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 19 
Abstract. Aerial emissions of odorous volatile organic compounds (VOCs) are an important 20 

nuisance factor from livestock production systems. Reliable air sampling and analysis methods 21 

are needed to develop and test odor mitigation technologies. Quantification of VOCs 22 

responsible for livestock odor remains an analytical challenge due to physicochemical 23 

properties of VOCs and the requirement for low detection thresholds.  A new air sampling and 24 

analysis method was developed for testing of odor/VOCs mitigation in simulated livestock 25 

emissions system. A flow-through standard gas generating system simulating odorous VOCs 26 

in livestock barn emissions was built on laboratory scale and tested to continuously generate 27 

ten odorous VOCs commonly defining livestock odor. Standard VOCs included sulfur VOCs (S-28 

VOCs), volatile fatty acids (VFAs), and p-cresol. Solid-phase microextraction (SPME) was 29 

optimized for sampling of diluted odorous gas mixtures in the moving air followed by gas-30 

chromatography mass-spectrometry (GC-MS) analysis.  CAR/PDMS 85 μm fiber was shown to 31 

have the best sensitivity for the target odorous VOCs. A practical 5-min sampling time was 32 

selected to ensure maximum extraction of VFAs and p-cresol, as well as minimum displacement 33 

of S-VOCs. Method detection limits ranged from 0.392 to 2.64 ppbv for S-VOCs, 0.233 to 0.767 34 

ppbv for VFAs, and 0.308 ppbv for p-cresol.  The method developed was applied to quantify 35 

VOCs and odorous VOC mitigation with UV light treatment.  The measured concentrations 36 

ranged from 20.1 to 815 ppbv for S-VOCs, 10.3 to 315 ppbv for VFAs and 4.73 to 417 ppbv for 37 

p-cresol. Relative standard deviations between replicates ranged from 0.67% to 12.9%, 0.50% 38 

to 11.4%, 0.83% to 5.14% for S-VOCs, VFAs and p-cresol, respectively.  This research shows 39 

that a simple manual SPME sampler could be used successfully for quantification of important 40 

classes of odorous VOCs at concentrations relevant for real aerial emissions from livestock 41 

operations.  42 

Key words: VOCs, SPME, GC-MS, odor, air sampling, standard gas generation system  43 
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1. Introduction 45 

Worldwide proliferation of intensive large-scale livestock production systems has focused 46 

the attention on aerial emissions of odor, VOCs, NH3, H2S, and bioaerosols, including 47 

pathogens [1]. Livestock air emissions are a complex mixture of very dilute odorous VOCs, 48 

among which several key volatile organic compounds (VOCs and semi-VOCs) were found to 49 

be responsible for odor nuisance [2-8]. Previous studies reported three main categories of 50 

chemicals as the key odorants from swine operations, i.e., sulfur-containing VOCs (S-VOCs), 51 

volatile fatty acids (VFAs), and phenolics/indoles [2,8]. Ammonia, which is characterized by 52 

relatively higher odor threshold compared to most of these VOCs, and typically present at 53 

higher concentrations, may or may not correlate with odor concentrations [9].  Hydrogen 54 

sulfide and methanethiol were reported to represent 70 to 97% of the total sulfuric gases and 55 

volatiles in manure [10]. The most dominant sulfuric gases and volatiles in cattle manure were 56 

found to be hydrogen sulfide (39%), methanethiol (34%) and dimethyl sulfide (21%) [11].  57 

VFAs were reported to be major odorants for emissions associated with animal production 58 

systems, more specifically, about 60% of total VFAs in manure were present as acetic acid, 59 

followed by propanoic acid, butyric acid, isobutyric acid and isovaleric acid [12-14]. Bulliner et 60 

al. [2] reported p-cresol as the key compound responsible for the characteristic smell of swine 61 

odor.  It is generally accepted that the key odorous VOCs responsible for livestock odor 62 

typically present at very low levels (ppbv to pptv).                                                                                          63 

