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Abstract

We present a new MATLAB toolbox under Windows and Linux for nonparametric
regression estimation based on the statistical library for least squares support vector
machines (StatLSSVM). The StatLSSVM toolbox is written so that only a few lines of
code are necessary in order to perform standard nonparametric regression, regression
with correlated errors and robust regression. In addition, construction of additive models
and pointwise or uniform confidence intervals are also supported. A number of tuning
criteria such as classical cross-validation, robust cross-validation and cross-validation for
correlated errors are available. Also, minimization of the previous criteria is available
without any user interaction.

Keywords: nonparametric regression, pointwise confidence interval, uniform confidence inter-
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1. Introduction

Nonparametric regression is a very popular tool for data analysis because it imposes few as-
sumptions about the shape of the mean function. Therefore, nonparametric regression is quite
a flexible tool for modeling nonlinear relationships between dependent variable and regressors.
The nonparametric and semiparametric regression techniques continue to be an area of active
research. In recent decades, methods have been developed for robust regression (Jureckova
and Picek 2006; Maronna, Martin, and Yohai 2006; De Brabanter et al. 2009), regression
with correlated errors (time series errors) (Chu and Marron 1991; Hart 1991; Hall, Lahiri, and
Polzehl 1995; Opsomer, Wang, and Yang 2001; De Brabanter, De Brabanter, Suykens, and De
Moor 2011b), regression in which the predictor or response variables are curves (Ferraty and
Vieu 2006), images, graphs, or other complex data objects, regression methods accommodat-
ing various types of missing data (Hastie, Tibshirani, and Friedman 2009; Marley and Wand
2010), nonparametric regression (Gyorfi, Kohler, Krzyzak, and Walk 2002), Bayesian meth-
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ods for regression (Ruppert, Wand, and Carroll 2003; Brezger, Kneib, and Lang 2005; Brezger
and Lang 2006), regression in which the predictor variables are measured with error (Carroll,
Ruppert, Stefanski, and Crainiceanu 2006; Meister 2009; Marley and Wand 2010), inference
with regression (Hall 1992; Ruppert et al. 2003; Fan and Gijbels 1996; De Brabanter, De
Brabanter, Suykens, and De Moor 2011a) and nonparametric regression for large scale data
sets (De Brabanter, De Brabanter, Suykens, and De Moor 2010).

In this article we focus on several areas of nonparametric regression and statistical inference
for least squares support vector machines (LS-SVM). Examples include (i) standard nonpara-
metric regression, (ii) robust nonparametric regression, (iii) pointwise and uniform confidence
intervals, (iv) additive models and (v) regression in the presence of correlated errors. By
means of several examples we demonstrate how effectively the StatLSSVM toolbox is able to
deal with the regression modeling areas which are stated previously. A MATLAB The Math-
Works, Inc. (2011) toolbox like StatLSSVM has the advantage that an entire analysis can be
managed with a single MATLAB script or m-file. Because the package is based on MATLAB
syntax, one can take advantage of MATLAB’s functionality for data input and pre-processing,
as well as summary and graphical display. The current version of StatLSSVM is compatible
with MATLAB R2009b or higher.

To our knowledge there is only one R (R Core Team 2013) implementation supporting LS-
SVM, i.e., the package kernlab by Karatzoglou, Smola, Hornik, and Zeileis (2004). However,
kernlab does not offer fully automatic data-driven procedures for tuning the parameters of
LS-SVM and it is not able to handle several areas implemented in StatLSSVM.

The StatLSSVM toolbox (http://www.esat.kuleuven.be/stadius/statlssvm/) is pub-
lished under the GNU General Public License. This software project aims at offering the
statistician an easy and fully functional set of nonparametric regression tools based on LS-
SVM. A complete user’s guide to StatLSSVM is available as a supplement to this paper as
well as all the MATLAB scripts in this paper. All data sets used in the examples are also
included in StatLSSVM.

