) < 1}. Then (j) is admissible 

if and only if, every x-section of C is convex z)] and(j){-,x) = 0 at all nonextreme 

point of the section Cx-

Lemma 2.3, together with the fact that v has finite support yields, Theorem 2.3 as 

an obvious result. Hence, when A has finite support, i® the minimal complete 

class for testing : u; = 0 against A' : a; 7^ 0 in the multivariate exponential family. 

In the next section we will use this result to prove the admissibility of some 

linear rank tests for the nonparametric problem discussed in Section 2.1. 

2.3 Admissible Nonparametric Tests for the Two-sample Problem 

Let random variables X and Y take on the k distinct values, with 

probability Pr(X = Xj^) = and Pr{Y = xj) = g;,; = 1,2,---,A!, where 0 < 

Pi,qi < 1 and = 1, Qi = 1. If we select m and n samples from each 

population, T]^, - - -, and 5i, • • •, where is the number of A' = x^ in 

m samples and Sj is the number of V" = Xj in n samples, are jointly complete and 

sufficient for p and q, and have joint probability distribution, 

For testing H :p = q against K : p ^ q, we will consider the linear rank statistics 

(2.10) 
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Note that (2.10) can be written as 

= c(uj,9]t,u) e tu>+uO (2.11) 

where uj = tj + Sj,tu} = and 

6 j  =  log ̂  and our hypothesis can then be stated using the u j j  parameters or 

equivalently using the odds ratios pj = Since p = q ii and only if a; = 0, the 

original hypothesis therefore is reduced to : w = 0 against K : u> ^ 0. 

Lemma 2.4 For testing H : UJ  = 0 against K : UJ  ^ 0, the linear rank statistic 

L = Cja(iîj) is admissible if the 's are constants over each group of samples. 

i.e., CI = 0-2 = • • • = Cm and = c^+2 = = <^m.+n-

Proof: Without loss of generality, we assume that = 

k — 1. Then there are O's and «2 I's and so on, and each 0,1,..., — 1 has rank 

If 1+1 1(0 4-1 uq + l WA + 1 . , rpi 
-•'••2 ,%! + ^2 ;"1 +"2+ 2 '""'"1 -I '• "Aî-l + 2 ' respectively. Thus 

L becomes 

TI  Tn+5]; 

Ci 

+«("i + ^) 

.1=1 i=Tn+l 

TI+T2  7n+5]^+S2 

Z + è 
i=^2 + l i=7n+si + l 

+ a | % l 4  h  « j t - 1  +  V) 
m N 

E E 
I=TI - \  \ -TFJ_I  +  L l-sfe_i + l 
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— a 
«1 + 1 

) [^1^1 +(«1 -«l)cm+l)] 

+a ^«1 + [T2CI  + («2 - <2)cm+l] 

+a I + • • • + W/t—1 ^ 

k - 1  \  /  k - 1  k - 1  - I] ̂  i q + ^ - I] ̂  i - I] K I Cm+l 
i=l i=l 1 = 1 

(2 .12)  

Note that for each fixed » ̂ , - - -, u^, the a's are constant and X is a linear 

function of ti, - • • Because we reject the null hypothesis if L is too large or 

too small, the acceptance region of the test is convex in ^1» • • • 1' each set 

of fixed uj's. Therefore the linear rank test has convex acceptance section and is 

admissible. • 

Lemma 2.5 Let (f>o, (f> 6 and r{p, q , ( f > o ]  =  r { p ,  q ,  ( f > )  f o r  a l l  p ,  q .  T h e n  

<t>o = 4> [A] 

If (i>oi<t> E ^Di then both (j)o and (j) are functions of complete sufficient statistics T 

and U. Hence by the completeness property of underlying distributions. Lemma 2.5 

is trivial. 

Theorem 2.4 Let 4>o be an admissible test for the multinomial problem. Then (j)o is 

admissible for the nonparametric problem as well. 
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Proof : We will assume <j)o is not admissible for the nonparametric problem and 

get a contradiction. 

If (f>o is not admissible for the nonparametric problem. Then there exists a test 

(f) such that 

r(F,G,(j)) < r{F,G,(f)o) for every F,G 6 0 (2.13) 

with strictly inequality for some F,G G 0. Hence there exist • • , x m , y i ,  •  •  •  , y n  

such that 

M x i , - - -  , X T n , y i , - - -  , y n )  ̂  ( | > { ^ h ^ ^ ^ ^ ^ r n , y l , • • • ^ y n )  (2.14) 

Let be the A;-distinct values which appear in the set • • •, xmiyii 

• • • , y n }  and let 0(aj^, • • •, a^.) denote all distribution functions which concentrate 

all their mass on We now consider the testing problem H : F = G 

against K : F ^ G where F,G E 0(aj, • • •,a^.). In this case xi, - • • , x m  and 

y \ i "  •  - i V n  a r e  t h e  o u t c o m e s  f o r  t h e  r a n d o m  s a m p l e s  f r o m  m u l t i n o m i a l  -  •  •  , p f ^ )  

and multinomial - • • ,qf,) where pj = P r ( X  =  a ^ )  and =  P r ( Y  =  a^) for 

i = 1,2,..., A:. Note that 0(a]^, • • •, aj^.) is equivalent to the {k — l)-dimensional 

simplex 

r = |p = (pi,---,pj^.);0 < pj < 1 for i = 1,...,À: and Pi = 1} • 

and each p G F determines a unique F, say Fp. 

