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Abstract

Farm management decisions under uncertainty are important not only for farmers
trying to maximize their net income but also for policymakers responsible for incentives
and regulations to achieve environmental goals. We focus on corn production as a sig-
nificant contributor to the US Midwest economy. Nitrogen is one of the key nutrients
needed to increase production efficiency, but its leaching and loss as nitrate through
subsurface flow and agricultural drainage systems poses a threat to water quality. We
build a novel two-stage stochastic mixed-integer program to find the annual farm man-
agement decisions that maximize the expected farm profit. A decomposition-based
solution strategy is suggested to reduce the computational complexity resulting from
the predominance of binary variables and complicated constraints. Case study results
indicate that farmers may compensate for the additional risks associated with nutrient
reduction strategies by increasing the planned nitrogen application rate. Significant
financial incentives would be required for farmers to achieve substantial reductions in
nitrate loss by fertilizer management alone. The complicated interactions between fertil-
izer management and crop insurance decisions observed in the numerical study suggest
that crop insurance programs can affect water quality by influencing the adoption of
environmentally beneficial practices.

Keywords: farm management optimization; stochastic programming; nitrate loss; crop in-
surance; fertilizer application.

1. Introduction

Farm management is a complex process that is exposed to a wide range of risks and uncer-

tainties. Each year, farmers make several management decisions with the goal to maximize

net income, but their profits are also subject to weather and market conditions beyond their
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control. Planting time and fertilizer management are critical decisions that influence the

farm yield. However, uncertain growing season precipitation and temperature can also sig-

nificantly affect the yield, so that farmers cannot know the yield outcome of their decisions

with certainty in advance. Furthermore, both planting and fertilizer application require

suitable field moisture conditions, the lack of which may prevent execution of management

decisions as planned. To mitigate economic risk, farmers may purchase crop insurance with

benefits that depend on the uncertain yield and price at harvest time, as well as the specific

terms of the plan purchased.

The interaction of farm management decisions and weather uncertainty also poses en-

vironmental risks. In the US Midwest, agriculture’s impact on water quality is a major

concern. Nitrogen (N) is one of the key nutrients needed in agricultural production. Ide-

ally, crops can be fed with enough nutrients at the right time to ensure healthy plant

growth. The soil naturally holds many nutrients, but if it lacks enough nutrients to match

the required plant uptake, the farm’s yield will suffer. Farmers commonly apply fertilizer to

the soil to compensate for its nutrient deficiencies. Because N is water-soluble, it is easily

washed away by water moving through agricultural drainage systems due to precipitation

or irrigation. Nitrate-N loss from farmland causes nutrient loads in waterways and depletes

the oxygen level in surface waters, a phenomenon known as hypoxia. Nitrate within the

Mississippi River basin moves downstream and creates the Gulf of Mexico dead zone, one of

the largest in the world at nearly 9,000 square miles (EPA, 2017). Although estimates differ,

several studies agree that Iowa contributes a considerable amount (20-40%) of the nutrients

in the Gulf compared to the eleven other states along the Mississippi River (Goolsby et al.,

2000; Jones et al., 2018; Turner and Rabalais, 2004). In a major statewide study updated

annually since 2012, Iowa State University et al. (2017) summarize ways to decrease N con-

centration in surface water and reveal that a 45% reduction in N loss statewide is required

to achieve environmental goals set by the Mississippi River/Gulf of Mexico Watershed Nu-

trient Task Force (2008). However, practices to reduce nutrient loss remain voluntary, with

effects are subject to the same weather uncertainty that affects profit.

Uncertainty is therefore not only a serious concern for farmers, but is also an important

consideration for policymakers and social planners with environmental concerns. In the

US, several agricultural conservation policies and state regulations concern nutrient man-
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agement. Those preventive measures aim to promote and incentivize nutrient reduction

practices to improve water quality. According to the most recent (2018) U.S. Farm Bill,

the budget allocated to the popular conservation programs will continue to increase grad-

ually until 2023 (McMinimy, 2019). Farmer concerns about uncertainty and the resulting

risk are also acknowledged in the legislation, as some of the income support direct payments

are converted to insurance subsidies.

Policy makers commonly measure the potential effectiveness of a conservation program

according to the types and amounts of payments required for farmers to adopt nutrient

reduction practices that they otherwise would not (Claassen et al., 2014). However, deter-

mining additionality (i.e., whether a subsidy causes adoption of a practice) is not a simple

task, as various risk perceptions and attitudes lead to different decisions under uncertainty.

Income risk is one of the primary reasons for farmers’ neglect of environmental practices

(Bosch and Pease, 2000; Minnesota Pollution Control Agency, 2014; Marra et al., 2003;

Greiner et al., 2009). In the agronomy literature, farmers’ behavior has even prompted

debate about farmer rationality (Arbuckle Jr et al., 2015; Howley et al., 2015). Farmers

who do not adopt nutrient reduction practices argue that incentives do not cover the ad-

ditional costs and effort required to follow those practices. Environmentalists commonly

cite experimental tests to validate additional economic benefits. Those experiments are

usually observed under specific weather and soil conditions and do not reflect how a small

change in any component would impact the outcome. Even the studies that explicitly aim

to investigate the uncertainties interpret the final results in terms of expected conditions

only. Regardless, those studies fall short of representing underlying risks from the farmer’s

perspective. To develop effective policies and promote nutrient reduction practices, so-

cial planners must first understand optimal farm management decisions under uncertainty.

Based on that understanding, it may be possible to judge the effectiveness of existing poli-

cies, such as whether the current incentive rates are enough to accomplish the social goals,

or how policies can be improved. Although farmers may not necessarily follow the man-

agement decisions found to be optimal in a model, optimization results can provide some

motivation for policies as well insights into farmer responses to those policies.

To explore the nitrate water pollution impacts of farm management under a profit

maximization goal, this study focuses on corn production in Iowa. The production of corn,
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also known as maize, in the US has trended upward since the 1930s (USDA and NASS,

2020). Improved farm management strategies and technological advances that have boosted

yield per acre (Shahhosseini et al., 2020) are the primary factors behind the long-term

growth to meet the increasing global demand. Today, corn enjoys the highest demand of

any grain product and represents more than 40% of all grain production worldwide (USDA,

2020). The US, as the world leader in corn production, meets more than 30% of the global

corn demand, while the state of Iowa is the biggest corn supplier in the US. Although

farmers have faced some struggles in recent years, agriculture is still a major contributor

to Iowa’s economy by accounting for around 20% of jobs.

We explore the uncertainty in corn production from a farmer’s viewpoint. We investi-

gate the major annual farm-level decisions, including planting time, fertilizer application

rate and timing, and crop insurance purchase, to maximize the expected farm profit. The

agricultural economics literature includes many investigations of the economic consequences

of individual management decisions and their interactions with some uncertain elements, as

described in Section 3.1. However, those studies are neither comprehensive nor concerned

with optimization. Of the numerous articles on farming decisions from the operations

research perspective (Moghaddam and DePuy, 2011; Capitanescu et al., 2017), none inves-

tigate the annual management decisions of a Midwest farmer growing a grain product under

real-world uncertainties. To fill this gap, we propose a novel two-stage stochastic program

for optimal annual farm management. The case study and numerical instances represent

the state of Iowa but the model can be parameterized for any state in the US Midwest.

Numerical solutions reveal useful information about a farmer’s management behavior under

uncertainty and provide valuable input to social planners concerned with environmental is-

sues. We consider five major questions: (i) What are the optimal annual farming decisions

under uncertainty? (ii) What financial incentives would be needed to achieve N reduction

targets by fertilizer management alone? (iii) What are the expected profit tradeoffs for

meeting various water quality goals through fertilizer management alone? (iv) What is the

combined effect of fertilizer management and crop insurance decisions on farm profitability

and water quality? (v) What types of information are needed to improve research on how

to achieve environmental goals via management practices?

Our numerical results suggest that current N reduction targets for Iowa cannot be
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achieved by focusing only on N management practices, as Iowa has naturally high organic

matter levels, which means that the potential for N losses is high even without any fertilizer

application. We demonstrate that crop rotation improves the farmer’s profit and reduces

the necessary incentive rates to improve water quality. We are aware of only one recent

study in the literature that considers insurance programs as a means to achieve environ-

mental goals (Thorburn et al., 2020). However, uncertainty is one of the biggest concerns

in agriculture, and insurance programs are the primary economic tools available to farmers

to mitigate the resulting risk. Therefore, this paper explicitly explores the interaction be-

tween N management and crop insurance. We demonstrate that fertilizer management and

insurance policy selection decisions are highly interrelated. Specifically, we observe that

crop insurance has a complementary role in reducing the N application rate, with positive

environmental impact. On the other hand, for very low N application rates, the availability

of crop insurance reduces the motivation to adopt environmentally beneficial N application

timing practices. The complicated and contradictory interactions display the need for more

extensive investigations of insurance programs and their impact on environmental practices.

