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INTRODUCTION 

Heterosis, the superiority in one or more characteristics of crossbred organ
isms relative to their inbred parents, is the basis of the modern cultivars utilized in 
maize (Zed mays L.). Heterosis is of interest in nondomesticated species due to its 
relevance to the question "how much polymorphism is maintained in natural 
populations due to selection?" (Berger, 1976). For maize and certain other domes
ticated species that employ inbred lines to produce commercial hybrids, knowledge 
of the mechanisms of gene action producing heterosis could contribute to advances 
in breeding techniques. 

One method used to evaluate the existence of heterosis involves measuring 
multilocus heterozygosity levels in individuals sampled from a population with 
molecular genetic markers and correlating heterozygosity with a trait believed to 
reflect fitness, e.g., fecundity, viability, growth rate, or developmental stability. A 
vast number of these studies, many involving natural populations, have been pub
lished during the previous three decades. A general consensus is that a significant 
positive correlation between multilocus heterozygosity and fitness surrogates has 
been documented for a systematically wide range of organisms, although it is not a 
universal phenomenon (recently reviewed by Britten, 1996; Mitton, 1994; Zouros 
& Foltz, 1987). 

The two genetic mechanisms most commonly invoked to explain heterosis 
are dominance and overdominance. The dominance hypothesis explains heterozy
gote superiority as a result of the masking of deleterious recessive alleles in an in
dividual, whereas the hypothesis of overdominance postulates an advantage of het
erozygosity per se, e.g., through differences in biochemical properties of homozy
gote vs. heterozygote encoded single-locus products (Berger, 1976). Dominance 
cannot be distinguished in practice from pseudooverdominance, associative over
dominance, or dominance-correlation heterosis. These are all synonyms of hetero
sis due to the joint action of genes associated in negative gametic phase disequilib
rium. Some causes of gametic disequilibrium are directional selection, recombina
tion suppression, inbreeding, or small effective population size (see Houle, 1989 
for references). 

Heterosis is relevant to the study of several subdisciplines within biology 
(e.g., plant and animal breeding, mating system evolution, developmental genet
ics); many good reviews differing slightly in their emphases have been published 
recently. Sedcole (1981) reviewed examples from plant breeding from approxi
mately 1930 to 1980. Tsaftaris (1995) provided a review of recent molecular 
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techniques used to study heterosis in plants, e.g., looking at RNA amount poly
morphism (RAP), protein amount polymorphism (PAP), or DNA methylation lev
els. A review of heterosis as it relates to plant inbreeding depression can be found 
in Ritland (1996). 

Berger (1976) reviewed theoretical mechanisms for the superiority of het
erozygosity per se for protein polymorphisms; many of these have intuitive appeal. 
Presently, there are only a few well-documented instances of overdominance as a 
mechanistic explanation of heterosis in natural populations (see Mitton, 1994). 
The same can be said for domesticated species. One maize example is often cited: 
Schwartz (1973) found that active and stable heterodimers of alcohol dehydroge
nase (Adh) are made up of two monomers, one of which is inactive (but stable) and 
the other of which is labile (but relatively active). The paucity of examples of sin
gle-locus heterosis may not be due to its infrequency, but may be because it is dif
ficult to study, and overdominance is infrequently the sole supporting hypothesis. 

Crow (1993, p. 15) recently reviewed genetic evidence that has led to the 
disfavor of the overdominance hypothesis in lieu of simple dominance as an expla
nation of heterosis in maize. Most importantly, researchers have found positive 
evidence for pseudooverdominance. This came from experiments in which hybrid 
maize populations were advanced several generations and recombination broke up 
linkages between favorable dominant and deleterious recessive alleles (e.g., 
Gardner and Lonnquist, 1959). Additional reasons for accepting the dominance 
hypothesis, according to Crow (1993), are a larger deleterious mutation load than 
originally generally believed (measured in a few species) and successful selection 
for relatively high yielding maize inbred lines (compared to early hybrids). The 
mutation load can explain the observed 15 to 20% grain yield increases observed in 
maize hybrids over their panmictic base populations, and high yielding inbred lines 
would not be possible if overdominance was the mechanism underlying high yield. 