Since (j)o is admissible for the multinomial problem, it must be the case that 

r(Fp,Gq,(f>o) = r{Fp,Gq,4>) for all p, g S T. (2.15) 

and hence ^ is admissible for the multinomial problem as well. Therefore both (j)o 

and (t> belong to and by Lemma 2.5, (j)o = <^[A] which contradicts (2.14). • 
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Note that the admissibility of the linear rank statistic depends on the regression 

constants cj, • • •, Cjy • The choice of the regression constants for a linear rank statistic 

is usually dictated by the nature of the particular testing problem and hence are not 

controllable. On the other hand, we are at liberty to choose the scores so as to achieve 

desirable power properties. For example, (2.2), the two-sample regression constants, 

may be the unique reasonable choice of regression constants, if we exclude the similar 

selection of cj's such as cj = —1 for i = 1,..., m and Cj = 1 for i = m + 1,..., m 4- n. 

Thus the conclusion of Lemma 2.4 and Theorem 2.4 is that any linear rank statistic 

is admissible as long as their choice of regression constants is reasonable. Because 

we are considering a large nonparametric family of distributions, this result is not 

surprising. 

Example 2.1 We can prove the admissibility of many well-known nonparametric 

tests using Lemma 2.4 and Theorem 2.4. The scores a(l),- • • ,a{N) defined in (2.3) 

are called the Wilcoxon scores and together with (2.2) yield the Mann-Whitney-

Wilcoxon test. A different choice of scores produces another admissible nonparamet

ric test. For example, if a{i) = E for i = 1,2,..., N, where is the i-th 

order statistic in iV-samples from JV(0,1), then the linear rank statistic becomes the 

Fisher-Yates test. The two-sample median test and the Savage test are the other 

examples of admissible nonparametric tests which can be generated by appropriate 

scores and two-sample regression constants. 
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2.4 Admissible Nonparametric Test for the One-way Layout Problem 

The technique used in proving the admissibility of the linear rank statistics can 

be extended to multi-sample problems. Suppose • • -, ' ' ', • •, 

'^vny V independent random samples from F ^ ,  F 2 ,  -  •  • ,  F v ,  respectively. We will 

consider a test H : F\ = ••• = Fv against K : Fj ^ Fj for at least one i ^ j. One 

typical choice of the Fj^s are F(x — 9i), - • •, F{x — Oy), where 6i denotes the median 

o f  J - t h  p o p u l a t i o n .  T h e n  o u r  t e s t i n g  p r o b l e m  i s  e q u i v a l e n t  t o  H  :  6 i  =  • • •  =  9 y  

against K : $1 ^ ff'j for at least one i ^ j, which is commonly referred to as the 

one-way layout problem. 

Let Rjj be the rank of Xjj in the combined samples and let R^. = —i ^ij 

and Rj. = ^r. Then under the null hypothesis, it can be shown that £"(/?/.) = 

and var(Ri,) = ——^^here N = "r Thus the difference 

iîj. — ^2^ represent the departure from the expected value and we might reject 

the null hypothesis if the accumulated departure is too large. This suggests a test 

statistic of the form 

W = ^ Cj 
! = 1 

(2 .16)  

YJVAR(RI . )  ^ 

where cj^, • • •, cy are constants which are chosen so that W has a convenient distribu

tion. One such statistic is the Kruskal-Wallis statistic. Kruskal and Wallis [10] chose 

Cj = 1 — ^ so that the limiting distribution of W would be chi-square with v — 1 

degree of freedom. 

Theorem 2.5 The Kruskal- Wallis test is admissible for the one-way layout problem. 
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Proof: As before, we begin with the multinomial problem. For convenience we 

will only consider the case r — 3. 