Finally, our results indicate that N is a risk-reducing factor, in that the additional risk as-

sociated with a nutrient reduction practice may be mitigated by applying more fertilizer to

the soil. However, the existing agronomy data representing the farm yield and N loss gen-

erated through field trials are not adequate to inform policy-making. Agronomic research

currently emphasizes the investigation of individual elements (decisions, uncertainties, and

other known factors) as independent entities while overlooking more complex interactions.

A more extensive investigation into farmer decision-making under uncertainty requires more

comprehensive information about interactions among these elements. The rest of the pa-

per is organized as follows. In Section 2, we review the related studies in the literature.

Section 3 contains a detailed problem description and a two-stage stochastic programming

formulation. In Section 4, we specify the parameters used in the computational study and

in Section 5, we present the numerical results. Finally, concluding remarks are provided in

Section 6.
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2. Literature Review

Optimization models of agricultural management have been formulated frequently. Singh

(2012) provides a detailed survey. Those applications broadly include resource management,

cropping pattern optimization, groundwater and irrigation management, and increasing

production efficiency. Although some of them concern farm management, each study’s

content and methods vary widely due to the investigation of different crops, objectives,

and assumptions. To the best of our knowledge, the existing literature does not investigate

a US Midwest farmer’s annual management decisions for growing a grain product under

real-world uncertainties to the extent discussed in this paper. In this section, we describe

the existing literature most similar to this paper.

Bloemhof-Ruwaard and Hendrix (1996) is one of the first papers to investigate the rela-

tionship between land management and fertilizer application to maximize farming profits.

A bilinear model is formulated to make land management and fertilizer application deci-

sions considering manure application limits imposed by the government to reduce negative

environmental impacts. Li et al. (2017) build an integer program to investigate irrigation

water allocation and seed selection decisions to maximize annual farm profit. Liu et al.

(2008) optimize crop insurance decisions of a cotton and peanut farm in Florida under

weather uncertainty to minimize the expected loss using a CVaR constraint. The study

also includes crop allocation and binary planting decisions. Moghaddam and DePuy (2011)

explore the stochastic nature of farming yield due to weather uncertainty on a hay farm.

The study also includes environmental policies to improve water quality in the form of

chance constraints. Hyytiäinen et al. (2011) include nitrogen balance equations in the soil

in a stochastic dynamic program to compare split and spring fertilizer application under a

pollution tax. The available N amount in the soil and crops is introduced as a state variable,

while transition probabilities are obtained through simulation using weather data and fer-

tilizer related decisions as input. The study suggests that split application performs better

under the pollution tax while spring application is better without any taxation. Peña-Haro

et al. (2011) investigate fertilizer application and irrigation rate decisions to maximize the

agricultural profits without exceeding nitrate leaching standards. Functions for crop yield

and nitrate leached are imported from an agro-simulation tool. Most recently, Capitanescu

et al. (2017) investigate the crop allocation and rotation decisions over a multi-year plan-
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ning horizon to maximize the farm profit based on environmental constraints generated

according to the water-food-energy nexus.

In the agronomy literature, numerous studies look for optimal N application rates

(Rware et al., 2016; Sexton et al., 1996; Yong et al., 2018). However, those studies rely on

previous empirical tests to identify the best alternative among the limited number of exper-

iments and do not seek optimality in the mathematical programming sense. Researchers

commonly use popular crop simulation tools to estimate several outputs, including yield

and N loss, and couple those simulation models with genetic algorithms to select manage-

ment practices that increase profit and improve water quality simultaneously (Kaini et al.,

2012; Srivastava et al., 2002; Geng et al., 2019). In recent years researchers have applied

machine learning models to predict yield and N loss, acknowledging the limitation of ex-

perimental tests and simulation-based estimations (Chlingaryan et al., 2018; Puntel et al.,

2016; Shahhosseini et al., 2019; Archontoulis et al., 2020). However, those models have yet

to be integrated with agricultural decision making in optimization models.

3. Model Definition

In this section, we formulate a stochastic mixed-integer mathematical program for the

farmer’s annual decision problem. Full nomenclature of the model is presented in Table 1.

3.1 Major Farming Decisions

We first introduce the major farming decisions investigated in this study. We discuss the

importance of each decision and present a decision timeline illustrating the annual corn

production calendar involving those decisions. The decisions involve fertilizer application

rate, fertilizer timing, planting time, and finally, insurance plan selection.

3.1.1 Fertilizer Decisions

Nutrients are essential for agricultural production. In this study, we specifically focus on

N and its underground movement as nitrate-N. Because crops cannot take in N directly

from the air, having enough N in the soil is a necessity for healthy crop growth. In a soil

network, some portion of N supply occurs through natural processes (mineralization and
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Table 1: Nomenclature for the model

Sets
I Set of nitrate timing alternatives {1(fall), 2(spring), 3(split), 4(sidedress)} – indexed by i
J Set of planting time windows {1(optimal), 2(delayed)} – indexed by j
S Set of all future scenarios ({1, . . . , S}) – indexed by s
S ′ Scenario group where soil conditions are not suitable for fieldwork in early spring

which will delay planting time with spring and split application – indexed by s
L Number of piecewise functions generated based on yield and N Rate relation

illustrated in Figure 3 ({1, . . . , L}) – indexed by l
V Set of insurance coverage alternatives ({1, . . . , V }) – indexed by v
B Set of unfavorable outcomes of τ1 that define S ′

Decision Variables
xi Binary decision for nitrate timing alternative i

Equal to 1 if timing alternative i is selected, otherwise equal to 0
zsj Binary decision for a specific planting time j under scenario s

Equal to 1 if planting window i is selected, otherwise equal to 0
t N application rate (lbs/acre)
u1 Impact of N application rate to yield (percent of maximum yield)
us
2 Impact of N application rate to yield for split applications (percent of maximum yield)

αs
ij Binary decision representing combination of fertilizer and planting timing decisions

Equal to 1 if both xi and zsj are also equal to 1 at the same time
yv1 and yv2 Binary variable representing coverage level selection for insurance plans

Equal to 1 if a coverage level v is chosen, otherwise equal to 0
σs
1 and σs

2 Indemnity paid by insurance protection plans
ws

ij A continuous variable introduced for linearization purposes
Equal to u1 if αs

ij is 1, otherwise equal to 0
qs1, q

s
2, q

s
3, q

s
4 Disjunctive variables used for big-M reformulation while formulating insurance options

π Expected farm profit

Parameters
g Cost of N application ($/lbs)
ps Probability of scenario s
al, bl Constants of piecewise linear function l generated according with respect to Figure 3
cv1 Insurance premium cost for yield protection plan for coverage option v ($/acre)
cv2 Insurance premium cost for revenue protection plan for coverage option v ($/acre)
r0 Projected corn price ($/bu)
H Maximum achievable yield of the farm (bu/acre)
µ Historical average yield of the farm (bu/acre)
fv Coverage rate for coverage option v
M A sufficiently large number
βs
ij Fraction of maximum yield realized on scenario s based on combinations of decisions i, j (%)

ks
i Portion of N being able to applied to soil during growing season in scenario s (%)

Is Scenario dependent binary parameter
Equal to 1 if τ1 ∈ B in scenario s, otherwise equal to 0

Random Variables
ω Uncertain precipitation level during crop growing season (inches)
γ Uncertain temperature level during crop growing season (◦F)
rs Uncertain crop price at the harvest time ($/bu)
τ1 Days suitable for fieldwork during early spring for N application
τ2 Days suitable for fieldwork during summer sidedressing

8



nitrification of soil organic matter) as nitrate-N. The remaining N supply can be provided

through alternative sources, including synthetic fertilizers and manures, in which all forms

of N will be transformed into nitrate-N as a result of nitrification (Randall and Mulla, 2001).

Because nitrate-N easily moves with water, it is susceptible to leaching. The resulting loss

causes N loads in waterways and negatively impacts the water quality by contributing

to eutrophication (Iowa State University et al., 2017). Nitrate-N loss through drainage

systems is highly dependent on precipitation rates and available nitrate-N amount in the

soil (Lawlor et al., 2008).