Quantification of odorous VOCs from livestock operations is necessary in order to develop 64 

and test various odor mitigation technologies. However, there are challenges in quantifying 65 

target odorous VOCs because of their low concentrations (typically in the ppbv range) and the 66 

extremely low odor threshold of some of these compounds (which can be in the pptv range). 67 

Moreover, the majority of odorous VOCs are present at such trace levels in a complex matrix 68 

of odor-insignificant volatiles.  69 

Several studies reported analytical detection limits of livestock odorants (Table 1). 70 

However, most of these were done in a static system; fewer studies aimed at quantifying 71 

VOCs in livestock air applying flow-through systems [15]. Moreover, in most studies 72 

summarized in Table 1, samples were stored in a polymeric bag (e.g. Tedlar) or a metal 73 

canister [19]. Such storage devices were reported to suffer from sample contamination and 74 

sample loss [26]. Finally, most of reported studies focused on a few target compounds, such 75 
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as S-VOCs or VFAs only.   76 

 Notably, human odor detection threshold of target VOCs selected in the present study 77 

were reported at very low concentrations, mostly below 4 ppbv except acetic (145 ppbv) and 78 

propanoic acid (35.5 ppbv), as shown in Table 2. To fulfill the experimental needs, a system 79 

capable of producing gas mixtures at such low concentrations is required and an appropriate 80 

sampling and analytical method has to be established to achieve method detection limits 81 

(MDLs) as low as possible.  82 

A method for sampling and analysis of odorous VOCs in moving air simulating 83 

concentrations present in exhaust air of livestock barns was optimized in this study.  This 84 

method is based on solid-phase microextraction (SPME) coupled with gas chromatography-85 

mass spectrometry (SPME-GC-MS). A mixture of 10 standard odorous VOCs was used to 86 

simulate air emissions of livestock barns. As an illustration of the application of this analytical 87 

method, the simulating gas mixture was treated in a flow-through reactor with UV light, thus 88 

lowering concentrations further and challenging the method for residual concentrations as 89 

well.     90 

2. Materials and methods 91 

2.1. Standards and reagents 92 

HPLC-grade standards of S-VOCs, VFAs and p-cresol were purchased from Sigma-93 

Aldrich (Milwaukee, WI).  94 

2.2. Standard gas generation system 95 

A standard gas generation system (SGG; Fig. 1) was built to generate mixtures of 96 

VOCs/H2S at concentrations typical to air emissions from livestock barns. Chemicals used 97 

included H2S and S-VOCs (methyl mercaptan, ethyl mercaptan, butyl mercaptan and dimethyl 98 

sulfide (DMS)), VFAs (acetic, propanoic, butyric and isovaleric acid), and a phenolic 99 

compound (p-cresol). These target compounds are generally liquids at room temperature; 100 

thus permeation tubes were used. Each chemical was generated by one permeation tube 101 

(made and calibrated in-house or purchased from KIN-TEK™ Laboratories (La Marque, TX, 102 

USA)). All permeation tubes were made from Teflon. The permeation is a process of the gas 103 
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dissolving into the Teflon wall and evaporating from the outer surface, which is highly 104 

sensitive to temperature. The emission rate of each permeation tube was controlled by 105 

temperature [31,32].   106 

Standard gas concentrations of each compound were calculated based on the emission 107 

rate (E) of the permeation tube, which was determined by equation 1, 108 

t
mE ∆

=     (1)                                109 

Where E (ng/min) is the emission rate of each compound, m∆  (ng) is the average mass loss 110 

between two weighing times, and t (min) is the permeation period. The concentration of each 111 

compound was estimated using equation 2, 112 

Q
ECgas =     (2) 113 

Where gasC  is the concentration of compound of interest (ng/mL), Q is air flow rate in the 114 

system (mL/min).  115 

 116 

To be comparable with most literature data, gas concentration were converted to 117 

volume concentration by equation 3, 118 

PMW
TRCC gasppm ×

×
×=        (3) 119 

Where Cppm is gas concentration in parts per million (ppmv), R is ideal gas law constant, R= 120 

