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INTRODUCTION 

Oblique incidence methods using ultrasonic waves are often proposed for the 
inspection of multilayered plates. For example, during the bonding process between two plates 
of titanium, the possibility of the formation of a brittle layer of "Alpha case" (or "Hard Alpha") 
along the bondline has been established if nitrogen or oxygen is present [1]. Moreover, 
adhesive joints, which are widely used in industry, need to be inspected in order to confirm the 
properties of the adhesive layer (cohesion) and of its interfaces with the adherends (adhesion). 
One possible technique for inspection is to exploit the properties of guided waves which travel 
along the embedded layer. According to the coincidence angle principle, they can be excited by 
signals incident at a precise angle and there is an expectation that the generation of a plate 
mode is indicated by a minimum of the plane wave reflection coefficient. As plate modes are 
very sensitive to the properties of the embedded layer in which they travel, the waves which are 
excited within the adherent (adhesive joint) or within the bondline (diffusion bonded joint) 
would therefore give information on their properties [2]. This method of excitation and 
detection is practicaIly valid in many circumstances such as immersed plates in water [3] as 
shown in Figure 1. However, when the surrounding medium has an impedance of similar order 
to the layer, minima of the reflection coefficient do not indicate the generation of guided modes 
in the layer [4-6]. 

This difference prompted the authors to investigate another approach to the problem. 
Instead of solving in real frequency and complex slowness (as is conventional for leaky waves), 
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Figure 1, Comparison between the minima of the longitudinal plane wave reflection coefficient 
and the dispersion curves calculated in real frequency and complex slowness for 1 mm thick 
Aluminium plate immersed in water. 

the solution is found in complex frequency and real slowness as already introduced by Poncelet 
and Deschamps for immersed isotropic [7] or anisotropic [8] plates. In their papers, the 
differences introduced by the imaginary part in the frequency are analysed and the necessity to 
consider the notion of slowness and the notion of frequency, instead of simply wave number, 
which contains both the time and the spatial information, is explained. They also show the 
differences due to the introduction of the complex frequency in the calculation of the dispersion 
curves and compare them to the usual leaky Lamb wave dispersion curves. Finally they consider 
the effect of the tluid density. Their work identifies a difference between spatial and temporal 
decay of the wave amplitude. Because the amplitudes ofleaky waves decay as they travel, the 
concept of spatial attenuation has been conventionally adopted in the literature. It is commonly 
modelled by a complex wave number which is described by a real frequency and a complex 
slowness, However transient phenomena can sometimes be observed and then an attenuation in 
time has to be introduced. This is done by assuming the frequency to be complex. Therefore, the 
notion of complex frequency and real slowness models an attenuation due only to the time but not 
to the space. The modal solutions of the complex frequency formulation are fundamentally 
different from the conventional complex slowness solutions; they do not simply represent a 
change in variables when solving the modal problem. 

We show here for a solid layer embedded in another solid that the dispersion curves 
calculated in complex frequency are again very different from the curves calculated in complex 
slowness. Moreover, the dispersion curves for complex frequency present very much better 
agreement with the minima of the plane wave retlection coefficients than the conventional curves. 
The paper will discuss the nature of these tlndings which have general relevance to the 
development of NDE techniques. 
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THEORY 

In an infinite isotropic solid, two different types of waves, satisfying the equation of 
motion may exist: one describing longitudinal plane waves (L) and the other describing shear 
plane waves (T). Both have the form: 

-± - R {'j:± 'p- i('rot-'R.Ml} 
UL,T - e ">L,T e ( 1 ) 

where: * ~ is the complex amplitude (+ for the waves travelling towards the positive y direction 

which is normal to the interface, - otherwise) and * P = P'-iP" represents the unit length 

polarisation vector (' P.· P = I ). Because the polarisation is complex, the displacements are 

described by ellipses whose major and minor axes are defined respectively by P' and P" , the 
imaginary part of the amplitude representing therefore the position of the displacement vector in 
the base (P' ,P" ). Moreover, • K = K'-iK" =' co'S stands for the complex wave number, 

• co=co'+ico" is the complex angular frequency, 's = S'-iS" is the complex slowness and M the 
position vector. The notation Re{ } denotes the real part and the superscript indices * on the left 
hand side indicate that the quantities are complex. The propagation vector is denoted K' and the 

attenuation vector is represented by K" . The real positive scalar co' stands for the angular 
frequency. The parameter ai' is the extinction coefficient (co">O) or the switching-on coefficient 
(co" <0) of the source. After expansion of this displacement one can show that the phase velocity 
can be written in the most general case as: 

co' 
Vph=--

co' S'+co" S" 
(2 ) 

Since attenuation in both time and space may be considered, it is necessary to distinguish 
between phenomena due to time and space. The terms slowness (inverse of the velocity) and 
frequency will be preferred to the term wave number, which contains both space and time 

components (* K= * co * S ), to describe the properties of the waves. From an experimental point of 
view, the hypothesis of real slowness will best be satisfied if very large transducers are used such 
that the assumption of an infinite plane wave is well approached. Together with this, the 
hypothesis of complex frequency requires a discontinuity in time in the excitation signal. 