QUANTITATIVE GENETIC EVIDENCE FROM THE BSSS X BSCBl 
RECIPROCAL RECURRENT SELECTION PROGRAM 

In spite of the general acceptance of dominance as the explanation for het
erosis in maize today, this was not true 50 years ago. Comstock et al. (1949) pro
posed a breeding method for maize that they termed recurrent reciprocal selection 
(now known as reciprocal recurrent selection, RRS). Their motivation for devel
oping the method was, as they stated, to discover a selection method that would be 
effective regardless of the level of dominant gene action. They proposed that RRS 
would be beneficial for instances in which overdominance, or situations analogous 
to overdominance (repulsion phase linkages), existed or when interactions of non
allelic genes (epistasis) were important; it would also exploit additive genetic ef
fects. In theory, RRS is intended to improve the performance of an interpopulation 
cross of two genetically divergent populations. One cycle of RRS involves devel
opment of genetic units within populations (e.g., Sl lines, first-generation progenies 
from self-fertilized individuals), reciprocal crosses of genetic units between popu
lations, phenotypic evaluation of these testcrosses, and selection of progenies based 
on testcross results. Selected progenies are then mated within each population. 
The next cycle of selection is initiated from these. RRS is designed to allow for 
genetic recombination within populations to maintain quantitative genetic varia
tion, while minimizing inbreeding. The maintenance of two separate gene pools 
allows a different allele to be fixed within each population. For loci where this is 
achieved, interpopulation hybrids are assured to be heterozygous. 

Two maize populations, Iowa Stiff Stalk Synthetic (BSSS) and Iowa Com 
Borer Synthetic #1 (BSCBl), are currently in their 14th cycle ofRRS in the Coop
erative Federal-State maize breeding program at Iowa State University. Increased 
grain yield of the interpopulation cross has been the primary target of selection, 
with reduced grain moisture at harvest and increased resistance to root and stalk 
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lodging as secondarily selected traits. Selection has been highly successful; mean 
grain yield of the interpopulation cross improved 77% by Cycle 11, relative to Cy
cle 0, with concurrent favorable responses in the other traits (Keeratinijakal & 
Lamkey, 1993a). 

Midparent heterosis for BSSS(R) and BSCBl(R) was estimated as the dif
ference between the mean of the interpopulation cross and the mean of the two pa
rental populations. Inbreeding depression (the reduction in the mean value of a 
character produced by inbreeding) was measured for the interpopulation cross by 
selfing their Fl. Steady increases in heterosis and inbreeding depression for grain 
yield over 11 cycles were found (Keeratinijakal & Lamkey, 1993a). These were 
interpreted as resulting from an increase, over time, in heterozygosity of the inter
population cross. Using Smith's (1983) model Keeratinijakal & Lamkey (1993b) 
partitioned the genetic response to selection of BSSS(R) and BSCB 1 (R) into com
ponents due to additive and dominance effects and looked for evidence of overdo
minance. They found (partial to complete) dominance effects to be more important 
than additive effects in the interpopulation cross, with no evidence for overdomi
nance. Diversity analysis (Moll & Hanson, 1984) of the two populations supported 
this interpretation. Directional dominance for grain yield and a difference in the 
frequencies of alleles affecting grain yield between the original populations were 
also inferred. 

Similar results have been reported for other maize RRS programs. Eyher
abide and Hallauer (1991a,b) reported on reciprocal full-sib recurrent selection in 
the BSI0 and BS11 populations. They found significant increases in midparent 
heterosis and inbreeding depression for grain yield in the interpopulation cross over 
eight cycles of selection. They also detected directional dominance and different 
frequencies of alleles with dominance effects for grain yield between the Cycle 0 
populations. They suggested that selection had caused changes in frequencies of 
alleles with dominant effects in a different set of loci for each population or that 
different isoalleles with dominant effects had been selected in each population. 
Hanson and Moll (1986) also concluded that overdominant gene effects were not 
evident in the Jarvis and Indian Chief populations after 10 cycles of RRS; alleles 
having additive or dominant effects were selected. 

MOLECULAR MARKER EVIDENCE FROM THE BSSS X BSCBl 
RECIPROCAL RECURRENT SELECTION PROGRAM 

We have genotyped samples from three populations within BSSS(R) and 
BSCBl(R), representing three different stages in their selective history (see Labate 
et a!., 1997 for complete details). BSSS and BSCB 1 synthetic populations trace 
back to 16 and 12 inbred lines, respectively. These collections of inbred lines are 
herein referred to as progenitor (P) populations. Cycle 0 populations were formed 
by several generations of random-mating bulked seed obtained from a series of 
crosses between progenitor inbred lines. These BSSS(R) and BSCBl(R) Cycle 0 
populations were the starting material for RRS. Finally, we have genotypes from 
samples from both populations after twelve cycles ofRRS (Cycle 12). 

