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Abstract

Carboxylic acids are an attractive biorenewable chemical. Enormous progress has been made in engineering microbes for
production of these compounds though titers remain lower than desired. Here we used transcriptome analysis of
Escherichia coli during exogenous challenge with octanoic acid (C8) at pH 7.0 to probe mechanisms of toxicity. This analysis
highlights the intracellular acidification and membrane damage caused by C8 challenge. Network component analysis
identified transcription factors with altered activity including GadE, the activator of the glutamate-dependent acid
resistance system (AR2) and Lrp, the amino acid biosynthesis regulator. The intracellular acidification was quantified during
exogenous challenge, but was not observed in a carboxylic acid producing strain, though this may be due to lower titers
than those used in our exogenous challenge studies. We developed a framework for predicting the proton motive force
during adaptation to strong inorganic acids and carboxylic acids. This model predicts that inorganic acid challenge is
mitigated by cation accumulation, but that carboxylic acid challenge inverts the proton motive force and requires anion
accumulation. Utilization of native acid resistance systems was not useful in terms of supporting growth or alleviating
intracellular acidification. AR2 was found to be non-functional, possibly due to membrane damage. We proposed that
interaction of Lrp and C8 resulted in repression of amino acid biosynthesis. However, this hypothesis was not supported by
perturbation of lrp expression or amino acid supplementation. E. coli strains were also engineered for altered cyclopropane
fatty acid content in the membrane, which had a dramatic effect on membrane properties, though C8 tolerance was not
increased. We conclude that achieving higher production titers requires circumventing the membrane damage. As higher
titers are achieved, acidification may become problematic.
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Introduction

There has been a substantial interest in using microbial fatty

acid biosynthesis as a platform for a variety of biorenewable

chemicals [1–4]. However, there are challenges associated with

harnessing the fatty acid biosynthesis pathway for producing

chemicals at industrially relevant titers, productivities, and yields.

For example, it has been noted by multiple researchers that

product toxicity is a major problem for the microbial production of

carboxylic acids [5–9].

Microbial tolerance of inhibitors, either present in the plant-

derived feedstock or a toxic desired product, is a common problem

in the fermentative production of biorenewable fuels and

chemicals [10–12]. Knowing the mechanism of inhibition can

enable rational design strategies for addressing tolerance. Tran-

scriptome analysis is one method for identifying these mechanisms

[7,10,13,14]. It is relatively well-established that one of the major

effects of short chain carboxylic acid toxicity is membrane

damage, largely due to the hydrophobic nature of the carbon

chain [15]. It is also well-accepted that exogenous challenge with

carboxylic acids can cause intracellular acidification, interfering

with cellular function and imposing an ATP burden [16–19]. Our

previous work quantified the effect of octanoic acid (C8) on

membrane integrity, fluidity, hydrophobicity and composition [5]

and we concluded that diffusion of octanoic acid into the

membrane impairs its function. Here we used transcriptomic

analysis of exogenous octanoic acid challenge to identify and

quantify other mechanisms of inhibition, as well as exploring

strategies for improving tolerance.

Materials and Methods

Strains and growth conditions
Escherichia coli strain K-12 MG1655 was obtained from ATCC

(Manassas, VA, USA) (Table 1). All strains were grown in 25 mL

MOPS minimal media [20] with 2% dextrose in 250 mL baffled

flasks at 37uC. Overnight cultures were diluted to an optical

density of 0.05 at 550 nm (OD550) for specific growth measure-

ments and RNA extraction, and diluted to 0.1 for intracellular pH,

c-amino butyric acid, and membrane lipid composition measure-

ments. 4 M C8 stock solutions were prepared in 100% ethanol.

The concentration of ethanol used in these experiments did not

have a significant impact on growth (data not shown). Media with
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octanoic acid were pH-adjusted to 7.0 with 2 M potassium

hydroxide. The specific growth rate was determined by measuring

the OD550 during the exponential phase, as previously described

[5].

The carboxylic acid production strain ML103 [21] was

obtained from Ka-Yiu San (Rice University). This strain was

grown in 25 mL M9 with 1.5% dextrose in 250 mL baffled flasks

at 30uC with the appropriate antibiotics and inducers, as described

below.

Plasmids
pJDT1 [22],obtained from Anja Nenninger (University of

London), was induced by 200 mM L-arabinose and 100 mg/mL

ampicillin was used for maintenance. pCA-cfa and pCA-lrp [23],

obtained from Ramon Gonzalez (Rice University), were induced

by 0.5 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) and

25 mg/mL chloramphenicol was used for maintenence. pZS-GFP

was cloned using the Gibson Assembly Cloning kit (New England

Biolabs, Ipswich, MA, USA), with pZS [24] as the backbone and

the GFP gene from pJDT1. pZS-GFP was induced by using

50 ng/mL anhydrotetracycline (Fisher Scientific, Hampton, NH,

USA) and 25 mg/mL chloramphenicol was used for maintenance.

pXZ18Z [25], obtained from Ka-Yiu San (Rice University), was

induced by 100 mM IPTG and 100 mg/mL ampicillin was used for

maintenance (Table 1).

Transcriptomics sample preparation
E. coli MG1655 was grown to midlog (OD550,0.8) with or

without 10 mM octanoic acid and cells were harvested for RNA

purification. Briefly, cells were harvested by swirling in a dry ice/

ethanol water bath until cold and then centrifuged at 5,000 g,

20 min. at 4uC; the resulting cell pellets were stored in RNA Later

solution (Life Technologies, Carlsbad, CA) at 280uC. RNase

AWAY solution (Life Technologies) was used to remove contam-

inating RNase. The RNeasy Mini Kit (Qiagen, Venlo, Nether-

lands) was used to isolate total RNA, which was then incubated at

37uC with RNaseOut (New England Biolabs) and DNaseI (New

England Biolabs) according to the manufacture’s protocol for

1 hour. The samples were mixed with saturated phenol/chloro-

form (pH = 4.5) (Life Technologies) and precipitated with ethanol

and 30 mL 3 M sodium acetate (pH = 5.5) (Fisher Scientific)

overnight at 280uC. After precipitation, the tubes were centri-

fuged for 30 min. at 16,873 g, 4uC. The RNA pellet was washed

twice with 70% ethanol and dried under vacuum for 30 min.

RNA quality was confirmed on a 1% TAE gel. The RNA was

hybridized to an Affymetrix GeneChip E. coli Genome 2.0 Array,

from which the sample was prepared with the Affymetrix protocols

(Affymetrix, Santa Clara, CA) and analyzed on a ProScanArray

HT Microarray Scanner (Perkin Elmer, Waltham, MA) at the

DNA facility of Iowa State University Office of Biotechnology.