Section 2 gives a summary on LS-SVM. Section 3 discusses the various model selection criteria
available in StatLSSVM together with the used optimization routines. Sections 4 through 8
deal with a specific nonparametric regression setting and demonstrates the capabilities of
StatLSSVM on illustrative and real world examples. Conclusions are summarized in Section 9.

2. Some background on LS-SVM

In general, one of the key ingredients of support vector machines (SVM) for regression is the
following: Let U C R"™f denote a high dimensional (possibly infinite) feature space. Then a
random input vector X € R? is mapped into this high dimensional feature space ¥ through
some mapping ¢ : R4 — W. In fact, there is a relation with the existence of a Hilbert space
H (Courant and Hilbert 1953) such that ¢ : R? — H and n; is the dimension of H. In this
space, one considers a class of linear functions defined as

Fow = {f:f(X):thp(X)+b,<p:Rd—>\Il,wER"f,beR}. (1)

However, even if the linear function in the feature space (1) generalizes well, the problem
of how to treat the high-dimensional feature space remains. Notice that for constructing
the linear function (1) in the feature space ¥, one does not need to consider the feature
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Figure 1: Illustration of the key ingredient of LS-SVM: Transformation ¢ of the input data
to the feature space.

space in explicit form, i.e., one only needs to replace the inner product in the feature space
o(Xp) (X)), for all k1 =1,...,n, with the corresponding kernel K (X}, X;). This result is
known as Mercer’s condition (Mercer 1909). As a consequence, to fulfill Mercer’s condition
one requires a positive (semi-)definite kernel function K. LS-SVM for regression (Suykens,
Van Gestel, De Brabanter, De Moor, and Vandewalle 2002b) are related to SVM (Vapnik
1999) where the inequality constraints have been replaced by equality constraints and the use
of a squared loss is employed. Let D,, = {(X1,Y1),...,(X,,Y,)} where X € R? and Y € R
be a given training data set, consider the model class F,, ¢ defined in (1) and let v > 0 be a
regularization parameter. Then, LS-SVM for regression is formulated as follows

n

min Jp(w,e) = gw'w+ 3 E e?

w,b,e —
P

(2)
s.t. YVi=w'o(X;)+b+e, i=1,...,n.

The squared loss in (2) can be replaced by any other empirical loss. By using an Ly loss
function (and equality constraints) in LS-SVM, the solution is obtained in a linear system
instead of using quadratic programming, see e.g., SVM, which speeds up computations. The
problem is that LS-SVM lacks sparseness and robustness. For specialized literature on other
loss functions and their properties, consistency and robustness, we refer the reader to Christ-
mann and Steinwart (2007); Steinwart and Christmann (2008) and Steinwart and Christmann
(2011). Suykens et al. (2002b) provides a benchmarking study on LS-SVM.

In Equation 2, it is clear that this model is linear in the feature space. This principle is
illustrated in Figure 1. Consider a nonlinear relationship in the input space (Figure 1 left
panel). Then, the inputs (X) are mapped into a high dimensional space by means of ¢
(Figure 1 right panel). In this space, a linear model is fitted given the transformed data

ID:’(L = {(@(X1)7Y1)7 ) ((P(Xn)ayn)} .
Since ¢ is in general unknown, problem (2) is solved by using Lagrange multipliers. The
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Lagrangian is given by
1 n n
L(w,b,e;a) = iw—rw + %Z e — Zai{nga(Xi) +b+e —Yi},
i=1 i=1

where «a; € R are Lagrange multipliers. Then, the conditions for optimality are given by

oL n

9w 0 — w=>) ", ap(Xi),

oL n

%:0 — Zizlai:(),

%:0 — ai:’yei, i:17...,n,

8€i

8£:0 — w (X)) +b+e—Y;=0, i=1,...,n.
( Dy

After elimination of w and e, parameters b and « are estimated in the following linear system:

1 —_ =

withY = (V,...,Y,) ", 1, =(1,...,1)Tand o = (avq, ..., ) . By using Mercer’s condition,
2 is a positive (semi-)definite matrix and the ki-th element of € is given by

0

Y

: 3)

Qu = o(Xp) ' o(X)) = K(Xi, X)) kl=1,...,n.