Thus, two extreme kinds of problems can be considered: either the spatial effects are 
predominant and the frequency is real and the slowness is complex, or the time effects are 
predominant and the frequency is complex and the slowness is real. Accordingly, an infinity of 
other problems can therefore be examined with both the frequency and the slowness complex. 

REFLECTION PROBLEM 

The geometry which is studied is presented in Figure 2 where the incident wave can 
either be a longitudinal or a shear infinite homogeneous plane wave. A solid medium (labelled 2) 
is embedded in two other identical semi-infinite solids (labelled I). They are purely isotropic and 
they are considered to be intinite in the x-direction. As the layers are perfectly connected at the 
interfaces, the continuity of the velocities and of the stresses between the medium 1 and the 
medium 2 at the two boundaries must be satisfied [9]. This leads to a system of eight equations 
with eight unknowns which are the amplitudes of the waves. This well known problem can then 
be written: 
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Figure 2. Plate configuration: layer embedded in a solid medium showing partial waves. 

( 3 ) 

where 

[[AJ] = [~ t+ -[~ -t; 0 0 -[+ -!;] aty = h I 2 

0 -[- -'I- [ - t- -[+ -T2+ aty =-h 
2 2 1 1 2 

(4 ) 

and 

X = (~~1 ~;l ~ ~2 ~~2 ~~l ~~l ~~2 ~;2) T ( 5 ) 

In the above notation, each vector L and T contains the two displacements and the two stresses 
characteristic of each wave presented in Figure 2, the subscript numbers standing for the labels of 
the media. The + defines the waves travelling in the direction of the positive y-axis and the
represents the waves travelling in the direction of the negative y-axis. The vector I stands for the 
incident wave and the vector X represents the amplitudes of the waves. In the following, the 
shear plane wave reflection coefficient will be calculated for a shear incident plane wave and the 
longitudinal plane wave reflection coefficient will be calculated for a longitudinal incident plane 
wave. Thus, the longitudinal plane wave reflection coefficient is defined by the ratio between the 
amplitude of the longitudinal reflected signal (L 1 +) and the amplitude of the longitudinal incident 
signal, and the shear plane wave reflection coefficient is defined by the ratio between the 
amplitude of the shear ret1ected signal (Tl +) and the amplitude of the shear incident signal. 

MODAL PROBLEM 

The definition of the modal problem is given by Figure 2 without any incident wave [9) . 
The system is unforced and the waves are supposed to be able to propagate without input of 
energy: equation ( 3 ) where the vector I i s null . This equation is satisfied when det(A)=O. Thus, 
we look for the solutions of a function F such that F( ill, *S)=O. The solutions of this 
transcendental equation, which usually requires a numerical algorithm to be solved, are the 
dispersion curves. For the calculation in complex frequency and real slowness we use a Newton
Raphson algorithm providing fast computation. The dispersion curves for the conventional 
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assumption of real frequency and complex slowness are calculated using a general purpose 
model developed by Lowe [9] and Pavlakovic et al [10]. 

RESULTS AND DISCUSSION 

As already mentioned in the introduction, a number of multilayered geometries are of 
interest for non-destructive evaluation. We decided in this paper to present the case of the 
diffusion bonded joint (0.1 rum thick layer of Alpha Case embedded in titanium), the adhesive 
joint being still under investigation. The bulk velocities of Alpha case have been measured to be 
about 5 to 10 % faster than those of titanium but its density is roughly the same [11]. The elastic 
properties which are used here for the titanium and the Alpha case are respectively: CL1=6.06 
kmls, CTl=3.23 kmls, Pl=4.46 T/m3, CL2=6.66 km/s, CT2=3.553 kmls and P2=4.46 T/m3. This 
configuration therefore comprises two materials which have roughly the same impedance, the 
embedded layer being slightly stiffer than the embedding one. 