Farmers apply fertilizer to the soil to replenish the missing N and prevent a potential

yield loss. Each year, farmers face two critical fertilizer application decisions that will

impact the harvested crop yield and also have environmental consequences: (i) rate; i.e.,

the amount applied per unit of land area, and (ii) timing. The amount of N taken up by

crops during the growing season varies according to the growth stage of the plant. Ideally,

one needs to match the required N uptake at each stage by ensuring the N availability in

the soil during the uptake timings to achieve maximum yield potential. Corn growth stages

are defined as vegetative (V) stages and reproductive stages. The V stages are denoted by

Vn, where n represents the number of visible leaf collars.

Most farmers traditionally prefer applying N to the soil either during the fall or in the

spring before planting. Cao et al. (2018) surveys historical fertilizer application timing in

US. The most recent data on N application timing for corn in US were collected in 2010.

Of the Iowa respondents to this survey, 31% applied N in the fall, while more than 50%

favored spring pre-plant application. Sidedressing strategies generally were not preferred

by the farmers. Similarly, according to Bierman et al. (2012), the occurrence of fall, spring

and sidedressing N application in Minnesota was 32.5%, 58.8%, and 8.7%, respectively, in

2009. The main concern with fall application is the unavailability of N in the soil in the

spring and throughout the growing season. Some N loss is expected during the winter,

with rate of this N loss depending on the winter precipitation. Spring application lowers

the expected N loss because the duration of time between N application and uptake by the

plant is significantly shorter. However, spring application poses another risk. If the soil is

not suitable for fieldwork in the early spring pre-plant time due to high soil moisture, then it

will not be possible to apply the fertilizer without avoiding planting delay. Such delay could
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reduce the maximum yield potential. A third alternative, sidedressing, became popular in

the last couple of decades as a result of nutrient reduction efforts. This alternative involves

the application of some portion of N during the pre-planting window and applying the

rest by sidedressing after planting during the summer, commonly within the V6-V8 growth

stages of corn, with the idea of feeding N at the right time to reduce nitrogen loss to the

environment and achieve a higher yield outcome (Nleya et al., 2016). The V6-V8 growth

stages are expected to occur around June, depending on planting time, and each stage lasts

two to three weeks. In this study, we investigate two sidedressing strategies: (i) split (40%

pre-plant and 60% summer sidedress), and (ii) full summer sidedress. Sidedressing risks,

however, may be even higher than those of spring application. First, a split application

still could cause a planting delay due to the spring feed of the first portion of N. Second,

if the soil is not suitable for fieldwork during the summer feed of the second portion of N

by sidedress, there will be no choice but to apply less fertilizer to the soil than what was

intended. Therefore, nitrate management is a complex process in which fertilizer rate and

application timing decisions not only play a crucial role in the farmers’ profitability but

also have a notable impact on nitrate loss.

In the remainder of this paper, we denote the fertilizer application rate decision by a

continuous decision variable, t, and fertilizer timing decisions by binary variables xi where

i ∈ I = {1(fall), 2(spring), 3(split), 4(full summer sidedress)}.

3.1.2 Planting Time

Planting can start when the soil is warm enough, not too wet, and not too dry. Those

conditions are necessary for planting and other field operations, but there are also other

considerations. The main goal when selecting planting time is to ensure that the time

between planting and the end of the growing season is long enough so that crops can mature

enough before harvesting (Elmore, 2013). For example, in colder climates, corn is expected

to mature more slowly and harvest must occur earlier. Previous research investigates the

impact of planting time on yield at different locations (Baum et al., 2020; Abendroth et al.,

2017). For most locations, optimal planting windows (the period between first and last date

to plant to obtain maximum yield) have been identified. In Iowa they can range between

early April and mid-May, depending on the region. If farmers cannot plant during their
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specific location’s planting window due to some delay, the crop will not reach its maximum

yield potential. Fertilizer applications other than sidedressing can cause such delays in

planting because they require similar soil conditions as planting and other field operations,

and must be completed before planting operations start.

To represent planting time, we denote decisions by binary variables, zj , where j = 1 rep-

resents the optimal planting window recommended by agronomists while j = 2 corresponds

to a planting delay.

3.1.3 Crop Insurance Plan Selection

Uncertainties, including weather and thereby yield, market prices, and policies, significantly

affect the farm income. Crop insurance is popular among farmers because it potentially

reduces their risk exposure (Antón et al., 2013; Moschini and Hennessy, 2001). Farmers

can purchase the insurance policies subsidized by the federal government for protection

against a potential crop loss due to unexpected weather conditions and/or revenue loss due

to unexpected price changes. Producers can pay the premium for their selected policy to

receive an indemnity payment for covered loss.

We consider two common crop insurance plans, yield protection and revenue protection,

and denote those choices by binary variables, yv1 and yv2, respectively, where v ∈ V indicates

the selected coverage level. Detailed explanation about the insurance plans is provided in

Section 3.4.1.

3.1.4 Timeline

Figure 1 shows the timeline of the farmer’s decisions investigated in this study. Commonly,

after the harvesting in the fall, a farmer must finalize fertilizer rate and application timing

decisions without full information on random weather events and crop harvest prices. It is

logical to expect that, if the farmer prefers a fall application, they can revisit the fertilizer

decisions made during fall and modify them in springtime based on observed fall and winter

precipitation. That is, the farmer can opt to apply fertilizer again in spring and/or in

summer considering the N loss between fall and spring. To the best of our knowledge,

however, there are no empirical studies in the literature that quantify the unique impact of
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fall precipitation on either N loss or yield. Therefore, in this study, we ignore the potential

alteration of fertilizer decisions made in fall because of this lack of data.

Just before spring begins, March 15 is the deadline for all insurance plan purchases for

corn in the US. The length of optimal planting windows is expected to be no less than

three weeks (Elmore, 2012). This length can be longer depending on the unique climate

and weather conditions. If fall fertilizer application is selected (x1 = 1), planting operations

can start as soon as the soil becomes suitable for fieldwork. As with most field operations,

the length of planting time depends on several factors such as total acres to be covered,

implement width and speed, or daily working hours (Edwards, 2015). However, planting

time traditionally is not considered as a time-consuming process that could force a planting

delay on its own (Irwin and Hubbs, 2018). Therefore, because in this model we only

consider planting and fertilizing farming operations, we assume fall fertilizer application

will not cause any potential delay in planting.

Because spring and split applications occur just before planting, those management

decisions can delay planting depending on weather conditions (Scharf et al., 2002). For this

reason, the soil’s suitability for fieldwork in the first two weeks of April is important. We

denote the total number of days suitable for fieldwork in early spring by τ1 and represent

its set of values unfavorable for timely planting by B.

Since farmers cannot know the weather conditions before making the fertilizer timing

decisions, they take a risk of planting delay and resulting loss of yield by choosing spring or

split applications in exchange for a potentially lower N loss, which can help to increase the

yield and reduce the N cost (Randall et al., 2008; Gramig et al., 2017; Sawyer et al., 2016).

Likewise, if split application is chosen, the remaining fertilizer application is planned to

be completed in summer. This implies a second time window in which the soil is required

to be dry enough for fieldwork. Unlike with early spring applications, if summer fertilizer

sidedressing cannot be completed during the V6-V8 stages window, the uncompleted portion

of the fertilizer will be missing (Gramig et al., 2017). Finally, uncertain precipitation and

temperature during the growing season, from planting time in early spring until harvesting

time in fall, as well as crop price at harvest, affect the farmer’s harvest time revenue.
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Figure 1: Farmer’s decision model timeline

3.2 Available Information and Assumptions

Crop yield depends on several factors, including farm management decisions, weather con-

ditions, and soil properties. Agronomists investigate their impact on crop yield through

exhaustive analysis and empirical tests over various sites and conditions (Iowa State Uni-

versity, 2020; Randall and Mulla, 2001; Randall et al., 2008; Sawyer et al., 2016). However,

it is highly challenging to observe all those conditions simultaneously and investigate com-

plicated interactions. Thus, the literature largely consists of empirical studies investigating

the impact of those factors disjointly by analyzing only one or two selected factors at a time.

Accordingly, despite the interactions in the effects of farmer decisions and weather uncer-

tainties on yield, we collect our data from distinct studies and treat their impact on yield

as mutually independent. An alternative approach would be to estimate yield and N loss

simultaneously through either numerical crop simulation tools (Archontoulis et al., 2020;

Stockle et al., 1994) or machine learning approaches (Chlingaryan et al., 2018; Shahhos-

seini et al., 2019). A comprehensive explanation of the information used and assumptions

considered is provided in the supplementary Sections S1.1-S1.3.

3.3 Deterministic Model

If the weather during the growing season and crop price at harvest time were known, a

farmer could optimize management decisions according to the model below. Because there
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is no risk exposure, insurance is unnecessary.