Hence, the kernel function K is a symmetric, continuous positive definite function. Popular
choices are the linear, polynomial and radial basis function (RBF) kernel. In this paper we
take K (X;, X;) = (2m) %2 exp(— | Xi — X,|3/2h?). The resulting LS-SVM model is given by

m(r) =Y &K (x, X;) +b.
=1

3. Model selection

In practical situations it is often preferable to have a data-driven method to estimate learn-
ing parameters. For this selection process, many data-driven procedures have been discussed
in the literature. Commonly used are those based on the cross-validation criterion (Bur-
man 1989) (leave-one-out and v-fold), the generalized cross-validation criterion (Craven and
Wahba 1979), the Akaike information criterion (Akaike 1973), etc. Several of these criteria
are implemented in the toolbox (see the user’s manual and the next sections).

Although these model selection criteria assist the user to find suitable tuning parameters
or smoothing parameters (bandwidth h of the kernel and the regularization parameter ),
finding the minimum of these cost functions tends to be tedious. This is due to the fact that
the cost functions are often non-smooth and may contain multiple local minima. The latter
is theoretically confirmed by Hall and Marron (1991).



Journal of Statistical Software 5

A typical method to estimate the smoothing parameters would define a grid over these pa-
rameters of interest and apply any type of model selection method for each of these grid
values. However, three disadvantages come up with this approach (Bennett, Hu, Xiaoyun,
Kunapuli, and Pang 2006; Kunapuli, Bennett, Hu, and Pang 2008). A first disadvantage
of such a grid-search model selection approach is the limitation of the desirable number of
tuning parameters in a model, due to the combinatorial explosion of grid points. A second
disadvantage is their practical inefficiency, namely, they are incapable of assuring the overall
quality of the produced solution. A third disadvantage in grid-search is that the discretization
fails to take into account the fact that the tuning parameters are continuous.

In order to overcome these drawbacks, we have equipped the toolbox with a powerful global
optimizer, called coupled simulated annealing (CSA) (de Souza, Suykens, Vandewalle, and
Bollé 2010) and a derivative-free simplex search (Nelder and Mead 1965; Lagarias, Reeds,
Wright, and Wright 1998). The optimization process is twofold: First, determine good initial
starting values by means of CSA and second, perform a fine-tuning derivative-free search
using the previous end results as starting values. In contrast with other global optimization
techniques CSA is not slow and can easily escape from local minima. The CSA algorithm
based on coupled multiple starters is more effective than multi-start gradient descent opti-
mization algorithms. Another advantage of CSA is that it uses the acceptance temperature
to control the variance of the acceptance probabilities with a control scheme that can be
applied to an ensemble of optimizers. This leads to an improved optimization efficiency be-
cause it reduces the sensitivity of the algorithm to the initialization parameters while guiding
the optimization process to quasi-optimal runs. Because of the effectiveness of the combined
methods only a small number of iterations are needed to reach an optimal set of smoothing
parameters (bandwidth h of the kernel and the regularization parameter ).

4. Standard nonparametric regression

In this section we illustrate how to perform a nonparametric regression analysis on the LIDAR
data (Holst, Hossjer, Bjorklund, Ragnarson, and Edner 1996) and a two dimensional toy
example with StatLSSVM in MATLAB. Step-by-step instructions will be given on how to
obtain the results. All the data sets used in this paper are included in StatLSSVM.

4.1. Univariate smoothing

First, load the LIDAR data into the workspace of MATLAB using load('lidar.mat'). After
loading the data, one should always start by making a model structure using the initlssvm
command.

