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INTRODUCTION 

The detection of distributed microcracks in metals and of multiple fractures in 
hydrocarbon reservoirs is of primary importance in the aircraft and oil industries. 
Often elastic wave methods are used, and detection relies on the choice of an 
appropriate data processing and interpretation technique. 

Data interpretation is difficult because of the lack of a reliable analytical 
framework describing the interaction between elastic waves and distributed cracks 
or fractures. Most of the analytical work in this area has focused only on the 
determination of speed and attenuation, as for example in [1-5), and not on 
reflection. Yet, reflection is the quantity that can be measured most easily. 

In this paper, we review recent results concerning the propagation of SH 
(antiplane) waves that are either normally or obliquely incident on a random 
distribution of parallel cracks. In this case, the reflection and transmission on either 
side of the cracked region are given by simple analytical formulas. 

Then, we examine a static approximation in which the cracked region is 
replaced by a homogeneous equivalent slab. The approximation yields a closed-form 
formula for the reflection coefficient, in terms of frequency, crack length, crack 
density, slab thickness, and incident angle. This formula and the earlier analytical 
formula for the reflection are shown to be in good agreement for near-normal 
incidence and low frequency. As a result, the closed-form formula can be used as a 
convenient tool to estimate reflection and to enhance data interpretation at a 
minimal cost. 

THEORY 

We consider a linearly elastic, homogeneous, and isotropic unbounded solid 
that contains a uniform distribution of parallel cracks, as shown in Fig. 1. The 
cracks have width 2a, lie in planes orthogonal to the (Yl, Y2) plane, extend to infinity 
in the ±Y3 directions, and their centers are randomly and uniformly distributed ill 
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Figure L Obliquely incident antiplane wave on a cracked slab of thickness 2h. 

an open slab of width 2h. The speed Cr and the slowness ST of transverse waves in 
the uncracked solid are given by 

(1) 

where p and f1 are the mass density and the shear modulus of the solid. An incident 
anti plane wave propagates toward the cracks at an angle 0 relative to the Y2 axis. 
The displacement uinc , which is in the Y3 direction, is given by 

(2) 

where the time-harmonic factor, exp (-iwt), is omitted. In (2), Uo is the amplitude, 
w is the frequency, and 0 varies in the range 0 S 0 < 7r /2. 

The incident wave (2) is subjected to multiple reflections between the cracks. 
We omit throughout this work the factor exp( -iwt), which is common to all field 
variables in a steady-state regime. Since the distribution of cracks is uniform, the 
number n of cracks per unit area in the slab is constant on average. We define ,= ((1,(2) to be the position vector of a crack center and we attach a system of 
orthogonal axes (Xl, X2) at e, as shown in Fig. 1. 

We first consider the case when the wave (2) is incident on N cracks that 
occupy distinct deterministic positions in a rectangle vt; of width 2h and length 
N/(2hn) centered at the origin 0 in Fig. 1. In this case, the total displacement uT in 
the solid is represented in terms of the incident displacement uinc and of the 
displacements ii,sc scattered by the N cracks in the form 

N 

uT (Yl,Y2IAN ) = U inC(YbY2) + Lii,SC(Yl,Y2;,iIAN ) , 
;=1 

where AN = (,l, ... , eN) denotes the configuration of cracks, and the center 
position ,i after the semi-colon is used to label the displacement scattered by the 
ith crack. We define the exciting displacement ii,E on the ith crack as the total 
displacement minus the ith scattered displacement . Thus, one has 

-E( . /"iIAN) T( IAN) -SC( . /"iIAN) u Yl ,YZ,." =u YbY2 -u Yl ,Y2,." . 

(3) 

(4) 

Next, we assume that the N cracks are randomly and uniformly distributed 
with constant number density n in the rectangle Vt;. In addition, we assume that 
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the N parallel cracks have no points of contact and that they are exchangeable. 
Then, we can define a probability density function p : n2N -* IR, where n2N is the 
N-fold Cartesian product of V:~, such that the partial integral of p over the 
(N - I)-fold Cartesian product n 2N- 2 is equal to niN. Further, the integral of p 
over n2N is equal to unity. 