The molecular markers used were 82 nuclear genomic restriction fragment 
length polymorphism (RFLP) loci randomly distributed across all 20 chromosomal 
arms. The markers were assumed to be selectively neutral, i.e., the alleles at a lo
cus would not differ measurably in their effects on the selected traits. The probes 
were chosen for their high levels of polymorphism and extensive coverage of the 
genome. One-hundred individuals from each Cycle 0 and Cycle 12 population 
were chosen at random for genotyping, as well as single individuals from each of 
28 progenitor inbred lines (two of the BSSS progenitor inbred lines had been lost; 
however, the two parental lines of one of these were included). Each of the 82 
RFLP probes was considered to be a single locus, and variants at each locus were 
assumed to be allelic. 
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Genetic Diversity 

We found that mean gene diversity, expected heterozygosity under random
mating, was initially quite high within BSSS(R) and BSCB1(R). This also can be 
thought of as the probability of obtaining a heterozygote when two alleles are sam
pled at random from the population. This probability was around 60% in both pro
genitor populations. After 12 cycles ofRRS, mean gene diversity had decreased to 
near 30% in each. Coinciding with this, the mean number of alleles per locus in 
BSSS(R) and BSCB1(R) dropped from about four to less than three. A further 
question was of interest. Looking at the total gene pool of BSSS(R) and 
BSCB1(R), what happened to genetic diversity over 12 cycles ofRRS? If two al
leles were sampled at random, one from each population, what would be the prob
ability of obtaining a heterozygote? The increases in heterosis and inbreeding de
pression of the interpopulation cross seen in the quantitative genetic analyses sug
gested that the interpopulation cross was becoming more heterozygous. The 
pooled mean genetic diversity for the progenitor populations was estimated to be 
63% and for the Cycle 12 populations, approximately 66%. The two estimates 
were not significantly different based on their standard errors. 

Because of the assumption of selective neutrality of the RFLP markers, the 
lack of increase in interpopulation gene diversity was not completely unexpected. 
In fact, the estimated loss of mean genetic diversity within each population con
formed to theoretical expectations (Nei, 1987, Eq. 13.12) of genetic drift of neutral 
alleles (i.e., random changes in allele frequency caused by gametic sampling each 
generation). We could see that, in the face of substantial loss of diversity within 
each population, the between popUlation genetic diversity had remained high. Ge
netic diversity is a function of the numbers of alleles at a locus and allelic frequen
cies. This implied that, in general, different alleles had reached high frequencies in 
BSSS(R)C12 and BSCB1(R)C12. 

Results from a principal components analysis (PCA) (Rohlf, 1994) of the 
428 individuals sampled from BSSS(R) and BSCB1(R) populations are shown in 
Fig. 12-1. Each point represents an individual separated in a three-dimensional 
space based on the presence/absence of 391 alleles (genotypes for 82 loci). The 
progenitor lines do not form two discrete clusters according to which population 
they formed. BSSS(R) and BSCB1(R) were initially nearly genetically identical. 
By Cycle 0, BSSS(R) and BSCB1(R) seem to be distinct from each other. In the 
absence of genetic drift and selection, the Cycle 0 populations should have re
mained clustered with the progenitors. We have inferred that maintenance for sev
eral decades of BSSS(R)CO and BSCB1(R)CO has altered their genetic constitu
tions. This was especially evident in BSSS(R), for which it seemed that many rare 
alleles present in P were not sampled in the modem representatives of Cycle 0 (La
bate et al. 1997). By Cycle 12, BSSS(R) and BSCB1(R) were substantially di
verged. The separation between the Cycle 0 and Cycle 12 populations include a 
component due to genetic drift, because a limited number oflines (10 to 20) were 
selected and recombined each cycle, and a component due to selection, because the 
recombined lines were not chosen at random. 