The Affymetrix GeneChip E. coli Genome 2.0 Array contains

10,208 probes for genes in four strains of E. coli. The data is

available in the Gene Expression Omnibus database, accession

number: GSE53140.

Transcriptomic data normalization and analysis
Background adjustment, normalization, and summarization

calculations were performed in MATLAB v. R2012b (Math-

Works, Natick, MA, USA) using GCRMA [26]. Using pooled

data, permutation t-tests (10,000 permutations) were performed to

identify transcripts with statistically significant changes in abun-

dance (q-value ,0.05). Additionally, a fold change (log2(treat-

ment/control)) cutoff of 61 was applied to identify genes that

demonstrated a sufficient magnitude of variation between exper-

imental conditions. Probes not annotated as MG1655, but

orthologous to E. coli strain MG1655 were included. Probes

relating to other species were excluded from analysis. Additionally,

overrepresentation of Gene Ontology terms associated with

significant expression perturbations was examined and visualized

using the Cytoscape tool [27] and BiNGO [28].

Transcription factor analysis
The transcription factor analysis was performed using NCA

algorithm, and based on reconstructed regulatory networks using

RegulonDB [29] and the predicted TFA information as previously

described [30].

Intracellular pH measurements
E. coli MG1655 carrying the pBad24-TorA-GFPmut3* (pJDT1)

plasmid [22] was grown in 100 mL potassium-modified Luria

broth (LBK) [31] media in a 250 mL baffled flask from OD550

0.05 to midlog (OD550,0.8) with 100 mg/mL ampicillin and

200 mM L-arabinose at 37uC in an orbital incubator shaker at

150 rpm. The cells were harvested at 5,000 g, 4uC for 20 min.

and resuspended in phosphate buffered saline (pH = 7.0) diluted to

the working concentration (PBS, 10X powder concentrate,

Thermo Fisher Scientific, Waltham, MA) without a carbon source

to an OD500 = 0.4. A calibration curve was generated using

sodium benzoate, according to [32]. E. coli cell suspensions were

challenged with C8 or HCl and pH-adjusted to 7.0 before

measurement. The intracellular pH was measured by fluorescence

Table 1. Strains and plasmids used in this study.

Strain and plasmids Genotype Reference

MG1655 ATCC#700926 F- lambda- ilvG- rfb-50 rph-1 Wildtype

ML103 MG1655DfadD [21]

Dcfa MG1655Dcfa This reference

cfa++ MG1655+pCA-cfa [23]

Dlrp MG1655Dlrp This reference

lrp++ MG1655+pCA-lrp [23]

pJDT1 pBad24-TorA-GFPmut3* [22]

pXZ18Z pTrc99a-acyl Thioesterase R. communis-fabZ [25]

pZS-GFP pZS-TorA-GFPmut3* [24] and this reference

doi:10.1371/journal.pone.0089580.t001
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intensity using a Synergy 2 Multi-Mode microplate reader from

BioTek with sterile black-bottom Nunclon delta surface 96-well

plates in the W.M. Keck Metabolomics Research Laboratory at

Iowa State University. The plates were analyzed at 30uC in

100 mL aliquots, using the following filters: excitation filter = 485/

20 nm, emission filter = 528/20 nm.

For the amino acid supplementation studies, MG1655+pJDT1

was grown overnight in MOPS media as described above. The

cells were harvested at 5,000 g, 4uC for 20 min. and resuspended

in MOPS with 0.2 mM L-arabinose and incubated at 37uC for

3 h with or without amino acids (arginine and/or glutamate) and

C8 at equimolar concentrations of 10 mM. The cells were

harvested as treated as above to measure the intracellular pH.

For the carboxylic acid production study, E. coli

ML103+pXZ18Z+pZS-GFP was grown as described above. The

intracellular pH was measured as described above, except the cells

were not challenged with exogenous carboxylic acids prior to

measurement.

c-amino butyric acid measurements
MG1655 was grown to midlog (OD550,0.8) as described above

with 10 mM C8 and/or 10 mM glutamate added to the growth

media. Measurement of c-amino butyric acid was performed

according established protocols [33,34]. All chemicals for this

assay were purchased from Sigma-Aldrich, St. Louis, MO. Clear

UV-transparent microplates were purchased from Corning

(Corning, NY).

Membrane lipids analysis
The protocol was performed according to [5]. Briefly, cells were

grown to midlog (OD550,0.8) as described above, harvested at

5,000 g, 4uC for 20 min, and then challenged with different

concentrations of C8 for 3 h in MOPS pH 7.0 with 2% dextrose.

After challenge, the cells were harvested for membrane lipid

analysis.

Proton motive force simulations
The total electrochemical force was used to calculate the proton

motive force (PMF):

PMF~FDpHzFDy ð1Þ

and the Nernst potential was used to calculate the contributing

forces:

FDpH~
2:3RT

zF
(pHi{pHe) ð2Þ

FDy~
2:3RT

zF
log (

ionse

ionsi

) ð3Þ

where FDpH is the electrochemical force-associated pH-gradient,

FDy is the electrochemical force-associated ion-gradient, R is the

gas constant, T is the temperature, z is the molar ion charge, and F

is Faraday’s constant. Intracellular and extracellular ion abun-

dances are represented by ionsi and ionse, respectively. Use of

these equations have been previously reviewed [35,36].

Statistical analysis
The p-values were obtained using one-way ANOVA and

Tukey-Kramer pairs analysis with the JMP v/8.02 statistical

program (SAS Institute, Cary, NC, USA). We used a p-value

cutoff of 0.05 to determine significance. In the amino acid

supplementation survey, we applied the Bonferroni correction

factor and adjusted the P-value cutoff to 0.0025.

Results

Transcriptome analysis highlights the activation of acid
resistance systems

The information gained by transcriptome analysis is valuable in

many applications, especially in the area of tolerance for

biorenewable chemicals production. Tolerance is a complex

phenotype that covers a diverse space in the bacterial genome

[37]. For this reason, transcriptomics is a critical tool that allows

for a global measurement of the cellular response network of

stressors, such as challenge with carboxylic acids. Therefore, we

performed transcriptome analysis of E. coli MG1655 during mid-

log growth in MOPS minimal media with and without 10 mM

octanoic acid, where octanoic acid serves as a representative

carboxylic acid. Both cultures had an initial pH of 7.0; 10 mM C8

is sufficient to inhibit growth in this condition by 23% [5].