The average total displacement < uT > N in the solid is obtained by 
multiplying (3) by p, and integrating over n2N. In the limit as the number N of 
cracks tends to infinity, there is an infinite number of cracks that are randomly and 
uniformly distributed with constant number density n in a slab V:' of width 2h, as 
shown in Fig. 1. The average total displacement < uT >00 at any point (Yl, Y2) in 
the solid can be obtained from (3) in the form 

< uT >00 (Yb Y2) = uinc(yl, Y2) + n { < use >00 (Yb Y2; C) dC. (5) 
Jv~ 

Since the slab extends to infinity in the ±Yl directions with boundaries 
parallel to the Yl axis, and has a uniform distribution of cracks, it follows that the 
total displacement < uT >00 (Yl,Y2) has the same dependence on Yl as the incident 
displacement Uinc(Yl, Y2). Thus, we write 

(6) 

Substituting (6) into (5), applying a symmetry property analogous to (6) to 
the scattered displacement in the integral of (5), and changing the (1 integration 
variable that runs along the entire real axis, one finds that 

(7) 

(8) 

The average scattered displacement < usc >00 in (7) satisfies two equations 
that are similar to those of the one-crack problem. The first equation is a 
second-order Helmholtz differential equation and the second one is a boundary 
condition that imposes the vanishing of the average total stress < O"i3 >cc on the 
crack faces. These equations allow us, as in [6, 7J, to write an integral representation 
for < usc >00 in terms of the average crack-opening displacement. 

We now assume that, in a small neighborhood of a fixed crack, the average 
exciting displacement is equal to the average total displacement (Foldy's 
assumption). Then, with this assumption, we find from (7) and (8) that the average 
total displacement has the form 

< uT >00 (Y2) = uoexp (ikY2 cosO)-

(9) 

where sgn denotes the sign function, and B is a complex-valued number that is 
defined by 

i fa Ba2 =-k' 0 b(v) exp(-ikvsinO) dv. 
sIn -a 

(10) 
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The function b in equation (10) is the solution of a singular integral equation and an 
auxiliary condition, which are given by 

f a b(v) [_1_ + S(v - xr)] dv = -Jrexp(ikx1 sinO), 
-a V - Xl 

(11) 

i: b(v)dv = O. (12) 

In equation (11), the function S, which is consistent with the radiation condition, is 
given by 

loOO (3 
S(x) = (--I)sin(ex)de, 

o e Im((3) ::; 0, Re((3) :::: 0 . (13) 

Differentiating (9) twice in the range IY21 < h, one finds a second-order 
ordinary differential equation. The general solution of this equation is 

where C and D are complex-valued constants and J{ is a complex-valued 
wavenumber. The number 1< is given by 

(14) 

(15) 

Numerical results in [6,7] show that 1(2 lies in the upper complex plane for all 
frequencies. Thus, we can define 1( to be the complex root of 1(2 that lies in the 
first quadrant. The constants C and D are easily determined by substituting (14) 
into (9). Outside the slab, IY21 > h, equation (9) can be written in the form 

In (16) and (17), the transmission coefficient T and the reflection coefficient Rare 
given by 

T = 4kK cos () / 6. , (18) 

R = (J{2 - k2 cos2 0) [exp( -2i1< h) - exp(2i1< h )]/ 6. , (19) 

6. = (K + k cos 0)2 exp[-2i(K - k cos ())h]- (I( - k cos ())2 exp[2i(J{ + k cos O)h]. (20) 

It follows from (14), (15), and (6) that there is a forward wave and a backward wave 
inside the cracked region. Both waves are attenuated and have velocity c such that 

C = CT/V(()) , V(O) = [sin2 0 + cos2 ()(Re1()2] ~ . (21 ) 

If w = wasT denotes the dimensionless frequency, and if the crack density t = na2 

is less than 1/7r, one can show from (10), (11), (12), (15), and (21) that 

C (1 - err )1/2 
CT = E1/2 +O(w2Logw), E=I-€7rsin 2 (), (t<I/7r), as W-+O. (22) 

52 



E= 0.05 
0.03 
0.01 

Figure 2. Modulus of the reflection coefficient versus the frequency for hi a = 5, 
( = 0.01, 0.03, 0.05, and normal incidence e = 0 degree. 

Figure 3. Modulus of the reflection coefficient versus the frequency for hi a = 5, 
to = 0.01, 0.03, 0.05, and incident angle e = 60 degrees. 

The only assumption that is needed to obtain the formulas (18) and (19) for 
the transmission and reflection coefficients is Foldy's assumption. The two 
coefficients depend on frequency, crack length, crack density, slab thickness, incident 
angle, and on the speed of transverse waves in the uncracked solid. 