Let - ,A'g^g be independent ran

dom samples from multinomial{l,pi), multinomial (1,P2), and multinomial 

respectively, where pj = iPH^' • • iPjl^) t = 1,2,3. We will test the null hypothesis 

H : Pi = P2 = P2 against the alternative hypothesis K : pi ^ pj for at least one 

i f i-

The joint probability distribution of the A'jj's is 

"1 "2 "3 

3 k-1 
X exp < • (2-17) 

i=U=l j 
where is the number of observations in the Z-th category in the j-th sample. Since 

the exponent term can be written as 

SS""-S • SS('«(''2-'-S> 
/i:—1 

+  E  ( ^ 1 /  +  h i  +  h i )  
/=1 

we can rewrite (2.17) as follows. 

f { t , u - , u , 6 )  =  c o { n i , n 2 , n ^ )  e x p  { t u >  +  i i 9 }  

where «a; = " ̂ tl^ = 

^l/ + ^2/ + ^3/' and 0;= log 

Now the original testing problem is equivalent to H : uj = 0 against AT : w ^ 0 

and by Theorem 2.3, $2? forms the minimal complete class for this problem. Hence 
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it remains to show that the Kruskal-Wallis test belongs to this class. But this is true 

if we can show that W is a convex function of in,- • • 15^21' ' ' ' sach 

fixed If21 ' " ) because the acceptance region of the test is given by PF < c for 

some constant c. 

Note that 

12 — / Ar I 1 \ 2 
w = 

N ( N  +  1 )  .  ^  
1=1 

3 2 
= + (2.18) 

q A? 
where iV = nj + «2 + ng. Thus if we show that i is a convex function of 

^11'• • • 1'^21' • " '^2fc—1 Gach fixed then we are done. Since 

each 0,1,... ,Â;-1 has rank "l + "2+ ^ +  

respectively, 

RI  

and 

/ Ul + 1 \ / 1/7. + 1 \ 
= ^'1 ("1 + + + ~^) i = 1,2 

^3- = ( "1 ~ ^11 ~ ^2l) ^ ^2^ ^ + • • • 

+("!• -hk- ̂2^) ("1 + • • • + H-1 + ~^2—) 

Clearly, for fixed m,- - - is a linear function of ^n,' " ,1» ̂2-

a linear function of (gi, ' • •, ̂ 2A:—1 Ag. is a linear function of and 

^21'• • • '^2A:—l" B^re convex functions. 

Hence by a standard argument, see for example, A. W. Roberts and D. E. Var-

berg [19, pp. 15-16], we see that S']Li is a convex function of i^j's for each 
A? 
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fixed «j's. Hence Kruskal-Wallis test is admissible for the case v = 3. This argument 

can be extended to any finite v and hence admissibility follows for the multinomial 

problem. Thus by the previous argument, we see that the test is admissible for the 

one-way layout problem. • 
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3. A MINIMAL COMPLETE CLASS THEOREM 

3.1 The Extended Stepwise Bayes Procedure 

Consider a statistical decision problem (Q ,V ,L) ,  with a random variable A' G X 

and {/g : ̂  E 0} a family of possible probability distributions on X. We assume 

that 0 is finite and L is nonnegative. Let 7 be a real-valued function of the unknown 

parameter 0 6 0. To estimate the true, but unknown, value 7(0), we must define 

a real-valued function 8 on X. Typically the decision space D is a bounded closed 

interval  in real  l ine which contains the range space of 7. 

For this statistical decision problem, a Bayes procedure against a regular prior 

is commonly used to find an admissible decision rule. However Hsuan [8] pointed 

out the importance of nonregular prior distributions in decision theory and many 

authors, for example, Johnson [9], Hsuan [8], Meeden and Ghosh [14], and Brown 

[3], utilized nonregular prior distributions to prove the admissibility of well known 

decision rules. They developed the stepwise Bayes technique and showed that it is 

successful in finding a minimal complete class when the loss is strictly convex. The 

class of all stepwise Bayes rules however is not minimal complete if we drop the 

assumption of strictly convex loss. 

In this chapter, we will modify the stepwise Bayes procedure so that we can find 

a minimal complete class without the assumption of strictly convex loss. 
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Definition 3.1 Let F be a collection of decision rules. Then a decision rule 6' 6 F 

is said to be Bayes within F against tt if, 

/ r(d,6')diT < [ r{0,ô)d'!T for all <5 E F. 
JQ T /0  

We denote the class of all Bayes rules within F against TT by F(7r). 

Definition 3.2 Let : Q 6 /} be a family of prior distributions on 0 where I 

is a well-ordered set with the least element A(0). Given {TT*^ : Q 6 / }, we define 

{Ta • a I } as follows. 

(i) F^^Qj = where T>* is the class of all decision rules. 

Definition 3.3 We say that a decision rule 6 is a extended stepwise Bayes against 

(iii) No member of FQ dominates any other member of Hag/ Ta- i.e., within 

Hae/ every member is admissible. 

Note that both a stepwise Bayes and an extended stepwise Bayes procedures uti

lize nonregular prior distributions. As in the case of stepwise Bayes rules, a different 

: a g / } if, 

(i) {F^ : a G /} is a strictly decreasing sequence of sets of decision rules. 