Table 2 lists all significantly perturbed genes (q,0.05) with at

least a 2-fold change in response to C8 challenge. The data is also

presented graphically in Figure S1 with log2 fold changes.

Similarly, Table 3 lists all transcription factors with significantly

perturbed (p,0.05) regulatory activity, as determined by network

component analysis (NCA).

Many of the genes with increased expression in response to C8

challenge are related to acid response, response to and regulation

of pH, and biofilm formation. Genes with decreased expression

are predominantly attributed to chemotaxis, reduced motility, and

flagellum assembly. Several genes associated with membrane

function and integrity, such as bhsA and cpxP were also perturbed,

where some had increased expression in response to C8 (e.g., cfa)

and some had decreased expression (e.g., ompF). These trends are

also reflected in the over-represented Gene Ontology (GO) terms,

as listed in Table S1.

Similarly, many of the perturbed regulators are also associated

with acid response and membrane damage (Figure 1). Most

notably, GadE regulates various acid response systems and is

primarily controlled at the transcriptional level in response to pH,

as previously reviewed [35]. RcsB is known for both association

with capsule biosynthesis [38] and acid resistance [39,40]. It is

known that RcsB activity is regulated by membrane-associated

partner proteins in response to a variety of extracellular signals

[38] and is required for maintaining the appropriate cell shape

[41]. RcsB also regulates motility in an H-NS-dependent manner,

which could possibly explain the decrease in motility [40]. SoxS

activation, while not a direct response to acids or membrane

integrity, is most likely due to superoxide production as an effect of

membrane damage, as previously reviewed [9].

Activation of Lrp in response to carboxylic acid challenge has

been previously described [42]. Specifically, it was reported that

the 4-carbon carboxylic acid butyrate binds to Lrp in a manner

that mimics leucine. Therefore, it is possible that a similar

interaction occurs with octanoic acid, resulting in activation of Lrp

during C8 challenge.

The PutA protein shifts between a cytosolic, DNA-binding form

and a membrane-associated metabolic enzyme [43,44]. The

switch to the membrane form is dependent upon the availability

of proline and FAD; the membrane-associated form then converts

proline into glutamate [43]. The abundance of the putA transcript

is not changed in our dataset. The observed decrease in PutA TFA

therefore suggests that the pool of PutA enzymes shifted from the

cytosolic form to the membrane-associated form, indicating a

Transcriptome Analysis of Fatty Acid Challenge
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Table 2. Differentially expressed genes under C8 stress highlight the acid resistance fitness island.

b1493 gadB 0.000 0.015 25.3 AR2 decarboxylase

b3509 hdeB 0.000 0.004 21.1 AR1 chaperone protein

b3238 yhcN 0.002 0.064 15.2 Acid response

b3510 hdeA 0.000 0.000 13.7 AR1 chaperone protein

b4439 micF 0.003 0.078 11.9 Antisense RNA regulator of OmpF porin

b3512 gadE 0.004 0.115 10.1 TA of AR2

b1492 gadC 0.000 0.013 9.3 AR2 antiporter

b3511 hdeD 0.001 0.053 8.7 AR1

b1480 sra 0.001 0.009 5.1 SP component of the 30S ribosomal subunit

b3508 yhiD 0.001 0.017 4.5 density-dependent acid resistance

b0812 dps 0.004 0.101 4.4 DNA-binding, iron-collecting, oxidative damage protection/repair

b3517 gadA 0.003 0.108 4.4 AR2 decarboxylase

b0485 ybaS 0.007 0.144 4.1 Glutaminase- acid shock inducible

b1531 marA 0.002 0.067 3.9 Multiple antibiotic resistance TR- organic solvents, oxidative stress

b2013 yeeE 0.009 0.157 3.8 Resistance to the DNA-damage

b0287 yagU 0.003 0.012 3.5 IMP- acid resistance

b1165 ymgA 0.002 0.003 3.5 Biofilm formation- rapid acid treatment

b3516 gadX 0.001 0.014 3.5 AR2 TR

b1112 bhsA 0.002 0.003 3.3 Influencing biofilm through hydrophobicity and SR

b2012 yeeD 0.010 0.106 3.0 Uncharacterized

b1164 ycgZ 0.006 0.107 2.9 Cold shock stimulon

b4554 (c4419) yibT 0.001 0.056 2.8 Uncharacterized

b0814 ompX 0.004 0.017 2.8 Acid-induced OMP

b4376 osmY 0.001 0.023 2.8 Hyperosmotic stress

b3405 ompR 0.013 0.163 2.7 OMP TR

b3515 gadW 0.026 0.219 2.6 AR2 TR

b2924 mscS 0.001 0.028 2.4 IMP mechanosensitive (MS) channel; non-specific transporter

b0850 ybjC 0.003 0.011 2.4 marA/SoxS induced

b3024 ygiW 0.004 0.014 2.4 IMP transporter, SR

b0775 (c0855) bioB 0.018 0.193 2.3 SAM-dependent biotin synthase

b2425 cysP 0.020 0.105 2.2 IMP Sulfate transporter

b1661 cfa 0.010 0.110 2.1 Cyclopropane fatty acid synthase

b3160 yhbW 0.000 0.015 2.0 Monooxygenase

b4077 gltP 0.024 0.213 2.0 Glutamate and aspartate transporter

b3458 livK 0.005 0.090 22.0 leucine transporter

b1194 ycgR 0.002 0.018 22.0 Flagellar motility

b1887 cheW 0.003 0.019 22.0 Flagellar motors

b4484 cpxP 0.038 0.116 22.1 TR, SR of cell envelope

b1075 flgD 0.009 0.032 22.2 Flagella

b1941 fliI 0.007 0.031 22.2 Flagellar export

b0455 ffs 0.035 0.220 22.2 RNA, membrane protein assembly

b1942 fliJ 0.002 0.015 22.5 Flagellar export

b1946 fliN 0.012 0.118 22.5 Flagellar motor

b1921 fliZ 0.005 0.096 22.5 TR flagella

b1922 fliA 0.000 0.000 22.6 Flagella; sigma F factor

b1884 cheR 0.001 0.008 22.8 Chemotaxis sensory transduction system

b1072 flgA 0.002 0.017 23.0 Flagella assembly

b1742 (Z2774) ves 0.010 0.157 23.0 Cold shock stimulon

b1939 fliG 0.001 0.007 23.2 Flagellar motor

b1945 fliM 0.000 0.001 23.2 Flagellar motor

Transcriptome Analysis of Fatty Acid Challenge
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possible increase in proline and/or FAD availability. This

potential effect is discussed further below. The putA gene is also

transcriptionally activated by the multiple antibiotic resistance

regulator MarA, which is also activated in our transcriptome data

[45].