>> model = initlssvm(x, y, [], [], 'gauss_kernel')

model =
x_dim: 1
y_dim: 1
nb_data: 221
xtrain: [221x1 double]
ytrain: [221x1 double]
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gam: []
kernel_type: 'gauss_kernel'
bandwidth: []
status: 'changed'
weights: []

This model structure contains all the necessary information of the given data (xtrain and
ytrain), data size (nb_data), dimensionality of the data (x_dim and y_dim) and the chosen
kernel function (kernel_type). StatLSSVM currently supports five positive (semi-)definite
kernels, i.e., the Gaussian kernel ('gauss_kernel'), the RBF kernel ('RBF_kernel'), the
Gaussian additive kernel ('gaussadd_kernel'), a fourth order kernel based on the Gaussian
kernel ('gauss4_kernel') (Jones and Foster 1993) and the linear kernel ('lin_kernel').
Note that we did not specify any value yet for the smoothing parameters, i.e., the bandwidth
of the kernel (bandwidth) and the regularization parameter (gam) in the initlssvm command.
We initialized these two parameters to the empty field in MATLAB by [] in initlssvm. The
status element of this structure contains information whether the model has been trained
with the current set of smoothing parameters (Equation 3 is solved or not). If the model is
trained (Equation 3 is solved) then the field 'changed' will become 'trained'. The last
element weights specifies the weights used with robust regression (see Section 5).

Any field in the structure can be accessed by using model. field_name. For example, if
one wants to access the regularization parameter in the structure model, one simply uses
model . gam.

The next step is to tune the smoothing parameters. This is done by invoking tunelssvm
and StatLSSVM supports several model selection criteria for standard nonparametric re-
gression such as leave-one-out cross-validation ('leaveoneout'), generalized cross-validation
('gecrossval') and v-fold cross-validation ('crossval'). We illustrate the code for the v-fold
cross-validation. By default, 'crossval' uses 10-fold cross-validation and the Lo residual loss
function. We will not show the complete output of the optimization process but only show
the model structure output. The fields gam and bandwidth are no longer empty but contain
their tuned value according the 10-fold cross-validation criterion.

>> model = tunelssvm(model, 'crossval')

model =
x_dim: 1
y_dim: 1
nb_data: 221
xtrain: [221x1 double]
ytrain: [221x1 double]
gam: 5.4603
kernel_type: 'gauss_kernel'
bandwidth: 45.8881
status: 'changed'
weights: []

Next, to obtain the final model the system of equations (3) has to be solved to acquire the «
vector (Lagrange multipliers) and b (bias term). Training the model can be done as follows.
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>> model = trainlssvm(model)

model =
x_dim: 1
y_dim: 1
nb_data: 221
xtrain: [221x1 double]
ytrain: [221x1 double]
gam: 5.4603
kernel_type: 'gauss_kernel'
bandwidth: 45.8881
status: 'trained'
weights: []
b: -0.3089
alpha: [221x1 double]
duration: 0.0096

Note that the field status has been altered from 'changed' to 'trained'. Also the Lagrange
multipliers alpha and bias term b have been added to the model structure. The last line in
the structure denotes the time needed to solve the system of equations (3) in seconds.

The last step is to visualize the results (if possible). By using

>> model = plotlssvm(model);
>> xlabel('range'); ylabel('log ratio')

we obtain Figure 2. The full line indicates the resulting LS-SVM solution. The chosen kernel
and the tuned smoothing parameters are given above the figure.

4.2. Bivariate smoothing

In this example of bivariate smoothing, the NBA data set (Simonoff 1996) is used (available in
StatLSSVM as nba.mat). Since the workflow is exactly the same as in the previous example
we only give the input script and visualize the results. In this example it holds that the vector
z € R? and y € R. The fitted regression surface is an estimate of the mean points scored
per minute conditional on the number of minutes played per game and height in centimeters
for 96 NBA players who played the guard position during the 1992-1993 season. As a model
selection method we choose leave-one-out cross-validation. The relevant MATLAB commands
are

>> load('nba.mat', 'x', 'y')

>> model = initlssvm(x, y, [], [], 'gauss_kernel');
>> model tunelssvm(model, 'leaveoneout');

>> model = plotlssvm(model);

>> figure(2)

>> model = plotlssvm(model, 'contour');

Figure 3 shows the three dimensional plot and the contour plot of the LS-SVM estimate.
From the figure it is clear that there is a trend towards higher scoring when taller players are
longer in the field.
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Figure 2: Nonparametric regression estimation with StatLSSVM on the LIDAR data set. The
title of the figure specifies the chosen kernel and the tuned smoothing parameters.
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Figure 3: Three dimensional plot and contour plot of the LS-SVM estimate of points scored
per minute as a function of minutes played per game and height.