We denote the crop yield by A(x, z, t), where x and z are binary vectors while t is a

continuous variable. Denoting a maximum achievable crop yield of a single farm by H, the

yield can be calculated as follows:

A(x, z, t) = H
∑
i∈I

∑
j∈J

βij(ω, γ)αiju(t) (1)

xi + zj ≥ 2αij ∀i ∈ I, j ∈ J (2)

where u(t) is the percent of maximum yield given fertilizer application rate t (Section ??),

and αij is another binary variable that equals 1 if and only if xi = zj = 1. Note that

Equation (1) is a bilinear expression where αij is binary and t is continuous. Because the

objective is to maximize the yield and revenue, we can linearize this expression by replacing

αiju(t) with a continuous decision variable wij and appending Constraints (3) and (4):

u(t)− (1− αij) ≤ wij ≤ αij ∀i ∈ I, j ∈ J (3)

wij ≤ u(t) ∀i ∈ I, j ∈ J (4)

The right hand inequality of Constraint (3) ensures wij will equal 0 if αij is 0. Equation

(4) and left hand inequality of Equation (3) together force wij to equal u(t) if αij equals 1.

Recall that a split application or a full summer N sidedress may prevent the farmer

from applying all of the intended fertilizer, depending on suitability of soil conditions for

fieldwork. For that reason, we define decision variables u1 and u2i to replace u(t), where

u1 denotes the percent of maximum yield obtained for fall and spring N applications, and

u2i indicates the percent of maximum yield achieved with split and full summer sidedress

applications.

The farmer’s deterministic mixed-integer program solved in fall, assuming full knowledge

of growing season precipitation and temperature, corn harvest price and fieldwork suitability

both in early spring and summer, is:
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Max ($/acre) −gt+ rH
∑
i∈I

∑
j∈J

βij(ω, γ)wij (5a)

s.t. ∑
i∈I

xi = 1 (5b)∑
j∈J

zj = 1 (5c)

xi + z1 ≤ 2− I{τ1 ∈ B} ∀i ∈ {2, 3} (5d)

xi + zj ≥ 2αij ∀i ∈ I, j ∈ J (5e)∑
i∈I

∑
j∈J

αij = 1 (5f)

u1 ≤ al + blt ∀l ∈ L (5g)

u2i ≤ al + blki(τ2)t ∀i ∈ {3, 4}, l ∈ L (5h)

u1 − (1− αij) ≤ wij ≤ αij ∀i ∈ {1, 2}, j ∈ J (5i)

wij ≤ u1 ∀i ∈ {1, 2}, j ∈ J (5j)

u2i − (1− αij) ≤ wij ≤ αij ∀i ∈ {3, 4}, j ∈ J (5k)

wij ≤ u2i ∀i ∈ {3, 4}, j ∈ J (5l)

0 ≤ t ≤ tmax (5m)

xi, zj , αij ∈ {0, 1} ∀i ∈ I, j ∈ J (5n)

u1, wij ≥ 0 ∀i ∈ I, j ∈ J (5o)

u2i ≥ 0 ∀i ∈ {3, 4} (5p)

The first term in the objective function (5a) represents the cost of using fertilizer rate t.

The second term is the revenue obtained from selling harvested crop. Note that other costs

of farming operations are excluded, under the assumption that they will not be affected

by these management decisions. Constraints (5b)-(5f) involve fertilizer application timing,

planting timing and their interactions. Equations (5b) and (5c), respectively, ensure that

only one of the fertilizer timing and planting windows is selected. Recall that if spring or

split application is selected and the soil is not suitable for fieldwork in early spring, the

farmer must delay the planting operation. Constraint (5d) enforces this logic. The set of

unfavorable τ1 values which will delay the planting operation is denoted by B. The binary
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parameter I{τ1 ∈ B} equals 1 if τ1 ∈ B, and 0 otherwise. Equation (5e) guarantees αij

equals 1 if both fertilizer application time xi = 1 and planting time zj = 1. Equation

(5f) ensures only a single αij = 1. To approximate the percent of maximum yield given

a fertilizer rate t, we substitute piecewise linear functions for the data points shown in

Figure 3. Equation (5g) defines the piecewise linear functions used to estimate the concave

relationship between N rate and percent of maximum yield while Equation (5h) addition-

ally takes into account the possibility of not being able apply all of the planned N with

sidedress applications. The parameter ki(τ2) is the portion of N applied to soil calculated

based on total workdays available for fieldwork during V6-V8 stages. This portion may be

different for split and full summer sidedress applications. Therefore, the calculation of u2i

involves how much N is actually able to be applied to the soil for a given weather condition.

Constraints (5i) to (5l) are used to linearize the bilinear terms. Equation (5m) defines

the bounds for N application rate and the remaining constraints are the sign and binary

restrictions on the decision variables.

Note that before introducing wij and constraints (5i) - (5l), the objective function would

have bilinear terms αiju1, and αiju2i, while all constraints are linear expressions. A branch-

and-cut solution procedure would create subproblems by fixing discrete variables to binary

values. With all αij fixed to 0 or 1, the objective function would be linear. Then, if the

fertilizer timing decision is x1 = 1 or x2 = 1, an optimal solution exists at one of the

breakpoints for u1 as a function of t. However, if x3 = 1 or x4 = 1 and the corresponding

value of ki(τ1) < 1, then a breakpoint combination of t and respective u2i may not be

optimal. However, restricting attention to breakpoint values of t proves to be a useful

heuristic, as illustrated in Section 5.2.

3.4 Stochastic Program

The farm management decisions and growing season weather together determine the crop

yield. Because farmers make fertilizer management decisions without full information on

random weather events, the crop yield is the major uncertain element in this study. To

summarize the connections between management decisions and uncertainties:

� Growing season average precipitation and temperature directly impact yield.
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� The lack of enough days suitable for fieldwork during early spring causes planting

delay if the spring or split fertilizer application decision was made during fall.

� The farmer will not be able to apply some portion of planned summer sidedress if

there are not enough days suitable for fieldwork during summer.

� Crop yield uncertainty (depending on growing season weather), and harvest-time crop

price uncertainty significantly affect the farmer’s profit (generated by the combination

of crop sale revenue and crop insurance).

Therefore, the average growing season precipitation, ω, the average growing season

temperature, γ, the corn harvest price, r, the number of suitable workdays in early spring,

τ1, and the number of suitable workdays in summer during the V6-V8 stages of the crop

growth, τ2, are the uncertain elements in our model.

In the deterministic model, the crop yield is calculated using Equation (1). Note that

βij(ω, γ) is the only parameter in that equation, and the first uncertain parameter of the

stochastic program. The second uncertain parameter is the corn price, r, at harvest time.

The third uncertain parameter used in model (5) is I{τ1 ∈ B}, an indicator takes the value

of 1 if τ1 ∈ B, causing a planting delay. Finally, the fourth and fifth uncertain parameters

are k2(τ2) and k3(τ2). Those parameters represent the portion of N that can be applied to

soil the during the growing season, and depend on uncertain element τ2.

We structure a two-stage stochastic program by splitting the farmer’s timeline into two

periods, (i) from fall until spring, and (ii) from spring until harvest time in fall. Figure 2

depicts the decisions and recourse actions at each stage. The first stage involves fertilizer

application timing, fertilizer rate and insurance planning decisions. Because the optimal

planting windows are already identified, the planting time is a simple recourse action in

the second stage after the realization of whether or not a planting delay occurs. After all

uncertainties are realized, the resulting yield and revenue are observed.

Assuming we have a finite number of realizations for each of the random variables

(ω, γ, r, τ1, τ2), we can define the scenario set S = {1, . . . , S} that consists of scenarios s,

each of which represents a particular combination of realizations. As a result, we rewrite

the parameters βij(ω, γ, τ1), r, I{τ1 ∈ B}, and ki(τ2) as β
s
ij , r

s, Is, and ksi respectively.
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Figure 2: Staged Representation of Farmer’s Problem

3.4.1 Modeling Insurance

We consider the two most common crop insurance plans: (i) yield protection, and (ii)

revenue protection. Each alternative has options in the set V = {1, 2, ..., 8} corresponding

to coverage levels {50%, 55%, ..., 85%}, respectively. The premium rates for each plan and

coverage level depend on several factors including the producer’s county, their historical

10-year average yield, the yield trend, and the size of the farm (acres).

The yield protection plan offers a production based guarantee. The indemnity payment

of this option, denoted by σ1, is calculated as max
(
µfvr0 − r0A, 0

)
, where r0 is the

projected corn price, fv is the coverage percentage, µ is the actual production history

(average yield) for the farm, and A is the actual yield realized at harvest.