FruR and MalT are both responsive to metabolites in the early

steps of glycolysis. FruR DNA-binding activity is decreased by the

metabolites fructose-1-phosphate and fructose-1,6-phosphate [46];

decreasing FruR activity suggests increased abundance of one or

both of these metabolites. MalT is the regulator specific to

catabolism of maltose, maltotriose, and starch containing maltose

sugars [47]. Several factors may be involved in the activation of

MalT. Intriguingly, MalT activity can be stimulated by increased

intracellular maltotriose [48]. This maltotriose can be produced

from unphosphorylated intracellular glucose [48]. This unpho-

sphorylated glucose could come from glycogen or possibly enter

through the damaged cellular membrane; we have previously

quantified this membrane ‘‘leakiness’’ using Mg2+ as a reporter

Table 3. Transcription factor activities significantly changed.

Transcription
Factor DTFA Sensing signal

FruR 2 Fructose 1-phosphate or Fructose 1,6-phosphate

GadE + Low pH

Lrp + Leucine

MalT + Maltodextrin

PutA 2 Proline and FAD

RcsAB + Membrane proteins

SoxS + Oxidative stress

TFA with a significant change (p,0.05) using NCA algorithm with the
RegulonDB regulatory links [29].
doi:10.1371/journal.pone.0089580.t003

Table 2. Cont.

b1881 cheZ 0.012 0.173 23.3 Chemotaxis sensory transduction system

b1078 flgG 0.024 0.223 23.3 Flagellar motor

b4355 tsr 0.004 0.112 23.4 Chemotaxis proteins

b1073 flgB 0.002 0.027 23.4 Flagellar motor

b1937 fliE 0.005 0.045 23.5 Flagella

b1076 (Z1714) flgE 0.007 0.133 23.6 Flagellar motor

b0557 (Z1878) borD 0.001 0.011 23.7 Magnesium stimulon

b1938 fliF 0.005 0.109 23.7 Flagella

b1888 cheA 0.015 0.190 23.7 chemotaxis protein

b1947 fliO 0.013 0.154 23.8 Flagellar export

b1925 fliS 0.002 0.033 23.8 Flagellar export

b1882 cheY 0.003 0.033 23.9 Chemotaxis response regulator

b1071 flgM 0.001 0.018 23.9 Flagella

b3525 yhjH 0.003 0.064 23.9 flagellar motility

b1940 (c2357) fliH 0.001 0.008 23.9 flagella ATPase inhibitor

b1074 flgC 0.001 0.013 24.0 Flagellar motor

b1944 fliL 0.000 0.015 24.1 Flagella

b1943 fliK 0.001 0.003 24.3 Flagellar export

b1886 tar 0.005 0.114 24.3 Aspartate chemoreceptor

b1924 fliD 0.013 0.173 24.4 Flagella

b1889 motB 0.004 0.086 24.5 Flagellar motor

b1070 flgN 0.000 0.000 25.1 Flagellar export

b1923 fliC 0.003 0.095 25.4 Flagella

b1076 flgE 0.004 0.106 25.8 Flagellar motor

b1890 motA 0.000 0.000 26.0 Flagellar motor

b1566 flxA 0.000 0.000 26.3 Prophage

b1083 flgL 0.002 0.083 29.3 Flagella

b0929 ompF 0.000 0.022 216.0 Transport of sugars, ions, and amino acids ,600 daltons

b0553 nmpC 0.002 0.069 216.3 OMP porin associated with the peptidoglycan

Expression ratio for genes significantly perturbed (q,0.05) at least 2-fold are reported as increased abundance (+) or decreased abundance (2). Probes not annotated
as MG1655, but homologous to other E. coli strains, are annotated as either CFT073 or EDL933, with the corresponding c-number or Z-number, respectively. The table is
sorted by the magnitude of the expression ratio and the function categories are derived from the Ecocyc database [68]. Abbreviations: AR1- acid resistance system 1;
AR2- glutamate-dependent acid resistance system 2; OMP- outer membrane protein; IMP- inner membrane protein; TA- transcriptional activator; TR- transcriptional
regulator; SP- stationary phase; SR- stress response.
doi:10.1371/journal.pone.0089580.t002
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molecule [5]. There are other potential sources of unpho-

sphorylated glucose, such as the galactose transporter [48].

Two of the most often cited means of carboxylic acid toxicity

are intracellular acidification and membrane damage [18], and

many of the genes and regulators perturbed in our dataset can be

attributed to these two effects. Membrane damage in this

condition has recently been quantified [5]. However, the

acidification effect remains relatively undercharacterized.

Figure 1. Octanoic acid response network. MG1655 was challenged with sufficient octanoic acid to inhibit growth by 23% (10 mM) in MOPS
minimal media at pH 7.0, 37uC, 150 rpm. This diagram shows central metabolism and highlights the regulatory effect of regulators with significantly
perturbed activity during C8 challenge, as identified by network component analysis. Dashed lines indicate regulatory connections that were
proposed in our previous analysis [30]. Mechanisms for changes in transcription factor activity are discussed in the text.
doi:10.1371/journal.pone.0089580.g001

Transcriptome Analysis of Fatty Acid Challenge
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Octanoic acid lowers the intracellular pH
We used a pH-dependent modified green fluorescent protein

[32] to verify and quantify the acidification effect of carboxylic

acid challenge at neutral pH. We used the familiar example of

HCl challenge as a positive control for this system. Addition of

20 mM HCl without readjusting media pH leads to a severe

decrease in intracellular pH to 5.32 (Figure 2). As expected,

adjustment of media pH back to neutral after addition of HCl is

associated with the appropriate near-neutral intracellular pH.

Contrastingly, addition of 10 or 20 mM C8, even with adjustment

of media pH to 7.0, results in a significant (p,0.05) and dose-

dependent drop in intracellular pH (Figure 2). This data not only

confirms the acidification effect of C8 challenge in neutral media,

but also quantifies this effect.

This acidification is consistent with the known permeability of

the cell membrane by the neutral protonated form of octanoic

acid. Once this neutral form permeates the cell membrane, it is

able to deprotonate inside the cell and thereby decrease the

intracellular pH [5]. Normally, the intracellular pH is slightly basic

in order to maintain proper membrane transport properties in a

neutral pH environment. E. coli uses this pH gradient as a means

of nutrient and waste transport. The pKa of C8 is 4.89 [49]; at

pH 7.0; the unprotonated form is dominant in the bulk media.