(ii) 
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ordering of the prior distributions may result in different extended stepwise Bayes 

decision rules also and an extended stepwise Bayes rule with respect to {TT^ : a E I} 

is necessarily Bayes with respect to but it need not be Bayes with respect 

to > a(0). However, the usual stepwise Bayes procedure employs mutually 

singular prior distributions to extract decision rules and at each step, say the i-th 

step, possible decisions are specified for each x G Thus the procedure should ter

minate in a finite number of stages and the resulting decision rule is admissible if it 

is unique stepwise Bayes. But our procedure does not require the prior distributions 

to have mutually exclusive supports. We can even use an infinite sequence of prior 

distributions. Under the strictly convex loss assumption, it is easy to check that a 

stepwise Bayes rule is a special case of the extended stepwise Bayes rules. 

The idea of an extended stepwise Bayes procedure is to reduce the class of 

possible decision rules at each step and continue the procedure until we find a unique 

decision rule or can not reduce the class of possible decision rules further. 

Before proving a minimal complete class theorem we need some preliminary 

results. The first theorem yields a slight improvement to a standard result of decision 

theory, which will be necessary in what follows. 

Recall that for a risk set 5, the lower boundary of S , X ( S )  is just the class of 

admissible rules. 

Theorem 3.1 Let S C be a risk set. Suppose S is convex, closed and hounded 

from below, and X(S) is a proper subset of S. //u* E A(<S), then there exists a prior 

distribution tt against which u* is Bayes and the class of all Bayes rule against tt is 

a proper subset of S. 
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Proof: We will prove the theorem by induction. Assume k — 2. Let u* = 

Ug) G A(5), then u* is admissible. Hence there exists a prior tt = 7r2) 

against which u* is Bayes. If there exists v = (i'i,U2) € S such that + ̂ 2^2 ^ 

TTj^V]^ + 7r2i'2) we are done. Thus we assume this is not the case, i.e., the risk set 5 

is contained in the hyperplane 

+ 7r2U2 — constant = c (3.1) 

If both TT]^ and 7r2 are greater the zero, then given v 6 «S — A(<5), there exists 

u' = G A(<$) such that «'• < for i = 1,2 with strict inequality for some i. 

Hence + 7r2W2 < T^'l + ^2^2) which contradicts (3.1). Thus we may assume, 

without loss of generality, = 1. Then the set of risk points corresponding to 

the Bayes rules against the prior is 5' = |((q, «2) G S : iii = j- If there exists 

V = (i'i,V2) G S such that ^ u|, we are done. 

Assume S' = S. i.e., for all v G <5, = u|. Since u* is admissible, it must be 

the case that «2 = inf^^^^ «2)^'^ "2 hence u* is also Bayes against TT' = (0,1). If 

the class of Bayes rules against TT' is not a proper subset of S, then for all v G «5, I'2 = 

«2' So S contains just one point u* = , which contradicts our assumption 

that A(5) is a proper subset of S. 

Now assume that theorem is true for k — 1. Suppose u* = u^, • • • j G 

A(<S), then u* is admissible and there exists TT = {1^1,1:21 • • •, against which u* is 

Bayes. We are done if there exists v = (vi,v2> ' " ' I'^K) ^ ^ such that ^ 

Vi'Trj. So we assume that the risk set S is contained in the hyperplane 

k 
tTj -u* = constant = c (3.2) 

1=1 
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If each TTj- is greater than zero, then given v 6 <S — A(iS), there exists u' = 

«2» • • • ) E A(5) such that «'• < vj for i = 1, 2 , . . . ,  A: with strict inequality 

for some i, and 
k k 

Z "" A  < Z ̂ 2 ̂ 2' 
i=l (=1 

which contradicts (3.2). Hence we assume that there exists at least one tt^ = 0. For 

convenience, say, = 0 and assume that all the others are not zero. Then, for 

u € 5, 
k - 2  

UK-L  = - XI (3.3) 
i=l 

by (3.2) where c' = c/7rj^._j^ and > 0 for i = 1,2,..., t — 2. Thus if 

u e 5, then given "jt—1 independent of UJ^ .  Hence by (3.3) S  is 

really a "(fc — l)-dimensional set". 

Let So = |("1'""'"A:-2'"A;) = ("b " ' ' ' "A:-2'"fc-l'"A;) ^ Note that So 

is convex and bounded below. If u 6 5, let u" be its corresponding member in So-

Now we will show that So is closed from below. First we will prove that = 

Quo n {S)o if and only if u = Qu n 5. 

Assume Uo = QUO ^ («5)o- Then it is clear that u 6 Çu H S .  If there exists v 

such that V ^ u and v G QU^^S, then Vq 6 Q^^ n(<$)o = uq- Since v € Qu, it must 

be the case that v = (^^l, • • • » "/t—2'"A:—1 — for some £ > 0, but v 6 <S, which 

is impossible because of (3.3). Hence UQ = QUO («^)o ==^ u = Qu H 5. 