The revenue protection plan offers a revenue guarantee, and also takes harvest price

uncertainty into account. The indemnity payment of this plan, denoted by σ2, is calculated

as max
(
µfvr0 − rA, µfvr − rA, 0

)
, where r is the uncertain actual harvest price.

We define the binary decision variables, yv1 and yv2, for the yield protection and revenue

protection plan, respectively, to indicate which coverage level, v ∈ V, is selected by the

farmer. A two-stage insurance benefit model is formulated as follows:

Max ($/acre) −
∑
v∈V

(
cv1yv1 + cv2yv2

)
+
∑
s∈S

ps
(
σs
1 + σs

2

)
(6a)

s.t.

σs
1 ≥

∑
v
µfvr0yv1 − r0A

s ∀s ∈ S (6b)

σs
1 ≤

∑
v
µfvr0yv1 − r0A

s +Mqs1 ∀s ∈ S (6c)

σs
1 ≤ M(1− qs1) ∀s ∈ S (6d)

σs
2 ≥

∑
v
µfvr0yv2 − rsAs ∀s ∈ S (6e)
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σs
2 ≤

∑
v
µfvr0yv2 − rsAs +Mqs2 ∀s ∈ S (6f)

σs
2 ≥

∑
v
µfvr

syv2 − rsAs ∀s ∈ S (6g)

σs
2 ≤

∑
v
µfvr

syv2 − rsAs +Mqs3 ∀s ∈ S (6h)

σs
2 ≤ Mqs4 ∀s ∈ S (6i)

qs2 + qs3 + qs4 = 2 ∀s ∈ S (6j)

σs
1, σ

s
2 ≥ 0 ∀s ∈ S (6k)∑

v

(
yv1 + yv2

)
≤ 1 (6l)

yv1, yv2 ∈ {0, 1} ∀v ∈ V (6m)

qs1, q
s
2, q

s
3, q

s
4 ∈ {0, 1} ∀s ∈ S (6n)

The parameter cv1 is the insurance premium for the yield protection plan, while cv2 denotes

the insurance premium of the revenue protection plan, with coverage level v. Accordingly,

the first two terms in the objective function represent the cost of the insurance alternative

selected. The third and fourth terms of the objective are the expected indemnity payments

for the yield and revenue protection plan, respectively. The random crop yield harvested

at the end of growing season is denoted by As while rs is the random crop selling price.

To calculate the yield protection plan indemnity, σ1, we introduce a new binary disjunctive

variable qs1, and disjunctive constraints (6b)-(6d) by using a big-M reformulation. Similarly

disjunctive variables, qs2, q
s
3, and qs4, and constraints (6e)-(6j) are introduced to calculate

the revenue protection plan indemnity. A detailed explanation of the role of the disjunctive

variables, and constraints (6b)-(6n) are provided in the supplementary material.

3.4.2 Two-Stage Stochastic Program for the Full Problem

The insurance model described in the previous section does not include the impact of

fertilizer management or planting time on the actual yield realized at harvest. In this

section, we combine all decisions presented in Figure 2, and build a two-stage stochastic

programming model of the farmer’s annual overall decision problem. Model (7) combines

all constraints presented in sections 3.3 and 3.4.1. When calculating indemnities for both

insurance plans, we replace the observed actual yield As mentioned in section 3.4.1 with
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As(x, z, t) = H
∑
i∈I

∑
j∈J

βs
ijw

s
ij .

Max ($/acre) π = −gt−
∑
v∈V

(
cv1yv1 + cv2yv2

)
(7a)

+
∑
s∈S

ps
[
Hrs

∑
i∈I

∑
j∈J

βs
ijw

s
ij + σs

1 + σs
2

]
s.t.

t ≤ tmax (7b)∑
i∈I

xi = 1 (7c)∑
v

(
yv1 + yv2

)
≤ 1 (7d)

u1 − blt ≤ al ∀l ∈ L (7e)

us2i − blk
s
i t ≤ al ∀i ∈ {3, 4}, l ∈ L, s ∈ S (7f)∑

j∈J
zsj = 1 ∀s ∈ S (7g)

xi + zs1+ ≤ 2− Is ∀s ∈ S ′, i ∈ {2, 3} (7h)

xi + zsj − 2αs
ij ≥ 0 ∀i ∈ I, j ∈ J , s ∈ S (7i)∑

i∈I

∑
j∈J

αs
ij = 1 ∀s ∈ S (7j)

u1 − (1− αs
ij) ≤ ws

ij ≤ αs
ij ∀i ∈ {1, 2}, j ∈ J , s ∈ S (7k)

ws
ij − u1 ≤ 0 ∀i ∈ {1, 2}, j ∈ J , s ∈ S (7l)

us2i − (1− αs
ij) ≤ ws

ij ≤ αs
ij ∀i ∈ {3, 4}, j ∈ J , s ∈ S(7m)

ws
ij − us2i ≤ 0 ∀i ∈ {3, 4}, j ∈ J , s ∈ S (7n)

σs
1 − µr0

∑
v
fvyv1 +Hr0

∑
i∈I

∑
j∈J

βs
ijw

s
ij ≥ 0 ∀s ∈ S (7o)

σs
1 − µr0

∑
v
fvyv1 +Hr0

∑
i∈I

∑
j∈J

βs
ijw

s
ij −Mqs1 ≤ 0 ∀s ∈ S (7p)

σs
1 −M(1− qs1) ≤ 0 ∀s ∈ S (7q)

σs
2 − µr0

∑
v
fvyv2 +Hrs

∑
i∈I

∑
j∈J

βs
ijw

s
ij ≥ 0 ∀s ∈ S (7r)

σs
2 − µr0

∑
v
fvyv2 +Hrs

∑
i∈I

∑
j∈J

βs
ijw

s
ij −Mqs2 ≤ 0 ∀s ∈ S (7s)

σs
2 − µrs

∑
v
fvyv2 +Hrs

∑
i∈I

∑
j∈J

βs
ijw

s
ij ≥ 0 ∀s ∈ S (7t)

σs
2 − µrs

∑
v
fvyv2 +Hrs

∑
i∈I

∑
j∈J

βs
ijw

s
ij −Mqs3 ≤ 0 ∀s ∈ S (7u)

σs
2 −Mqs4 ≤ 0 ∀s ∈ S (7v)
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qs2 + qs3 + qs4 = 2 ∀s ∈ S (7w)

t ≥ 0, u1 ≥ 0 (7x)

xi, yv1, yv2 ∈ {0, 1} ∀i ∈ I, v ∈ V (7y)

us2i ≥ 0 ∀i ∈ {3, 4}, s ∈ S (7z)

ws
ij , σ

s
1, σ

s
2 ≥ 0 ∀i ∈ I, j ∈ J , s ∈ S (7aa)

zsj , α
s
ij , q

s
1, q

s
2, q

s
3, q

s
4 ∈ {0, 1} ∀i ∈ I, j ∈ J , s ∈ S (7ab)

3.5 Fertilizer Rate Decomposition

Our computational experiments demonstrate that the two-stage stochastic mixed-integer

program (7) is computationally expensive due to its disjunctive and linearization con-

straints, and the predominance of binary variables. In the literature, different formulation

and solution strategies are suggested to overcome the difficulty of dealing with lineariza-

tion (Adams and Sherali, 1990; Gupte et al., 2013) and disjunctive constraints (Sherali and

Shetty, 2012). Our preliminary results show that the optimality gap of model (7) exceeds

80% after 12 hours of solution effort by CPLEX. In this section, we provide an alternative

solution strategy using the unique structure that results from the assumptions made.

Among all the continuous variables (t, u1,u
s
2i, and ws

ij) in the two-stage stochastic model

(7), t is the only actual decision made by the farmer. The auxiliary variables, u1 and us2i,

simply represent the impact of t on yield according to the piecewise linear approximation,

and ws
ij is a variable introduced for the purpose of linearization. Therefore, if t is fixed, all

the remaining non-auxiliary decision variables are binary.

For a given fixed N application rate t′, let the parameters ζsijv1(t
′) and ζsijv2(t

′) denote

the recourse indemnities for yield and revenue protection plans respectively:

ζsijv1(t
′) = max

(
µfvr0 −As

ij(t
′)r0, 0

)
∀i, j, v, s (8)

ζsijv2(t
′) = max

(
µfvr0 −As

ij(t
′)rs, µfvr

s −As
ij(t

′)rs, 0
)

∀i, j, v, s (9)

where As
ij(t

′) is a parameter representing the actual yield at harvest for N application time
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i and planting time j in scenario s. Recall that the insurance indemnities are calculated

using decision variables σs
1 and σs

2 in models (6) and (7). By fixing t to a value t′, we simply

convert the decision variables σs
1 and σs

2 into parameters ζsijv1(t
′) and ζsijv2(t

′).