The protonated C8 is able to permeate the cell membrane

[16,18,50] and release protons into the cell, disrupting the pH

gradient. In contrast, HCl is a strong inorganic acid lacking the

membrane permeability displayed by the largely hydrophobic

carboxylic acid. Thus, HCl is able to pass through the cell

membrane only via membrane channels (i.e., ion exchange porins)

and proton pumps (e.g., ATPase) [51]. Given these differences, it is

unclear if the acid resistance strategies thoroughly described in the

literature [35] will also apply to carboxylic acids.

These results highlight the challenge of working with carboxylic

acids, as opposed to strong inorganic acids. The membrane

permeability of these carboxylic acids interferes with the ability to

control intracellular pH within the appropriate range of 6.0–7.5

[52]. Traditional fermentation systems enable maintenance of

appropriate media pH, but it is the intracellular pH that impacts

productivity. Thus, strategies are needed to combat this acidifi-

cation effect in order to maintain biocatalyst functionality.

Figure 2. Octanoic acid challenge decreases the intracellular pH. E. coli MG1655 pJTD1 was grown to midlog in minimal media at pH 7.0 and
resuspended in media containing C8 or hydrochloric acid (HCl). Values are the average of 4 biological replicates, with error bars indicating the
standard deviation.
doi:10.1371/journal.pone.0089580.g002

Figure 3. Supplementation with arginine or glutamate does not mitigate intracellular acidification. Measurements of the intracellular
pH of E. coli MG1655 pJTD1 during C8 challenge while grown in the presence of supplemental arginine and glutamate. The cells were incubated for
3 h at 37uC in MOPS media to allow utilization of the amino acid-dependent acid resistance systems. All concentrations are 10 mM.
doi:10.1371/journal.pone.0089580.g003
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Native acid resistance systems are ineffective in
combatting carboxylic acid stress

Bacterial acid resistance systems have been previously charac-

terized [35]. Specifically there are four known acid resistance

systems in E. coli. Two of these, acid resistance system 1 (AR1 -

hdeAB operon and hdeD) and acid resistance system 2 (AR2 - gad

system) all have significantly increased expression in our C8

challenge dataset. Since AR2 is the better characterized [53,54] of

the two, we chose this system as the basis for our attempts to

enable increased carboxylic acid tolerance.

AR2 functions by using glutamate as a sink for excess protons,

resulting in production of c-amino butyric acid (GABA) [35,54].

The fact that the genes encoding this system had increased

expression during C8 challenge suggests that E. coli is trying to use

this system in our condition. This drive to use the glutamate-

dependent acid resistance system could explain the observed

perturbation of the PutA regulator. AR2 relies on extracellular

glutamate for full functionality and thus may have limited

effectiveness in our minimal media condition. For this reason,

we tested the effectiveness of glutamate supplementation in

mitigating both the inhibition of growth and intracellular

acidification mediated by octanoic acid.

Supplementation with 10, 20 or 30 mM glutamate was not

effective in increasing tolerance to 10, 20 or 30 mM C8 at neutral

pH respectively (unpublished data). Glutamate supplementation was

also not effective at mitigating the acidification effect (Figure 3).

Note that the acidification effect presented in Figure 3 is more

severe than that shown in Figure 2; this is due to the fact that cells

queried in Figure 2 were characterized immediately after C8

addition while cells queried in Figure 3 were incubated in the

presence of C8 for 3 hours, providing the opportunity to use the

AR2 system. Note that a pH of 5.5 is the limit of detection of the

GFP method and therefore the intracellular pH may actually be

less than 5.5. We also attempted to utilize acid resistance system 3

(AR3), which relies on arginine as a proton sink. However,

supplemental arginine was also ineffective in combating growth

inhibition or acidification (Figure 2).

The glutamate-dependent acid resistance system is
impaired during carboxylic acid challenge

The lack of protection conferred by the arginine- and

glutamate-dependent acid resistance systems is surprising, espe-

cially considering the fact that the expression of the genes

encoding the glutamate-dependent system is increased in our

dataset. According to the current understanding of the AR2

system, one glutamate molecule can be used as a sink for one

intracellular proton. The arginine-dependent system functions

similarly. However, neither of these amino acids was able to

provide protection in terms of growth or intracellular acidification

(Figure 3). To gain insight into this surprising result, we further

characterized the activity of the AR2 system.

The product of the proton-dependent glutamate decarboxyl-

ation by GadB, GABA, was measured as a reporter of the activity

of the AR2 system (Figure 4). GABA is typically released outside of

the cell in order to buffer the intracellular pH to physiological

levels (,7.4). This export occurs via the GadC antiport in concert

with glutamate import. Note that cells are also capable of

transforming GABA into succinate [54]. Therefore, both the

internal and external GABA abundance values are meaningful.

Internal abundance values reflect GadB activity, internal gluta-

mate availability and the relative abundance of excess protons.

External GABA abundance reflects functionality of the GadC

antiporter and external glutamate availability.

We observed that in the control condition, the amounts of

intracellular and extracellular GABA are relatively equal. While

previous studies have measured GABA abundance in Listeria [55],

Corynebacterium [56], Lactobacillus [34] and E. coli [57], to the best of

our knowledge, ours are the first reported measurements for E. coli

that document steady-state log-phase intracellular and extracellu-

lar GABA concentrations.

When supplemental glutamate is added to the control condition,

secretion of GABA is increased, though the total amount of GABA

remains unchanged relative to the unsupplemented control. This

lack of change in the total GABA amount is consistent with the

lack of excess protons that need to be removed from the cell

interior.

Figure 4. Supplementing glutamate increases GABA export; however, addition of C8 reduces GABA accumulation and export. GABA
measurements of MG1655 during log phase growth in MOPS with 2% dextrose at 37uC, 150 rpm. All concentrations are 10 mM. GABA: c-amino
butyric acid.
doi:10.1371/journal.pone.0089580.g004
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We have already described the fact that addition of 10 mM C8

to the media while maintaining a neutral media pH both impedes

growth [5] and severely acidifies the cell interior, with or without

provision of 10 mM supplemental glutamate (Figure 3). For the

cells challenged with C8 in the absence of glutamate, there was a

decrease in intracellular, extracellular and total GABA. For the

cells provided with supplemental glutamate during C8 challenge,

there was also a decrease in all types of GABA relative to the

unsupplemented control. This lack of perturbation to the GABA

pools is surprising, given the known excess of intracellular protons

in the +C8 condition. Under appropriate functioning, the GadB/

GadC system should be producing and exporting GABA as a

proton sink. However, this system is apparently not functioning

during carboxylic acid challenge.