5. Robust nonparametric regression

Regression analysis is an important statistical tool routinely applied in most sciences. How-
ever, using least squares techniques, there is an awareness of the dangers posed by the occur-
rence of outliers present in the data. Not only the response variable can be outlying, but also
the explanatory part, leading to leverage points. Both types of outliers may totally spoil an
ordinary least squares analysis. We refer to the books of Hampel, Ronchetti, Rousseeuw, and
Stahel (1986), Rousseeuw and Leroy (2003), Jureckova and Picek (2006) and Maronna et al.
(2006) for a thorough survey regarding robustness aspects.
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Huber Hampel Logistic Myriad
) 1 if |r| < by; 2
1 f ; ! tanh(r 1)
V(r) ;; 1 Il <5 22_‘5”, if by <|r| < by; ( ) 2 2
m, lf ‘T‘ 2 ﬂ 2~ . T 6 + T
O7 if ‘T‘ > bo.

»(r) a \/\ - — ]

5 " r?, if |r| < by
L(r) n il <5 br? %l if < Jr| < by 7tanh(r) log (62 + %)
28|r| — B2, if |r| > B. 2-b1

O7 if |7‘| > bo.

Table 1: Definitions for the Huber (8 > 0), Hampel, Logistic and Myriad (§ > 0) weight
functions V'(-). The corresponding score function ¢ (-) and loss L(-) are also given.

A possible way to robustify (2) is to use an L; loss function. However, this would lead
to a quadratic programming problem and is more difficult to solve than a linear system.
Therefore, we opt for a simple but effective method, i.e., iterative reweighting (De Brabanter
et al. 2009; Debruyne, Christmann, Hubert, and Suykens 2010). This approach solves a
weighted least squares problem in each iteration until a certain stopping criterion is satisfied.
StatLSSVM supports four weight functions: Huber, Hampel, Logistic and Myriad weights.
Table 1 illustrates these four weight functions.

A robust version of (2) is then formulated as follows (Suykens, De Brabanter, Lukas, and
Vandewalle 2002a):

w,b,e

n
. 2
min Jp(w,e) = tw'w + 3 E V€]
i=1

s.t. Vi=w'o(X;)+b+e, i=1,...,n,

where v; denotes the weight of the i-th residual. The weights are assigned according to the
chosen weight function in Table 1. Again, by using Lagrange multipliers, the solution is given
Y

by
0 1i ||b]_
1, | Q+ Dy «
withY = (Y1,....Y) ", L, =(1,..., D)7, a = (ag,... TandDW:diag{%,...,ﬁ}.

, Q)
Suppose we observe the data D,, = {(X1,Y1),...,(Xn,Y,)}, but the Y; are subject to occa-
sional outlying values. An appropriate model is

0

)

Y = m(X;) + e,

for a smooth function m and the ¢; come from the gross-error model (Huber 1964) with
symmetric contamination. The gross-error model or e-contamination model is defined as

U(Fy,e) ={F : F(e) = (1 —¢€)Fo(c) +eG(e),0 < e < 1},

where Fp is some given distribution (the ideal nominal model), G is an arbitrary continuous
symmetric distribution and e is the contamination parameter. This contamination model
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Figure 4: Robust LS-SVM estimate based on iterative reweighting with myriad weights.