Similarly, we introduce binary decision variables ηsijve, where e = 1 represents the yield

protection plan and e = 2 corresponds to the revenue protection plan. Decision variable

ηsijve equals 1 if the protection plan e is selected with N application time i, planting time j

and coverage level v, and 0 otherwise.

Then an alternative formulation, assuming the N rate decision t has been made, is:

Max ($/acre) ρ(t′) = −
∑
v∈V

(
cv1yv1 + cv2yv2

)
+ (10a)

∑
s∈S

ps

[ ∑
i∈I

∑
j∈J

(
As

ij(t
′)rsαs

ij +
∑
v∈V

(
ζsijv1(t

′)ηsijv1 + ζsijv2(t
′)ηsijv2

))]
s.t.

(7c), (7d), (7g), (7h), (7i), (7j), (7y), (7ab) (10b)

xi + zsj + yv1 − 3ηsijv1 ≥ 0 ∀i ∈ I, j ∈ J , v ∈ V, s ∈ S (10c)

xi + zsj + yv2 − 3ηsijv2 ≥ 0 ∀i ∈ I, j ∈ J , v ∈ V, s ∈ S (10d)∑
i∈I

∑
j∈J

∑
v∈V

(
ηsijv1 + ηsijv2

)
≤ 1 ∀s ∈ S (10e)

ηsijv1, η
s
ijv2 ∈ {0, 1} ∀i ∈ I, j ∈ J , v ∈ V, s ∈ S (10f)

The first term in the objective function (10a) represents the first stage costs, and corre-

sponds to insurance premiums paid. The remaining terms are revenues from harvested yield

and insurance. Note that, since the yield impact of t′ and insurance indemnities of insurance

decisions are now calculated as parameters in the form of ζsijv1 and ζsijv2, no linearization or

disjunctive constraints are required in this model. As a result, constraints (7c),(7d),(7g),

(7h), (7i), (7j), (7y), and (7ab) are retained in model (10) while the remaining constraints

from model (7) are replaced by constraints (10c)-(10f).

Using the simplified formulation, we decompose the problem by separating the fertilizer

rate decision t from all the other decisions, and solve it using Algorithm 1:

Because the values for percent of maximum yield are identified for only a finite number

of integer-valued t, one alternative to use Algorithm 1 is to enumerate over all t from 0 to
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Algorithm 1 Fertilizer rate decomposition

1: Initiate BestResult = 0
2: for t′=0, t′ ≤ tmax, t

′ = t′next, t
′
next ∈ T ′

cand do
3: Solve model (10) using t′

4: NewResult = ρ(t′)− gt′

5: if NewResult > BestResult then
6: BestResult = NewResult and t∗ = t′

7: end if
8: end for

tmax. Alternatively, we can use the L linear segments as described in section 3.4.2 and model

(7) to approximately solve the model (10). In this heuristic approach we consider a set T ′
cand

that includes only the L+1 breakpoints of the piecewise linear function. Instead of solving

model (10) in step 3 of Algorithm (1), we solve the model (7) after fixing t = t′ ∈ T ′
cand.

As discussed in section 3.3, equation (7f) is the only constraint that may prevent one of

the breakpoint t values of the concave piecewise linear function from being optimal in

(7). In section 5.1, we show that using this heuristic approach significantly improves the

computation time with a small optimality gap when L is a small number. Furthermore,

by increasing L, it is possible to come arbitrarily close to optimality without significantly

increasing the computational time. In the remainder of the paper, this heuristic approach

used to solve model (7) is referred to as the piecewise linear (PL) approximation heuristic.

4. Computational Study

The study is designed to represent a typical corn farm in Iowa, where typically corn is

grown in rotation with soybeans but sometimes is repeated year after year.

The impact of the nitrogen application rate on yield is reflected in our model based on

data points illustrated in Figure 3. We assume that this relationship of yield to N rate holds

for fall N application. We use this information in two different ways. First, we generate

piecewise linear (PL) functions representing this data to preserve the linearity of the main

model as illustrated in Figure 3. We also explore the results by trying all potential fertilizer

application rate points using Algorithm 1. To generate PL functions, we use the formulation

of Jekel and Venter (2019) to identify the locations of a specified number of breakpoints

that minimize the overall sum of squared differences between original data points and the
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PL approximation. For illustration, we generate three linear pieces as shown in Figure 3.

However, we also explore how increasing the number of linear segments affects the quality

of the results of the heuristic approach discussed in Section 3.5. Note that we do not allow

the percent of maximum yield to exceed 100%. That is, if the PL approximation exceeds

100% at any point, we replace the approximated function value with 100%.

Figure 3: Impact of N rate on yield as discrete points and piecewise linear approximation
with L = 3. (a) Corn-corn rotation (b) Soybean-corn rotation (Sawyer et al., 2020)

The rest of the information explaining the calculation of parameters and random vari-

ables is provided in the supplementary material. Since we collected information related to

random variables, ω, γ, rs, τ1 and τ2, independently, we assume that they are mutually

independent. Accordingly, we generate 768 combinations (4× 4× 4× 2× 6) as scenarios by

multiplying the marginal probabilities. Similarly, realized yield βs
ij is computed based on

the respective yield impacts of each random component of scenario s, along with decisions

xi and zj . Assuming the impacts of all decisions and uncertainties constituting a scenario

path s, are independent of each other and multiplicative due to limited available informa-

tion to reflect interactions among them, we calculate βs
ij by multiplying the yield factors of

i, j, γ and ω with a baseline u(t) rate of 1.
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5. Results and Discussion

In this section, we summarize the results of our computational runs by describing: (i) the

computational performance and solution quality of the suggested models and the heuristic,

and a suitable granularity for the PL approximation; (ii) optimal results for the baseline case

and how different N application rates affect the profit and other management decisions; (iii)

how higher crop insurance premiums affect the results; (iv) the water quality implications;

and (v) the interactions between N management and crop insurance; specifically, how crop

insurance programs affect environmentally beneficial N management practices.

We implemented the proposed models in Java and use IBM ILOG CPLEX as the op-

timization engine. We performed the computational experiments on a machine with Intel

Core i7-7700HQ @ 2.80 GHz processor and 16 GB RAM.

5.1 Piecewise Linear (PL) Approximation Heuristic

Section 3.5 describes two alternative solution approaches using Algorithm 1: (i) enumer-

ating over integer-valued fertilizer amounts using the data points provided in Figure 3

and optimizing the discrete decisions, and (ii) using the PL approximation to optimize

all decisions simultaneously. In this section, we compare those two approaches in terms

of computational performance and solution quality. We investigate how increasing L, the

number of linear segments, affects the solution quality of the heuristic approach.

Table 2 summarizes the computational performance of the alternative solution ap-

proaches for corn following corn. The middle columns contain the solutions obtained using

different numbers, L, of linear segments. The row labeled “N Rate” indicates the optimal

values of t, which is the only management decision variable whose value differs according

to the solution approach and value of L. Recall that the PL approximation uses u(t) to

generate percent of maximum yield. The enumeration strategy, on the other hand, uses

the actual data points instead of u(t) and enumerates over all integer-valued t from 0 to

tmax, as illustrated in Figure 3. Therefore, the same decisions may yield slightly different

expected profits when those two strategies are compared. To make a fair profit comparison

between those two strategies, after having applied the PL approximation heuristic, we cal-

culate ρ(t′) by fixing all the decisions generated from the heuristic in equation (10a). Thus,
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we use the real percent of maximum yield data instead of u(t) to report the profit values

for the heuristic in Table 2. The piecewise linear approximation heuristic finds a solution

within 25 minutes but enumeration over all integer N rates takes more than 13 hours. The

profit achieved by implementing the PL approximation heuristic solution is nearly optimal

if L is sufficiently large.

Table 2: Changing L and its relationship with optimality for corn-corn rotation

PL Approximation Heuristic Optimal
L = 3 L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 L = 10 Enum.

N Rate (lbs/acre) 223.87 228.75 231.75 185.25 189.47 191.64 204.09 205.05 205.00
Profit ($/acre) 615.87 615.56 615.04 615.44 616.44 616.43 617.04 617.41 617.41
Optimality Gap (%) 0.25 0.30 0.38 0.32 0.16 0.16 0.06 0.00 -
Comp. (s) 803.16 910.25 964.92 1077.27 1145.43 1287.05 1454.43 1500.30 49539.25

The accuracy of the piecewise linear approximation with L sufficiently large indicates

that the stochastic mixed-integer program (7) could be solved to find near-optimal solutions

for the true nonlinear relationship between yield and N rate. In the remainder of the paper

we enumerate over t using Algorithm 1 to explore the relationship between the N rate and

the binary decisions.