This lack of function could possibly be attributed to another

well-accepted mechanism of carboxylic acid toxicity: membrane

damage. Both GadB and GadC have some degree of membrane-

associated function [53]. The damage caused to the cell

membrane by carboxylic acids can result in impaired function of

this system, even when the enzymes and the system precursors,

glutamate and excess protons, are abundant. Whereas these two

mechanisms were previously thought to be distinct modes of

inhibition, to the best of our knowledge, we are the first to link the

membrane damage and acidification effect during organic acid

challenge. This again highlights the differences in mitigating

tolerance to carboxylic acids and strong acids.

Intracellular acidification is less severe during carboxylic
acid production

Many of the studies of carboxylic acid tolerance are motivated

by a desire to produce carboxylic acids at a high titer [9]. Note

that some studies are instead motivated by the use of carboxylic

acids as food preservatives [58]. The data described above

quantifies the intracellular acidification of E. coli during exogenous

challenge with octanoic acid. However, this response to exogenous

challenge does not necessarily correlate to the physiological effects

of carboxylic acid production. Therefore, we quantified the

intracellular pH during production of carboxylic acids, using a

strain that produces a mixture of C14:0 and C16:0 to a titer of

roughly 4 mM in minimal media (Figure 5) [21]. Note that this is

the same strain for which we observed decreased membrane

integrity as product titers increased [5].

While intracellular pH values were observed at or below our

reliable detection limit of 5.5 during long-term challenge with

octanoic acid (Figure 3), intracellular pH values during carboxylic

acid production were above 6.5 (Figure 5). E. coli K-12 is generally

able to maintain an intracellular pH of 7.660.2 when grown in

media with a pH between 6.0 and 7.5, as controlled by the

addition of ionic buffering agents [59]. Outside of this range,

growth is still observed at pH values between 4.5 and 9.0 [59],

though growth is inhibited if intracellular pH falls below 7.1 [52].

It has been noted that E. coli does not grow if the intracellular pH

falls below 6.0 [52]. It is also worth noting that similar intracellular

pH values were observed in our control strain, in which

transcription of the thioesterase responsible for cleaving the

elongating fatty acids was not induced.

This data suggests that unlike carboxylic acid challenge,

carboxylic acid production does not result in intracellular

acidification. However, the difference in concentration of carbox-

ylic acids may be the main factor responsible for this difference.

Our exogenous challenge studies were performed with 10 or

20 mM C8, but the carboxylic acid production strain does not

exceed titers of 5 mM. The lack of intracellular acidification

during carboxylic acid production could also be due to metabolic

effects, as discussed below. To the best of our knowledge, this is the

first quantification of intracellular pH during organic acid

production.

Cyclopropane fatty acids as a protectant to low pH
As described above, membrane damage has been previously

cited and quantified as a mechanism of biocatalyst inhibition by

carboxylic acids [5,6]. Genes and regulators related to membrane

damage were perturbed in our transcriptome data. We have also

proposed that membrane damage is the reason for poor

functioning of the glutamate-dependent acid resistance system.

Previous engineering efforts for increasing carboxylic acid

Figure 5. Production of carboxylic acids in strain ML103+pXZ18Z+pZS-GFP does not significantly change the intracellular pH. Shake
flasks of E. coli producing predominately C14:0 and C16:0 carboxylic acids in M9 media with 1.5% dextrose at 30uC. IPTG induces the pXZ18Z plasmid
carrying a thioesterase and a b-hydroxyacyl-ACP dehydratase. The intracellular pH values are the average of four biological replicates and four
technical replicates. The error bars indicate the standard deviation.
doi:10.1371/journal.pone.0089580.g005
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Figure 6. cfa mutants with altered the membrane lipid profile, S:U ratio and the average lipid length. a: Membrane lipid profile of
MG1655 and strains with altered cfa expression. Strains were incubated with 0–30 mM C8, pH = 7.0. Inset: specific growth rate in the log phase of E.
coli with varying cfa expression. C16:0- palmitic acid, C16:1- palmitoleic acid, C17cyc- cyclopropane C17:0, C18:1- vaccenic acid, C18:0- stearic acid,
C19cyc- cyclopropane C19:0. The complete lipid profiles are shown in Figure S2 of the Supporting Information. Membrane properties are calculated
from a to obtain: b: saturated:unsaturated lipid ratio and c: average lipid length.
doi:10.1371/journal.pone.0089580.g006
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tolerance in E. coli have focused on increasing the relative content

of saturated lipids in the cell membrane [60]. These efforts were

successful in increasing tolerance to carboxylic acids, but not

increasing carboxylic acid production.

Given that increased membrane permeability (leakage) is a likely

mechanism of carboxylic acid toxicity, it is appealing to implement

genetic modifications that increase membrane integrity. Cyclo-

propane fatty acids are known to have increased bulk in the cell

membrane relative to saturated fatty acids [61]. Additionally,

cyclopropane fatty acids have been well-documented in the role in

conferring resistance to acidic environments [62]. Considering the

fact that E. coli inhibition by carboxylic acids is associated with

both membrane damage and induction of the acid response, we

proposed that increasing the abundance of these cyclopropane

fatty acids in the cell membrane could serve as a method of

increasing carboxylic acid tolerance.

The role of cyclopropane fatty acids in carboxylic acid tolerance

was investigated using mutants either completely deficient in

cyclopropane fatty acid production (Dcfa) or engineered for

increased expression of the Cfa enzyme (cfa++). Note that Cfa is

responsible for the S-adenosyl-L-methionine (SAM)-dependent

methylation of unsaturated membrane lipids [63]. No cyclopro-

pane fatty acids were observed in our Dcfa mutant (Figure 6a).

Strains with increased cfa expression contained more than

32 mol% cyclopropane fatty acids while less than 11 mol% were

observed in the wildtype strain in the control condition (Figure 6a).

The complete lipid profiles are shown in Figure S2.

Despite this substantial change in cyclopropane fatty acid

content in the cell membrane, there was not an observed increase

in C8 tolerance (Figure 6a inset) and no change in leakage or

fluidity (unpublished data). In fact, strains with the highest

cyclopropane fatty acid content actually showed significantly

(p,0.05) increased sensitivity to C8 (Figure 6a inset).

Despite the lack of impact on carboxylic acid tolerance, the data

obtained in these experiments provides interesting trends in

control of membrane composition. We observed previously that

when challenged with C8, E. coli undergoes a dose-dependent,

statistically significant decrease in the molar ratio of saturated (i.e,.