Suppose now u = Qu n  5, then Uo € Quo (<5)o- If there exists Vo such that 

Vo 7^ Uo and Vq £ Quo H (<S)o) then we must have vi > for i = 1,2,..., A: — 2 and 

k, since u = Qu n «5, while Vq € Quo implies that for i = 1,2,..., A: — 2 and 

k, which is a contradiction. Thus u = Qu PI «S => Uo = Quo (<5)o- Hence we have 
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shown that Uo = Q uq H (<S)c> if and only if u = Ço H 5. 

Note that ( S ) o  = («?o)) since by (3.3), we must have convergence in { k  — l)-th 

coordinate if we have convergence in the other first k — 2 coordinate. Thus 

Uo E A(5o) 4=^- Uo = Quo n {So) 

Uo = Quo I"! ("^)o 

•==;• u = Qu n S 

•i=i- U E A(«S), 

and we have X ( S o )  =  (A (5 ) )q C SQ-  i -E- ,  S o  is closed from below. 

Now by assumption, A(5) is a proper subset of S. Let v be an inadmissible rule. 

Then there exists u' E A(5) such that u'- < I'j for i = 1,2,..., A: with strict inequality 

for at least one i. If «'• < I'l for some i = 1,2,..., A; — 2 or k, then u^ dominates Vq-

If it' = I'l for i = 1,2,..., fc — 2 and k, then u' = v by (3.3), which is a contradiction. 

Thus if V is inadmissible, then Vq is inadmissible as well in So- Hence /\(5o) is a 

proper subset of So and we can apply the inductive argument to get the result. 

This proof would work as long as at least 2 of TTj's are different from zero. So 

now suppose 7r^ = 1 and all the others are zero, i.e., u E S = constant. 

Now let So = |(^1» • • • ) "X-—l) (^1) • • • constant) E «S |. Just as before So is 

convex and bounded from below and («S)o = ( S o ) ,  and by same argument, we can 

prove the theorem. • 

Lemma 3.1 Let S C be a risk set which is convex, closed and bounded from be

low. Let {tt®' : a E I } be a sequence of prior distributions and = {(«!,• " •t'^]^) ' 

for some 5 E Fa» = r(^^, 6) for i = 1,2,... ,k}. Then is also convex, closed 
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and bounded from below. 

Proof : Note that If 6' and S" are Bayes with respect to TT, then any convex linear 

combination of 6^ and 6" is also Bayes against TT. SO the convexity of is an 

obvious result from the property of Bayes rules. 

Now will show that 5pQ, is closed from below, but it suffice to show that the 

theorem is true for the case a = a(0). 

If each of the TT/'S are greater than zero, then «Sp is contained in the hyper-
'• ^ ^a(O) 

plane (3.2). Thus S t is the intersection of a closed set and a set which is closed 
^a(O) 

from below. Therefore it is closed from below. 

Assume now that there exists at least one TTj = 0. For convenience, say, = 0 

and the others are not zero. Then = {({q, • • •, G S : = c}, 

where c is a constant such that c = Let u* € A(5p If 

u* e «Sp , then we are done. Thus we assume that this is not the case. Then 
a(0) 

u* is a limit point which does not belong to 5p Hence, for every £ > 0, there 

exists u' 6 SR such that 
q(0) 

u* - u' 

k - 1  

E - c 

<  s .  Therefore, 

k — 1  k — l  

12 - IZ ""A 
(=1 1=1 

* / 
TT • U — TT • U 

< 

< 

<  e  

TT • (U* - U') 

I 
TT U* - U 

u* — u' 

for every e > 0 
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and we see that Trvuf = c. If u* E S, then u* G 5p and we are done, 
z—i I o:(0) 

Next we will show that u* G S. Note that u* = Q * H «Sr C Q * D S. 
" «(0) " 

Assume that there exists such that u® ^ u* and u" 6 H S. If u° 6 S, then 

it must be the case that = u*, for i = 1,2,..., A: — 1, and — s for some 

£ > 0, since u° E and Thus Q^o is a proper subset of 

and Q o H 5r C Q * H «Sp = u , but Q o fl 5p is a nonempty set, 
a(0) " a(0) a(0) 

which is a contradiction. Hence u° ^ S. 

for every u' G S. Let I u* — I = £, then Note that 

for u' 6 <S such that 

p
 *
 

1 < u® — u' 

u* - u' - 2 

< 1 U* - U° 1 - u* — u' < u ' - u °  — 1 1 

and for u' G 5 such that u* - u' 
-  I '  

< u* — u' < p
 0
 

1 

u° can not be a limit point of S and hence u'' ^ «S which is a contradiction. Thus 

we have u* = D 5, and u* G A(5) C 5, since S is closed from below. 

It remains to show that 5p is bounded from below, but this is true, since 
^a(O) 

Assume now that the risk set S is closed and bounded from below, and A(5) 

is a proper subset of 5. Then as we remarked earlier, 8 is admissible. Conversely 

suppose a decision rule 6 is admissible and for the decision problem A(5) is a proper 

subset of S. Then there exists a prior distribution against which 6 is Bayes and 

^a(O) ~ ^ proper subset of S. If no member of dominates any 

other member of we stop. If this is not the case, then 5 is admissible within 
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ra(0) we can repeat the process. That is there exists a prior ' such that S is 

Bayes within and = ^a(O) is a proper subset of 

r^(0). If no member of dominates any other member of we are done. 