8.314 (m3 Pa K-1 mol-1), P and T are atmospheric pressure (P=101.32 kPa under atmospheric 121 

conditions) and temperature (K), respectively, and MW is the molecular weight of each 122 

compound (g/mol).  Since experimental conditions were normalized to T=298 (K) (25 ºC), and 123 

P=101.32 (kPa). Equation 3 can be simplified to equation 4 124 

MW
C

MW
CC gas

gasppm ×=
×
×

×= 4.24
32.101

2988.314    (4) 125 

Where Cgas was gas concentration in ng/mL calculated from Eq. 2. 126 

Under constant temperature, different gas concentrations could be achieved by changing 127 

the airflow, according to Equation (2). Successful generation of constant VOCs (VFAs and 128 

phenolics) emissions at trace levels deploying the permeation tube technology was reported 129 

previously [35].  130 
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Differing concentrations were achieved by changing the air flow rate, i.e., the maximum 131 

concentration corresponding to 300 mL/min of air flow and the minimum concentration 132 

corresponding to 5000 mL/min (Table 2). The carrier gas was 99.995% pure air (pure oxygen 133 

or pure nitrogen are optional carrier gases based on experimental needs). These 134 

concentrations were controlled precisely using mass flow controllers (Aalborg, Orangeburg, 135 

NY). The stability of generating consistent standard gas was checked by running gas samples 136 

daily (n=3) and continuously for 44 days. Stability was validated, as the deviation between 137 

days within the experimental period for all target analytes was small (<10%). A summary of 138 

gas concentrations and physicochemical properties for all target compounds is presented in 139 

Table 2. 140 

This system successfully simulated the continuous emissions of VOCs from livestock 141 

operations at their typical ranges of concentrations [16]. Gas concentrations generated fell 142 

into or were very close to the typical range of odorant concentrations emitted from livestock 143 

swine facilities in North Carolina (0.075 mg/m3 (30.5 ppbv) for acetic acid, 0.04 mg/m3 (13.2 144 

ppbv) for propanoic acid, 0.22 mg/m3 (60.9 ppbv) for butyric acid and 0.015 mg/m3 (4.15 145 

ppbv) for isobutyric acid; 0.041 mg/m3 (9.25 ppbv) for p-cresol) as reported by Schiffman et. 146 

al. [22]. Emissions of p-cresol from dairy farms was reported to be in the range of 0.6~100 147 

µg·m-3 [23] which can be converted to 0.14~23.8 ppbv, assuming atmospheric conditions. Not 148 

much information about measured concentrations of sulfur VOCs was found in the literature, 149 

probably because field concentrations were below their detection threshold [22], while a range 150 

of 0.064-0.927 ppbv was reported for dimethyl sulfide emitted from a slurry wastewater 151 

lagoon [18].  152 

2.3. Headspace solid phase microextraction (HS-SPME) 153 

All HS-SPME extractions were performed with a SPME fiber coupled with a manual holder 154 

from Supelco (Bellefonte, PA, USA). Before use, each fiber was conditioned in a heated GC 155 

splitless injection port at 260 °C under helium flow. After conditioning, SPME fiber was quickly 156 

moved to the sampling ports to perform extractions as required. Once air samples were 157 

collected, the SPME fiber was removed and immediately transferred to the injection port of 158 

the GC for analysis. The desorption time of SPME fiber was set to 10 min at 260 ºC. All 159 

SPME extractions were completed at constant temperature (see section 2.5). The sampling 160 

time was optimized (described in section 2.6).  161 
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2.4. SPME fiber selection 162 

Four SPME fiber coatings, Carboxen/polydimethylsiloxane (CAR/PDMS) 85 μm, 163 

PDMS/divinylbenzene (DVB0 65 μm, polyacrylate (PA) 85 μm and PDMS 100 μm were 164 

examined in this work to select a fiber coating with the best extraction efficiency on target 165 