5.2 Baseline Results

Figure 4 presents the optimal solutions and profits for corn following corn (C-C) and corn

following soybean (S-C), respectively. For both crop rotations, full summer sidedress is the

optimal fertilizer application timing decision, while the yield protection plan with maximum

coverage rate at 85% is the best insurance decision when the N rate is set to its optimal

value. For the C-C case, Figure 5 shows the components of expected profit to explain

the nonconvex shape of the profit curve. While increasing t also increases the expected

harvest income with diminishing returns, it reduces the expected insurance indemnity at a

decreasing rate. However, the indemnity payment flattens out faster than harvest income.

As a result, the expected profit initially shows a decreasing trend, after which it continues

to increase until the optimal solution is reached.

The impact of the fertilizer application rate decision on other farming decisions is also

investigated. Fertilizer application rate is a critical farming decision, not only affecting

the farmer’s profitability but also causing environmental consequences. Environmentalists
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Figure 4: Baseline case results. Shaded regions are labeled by N timing decisions (FA =
fall application, SS = summer sidedress), type of insurance (RP = revenue protection, YP
= yield protection), and insurance coverage rate, fv

and social planners ideally would prefer to reduce N application rate as much as possible to

lower nitrate-N loss through leaching. Although we investigate the problem from a farmer’s

point of view, understanding how different N application rates affect the profit and other

management decisions is just as important as knowing farmers’ optimal solutions. Based

on the applied fertilizer rate, we observe three combinations of optimal fertilizer timing and

insurance decisions. Recall that fall N application is expected to produce the lowest yield,

but it also imparts less risk than the other timing alternatives because the random variables

τ1 and τ2 have no impact on subsequent decisions or yield. On the other hand, summer

sidedress application is expected to result in the highest yield according to previous research,

yet is also risky. For very low values of t (below 70 lbs/acre for C-C and or 26 lbs/acre

for S-C), fall application is optimal. For any higher N application rate, summer sidedress

is the best N timing decision. As illustrated in Figure 3, increasing the N application rate

also increases the yield. It might be expected that, to overcome the lower yield resulting

from low N rates, one would select a higher-yielding timing alternative. However, close

examination reveals why low fertilizer rates and fall N application are selected together.

When the N rate is low, the model relies on minimizing the harvest yield to maximize

the crop insurance indemnity payment. Therefore, the insurance alternative providing the

most protection, the revenue protection plan with the highest coverage, is selected. The

perverse incentives that exist with low N rates are illustrated in Figure 4 by the decrease

of profit as t increases for low values of t. Also note that, even if minimizing the harvest
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yield with low N rate to maximize the insurance indemnity payments were optimal in one

year, it would not be viable in the long term because indemnity payments depend on the

actual production history of the farm.

Figure 5: Expected value of profit components for corn-corn rotation. Shaded regions are
labeled by N timing decisions (FA = fall application, SS = summer sidedress), type of
insurance (RP = revenue protection, YP = yield protection), and insurance coverage rate,
fv

When the fertilizer application rate reaches 70 lbs/acre for C-C or 26 lbs/acre for S-C,

maximizing the harvest yield and maximizing the profit align. As a result, summer sidedress

becomes the best N timing decision. In this intermediate interval (70-132 lbs/acre for C-C

or 26-69 lbs/acre for S-C), the revenue protection plan with the highest coverage rate at

85% is still the best crop insurance decision because the applied fertilizer amount is still

not high enough to achieve good crop yield. Finally, when the fertilizer application rate

exceeds 132 lbs/acre for C-C or 70 lbs/acre for S-C, the yield protection plan with the

highest coverage becomes the best insurance decision as yield risk is reduced.

Due to the higher efficiency (greater percentage of maximum yield for a given N rate)

of corn following soybean, as illustrated in Figure 3, the optimal N application rate is lower

for S-C, while the expected profit per acre is higher than for C-C. Likewise, the N rates at

which the timing and insurance decisions change are different for S-C and C-C.

The optimal N rate is 205 lbs/acre for C-C and 145 lbs/acre for S-C. However, if we

calculate the expected application rates using discrete probability outcomes of τ2 presented

in supplementary Table S4, we find that the expected N rate actually applied is approx-

imately 180 lbs/acre for C-C and 127 lbs/acre for S-C. That means the optimal solution
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includes a higher N rate to benefit from the higher yield potential of summer sidedressing

decision by compensating for the risk of random variable τ2. As a further note, when low

risk, low yield fall application is forced to be selected, the optimal N rate is 184 lbs/acre

for C-C and 130 lbs/acre for S-C.

5.3 Alternative Crop Insurance Premiums

Crop premiums can be higher than our baseline rates, depending on the yield trend of

the farm and its surrounding county. In this section, we investigate the impact of the

alternative, higher insurance premiums shown in supplementary Table S1. The results are

illustrated in Figure 6.

Figure 6: Results with higher crop insurance premiums. Shaded regions are labeled by N
timing decisions (FA = fall application, SS = summer sidedress), type of insurance (RP =
revenue protection, YP = yield protection), and insurance coverage rate, fv

Increasing the insurance premiums does not cause any significant change in fertilizer

rate or N timing decisions. For S-C, the optimal fertilizer rate and N timing decision with

alternative insurance premiums are exactly the same as for the lower baseline insurance

premium rates. Similarly, with C-C, we observe only a slight increase in the optimal N

application rate compared to baseline premiums. The only significant change occurs in the

crop insurance choices. With higher premium rates, the optimal solution foregoes insurance.

Even with those high premium rates, the maximum or next highest coverage rate is selected

for every fertilizer application rate. If the applied N rate is low, the revenue protection plan

is selected with the highest coverage rate. The yield protection plan is selected for higher

N application rates with coverage rates at either 80% or 85%. If the N application rate is
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higher than 189 lb/acre for C-C and 126 for S-C, buying an insurance plan is not part of

the optimal solution.

5.4 Water Quality Implications

Lawlor et al. (2008) estimate the nitrate-N concentration in subsurface drainage based on

tests performed in Iowa. According to their study, a N rate application of 205 lbs/acre

(the optimal result from C-C in the baseline case) results in a nitrate-N concentration of

20.23 mg/L, while an application of 145 lbs/acre (the optimal result from S-C) corresponds

to 12.93 mg/L. According to Lawlor et al. (2008), applying no fertilizer will result in a N

concentration of 7 mg/L.

Considering the current Iowa nitrate-N concentration target of 5-6 mg/L based on the

41% reduction goal (Iowa State University et al., 2017), it is highly unlikely to achieve

this goal by simply focusing on fertilizer management strategies (i.e., additional nitrogen

management, land use and edge-of-field nutrient practices are needed to achieve target re-

duction goals). In this section, we investigate how much water quality improvement can

be achieved by simply focusing on fertilizer management practices. By exploring various N

concentration targets achievable as illustrated in Table 3, we show the limitations of fer-

tilizer management in improving water quality, and also indicate the incentives needed to

achieve those concentration targets when only fertilizer management is considered. Table

3 displays the expected profit foregone by the farmer to achieve various N concentration

targets. To generate the table, we extracted the fertilizer application rate corresponding

to each nitrate-N concentration target, based on the information provided by Lawlor et al.

(2008), and solved the optimization model repeatedly with fixed t equal to each fertilizer

rate in turn. For example, when corn follows corn the farmer’s profit from applying 100

lbs/acre to meet the 10 mg/L target is $52.14 per acre lower (a 8.4% reduction) than the

optimal profit achieved by applying 205 lbs/acre. This represents an opportunity cost that,

alternatively, drops to $12.93/acre for corn following soybean (a 2% reduction). These

results also demonstrate the combined financial and environmental advantages of crop ro-

tation. It is important to underline that those incentive rates are generated under two

assumptions: (i) farmers are rational and have the single objective of maximizing their

short-term profit and (ii) other nutrient reduction practices are not considered. Therefore,
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the realistic fertilizer-based incentive rates are expected to be lower than what is reported

in Table 3. Still, we believe the incentive rates reported for alternative N concentration

targets provide a valuable insight to policymakers as those values represent the upper enve-

lope of fertilizer-based incentives. In other words, those rates would ensure the cooperation

of rational farmers under the current assumptions but true rates may be lower than what

are reported.

Another environmental takeaway concerns the use of sidedressing strategies. The com-

mon consensus in agronomy suggests that summer sidedress application increases the farm

yield and also reduces the N loss, compared to other N timing decisions such as fall or

spring applications. Our results also indicate that this fertilizer timing option optimizes

the farmer’s profit. However, this decision is highly susceptible to weather uncertainty. If

the soil moisture is high during the summer, there is a high chance that the farmer will

not be able to apply all of the intended fertilizer. This economic risk can be mitigated by

increasing the planned N application rate which, if carried out, will increase the N loss. As

a result, summer sidedress may not be the best decision from an environmental perspective

when all uncertainties are considered.