Otherwise we repeat the process. If after a finite number of steps we obtain a 

for which no member dominates any other member we are done. Suppose this is not 

the case, then there exists a sequence of priors j such that is strictly 

decreasing and S G n^o^a(n)' no member of the intersection dominates any 

other member, we are done. If not, it is easy to check that Jr is closed 
" a(n) 

and bounded from below where S-r is the risk set generated by F / \, and there 
a(n) 

exists a prior such that S G (n^o^a(n)) where w is the final ordinal 

number after the positive integers and this set is a proper subset of '^a(n)' 

If no member of (n^o^a(n.)) dominates any other member, we are done. 

Otherwise we must repeat the process. Eventually we must find a set which contains 

6 and for which no member dominates any other member. Hence we have proved the 

following theorem. 

Theorem 3.2 Suppose that 0 is finite. If a risk set S C is convex, closed from 

below, and bounded from below, then the collection of all extended stepwise Bayes 

rules is a minimal complete class. 

The assumptions of this theorem can be weakened in terms of loss function and 

decision space. For example, if loss function is lower semicontinuous and decision 

space D is a compact subset of TZ, then for every prior distribution tt on 0, a Bayes 

rule against TT exists and we can apply the same argument. Thus we have the following 
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corollaryies. 

Corollary 3.1 Suppose that 0 is finite and V is a compact subset ofTZ. If the loss 

function is lower semicontinuous, then the collection of all extended stepwise Bayes 

rules is a minimal complete class. 

Corollary 3.2 If both 0 and T> is finite, then the collection of all extended stepwise 

Bayes rules is a minimal complete class. 

Example 3.1 Consider the Example 1.2. Let = (1,0) and tt^ = (0,1). Then the 

collection of Bayes rules with respect to ttMs |<5 ; 0 < 6(xi) < <ind a Bayes rule 

6 within P*(7r^) with respect to satisfies (5(.T]^) = ^ &nd ^ < 6(z2) < 1. i.e., 

r2 = |5 : 5(a;i) = ^ < <^(^2) ^ ij-

Note that any 6 6 Fg, r(^, 6) = 0 for all 0 G 0 and we can not extract a 

subcollection from r2 by applying the Bayes procedure. Thus a decision rule 5 G r2 

is a extended stepwise Bayes rule. It also should be noted that r2 is the minimal 

complete class for this statistical decision problem. 

Example 3.2 Let A' be hypergeometrically distributed with parameters N,  M and 

n, where N is the number of population, M is the unknown number of defective items 

and n is the sample size. Let ^ — ^1 the proportion of the defective items. Thus 

0 = {0, , 1 j and X = {0,1, • • • ,n}. We will estimate 9 with V = [0,1] 
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and a loss function L { 6 , d )  where L  is such that L { 0 , d )  =  0  i (  9  =  d ,  L { 9 , d )  > 0 if 

9 ^ d, and continuous in d for each 9 E Q. 

Let TT® = {1,0,• • • = {0,1,0, - ,0} and so on. Then 6 { x )  =  ̂  is the 

unique extended stepwise Bayes rule against |7r®,7r^, • • • ,7r"^|. It may be a silly 

estimator of 9, but it is still admissible. 

Example 3.3 Let X = {1,2, • • •, AT}, © = {1,2, - -, jV} and X^,i — l,2, . . . , n  be 

random samples having probability distribution function 

I ^ if X = 1,2,..., 0 
FEIX)  = < 

I 0 otherwise. 

We will estimate 9  with D = [1, N ]  and a loss function L ( 9 , d )  where L  is such that 

L { 9 , d )  =  0  i f  9  =  d ,  L { 9 , d )  >  0  i f  9  ^  d ,  a n d  c o n t i n u o u s  i n  d  f o r  e a c h  9  G  0 .  

Let T = maxj—]^^ A'j, then the p.d.f. of T is given by 

0 otherwise. 
P f f ( i )  =  

EetTT^ = {l,0,--.,0},7r2 = {0,1,0, • • •, 0}, • • • ,'7r^ = {0,---,0,l}. Then 6(f) = 

t is the unique extended stepwise Bayes rule against - - -, j and hence it is 

admissible. 
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3.2 Set Estimation 

3.2.1 Introduction 

In many statistical decision problem, instead of specifying a point estimate for a 

unknown parameter 6, it may be sufRcient to provide an interval or set within which 

9 may be expected to lie. There are a wide variety of approaches to this statistical 

decision problem. For example, frequentists, Bayesians, empirical Bayesians and 

fiducialists, each have their own viewpoints. 