describes the case, where with large probability (1 — €), the data occurs with distribution
Fp and with small probability € outliers occur according to distribution G. In our toy ex-
ample we generate a data set set containing 35% outliers, where the distribution Fj is taken
to be the Normal distribution with variance 0.01 and G is the standard Cauchy distribu-
tion. In order to obtain a fully robust solution, one must also use a robust model selection
method (Leung 2005). Therefore, StatLSSVM supports a robust v-fold cross-validation pro-
cedure ('rcrossval') based on a robust LS-SVM smoother and robust loss function, i.e., the
L; loss ('mae') or Huber’s loss ('huber') instead of Ly ('mse'). Figure 4 provides an illus-
tration of StatLSSVM fitting via the next script for simulated data with n = 250, ¢ = 0.35,
m(X) = sinc(X) and X ~ U[-5,5]. Note that this example requires the MATLAB Statistics
Toolbox (generation of ¢ distributed random numbers). The relevant MATLAB commands are

>> X = -5 + 10 * rand(250, 1);

>> epsilon = 0.35;

>> sel = rand(length(X), 1) > epsilon;

>> Y = sinc(X) + sel .* normrnd(0, .1, length(X), 1) + ...
(1 - sel) .* trnd(1, length(X), 1);

>> model = initlssvm(X, Y, [], [], 'gauss_kernel');

>> model = tunelssvm(model, 'rcrossval', {10, 'mae'}, ‘'wmyriad');
>> model = robustlssvm(model);

>> model = plotlssvm(model);

Remark 1. The other weights (see Table 1) can be called as 'whuber', 'whampel' or
'wlogistic' as last argument of the command tunelssvm. More information about all func-
tions can be found in the supplements of this paper or via the MATLAB command window via
the help function. For example help robustlssvm.

More information and properties regarding the weights in Table 1 and the complete robust
tuning procedure can be found in De Brabanter (2011).
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6. Confidence intervals
In this section we consider the following nonparametric regression setting
Y =m(X)+o(X)e,

where m is a smooth function, E[¢|X] = 0, VAR[¢|X] = 1 and X and ¢ are independent. Two
possible situations can occur: (i) 02(X) = o2 (homoscedastic regression model) and (ii) the
variance is a function of the explanatory variable X (heteroscedastic regression model). We
do not discuss the case when the variance function is a function of the regression function.
Our goal is to determine confidence intervals for m.

6.1. Pointwise confidence intervals
Under certain regularity conditions, it can be shown that asymptotically (De Brabanter 2011)

m(x) —m(zx) — b(x) i)N’(O 1)
V(z) Y

where b(x) and V (z) are respectively the bias and variance of 7m(z). With the estimated bias
and variance given in De Brabanter et al. (2011a), an approximate 100(1 — )% pointwise
confidence interval for m is

in(z) = b(@) £ 2100/ V(2),

where z;_, /5 denotes the (1 — a/2)-th quantile of the standard Gaussian distribution. This
approximate confidence interval is valid if
M Py1 and (z)

L.

V(x) (z)
This in turn requires a different bandwidth used in assessing the bias and variance (Fan and
Gijbels 1996), which is automatically done in the StatLSSVM toolbox.

The following MATLAB command generates a 100(1—«)% pointwise bias-corrected confidence
interval (o = 0.05) for the fossil data set (Ruppert et al. 2003). The result is visualized in
Figure 5. The relevant MATLAB commands are

>> load('fossil.mat', 'x', 'y')
>> model = initlssvm(x, y, [], [], 'gauss_kernel');

>> model = tunelssvm(model, 'crossval');
>> model = trainlssvm(model);
>> model = plotlssvm(model);

>> hold all;

>> ci = cilssvm(model, 0.05, 'pointwise');

>> fill([x; flipud(x)], [ci(:, 1); flipud(ci(:, 2))]1, 'g',
'FaceAlpha', 0.5, 'EdgeAlpha', 1, 'EdgeColor', 'w')

6.2. Uniform confidence intervals

In order to make simultaneous (or uniform) statements we have to modify the width of the
interval to obtain simultaneous confidence intervals (see also multiple comparison theory).
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Figure 5: Nonparametric regression estimation with StatLSSVM on the fossil data set. The
green shaded region corresponds to 95% pointwise bias-corrected confidence intervals.