VOCs. All samples were taken in triplicate at 25 ºC from SGG by headspace SPME fiber. 166 

Carrier air was dry. Gas flow rate was set constant at 300 mL/min.  167 

 Fiber selection was conducted for standard odorous gases in the SGG to select the 168 

SPME coating with best trapping capacity of target analytes. This part was done within 48 h 169 

with constant airflows and temperature (constant gas concentrations) in the SGG. Three 170 

replicated samples were taken continuously for each fiber coating. The sampling time was 5 171 

min (Section 2.6).  172 

2.5. Sampling time optimization 173 

Out of the four fiber coatings, CAR/PDMS 85 μm was chosen for the optimization of 174 

sampling time. Sampling times of 1, 3, 5, and 10 min were examined for standard odorous 175 

gases in the SGG with triplicates. Partitioning coefficient, molecular size and boiling point are 176 

considered important factors influencing equilibration time [37]. Since the CAR/PDMS phase 177 

is adsorptive [38], sampling time was optimized by selecting the longest extraction time before 178 

fiber sorptive capacity limits the rate of analyte extraction.  179 

2.6. Method application to photoreactor 180 

The developed method was challenged by applying it to odor mitigation technology by means 181 

of a photoreactor. The effluent from the SGG (Section 2.2) was fed to a flow through chamber 182 

which was used as the photoreactor using variable numbers of low-pressure Hg lamps 183 

(principle output at 254 nm, with other characteristic bands at 185, 312 and 365 nm). The 184 

reactor contained TiO2 as photocatalyst, and included a temperature control sensor, and an 185 

on/off switch. When the UV source was on, photodegradation of gases was induced. When the 186 

UV light was off, the photoreactor functioned simply as a flow through cell. More details about 187 

the UV photoreactor are described in Yang et al. [36]. Sampling ports were located before and 188 

after the photoreactor to allow sampling of untreated and treated flow of standard gas mixtures 189 
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(shown in Fig. 1). All samples were taken in triplicates, while six replicates were used for method 190 

validation. 191 

2.7. Analytical methods 192 

2.7.1 Chemical and odor analysis: GC-MS 193 

A conventional GC–MS (Agilent 6890N GC/5973 MS from Agilent, Wilmington, DE, USA) 194 

was utilized in this study. A non-polar pre-column and a polar column were installed in series 195 

in the system. All samples were analyzed by the system under the following configuration 196 

conditions: injector 260 °C; FID, 280 °C, column oven, 40 °C initial, 3 min hold, 7 °C /min, 197 

220 °C final, 10 min hold. Carrier gas was helium. Mass (molecular weight)-to-charge ratio 198 

(m/z) range was set between 33 and 280. Spectra were collected at 6 s and electron 199 

multiplier voltage was set to 1000 V. The MS detector was auto-tuned weekly.  200 

Target compounds in this work were sampled and run on to GC-MS for analysis. Retention 201 

time (RT) was determined for each compound. To improve accuracy, single ion mode (SIM) 202 

was used when identification of compounds was not required. Identification was needed for 203 

the treated gases, and compounds were positively identified by two criteria: (1) the retention 204 

time on the GC capillary column, and (2) the match between the mass spectra of analyte and 205 

standard spectra in MS library from Bench-Top/PBM (from Palisade Mass Spectrometry, 206 

Ithaca, NY, USA). VOC abundance was measured as area counts under the MS peak. 207 

2.7.2 Linearity, repeatability and method detection limit (MDL) 208 

The new method repeatability was estimated at different standard gas concentrations by 209 

varying air flow rate in SGG, including five levels for sulfur VOCs, nine for VFAs, and eleven 210 

for p-cresol. All tests were conducted in triplicate, except at air flow of 500 mL/min (conducted 211 

in 7 replicates), when MDL was estimated. The quantification of target VOCs was completed 212 

by establishing calibration curves deploying the standard gas concentrations. The 213 

repeatability and the calibration curves were studied under the optimized SPME conditions. 214 