Like point estimation, the problem of set estimation is two fold. First, there 

is the problem of finding confidence procedures, and, second, there is the problem 

of determining good, or optimum, confidence procedures. Even though statisticians 

may have different viewpoints, they would not want to use a confidence procedure 

if there were another with at least as large probability of containing 6 and no larger 

expected set size for all 9. Thus we might use the pair, noncoverage probability and 

expected set size, as our risk in the set estimation problem. 

Let A' 6 be a random variable and {/^ : 0 £ 0} a family of possible probability 

distributions on X. We denote v and as cr-finite measures on 0 and %, respectively, 

and 

where H is a measurable set on X. Assume that /g is jointly measurable and for 

each X G X, there is at least one 6 with fgix) > 0. 

A nonrandomized confidence procedure T is a jointly measurable set on 0 x 

If a statistician use the procedure T and observe x E: X, then T{x) is his set estimate 

of 9 where T{x) is the z-section of T. 
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For this nonrandomized confidence procedure T, define 

r j  = £'[i/(T(X))] = J^ f i T i x ) )  f 0 { x ) d p { x )  

and 

P  t( ^ )  =  \ P  i  ̂( - ^ ) ]  =  /  ^  T { x ) ]  f Q { x ) d f i ( x )  
J X 

where I is the indicator function. We also define a randomized confidence procedure 

Tr, and its risk 7/ and p in a similar manner as in a point estimation 

problem. 

In what follows, unless it is necessary to distinguish between nonrandomized 

and randomized procedures, T will refer to both a nonrandomized and a randomized 

confidence procedure. 

Definition 3.4 A confidence procedure T' is called admissible if there is no other 

procedure T with (a) t] 'p(0) < 7? rp/(0) and (b) p < p rj,/(0) for all 0 € 0, where 

for some 0 at least one of inequalities (a) and (b) is strict. 

This definition of admissibility of a confidence procedure has, for example, been 

used by Cohen and Sackrowitz [5], Meeden and Vardeman [16], and Meeden [17]. 

Meeden and Vardeman also gave three different notions of being Bayes for set esti

mate. One of them is c(0)-Bayes. 

Definition 3.5 Let 11 be a distribution on 0 with a density with respect to 1/ given 

by 7r(^), and c{0) be a function taking values in [0,1]. Then a confidence procedure 

T' is called c{6)-Bayes versus 11 if there is no other confidence procedure T such 
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that 

J  [C {0 )T}  RJ ^{e )  + (1 - c(0))p'p(0)] 7r(0)cfz/(0) 

< J c(^)7/^/(0) + (1 - c(0))p 7r(0)di/(^) 

In the decision theoretical point of view, the concept of c(0)-Bayesness is impor

tant because there is a close relationship between admissibility and being c(0)-Bayes. 

That is, Meeden and Vardeman showed that, when 0 is finite and a confidence pro

cedure T is admissible, there exist a prior 11 and a function c{9) such that T is a 

c(^)-Bayes versus 11. The concept of c(^)-Bayesness may be somewhat strange. But 

the function c(d) has an intuitive interpretation, that is, for a given 0, c(6) is the 

statistician's relative weight of the set size against the noncoverage probability. For 

example, if c(6) = 1, then for that 0, the statistician is only concerned with controlling 

T] the average size of confidence procedure T. 

Theorem 3.3 A nonrandomized confidence procedure T is a c{9)-Bayes versus H if 

and only if, for a set of x receiving marginal probability one: 

(i) J  c { 6 ) ' K { d \ x ) d v { 9 )  = 0 implies that {6 : •k[6\X)  > 0} — T{x) has probability 0 

u n d e r  t h e  c o n d i t i o n a l  d i s t r i b u t i o n  o f  6 \ X  —  x .  

(ii) f  c ( 0 ) 7 r ( O l x ) d t / ( O )  >  0 implies that the set T(x) — {d : •K{d\x) > 0} has v measure 

0 and both 
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and 

| ^ : ( l - c ( 0 ) ) 7 r ( 0 | . - c ) <  j  c(9)7r(4|%Xz/(4)j n T ( z )  

have probability 0 under the conditional distribution of 9\X = x. 

Theorem 3.3 says, essentially, a confidence procedure that is c(0)-Bayes versus 

n can be obtained as 

and we may randomize on the region : 7r(0|.r) (1 — c { 9 ) )  =  f  c { 6 ) ' ! r ( 9 \ x ) d i y { 9 ) } .  

This theorem is due to Meeden and Vardeman [16]. 

3.2.2 A Minimal Complete Class in Set Estimation Problems 

In the decision theoretical framework, the set estimation problem is a triple 

(Q,'D,L), with a random variable X G X, where P is a collection of subsets of 0 

and L{d,d) = {i/{d),I(6 0 d)) is a vector valued loss function. Thus a confidence 

procedure is a decision function which assigns a set in T) for each x E X. However we 

will use the term "confidence procedure" to distinguish this from point estimation. 