Mathematically speaking, we are searching for the width of the bands ¢, given a confidence
level a € (0,1), such that

inf P {Th(x) — e/ V(z) <m(z) < m(z)+e\/V(z), Ve € ]Rd} =1-a,

for some suitable class of smooth functions F,,. In StatLSSVM the width of the bands
¢ is determined by the volume-of-tube formula (Sun and Loader 1994). We illustrate the
concept of simultaneous confidence intervals with two examples. First, consider the following
heteroscedastic regression example. The data generation process is as follows:

y; = sin(z;) + 4/0.0522 +0.0le i =1,...,300,

where z are equally spaced over the interval [—5,5] and € ~ N(0,1). The relevant MATLAB
commands are

>> x = linspace(-5, 5, 300)';
>> y = sin(x) + sqrt(0.05 * x.72 + 0.01) .* randn(300, 1);
>> model = initlssvm(x, y, [], [],' gauss_kernel');

>> model = tunelssvm(model, 'crossval', {10, 'mae'});
>> model = trainlssvm(model);
>> model = plotlssvm(model);

>> hold all;

>> ci = cilssvm(model, 0.05, 'simultaneous', 'heteroscedastic');

>> fil1([x; flipud(x)], [ci(:, 1); flipud(ci(:, 2))1, 'g',
'FaceAlpha', 0.5, 'EdgeAlpha', 1, 'EdgeColor', 'w')

>> plot(x, sin(x), 'k', 'LineWidth', 2)

As a second example, the LIDAR data set is used. Uniform and simultaneous confidence
intervals are shown in Figure 6.
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Figure 6: Left panel: Bias-corrected simultaneous confidence intervals for the heteroscedastic
toy example (green shaded area) together with the LS-SVM estimate (red line). The black
line is the true function. Right panel: Bias-corrected simultaneous confidence intervals for
the LIDAR data set together with the LS-SVM estimate (red line).

7. Additive LS-SVM models

Suppose a sample of observations (X;,Y;) (X; € R? and Y; € R) is generated from an additive
model
d .
Yi=b+ > mi(X7) + e =m(X,) +e,
j=1
where the error term ¢; is independent of the X (] E[z:|Xi] = 0, VAR[¢;| X;] = 0% < o0 and
m; is a smooth function of the regressor XZ(] ). We cons1der the following model class

Frg= E}u@ XD)4b,p;:R— U, w; e R, bER

n,

The optimization problem (2) can be rewritten w.r.t. the new model class as follows (Pelck-
mans, Goethals, De Brabanter, Suykens, and De Moor 2005)

min Jp(w,e) = QZJ lw wj + 726

w,b,e
s.t. Y, = Z] L W; wj(X(]))+b+eZ, i=1,...,n.
As before, by using Lagrange multipliers, the solution is given by
o] i J[a]_fo
L |+ 1L | | a Yy |’

where Q* = Zj_ QU) and Q( ) = K(J)(X(J) X(J)) for all k,0 = 1,...,n (sum of univariate
kernels). The resulting add1t1ve LS-SVM model is given by

ISH

m(z) = ar Y KD @D, x7) +b.
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Figure 7: Fitted functions for the additive LS-SVM model for the constructed toy data. The
green shaded area represents twice the pointwise standard errors of the estimated curve. The
points plotted are the partial residuals: The fitted values for each function plus the overall
residuals from the additive model.

We illustrate the additive LS-SVM models on two examples. First, we construct a classical
example as in Hastie and Tibshirani (1990). The data are generated from the nonlinear
regression model with 12 variables:

12
Y; = 10sin(r X ") +20(X” — 0.5)2 + 10XY 55X +0Y " X + ¢,
j=5

where the 12 variables are uniformly distributed on the interval [0, 1], & ~ N (0,1) and n =
300. By using the option 'multiple' StatLSSVM tunes the bandwidth of the kernel for
each estimated function. By setting this option to 'single' one bandwidth is found for all
estimated functions. The relevant MATLAB commands are

>> X
>>Y

rand (300, 12);
10 * sin(pi * X(:,1)) + 20 * (X(:, 2) - 0.5).72 + ...
10 * X(:, 3) - 5 * X(:, 4) + randn(300, 1);
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Figure 8: Fitted functions for the additive LS-SVM model for the diabetes data. The green
shaded area represent twice the pointwise standard errors of the estimated curve. The points
plotted are the partial residuals.