So far, the results presented have focused on mean diversity, and genetic 
changes across all loci. By examining the data, it was clear that some of the loci 
had experienced extreme changes in allele frequencies over the course of selection. 
The pertinent question became, "Have any of the loci experienced allele frequency 
changes that were too large to be explained by genetic drift?" Even though the 
markers fit a neutral model based on mean levels of gene diversity, this did not 
preclude that some of the allele frequency changes had been influenced by selec
tion. This could have come about directly through selection or, more probably, 
through genetic hitchhiking. The hitchhiking effect is seen when selection at a lo
cus changes the frequencies of neutral alleles at closely-linked loci and is condi
tioned on initial linkage disequilibrium between the loci. 
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Fig. 12- 1. Principal components analysis ofIowa Stiff Stalk Synthetic (BSSS) and 
Iowa Com Borer Synthetic #1 (BSCB1) based on genotypes of sampled indi
viduals at 82 RFLP loci. The six sampled populations include progenitor in
bred lines, populations before RRS (CO populations), and populations after 12 
cycles ofRRS (C12 populations). Progenitor populations do not form two dis
tinct groups. 
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Effective Population Size 

Accurate knowledge of effective population size (Ne) is a key to discerning 
genetic changes brought about by drift from those that result from selection. Ef
fective population size is defined as the number of individuals in an idealized (Le., 
random mating) population that would undergo genetic drift at the same rate as the 
observed population. Under RRS, Ne is thought to be equal to the number of se
lected lines each cycle (Vencovsky, 1978). If all parents leave exactly the same 
number of offspring, Ne is expected to equal 2N - 1 (Kimura, 1983, p. 41). When 
the number of selected lines has varied, Ne can be calculated as the harmonic mean 
of the number of selected lines over all cycles. Our empirical estimates based on 
the loss of mean genetic diversity between Cycle 0 and Cycle 12 supported an Ne 
equal to the harmonic mean of the number of selected lines, Ne = 12 (Labate et al., 
1997). A second method (Waples, 1989a), based on allele frequency changes 
across all loci, was used to estimate Ne for BSSS(R) and BSCBl(R) populations 
(Labate et al., 1999). The two methods agreed; Ne is approximately the harmonic 
mean of the number of selected lines over all cycles. The 95% confidence intervals 
obtained for Ne using Waples' (1989a) method approached, but did not overlap 
with, (2N -1). 

Neutrality Tests 

Given our estimates of Ne, we applied a test of selective neutrality (Waples, 
1989b) to each of the 82 RFLP loci in BSSS(R) and BSCBl(R) populations. The 
null hypothesis was: the observed variation in allele frequency between two time 
points can be sufficiently explained as arising from the sampling of a population, of 
size Ne, that has undergone t generations of genetic drift. 

We used estimated frequencies at time points Cycle 0 and Cycle 12 as ini
tial and final allele frequencies, assumed Ne = 12 (or 23), and t = 12 generations 
(cycles). Because allele frequency changes at many of the loci between Cycle 0 
and Cycle 12 were too large to be explained by genetic drift alone, we interpreted 
these changes as positive evidence for directional selection and/or genetic hitch
hiking. The null hypothesis of drift was rejected for 11 and 17 loci in BSSS(R) and 
BSCBl(R), respectively, using Waples' test at a probability level of 5%. The loci 
were found on all chromosomes and were spread throughout the genome. These 
nonneutral loci fit a pattern of complementary genetic changes between the two 
populations. Only one was shared between BSSS(R) and BSCBl(R), and at that 
locus a different allele was reaching high frequency within each popUlation. 

The observed allele frequencies at the 27 loci are illustrated in Fig. 12-2. 
Frequencies of nonneutral alleles are shown at Cycle 0 and Cycle 12 for both 
populations. Looking within a population at nonneutral alleles identified for that 
population, rejection of the null hypothesis was associated with an approximately 
60% change in an allele's frequency. 