NUMERICAL RESULTS 

Numerical results are obtained by solving the integral equations (ll) and (12) 
with a Gaussian method of approximation, as in [6,7]. We evaluate successively the 
following quantities: (i) the function b; (ii) the number B of (10); (iii) the 
wavenumber J{ of (15); (iv) the coefficients T and R of (18) and (19). 

Figure 2 {3, 4} shows the modulus of the reflection coefficient versus the 
dimensionless frequency for incident angle e = 0° {e = 60°, 75°}, crack densities 
(= 0.01,0.03,0.05 and slab thickness hla = 5. The reflection is small (less than 0.1) 
in the three figures. At w = 0, the value of IRI is zero. As w increases, the values of 
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Figure 4. Modulus of the reflection coefficient versus the frequency for h/a = 5, 
t = 0.01 , 0.03, 0.05, and incident angle 0 = 75 degrees. 
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Figure 5. Modulus of the transmission coefficient versus the frequency for h/a = 3 
(three upper curves) and h/a = 30 (three lower curves), t = 0.01, 0.03, 0.05, and 
incident angle 0 = 60 degrees. 

IRI have cyclic variations caused by interference phenomena inside the cracked 
region. The first minimum on each of the curves occurs approximately when the 
incident wave has a wavelength of 4h cos O. The following minima occur 
approximately at wavelengths that are integer multiples of 4h cos O. 

Figure 5 shows the modulus of the transmission coefficient versus the 
dimensionless frequency for incident angle () = 60°, crack densities 
t = 0.01,0.03,0.05 and slab thicknesses h/ a = 3, 30. At w = 0, the value of ITI is 1. 
As w increases, the values of ITI decrease. The decrease is steeper when the crack 
density t is larger, when the thickness h/a is larger and (as shown in [6,7]) when the 
incident angle () is closer to 0°. As the frequency w becomes large, the values of ITI 
approach the limit exp(-4th/a) independently of the angle of incidence (). 

STATIC APPROXIMATION 

When the slab of width 2h in Fig. 1, instead of being cracked, is made of a 
homogeneous elastic solid different from the surrounding solid, it is not difficult to 
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Figure 6. Modulus of the reflection coefficient versus the frequency for h / a = 5, 
t = 0.01, 0.03, 0.05, and normal incidence () = 0 degree; static equivalent slab. 

calculate the transmission T and reflection R on either side of the slab. If p, Gr, 

ST {p, c, s} denote the mass density, transverse-wave speed and slowness outside 
{inside} the homogeneous slab, and if there is a perfect bonding between the two 
solids at Y2 = ±h, one finds that the moduli of T and R are given by 

ITI = 2(PGr cosO) (pc cosO.)/fJ, (23) 

ST sin () = S sin Os . (26) 

In (23) - (26), Os denotes the refracted angle in the slab. Observe that both ITI and 
I RI are periodic functions of period 11" with respect to the variable 2wsh cos Os. The 
transmission ITI oscillates between 1 and a minimum value less than 1, and the 
reflection IRI oscillates between zero and a maximum value IRlm less than 1. 

Now let the homogeneous slab of thickness 2h be made of the static equivalent 
solid corresponding to the limit w = 0 of (22). Then, using (22), (24) and (26) , one 
finds that 

pc cos Os = PGr cosO (1- t11")t / E , S cos 0./ ST = cos 0/(1 - m)t , (27) 

IRlm = IE2 -1 + ml/(E2 + 1 - m), (t<l/11"). (28) 

Choosing () = 0°, h/a = 5, and f = 0.01, 0.03, 0,05, one finds that the 
reflection IRI of (24) and (27) versus w = wasT has the form shown in Fig. 6. 

Observe that the curves of Fig. 2 are in good agreement with those of Fig. 6 
for low frequencies w < 0.8. For higher frequencies, the approximate reflection of 
Fig. 6 does not decay toward zero as does the reflection of Fig. 2; further, it has 
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cyclic local minima that always take zero values, whereas the corresponding values 
are non-zero in Fig. 2. 

For () = 60°, h/a = 5, and t = 0.01, 0.03, 0.05, respectively, the maximum 
values of the reflection given by (28) are 0.0079, 0.0238, 0.0399. These values are 
less than half those of the first local maxima that occur at about w = 7r /10 in 
Fig. 3. Thus, the approximate formulas (24) and (27) do not give a good estimate of 
the peak reflections for oblique incidence; they still give, however, a good estimate 
of the frequency locations corresponding to the cyclic local minima. 
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