C16:0) and unsaturated (i.e. C16:1 and C17cyc) membrane lipids

(S:U ratio) [5]. Cells deficient in cyclopropane fatty acid

production have a saturated:unsaturated ratio in the control

condition that is significantly lower than the wildtype strain

(Figure 6b). However, as the C8 concentration increases, the S:U

ratio in the Dcfa strain approaches the S:U ratio observed in the

wildtype strain. Contrastingly, cells with increased cyclopropane

fatty acid content (cfa++) show a similar S:U ratio as the wildtype

strain in the control condition, but when C8 is added at increasing

concentration, the observed S:U ratio is increased more than 2-

fold relative to the wildtype (Figure 6b). Similar patterns were

observed during growth sensitivity measurements. As the C8

concentration increases, the Dcfa strain shows growth rates

increasingly similar to the wildtype strain, while the cfa++ strain

diverges from the wildtype (Figure 6a inset).

Another metric for assessing membrane composition is average

lipid length. We previously reported that during growth in the

presence of C8, the average lipid length increased in a significant,

dose-dependent manner [5]. Cells with increased expression of cfa

are able to maintain the same average lipid length as the wildtype

in the control condition, but in the presence of C8 the lipid length

decreases (Figure 6c). This decrease in average lipid length

represents a shift from lipids with an 18-carbon chain (C18:0,

C18:1, C19cyc) to lipids with a 16-carbon chain (C16:0, C16:1

and C17cyc). Contrastingly, the Dcfa strain followed the wildtype

trend by significantly increasing the average lipid length. This was

accomplished by decreasing 16:1 and increasing C18:1 (Figure 6a).

Thus, separation of cfa expression from the wildtype control

circuits impacts not only the saturated:unsaturated fatty acid ratio,

but also the average lipid length. This highlights the potential

importance of Cfa and cyclopropane fatty acids in maintaining

appropriate membrane properties.

Interaction of Lrp and octanoic acid does not contribute
to C8-mediated growth inhibition

It has been previously noted that small carboxylic acids can

interact with the global regulator Lrp in a manner than mimics its

standard cofactor, leucine [42]. Thus, it is possible that the

observed activation of Lrp in our dataset was caused by interaction

of Lrp and octanoic acid. Lrp is a global regulator, primarily of

amino acid biosynthesis [64] and its activation by a false signal,

Figure 7. lrp mutations do not improve E. coli growth rate upon addition of octanoic acid. The specific growth rate of strains with altered lrp
expression during the log phase in MOPS with 2% dextrose at 37uC, 150 rpm.
doi:10.1371/journal.pone.0089580.g007

Transcriptome Analysis of Fatty Acid Challenge

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e89580



such as octanoate, could result in inappropriate repression of

biosynthesis-associated genes, resulting in growth inhibition.

We tested the octanoic acid tolerance of both an lrp deletion

mutant and a strain engineered for increased expression of lrp.

However, consistent with previous reports [64], the deletion

mutant grew poorly in our minimal media growth condition and

data regarding carboxylic acid sensitivity was ambiguous (Figure 7).

Specifically, the overall growth rate was decreased relative to the

wildtype at all C8 concentrations tested, but the relative sensitivity

to C8 did not appear to be altered. Similar trends were observed

for the strain engineered for increased lrp expression (Figure 7).

We proposed that this difficulty in establishing the role of the

potential C8-Lrp interaction in C8 tolerance is due to the global

regulatory role of Lrp. If C8 is truly serving as a false signal for

controlling Lrp activity, this is most likely to impact growth in the

form of inappropriate repression of amino acid biosynthesis.

Therefore, we tested each of the individual amino acids, as well as

a mixture of biosynthetic building blocks in the form of casamino

acids, for their ability to confer tolerance to C8. If one or more of

these amino acids is limiting during growth in the presence of C8,

supplementation with these amino acids should increase C8

tolerance. However, none of the individual amino acid supple-

ments or supplemental casamino acids enabled significantly

increased growth in the presence of 10 mM C8 relative to the

unsupplemented condition (unpublished data). It should also be noted

that none of these supplements significantly inhibited growth in

the non-C8 condition.

Figure 8. Simulations of the effect of the electrochemical gradients on the proton motive force. The appropriate range for E. coli cells is
2140 to 2180 mV. pH values are measurements from Figure 2 at 20 mM. Assumption 1: An average of 2160 mV is used for the normal PMF. The
target PMF is within the range of 2140 to 2180 mV. Assumption 2: Shock conditions are the instantaneous outcome of the PMF after an extreme
change in the environment. Assumption 3: The cell can initiate a response that gives times to adjust the PMF to the target range. Assumption 4:
Rapid addition of a strong mineral acid (e.g., HCl) adds an equal amount of anions and protons, which does not change the membrane potential.
Assumption 5: C8 is at a sufficiently high concentration that it rapidly integrates into the cell membrane and releases its proton inside the cell, which
is not reversible. A negative (2) PMF indicates protons diffusing into the cell, whereas a positive (+) PMF indicates protons diffusing out of the cell. A
negative (2)Dy indicates an overall negative ion gradient due to anions, whereas a positive (+)Dy indicates an overall positive ion gradient due to
cations. The mol ions is the molar ratio from the normal condition. pHi- intracellular pH; pHe- extracellular pH; FDpH - DpH associated electrochemical
force; FDy- membrane potential associated electrochemical force; PMF- proton motive force; A2 (red) C8 anion; A2 (green) another anion; C+ any
cation.
doi:10.1371/journal.pone.0089580.g008
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Therefore, even if there is a significant interaction between

octanoic acid and Lrp, this interaction does not appear to be

contributing to C8-mediated growth inhibition in our condition.

Octanoic acid causes inversion of the pH gradient
leading to anion accumulation in order to maintain the
proton motive force

While it does not appear at this point that intracellular

acidification is a significant challenge for carboxylic acid

production, that perspective may change as we attain higher

carboxylic acid titers. Given the qualitative differences observed

between challenge with strong inorganic acids and carboxylic

acids, we have applied a quantitative modeling approach to

identifying additional differences between these two types of acids.

The proton motive force (PMF, typically expressed in mV) is a

function of both the difference in intracellular and extracellular

pH values (DpH) and differences in internal and external

electrochemical charge (membrane potential, Dy) as shown above

in equation (1). Figure 8 shows our simulations of the pH

gradients, membrane potential, and the resultant PMF under

different environmental conditions. When cells are shocked with

an inorganic acid, such as HCl, the PMF becomes larger than

normal and protons initially overwhelm the cell interior. But after

a period of adaptation, accumulation of cations can enable

reversion of the PMF back to the physiological range, even though

the intracellular pH in the adapted state is decreased relative to the

original intracellular pH. Such cation accumulation, in the form of

potassium, has been previously described for E. coli K-12 [17].