All extractions were done under experimental conditions of 25 °C, dry air, 5 min sampling time 215 

and using CAR/PDMS 85 μm fiber. Precisely controlled air flow varied from 300 to 2300 216 

mL/min. Data were analyzed and compared using means and relative standard deviations 217 
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(RSDs).. MDL was calculated based on the US Environmental Protection Agency (EPA) 218 

methodology [40]. The MDLs were defined as the minimum concentration of a substance that 219 

can be measured and reported with 95% confidence when the analyte concentration is 220 

greater than zero and is determined from analysis of a sample in a given matrix containing the 221 

analyte. The MDLs for target compounds were estimated using equation 5, 222 

MDL = s × t(n−1, 1−α) (5) 223 

where n = number of replicates. Replicates with standard analytes at concentration 1–5 times 224 

greater than the estimated MDL were generated from the SGG system; s = standard deviation 225 

of measured concentrations of n spike determinations, t = Student’s t-value at n−1 degree of 226 

freedom and 1−α (equals to 95%) confidence level. In this work, n=7 replicates (t-value=2.57) 227 

for p-cresol and n= 6 replicates (t-value=2.45) for all other target VOCs. 228 

2.7.3 Statistical analysis 229 

Detection limit and repeatability data were analyzed using the statistical package JMP v. 230 

10.0.0 (SAS Institute, Inc., Cary, NC). Data were subject to a one-way analysis of variance 231 

(ANOVA). Correlation coefficients of the calibration curves and p-values between sample 232 

extractions with different fibers were calculated with Microsoft Excel. 233 

3. Results and discussion 234 

3.1 SPME fiber selection 235 

Comparison of extraction efficiency of target VOCs for CAR/ PDMS 85 μm, PDMS/DVB 65 236 

μm, PA 85 μm and PDMS 100 μm SPME coatings is illustrated as MS detector response for 237 

each compound in Fig. 2 (Table S1, Supplemental Material). All the four SPME fiber coatings 238 

performed sufficiently effective extraction on all selected VOCs except of sulfur compounds. 239 

More effective extraction was observed using CAR/PDMS 85 μm and PA 85 μm fiber coatings 240 

than the other two for all target compounds, except for p-cresol, for which PDMS/DVB 65 μm 241 

was superior. Comparison between the mixed phase coating CAR/PDMS 85 μm and the 242 

single phase coating PA 85 μm indicated that CAR/PDMS 85 μm would be a better choice 243 

due to: 1) more effective extraction of all target compounds except DMS; 2) consistency with 244 
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one of the selection guidelines [38] that mixed phase coatings are considered to fit volatile 245 

compounds sampling better than single phase coatings. One of the odor indicators for swine 246 

manure is p-cresol [2,6,39], whose extraction efficiency is considered very critical. However, 247 

the difference in extraction efficiency between CAR/PDMS 85 μm and PDMS/DVB 65 μm on 248 

p-cresol was not statistically significant (p=0.166), while very significant difference (p=0.009) 249 

was observed for these two coatings in extracting S-VOCs and VFAs. CAR/PDMS 85 μm 250 

captured more VFAs than PDMS/DVB 65 μm under the same conditions. Hence, CAR/PDMS 251 

85 μm coating can be more effective in extracting a wider range of compounds. PDMS/DVB 252 

65 μm also had a poor performance in trapping S-VOCs. Sulfur VOCs at trace levels, even 253 

below the detection limit, contribute significantly to the total odor [25], and is another critical 254 

group of VOCs associated with livestock odors. According to Pawliszyn [38], one important 255 

principle in developing methodology is that the primary consideration should be given to the 256 

group of analytes that is most difficult to extract and should be based on overall extraction 257 

efficiency. Hence CAR/PDMS 85 μm coating was selected to do all the following extractions in 258 

this study.  259 

The fiber selection was further justified by comparing the MS detector response RSD (%) 260 

ranges to standard concentrations of target VOCs sampled with four SPME fibers (Table 3). 261 