We then estimated gene diversity of the interpopulation cross, comparing 
the 55 neutral loci to the 27 nonneutral loci (Labate et aI., 1999). The ·nonneutral 
loci increased in mean expected heterozygosity of the interpopulation cross be
tween Cycle 0 (0.664 ± 0.0352) and Cycle 12 (0.776 ± 0.0537) whereas the 55 
neutral loci did not (Cycle 0 = 0.603 ± 0.0243, Cycle 12 = 0.595 ± 0.0384). Com
paring the two populations, the 11 nonneutral loci in BSSS(R) contributed to the 
increase in interpopulation heterozygosity more than the 17 nonneutral loci in 
BSCBl(R). A partial explanation for this can be found by studying Fig. 12-2, 
parts c and d. Many of the 17 nonneutral BSCB 1 (R) alleles were at high frequen
cies in BSSS(R) at Cycle 0 and remained high in BSSS(R) at Cycle 12 (e.g., 
bn1835, bn1749, umcI55). These loci underwent marked decreases in interpopula
tion expected heterozygosity. 
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Fig. 12-2. Allele frequencies at Cycle 0 (white bars) and Cycle 12 (filled bars) for 
27 nonneutral loci identified in the BSSS(R) and BSCBl(R) populations. a) 
frequencies in BSCBl(R) for 11 nonneutral loci in BSSS(R), b) frequencies in 
BSSS(R) for II nonneutral loci in BSSS(R), c) frequencies in BSSS(R) for 17 
nonneutral loci in BSCB 1 (R), d) frequencies in BSCB 1 (R) for 17 nonneutral 
loci in BSCBl(R). 
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One prediction under RRS is that if a favorable allele exists in both popula
tions, selection will be more effective for that allele in the population within which 
it is more common (Cress, 1967). At about one-half of the nonneutralloci, the fa
vored allele was at an initial frequency of less than 10% in the reciprocal popula
tion and remained low. The other loci didn't conform to this predicted pattern (Fig. 
12-2). Possible reasons for this are (i) at most loci, there were more than two al
leles in BSSS(R) and BSCBl(R), so the dynamics of selection were not predicted 
by this simple model; (ii) intralocus, complete dominance was not the genetic 
mechanism for increasing the selected allele; or (iii) in the instance of genetic 
hitchhiking, interlocus correlation (two-locus disequilibrium) patterns were differ
ent within BSSS(R) and BSCBl(R). 

CONCLUSIONS 

Heterosis for grain yield in the interpopulation cross has increased in the 
BSSS(R) and BSCBl(R) RRS program, and the two populations have become 
quite genetically diverged from each other. The use of molecular markers has pro
vided some insight into the roles of selection and genetic drift in BSSS(R) and 
BSCBl(R). Theoretical studies (Li, 1978) have shown that the absolute value of 
the selection coefficient for an allele must be greater than liNe for selection to 
overcome genetic drift. This assumes a Wright-Fisher model of random genetic 
drift of neutral alleles (see Hartl & Clark, 1989, p. 351). The selection coefficient 
is the relative gametic contribution of a particular genotype compared with the 
most favored genotype in the population (Falconer & Mackay, 1996, p. 26). Our 
findings imply that a large fraction of loci in the maize genome, about 33% of 
those surveyed, were affected by selection. If Ne = 12 as estimated, then selection 
coefficients were at least 8%. 

Although yield has not been the only agronomic trait selected, it has been 
emphasized. If yield is affected by many loci that are densely distributed through
out the genome and that carry large phenotypic effects, it is easy to understand why 
fixation of the most favored genotype in an inbred line derived from an improved 
population is difficult. Other popUlation genetic studies where molecular markers 
were used also found that a large fraction of scored loci affected yield (Stuber et 
ai., 1980, 1992), although some studies (e.g., Brown & Allard, 1971; Kahler, 1983) 
have found that genetic drift could explain observed allele frequency changes. The 
~arlie~ studies used allozyme loci; DNA-based markers are much more informative 
mmalze. 

Stuber et al. (1992), using 67 RFLP loci and nine isozyme loci, genotyped 
sets of lines descending from a cross originating between two maize inbred lines. 
When they regressed mean trait value on percent heterozygous marker loci, they 
found a high correlation between grain yield and proportion of heterozygous mark
ers. A large fraction of the genome was found to affect yield (markers significantly 
associated with yield were found on all 10 chromosomes), even though this ex
perimental design was limited to detecting regions polymorphic between the two 
original inbreds. 

Reciprocally selected populations should continue to provide a suitable ex
perimental system within which to study relationships between multilocus hetero
zygosity and phenotype. In this genetic system recombination is prohibited at the 
interpopulation level, allowing fixation of balanced intralocus or interlocus gene 
action in the interpopulation cross. Testing theories of gene action requires esti
mation of parameters such as mutation rates, selection pressure, recombination 
distances, and inbreeding coefficients (Zouros & Foltz, 1987). It should be possi
ble to obtain more accurate measures of these parameters in maize selection pro
grams than in natural populations. 
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