This cation accumulation will lead to a change in the transmem-

brane potential (Dy) that contributes to stabilization of the PMF.

This stabilization of the PMF creates hyperpolarization of the

membrane, as evidenced by very large DpH and Dy values. This

hyperpolarization can be mediated by the release of chloride

anions through voltage-gated channels as discussed in the

literature [35,57,65,66]. This type of change in Dy from negative

to positive during challenge with inorganic acids has been

previously described [65].

Given the ability of our model to accurately describe the E. coli

response to inorganic acids, here we have applied this model to

carboxylic acid challenge. When cells are shocked with carboxylic

acids while maintaining a neutral extracellular pH, the DpH value

is actually inverted. This inversion of DpH results in a transient

inversion in PMF. In order to return to the viable PMF range and

appropriate directionality, cells must accumulate intracellular

anions, as opposed to the cations accumulated after challenge

with inorganic acids. Our model predicts that this anion

accumulation will increase the intracellular anion pool by 3-fold.

This anion accumulation in response to carboxylic acid challenge,

as opposed to the cation accumulation seen with inorganic acids, is

consistent with literature reports. For example, when E. coli

O157:H7 was treated with sufficient external acetate to drop the

intracellular pH to below 6.5 while maintaining a constant media

pH of 5.9, the amount of intracellular acetate increased 3-fold

while intracellular potassium levels remained relatively constant

[17].

Thus, physiological changes that enable maintenance of the

appropriate PMF differ between carboxylic acids and inorganic

acids. Specifically, our model predicts that challenge with

carboxylic acids will result in a transient inversion of the proton

motive force. This prediction is a key component of our analysis,

and while it is supported by literature data [17], the existence of

this transient inversion is not widely known. Note that E. coli K-12

normally maintains a PMF in the range of 2140 to 2180 mV

[35].

Discussion

While transcriptome analysis is informative about the cellular

response network (Figure 1 and Table 2) during challenge with an

inhibitor such as octanoic acid, here we have supported these

findings with other data that quantitatively describe the physio-

logical state of the cell. We have confirmed that octanoic acid

acidifies the cytosol of the E. coli cell (Figure 2). Our analysis

predicts that this acidification inverts the proton gradient and

substantially changes the PMF (Figure 8). Such a change alters the

physiological state of the cell in a way that is fundamentally

different from inorganic acids such as HCl. Whereas adaptation to

HCl includes accumulation of intracellular cations, organic acid

stress adaptation includes accumulation of anions in order to

revert the PMF to the appropriate range and directionality. Our

simulations could be confirmed in future experiments by

measuring the intracellular pH, extracellular pH, the transmem-

brane potential, and intracellular ion concentrations.

We have previously described the negative effects of octanoic

acid on the cellular membrane of E. coli [5]. Here we have further

explored the effect of octanoic acid on membrane proteins such as

those associated with acid resistance (Figure 4). While supple-

menting E. coli with glutamate aids in export of the decarboxyl-

ation product GABA, it does not support the glutamate-dependent

acid resistance system under octanoic acid stress (Figure 3 and

Figure 4). We proposed that this system is defective during

octanoic acid challenge due to membrane damage.

It is known that cyclopropane fatty acids aid in tolerance of acid

stress, presumably by slowing the transport of protons into the cell

[62,63]. Here we have noted that Cfa is involved with complex

control of membrane properties, including the saturated:unsatu-

rated lipid ratio and the average lipid length. The effect of Cfa on

membrane properties is reflected by the specific growth rate. Our

efforts to engineer the membrane in order to confer carboxylic

acid tolerance suggests that precise control of the membrane is

required for sufficient growth, similar to the conclusions of other

researchers [60].

It was reported previously that both exogenous addition and

intracellular production of carboxylic acids causes disruption of

the membrane [5]. Here we report the differences in how

carboxylic acids affect the intracellular pH. While exogenous

addition of carboxylic acids causes a significant drop in the

intracellular pH, intracellular production of carboxylic acids does

not. However, the production strains achieve a much lower titer

than the concentrations used in our exogenous challenge studies. It

may be that the acidification effect may not become significant in

carboxylic acid production strains until higher product titers are

achieved. Another potentially-important aspect of carboxylic acid

production relates to the distribution of these acids between the

protonated and anionic forms within the cell interior. The

protonated carboxylic acids can more easily diffuse through the

cell membrane than the anionic form [67].

A buildup of intracellular anionic carboxylic acids will shift the

equilibrium to the protonated form. The neutral lipophilic fatty

acids will then diffuse through the membrane, where it can

disassociate, assuming that the media pH is greater than the pKa

of the fatty acid.

Conclusions

These results highlight the ability of transcriptome analysis to

guide quantitative experiments in establishing the mechanisms of

toxicity of various inhibitory compounds. These mechanisms of

toxicity can differ depending on whether the inhibitor is provided

exogenously or produced by the cell. Thus, testing of proposed
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hypotheses in engineered strains is helpful in prioritizing

engineering strategies. At this point, it still appears that membrane

damage is the most pressing issue limiting carboxylic acid

production. Strategies that enable increased membrane integrity

may enable increased carboxylic acid production titers, so that

intracellular acidification becomes problematic.

Supporting Information

Figure S1 Transcriptome data of significantly perturbed genes

during E. coli challenged with octanoic acid. The criteria for

significantly perturbed genes: q,0.05 with a log2 ratio ,21.0 or

.1.0. Positive values are an increase in abundance and negative

values are a decrease in abundance of transcripts. MG1655 was

challenged with 10 mM octanoic acid in MOPS with 2% dextrose

at 37uC, 150 rpm.

(TIF)

Figure S2 The complete lipid profiles of E. coli strains with

engineered cyclopropane fatty acid content. The complete

membrane lipid profile of MG1655 and strains with altered cfa

expression. Strains were incubated with 0–30 mM C8, pH = 7.0.

C12:0- lauric acid, C14:0- myristic acid, C16:0- palmitic acid,

C16:1- palmitoleic acid, C17cyc- cyclopropane C17:0, C18:1-

vaccenic acid, C18:0- stearic acid, C19cyc- cyclopropane C19:0.

(TIF)

Table S1 Over-represented Gene Ontology terms.Over-repre-

sented GO terms

(DOCX)
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