The RSD (%) ranged from 4.9% to 19.3% for the four fibers used. The relatively small RSD 262 

associated with the use of CAR/PDMS 85 μm coating showed good reproducibility and more 263 

stable performance for all extractions. The RSD range (from 3.3% to 7.8%) was more 264 

favorable compared with that for all the other fiber coatings.   265 

3.2. Selection of sampling time 266 

The sampling time optimization was conducted for CAR/PDMS 85 μm fiber. Experiment 267 

was performed in triplicates at a 5-point time series basis ranging from 1 min to 1 h. The 268 

mean FID response was plotted against extraction time. Detected peak area (PA) counts 269 

increased with sampling time in a linear trend for most compounds except for methyl 270 

mercaptan after 10 min extraction, when it started to deviate from linearity. However, when up 271 

to 10 min was selected, all target odorants showed a high positive linearity between extracted 272 

mass and extraction time (Fig. 3). The correlation coefficient R2 values for VFAs and p-cresol 273 

nearly equal to 1 (Table 4). According to Pawliszyn [38], the practical sampling time should be 274 
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the longest extraction time with the maximum amount extracted before the extraction reaches 275 

equilibrium. However, CAR/PDMS extracts analytes by adsorption, which means a 276 

competitive adsorption of VOCs to the surface of the fiber coating.  With lower affinity to 277 

CAR/PDMS, S-VOCs tend to be easily replaced. None of previous research analyzed S-278 

VOCs, VFAs and p-cresol simultaneously, thus not dealing with a range of molecular weight 279 

compounds and functionalities with differing affinities to the fiber. Efficient extraction of S-280 

VOCs in a complex gas mixture (of target VOCs) needs to be assured. Non-linear extraction 281 

conditions for S-VOCs are less useful for quantification, are difficult to control and not 282 

recommended for quantitative analysis. A shorter extraction time in a linear extraction range 283 

was considered. Good reproducibility was observed for target VOCs (RSD less than or close 284 

to 5%) for up to 5 min extraction (Table 4), and, at the same time, the risk of non-linear 285 

extractions and fiber coating saturation was minimized. This shorter extraction time (5 min) is 286 

also more practical in the sense of time saving for sampling. Hence 5 min extraction was 287 

chosen for most of the analyses in this work. 288 

Further comparison was illustrated by plotting the FID detector response normalized by 289 

gas concentrations over sampling time for each compound (Fig. 3). The slope m represents 290 

FID response normalized by gas concentrations as a function of air sampling times with 291 

SPME. The relationship between normalized peak area (PA) counts and sampling time 292 

followed four salient trends: 1) comparison among all three groups (S-VOCs, VFAs and p-293 

cresol) showed that the slope m* increased with molecular weight except for ethyl 294 

mercaptan/DMS and the isomer isovaleric acid; 2) comparison within each group showed a 295 

steadily, if not linearly, increasing trend between the slope m* and molecular weight except for 296 

isovaleric acid as shown in Fig. S1, and the correlation coefficients were 0.96 and 1.00 for S-297 

VOCs and VFAs, respectively; 3) more rapid increase was observed for VFAs than S-VOCs 298 

compounds; 4) p-cresol was the compound with much higher m* than the other analytes. 299 

RSD (%) and linearity of FID response to standard concentrations of target VOCs sampled 300 

with SPME fiber at different air sampling times are summarized in Table 4.  301 

3.3. Method evaluation and validation 302 

The optimized procedure was evaluated and validated based on its linearity, detection 303 

limit, repeatability and recovery. The linearity of the method was evaluated by preparing 304 
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calibration standards generated by SGG. The calibration curves were linear over the 305 

concentration ranges of target analytes as shown in Fig. 4. The linear regression equation 306 

coefficients, range of the gas concentrations, R2, method detection limits (MDLs) and ranges 307 

of RSDs (%) are summarized in Table 5. MDLs were estimated based on 6 replicates (7 for p-308 

cresol). Up to 1 ppbv MDL was achieved for most of the compounds except methylmercaptan 309 

and ethylmercaptan. The lowest MDL was 0.233 ppbv for butyric acid, while the MDL of p-310 

cresol was 0.308 ppbv, which covers the range of typical aerial concentration of p-cresol in 311 

livestock emissions [16, 41].  312 

3.4. Method application for analysis of odorous VOCs in moving air irradiated with UV    313 

An example of a total ion chromatogram of UV treated gas sample from SGG is shown in 314 