Table 3: Farmer’s opportunity cost of achieving N concentration targets

Target(mg/L) 7 8 9 10 11 12 13 20
N Rate to achieve target (lbs/acre) 0 46 78 100 118 133 145 205
Foregone profit for C-C ($/acre) 31.26 49.66 60.06 52.14 38.58 27.47 18.42 0
Foregone profit for S-C ($/acre) 56.91 62.04 31.12 12.93 4.77 1.25 0 -

Note that trying to achieve a 7 and 8 mg/L N concentration appears less costly than 9

mg/L for C-C, and likewise 7 mg/L looks less costly than 8 mg/L for S-C. As discussed in

section 5.2, this nonintuitive result occurs because, for low N application rates, it is optimal

to minimize the yield in order to maximize the insurance payout. As a result, we observe

a decreasing expected profit curve for low values of t.

5.5 Mitigation of N Management Risk by Insurance

Figure 7 illustrates how different N application timing decisions affect the expected farm

profit. Expected reduction in profit ($/acre) represents the cost of selecting a different

fertilizer timing decision compared to the optimal baseline results provided in Figure 4.
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To generate the plots, we fix xi to a specific nitrate timing alternative i and enforce its

selection in model (7). Then, we obtain the expected profit reduction by calculating the

difference between newly obtained results and optimal results from Figure 4.

Figure 7: Comparison of N application timing decisions for the baseline case

The sidedressing strategies, split and complete summer sidedress, are considered as part

of precision agriculture. Those strategies aim to apply the N during a period of growth

and when it is needed most. The idea is to increase the crop uptake efficiency by timely

synchronizing the nutrient availability in the soil, considering crop demand based on its

growth stages. Therefore, sidedressing strategies are expected to improve water quality

and farm yield compared to other fertilizer application timing decisions as less N leaching

due to early fertilizer application is expected. For that reason, split fertilizer application is

a risk reducing strategy since it reduces the risk of N loss. The results in Figure 7 align

with the scientific expectations where both split and summer sidedress applications result

in smaller profit reductions in the case study. Interestingly, the expected per-acre profit gap

between different N time decisions increases with the N application rate. When the expected

yield is very low, resulting from low N application rates, the insurance programs cover the

economic deficits. Therefore, the reduction in profit is indistinguishable for different N

application time decisions when the N application rate is very low (< 100 bu/acre). In

the literature, reducing the N application rate and sidedressing N application timing are

considered as two valuable nutrient reduction practices related to N management. However,

our results demonstrate that when the N application rates are reduced, timing-related

N reduction practices can be redundant for producers concerned only with maximizing

their profits because insurance programs also act as a risk-reducing strategy. In other

words, risk-reducing conservation practices such as split N application may be redundant
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when combined with crop insurance policies. This insight demonstrates the importance

of including insurance programs in environmental investigations and designing insurance

programs so as to not undermine water quality efforts.

Similarly, Figure 8 highlights the expected reduction in profit when the purchase of

insurance policies is not allowed (i.e., solutions to model (7) are forced to not select any

insurance plan). N is a limiting nutrient in agriculture because plants cannot utilize atmo-

spheric N directly in its gaseous form. By applying N, agricultural producers ensure the N

availability in the soil to maximize yield potential. However, N is susceptible to leaching.

Therefore, agricultural producers may tend to apply more N to the soil than necessary

to cover the required N uptake by the crops. Figure 8 demonstrates that increasing the

N application rate acts as a risk-reducing strategy for agricultural producers when crop

insurance is taken out of the picture. As the N application rate increases, we observe that

the expected benefit of insurance programs is diminishes to negligibility. This finding is

important as it suggests that federal crop insurance programs significantly decrease the

economic loss arising from the N application reduction. Specifically, in this case study, the

expected C-C rotation profit range ($/acre) is [557.3, 617.4] with insurance programs and

[322.9, 616.9] without insurance. For S-C rotation, the corresponding ranges are [575.3,

643.1] and [514.4, 642.9], with and without insurance, respectively. It also means that the

opportunity cost of achieving N concentration targets shared in Table 3 is expected to be

higher when the insurance programs are not considered. That is, insurance programs can

potentially complement nutrient reduction programs (i.e., they are effective instruments to

mitigate the risk of yield loss from reduced N applications).

Uncertainty and the resulting risk are primary agricultural concerns, and our numerical

results indicate that they significantly impact fertilizer rate and timing decisions. Because

the purpose of insurance programs is to reduce risk exposure, the insurance purchase op-

tions that exist should be considered when studying N management from an environmental

perspective. The environmental impact of insurance programs may be inconsistent and

circumstantial. Specifically, we observe that crop insurance has a complementary role in

reducing the N application rate with a positive environmental impact. However, if the N

application rate drops below a certain level, the crop insurance reduces the motivation to

use environmentally beneficial N timing strategies. Those inconsistent results demonstrate

33



Figure 8: Impact of crop insurance programs on farm profitability

the complicated interactions between N management and crop insurance programs. The

incentive rate estimates in Table 3 are generated based on the existing federal insurance

program structure and parameters while considering N management decisions only. Up-

dating the structure and parameters of existing crop insurance programs or integrating

additional parametric insurance options could reduce the need for financial incentives for

adopting environmental best practices. Appropriately designed insurance plans could be

vehicles for aligning economic and environmental incentives.

6. Conclusion

This paper explores some major annual farming decisions of a corn producer under uncer-

tain growing season precipitation and temperature, harvest price, and soil moisture during

critical time windows. We built a two-stage stochastic mixed-integer program for annual

farm management decisions to maximize the expected farm profit. Because the two-stage

stochastic program is computationally expensive due to its disjunctive and linearization

constraints and the predominance of binary variables, we suggested a heuristic solution

approach that produces near-optimal solutions.

By examining the farmer’s optimal behavior under uncertainty, the case study derives

valuable input to policymakers concerned with developing effective policies and promot-

ing nutrient reduction practices to reduce N loss. Previous field experiments in agronomy

demonstrate the advantages of spring and sidedress N application compared to fall N ap-
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plication. Sidedressing strategies specifically are expected to lower N loss and increase

crop yields and, thus, appear advantageous for both farmers and the environment. Our

results, however, indicate that other decisions taken to mitigate farming risks can negate

the environmental benefits. Farmers maximizing expected profit would compensate for the

additional risks resulting from weather uncertainties if sidedressing is chosen by increasing

the planned N application rate. Spring and sidedressing strategies, especially, are more

susceptible to the risk of insufficient days suitable for fieldwork, and could paradoxically

increase N leaching if the farmer carries out the plan of applying more N to compensate

for the yield risk.

To explore financial incentives that policymakers could offer to alter farmers’ major

annual decisions, we estimate the cost to the farmer, in terms of foregone profit, of achiev-

ing potential N reduction targets by fertilizer management alone. The results show that

significant incentives are needed under corn-corn rotation for substantial changes in N loss

while up to 20% N reduction is achievable under soybean-corn rotation with little impact

on profit.

This research explores how crop insurance programs can influence the adoption of en-

vironmentally beneficial N management practices. How insurance interacts with other

environmental practices constitutes a gap in the literature. If carefully designed, insurance

programs have the potential to align economic and environmental incentives. Therefore,

expanding the consideration to all available insurance tools and modifying them accord-

ingly to incentivize environmental programs is a promising research direction. Future work

could address (i) how insurance programs relate to other best management practices (i.e.,

use of inhibitors, cover crops, land use changes, etc.) and (ii) how available insurance tools

can be used or modified to further incentivize environmentally beneficial practices.

This model has several limitations due to the “reductionist” character of traditional

agronomy research (Drinkwater et al., 2016), which informed both the model structure and

the case study inputs. The case study performed currently relies on empirical field tests to

obtain information about critical outputs, including yield and N loss. These experiments are

carefully designed to isolate the impact of one variable, such as fertilizer application rate, on

yield. Unfortunately, they are inadequate to investigate all components of an agricultural

system and their interactions simultaneously. Simplifying assumptions in our model, such
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as independence of the effects of management decisions and uncertain factors on yield, are

based on the empirical information available but could distort the optimization results.

For a decision model to properly reflect the interactions among management decisions

and uncertain elements as they unfold over time, more accurate multivariate functional

relationships are needed. Numerical agronomic simulation models for may help fill this gap

and allow for better model fidelity to actual decision processes.
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