Note that, when 0 is finite, say 0 = {#!,"',#&}, the subset of TZ^^,C = 

{{v t(^i)''"''? T(^fc)'P t(^i)'""'P T(^t)) :^^sa confidence procedure } plays 

the role of the risk set in the point estimation. Thus under certain conditions, we 

can  app ly  the  Theorem 3 .1  and  Lemma 3 .1  to  the  se t  C.  

We will now define the extended stepwise Bayes confidence procedure in a similar 

manner, but unlike point estimation, we need an ordered set of pairs (7r'^,c'^) instead 

of an ordered set of prior distributions. 

{ e ,  x )  :  T : { e \ x ) { l  -  c { e ) )  >  J  c ( d ) T : { e \ x ) d u { 0 ) ^  ,  (3.4) 
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Definition 3.6 Let F be a collection of confidence procedures. Let 7r(0) be a prior 

distribution and c{9) be a function taking value in [0,1]. Then a confidence procedure 

R' is said to be Bayes within F with respect to (TT, C) if, 

^[c(0)77^, + (1 - c(^))p rp/j c;7r(0) 

< / \c{9)r] -{• [l — c{0))-pdT(0) for all T G F 
J© 

we denote the class of all Bayes within F against (7r,c) by F (7r,c) 

Definition 3.7 Let / be a well-ordered set with the least element q(0). Given 

: a 6 / }, we define { F# : a 6 / } as follows. 

(i) = V* j where T>* is the class of all confidence procedures. 

(ii) r^* = (flcKa* ,0°^ ) for a* > a(0). 

Definition 3.8 We say that a confidence procedure T is a extended stepwise Bayes 

against : a G / } if, 

(i) {F*^ : a € /} is a strictly decreasing sequence of sets of confidence procedures. 

(ii) refiae/ra 

(iii) No member of flaE/ dominates any other member of flaG/ within 

Hae/ Fa, every member is admissible. 
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Note that V* (TT, c) is the collection of procedures that are c(^)-Bayes versus TT. 

However, c{0) is closely related to Tr{0) in our discussion and for notational conve

nience, we v/ill call it Bayes with respect to (jr, c). 

Theorem 3.4 Suppose that C C is convex, closed from below and bounded from 

below, and A(C) is a proper subset ofC. Ifu* 6 A(C), then there exists a pair (7r,c) 

against which u* is Bayes and the class of all Bayes procedures with respect to (7r,c) 

i s  a  p r o p e r  s u b s e t  o f C .  

Proof : The convexity and boundedness is trivial. 

In view of Theorem 3.1, if u* G A(C), then there exists numbers 4>i, • • • and 

P i r - - , P k  s u c h  t h a t  e a c h  >  0 ,  e a c h  p i  >  0 ,  P i  =  

k k k k 
constant = ^ (jiijU* + ^ /5ju* < ^ ^ for all u E C, 

i=l i=l i=l 1=1 

and the set |u Ç C : Pi^H — constant^ is a proper subset of C. 

Let TV I = 7r(0j ) = for i = 1,2,..., fc, and 

Cz = c(#;) = < 

Then u* minimizes 

p: if TT > 0 

2 if TT = 0 

Ç + (1 - Ci) Wjk+i] (3 5) 
i 

over all u 6 C, and the Bayes procedures with respect to (7r,c) is a proper subset of 

C. • 
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Lemma 3.2 Let C C be a risk set which is convex, closed and bounded from be

low, andC^^ = {(«1, - " -,('2/;) ^ ^ : for some T 6 Ta ((tt, c)),«j = rj ^ 

p for i = 1,2,..., A:}. Then is convex, closed and bounded from below. 

Proof : As before it suffice to show that is convex, closed and bounded 

from below. Let u* € C be a Bayes with respect to (jr,c). Then u* minimizes. 

(3.5) over all u E C. Let (j)^ = and = (l — Cg) for i = 1,2,...,A:. Then 

4>iiPi ^ 0 for all i and {(f>i + Pi) = 1- Thus u* is a Bayes with respect to 

{d>i, - • • - • ,Pf^). Hence by Lemma 3.1, is convex, closed and bounded 

from below. • 

Thus, under certain condition, the extended stepwise Bayes technique yields a 

minimal complete class in the set estimation problem as well. Suppose, for example 

that V is the power set of 0. Then T> is finite and the risk set C is compact. Thus 

we have a minimal complete class. 

Example 3.4 Consider the Example 1.1. Let i/ is the counting measure on BQ 

and TT^ = (g, g,0,0),c^ = (3.4), a Bayes confidence procedure 

with respect to satisfies T{x = 0) = jo,gj and T{x = 1) = jgj. Let 

TT^ = (0,0^, 2) &:id = (2>2'6'5^' is the unique member of r2 and hence 

admissible where T ' {X  = 0) = |o, ,T ' {X  = 1) = jjj &iid T ' {X  = 2) = ||, i|. 
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