Fig. 5. VOC concentrations were calculated using the calibration curves (Table 6). The 315 

concentrations of all VOCs were in the range of the maximum measured concentrations 316 

calculated by calibration curves and the MDLs.  In this demonstration of odor mitigation by 317 

means of UV, measured concentrations of key odorants were reduced by approximately 40 to 318 

70%.   319 

4. Conclusions  320 

Headspace-SPME coupled with GC–MS is a useful and effective analytical tool for 321 

characterization and quantification of complex odorant mixtures associated with livestock 322 

operations.  The low detection limits (ranging from 0.23 to 2.64 ppbv) obtained with the 323 

optimized method were approximately one order of magnitude below published detection 324 

thresholds for target odorous gases.  325 

Extraction of sulfur VOCs, VFAs and p-cresol with SPME were optimized simultaneously 326 

for the first time. The CAR/PDMS 85 μm extraction efficiency was positively correlated with 327 

molecular weight of target compounds of the same chemical functionality. Methyl mercaptan, 328 

ethyl mercaptan, and dimethyl mercaptan at low molecular weights have the lowest affinity to 329 

the SPME fiber. Extraction efficiency of these compounds with low affinity to SPME fiber was 330 

optimized by shortening extraction time. 331 
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Figure Captions 443 
 444 
Fig.1. A Scheme of the standard gas mixture generation system (SGG) coupled with a bench-445 
scale UV photoreactor. 446 
 447 
Fig.2. Comparison of extraction efficiency of target VOCs for different SPME fibers coatings:  448 
CAR/PDMS 85 μm, PDMS/DVB 65 μm, PDMS 100 μm and Polyacrylate 85 μm.  MS detector 449 
response was normalized by gas concentrations. SPME conditions: T = 25 ºC, sampling time = 450 
5 min, flow rate = 300 mL/min, dry air. Abbreviations: methyl mercaptan = MeSH, ethyl 451 
mercaptan  = EtSH, dimethyl sulfide = DMS, n-butyl mercaptan = BM, acetic acid = AcOH, 452 
propanoic acid = PPA, butyric acid = BTA, isovaleric acid = IVA.  453 
 454 
Fig.3. Optimization of SPME sampling time of target VOCs from standard gas mixture: 455 
normalized by gas concentrations. Experimental conditions: CAR/PDMS 85 μm SPME fiber, 456 
300 mL/min standard gas flow, T=25 ºC, dry air. Five min sampling was selected for all follow-457 
up experiments. 458 
 459 
Fig.4. Calibration curves for target VOCs. Experimental conditions: gas sampling with 460 
CAR/PDMS 85 μm; 5 min sampling time; T=25 ºC; dry air. 461 
 462 
Fig. 5. Comparison of total ion chromatograph of treated gas sample with control sample from 463 
SGG. Experimental conditions: gas sampling with CAR/PDMS 85 μm; 5 min sampling time; 464 
T=25 ºC; dry air; flow rate = 300 ml/min; UV treatment at 254 nm (principle) and 185 nm, with 465 
light intensity = 1.5 mW/cm2 @254 nm with TiO2 present. Note: MM=methyl mercaptan, 466 
EM=ethyl mercaptan, DMS=dimethyl sulfide, BM=butyl mercaptan, AA=acetic acid, PA= 467 
propanoic acid, BA=butyric acid, IV=isovaleric acid. 468 
 475 