Let us first examine the comparison between the minima of the shear (empty circles for a 
shear incident plane wave) and the longitudinal (filled circles for a longitudinal incident plane 
wave) plane wave reflection coefficients with the classical dispersion curves (lines) calculated in 
real frequency and complex slowness presented in Figure 3 (from [5]). First of all, we have to say 
that because of their very high attenuation, leading to solutions which are not physically useful, 
the modes have not been traced over the full solution space. As presented in Figure 3, there is no 
region, in this frequency range, where the minima of the reflection coefficients coincide with the 
dispersion curves, although the leaky shear modes and the minima seem to correlate better as the 
frequency increases. The convergence of the minima towards the modes at high frequency is also 
accompanied by a reduction in attenuation (values given in reference [6]) and led Lowe and 
Cawley to suggest that the separation of minima and modes is related to the rate of leakage. It is 
clear therefore that the measurement of minima of the reflection coefficients do not reveal the 
(conventional) harmonic heterogeneous modal properties. For the same configuration, let us now 
compare the minima of both the shear and the longitudinal plane wave reflection coefficients and 
the dispersion curves calculated in complex frequency and real slowness (Figure 4). It is 
interesting to note that in the region where excellent agreement between the complex frequency 
dispersion curves and the minima of the plane wave reflection coefficient is obtained (below the 
longitudinal bulk velocity of the titanium CLl), the minima of the shear plane wave reflection 
coefficient are true zeroes; above the longitudinal bulk velocity of the titanium the agreement 
deteriorates progressively as the phase velocity increases and zeroes of the plane wave reflection 
coefficients can only be obtained by searching in the complex plane (complex frequency or 
complex slowness). 

The zeroes of the shear plane wave reflection coefficient (complex frequency and real 
slowness) corresponding to the curve labelled "mode I" on Figure 4 are shown in Figure 5. For 
different values of the slowness, we find the complex frequency for which the shear plane wave 
retlection coefficient is zero. Two kinds of curves can be analysed in the figure. Part a) shows a 
comparison between the dispersion curve and the zeroes of the reflection coefficient and part b) 
shows the dimensionless factor n=ro"/ro' both versus the real part of the frequency. First of all, let 
us analyse the retlection coefficient zeroes. As presented, the attenuation factor n exhibits two 
different regions. In the first one (path going from D to C and from C to B), its value is zero and 
this corresponds to the part of the curve which is below CLi in Figure 5a). Suddenly, its 
magnitude takes a positive value, then drops to finish negative at around 15 MHz and this 
corresponds to the part of the curve above CLi in Figure 5a) and to the path between A and B. 
Moreover, it can be seen that the dispersion curve and the zeroes of the shear plane wave 
retlection coefficient in Figure 5a) are almost exactly equal below the longitudinal bulk 
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Figure 3. Comparison between the minima of both the shear and the longitudinal plane wave 
reflection coefficients and the dispersion curves calculated in real frequency and complex 
slowness for a 0 .1 mm thick layer of Hard Alpha embedded in titanium (from [5]). 
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Figure 4. Comparison between the minima of both the shear and the longitudinal plane wave 
reflection coefficients and the dispersion curves calculated in complex frequency and real 
slowness for a 0.1 mm thick layer of Hard Alpha embedded in titanium. 
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a) Comparison between the zeroes of the 
ret1ection coefficient and the dispersion curve. 

b) Attenuation factor (il=(fJ"/(fJ') of zeroes of 
the complex ret1ection coefficient. 

Figure 5. Comparison between the zeroes of the shear plane wave ret1ection coefficient and a 
dispersion curve, both calculated in complex frequency and real slowness. 

velocity of the titanium when the zeroes have a null attenuation factor il. However, above CLI , 

the imaginary part of the zeroes becomes significant and the dispersion curve does not 
correspond to the zeroes anymore. Finally, above 8 krnls, the disagreement is very large and 
corresponds to the largest magnitudes of il. Because these phenomena have been observed for all 
the modes, we conclude then that the extent of the difference between the zeroes of the ret1ection 
coefficients and the dispersion curves calculated in complex frequency corresponds to the 
magnitude of the imaginary part. The greater the imaginary part of the zeroes of the ret1ection 
coefficient, the greater the difference between the curves. 

CONCLUSION 

The notion of complex frequency has been introduced in order to solve the modal and the 
response problem differently from the usual procedures which consider the slowness complex 
and the frequency real. A comparison between the dispersion curves calculated in complex 
slowness and real frequency, the dispersion curves calculated in complex frequency and real 
slowness and the zeroes of the longitudinal and shear plane wave ret1ection coefficients has been 
presented. 

In the case presented, we have shown that the dispersion curves calculated in complex 
frequency and real slowness can be very different from the dispersion curves calculated in real 
frequency and complex slowness. This agrees with the fact that these two problems have 
different physical meanings: the attenuation is either considered in time (complex frequency and 
real slowness) or in space (real frequency and complex slowness). Moreover one can see better 
agreement between the dispersion curves, calculated in complex frequency and real slowness, 
and the zeroes ofthe plane wave ret1ection coefficients. The disagreement observed above the 
longitudinal bulk velocity of the titanium corresponds to the presence of a non-null imaginary part 
in the zeroes of the reflection coefficient. Work is ongoing to understand the physical nature of 
these predicted phenomena, in particular why the correlation is better for a computation in 
complex frequency and real slowness rather than in real frequency and complex slowness. 
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