>> model initlssvm(X, Y, [], [], 'gaussadd_kernel', 'multiple');
>> model tunelssvm(model, 'crossval', {10, 'mae'l});

>> model = trainlssvm(model);

>> model = plotlssvmadd(model);

Figure 7 shows the fitted function for the additive LS-SVM model applied to our simulated
data set. In general, the scales on the vertical axes are only meaningful in a relative sense; they
have no absolute interpretation. Since we have the freedom to choose the vertical positionings,
we should try to make them meaningful in the absolute sense. A reasonable solution is to plot,
for each predictor, the profile of the response surface with each of the other predictors set at
their average (see also Ruppert et al. 2003). This is automatically done by the plotlssvmadd
command.

As a last example we consider the diabetes data set also discussed in Hastie and Tibshirani
(1990). The data come from a study (Sockett, Daneman, Clarson, and Ehrich 1987) of the
factors affecting patterns of insulin-dependent diabetes mellitus in children. The objective is
to investigate the dependence of the level of serum C-peptide on various other factors in order
to understand the patterns of residual insulin secretion. The response measurement is the
logarithm of C-peptide concentration (pmol/ml) at diagnosis, and the predictor measurements
are age and base deficit (a measure of acidity). The MATLAB commands are as follows

>> load('diabetes.mat', 'age', 'basedef')

>> model = initlssvm([age basedef], Cpeptide, [], [],
'gaussadd_kernel', 'multiple');

>> model = tunelssvm(model, 'crossval', {6, 'mae'});

>> model = plotlssvmadd(model, {'age', 'base deficit'});

The result is shown in Figure 8 using the vertical alignment procedure discussed above. It can
be seen that both effects appear to be nonlinear. The variable age has an increasing effect
that levels off and the variable basedef appears quadratic.

15
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8. Regression with correlated errors
In this section we consider the nonparametric regression model
Yi=m(x;) +e, i=1,...,n,

where E[g|X] = 0, VAR[g|X] = 02 < 0o, the error term ¢; is a covariance stationary process
with E[e;, ei0k] = Yk Y6 ~ k™% a > 2 and m is a smooth function. However, the presence
of correlation between the errors, if ignored, causes breakdown of commonly used automatic
tuning parameter selection methods such as cross-validation or plug-in (Opsomer et al. 2001;
De Brabanter et al. 2011b). Data-driven bandwidth selectors tend to be “fooled” by auto-
correlation, interpreting it as reflecting the regression relationship and variance function. So,
the cyclical pattern in positively correlated errors is viewed as a high frequency regression
relationship with small variance, and the bandwidth is set small enough to track the cycles
resulting in an undersmoothed fitted regression curve. The alternating pattern above and
below the true underlying function for negatively correlated errors is interpreted as a high
variance, and the bandwidth is set high enough to smooth over the variability, producing an
oversmoothed fitted regression curve.

The model selection method is based on leave-(2] + 1)-out cross-validation (Chu and Marron
1991). To tune the parameter [, a two-step procedure is used. First, a Nadaraya-Watson
smoother with a bimodal kernel is used to fit the data. De Brabanter et al. (2011b) have
shown that a bimodal kernel satisfying K (0) = 0 automatically removes correlation structure
without requiring any prior knowledge about its structure. Hence, the obtained residuals are
good estimates of the errors. Second, the k-th lag sample autocorrelation can be used to find
a suitable value for [. More theoretical background about this method can be found in De
Brabanter et al. (2011b).

Consider the beluga and US birth rate data sets (Simonoff 1996). We will compare the
leave-(2] + 1)-out cross-validation method with classical leave-one-out cross-validation (see
Figure 9). It is clear from both results that existence of autocorrelation can seriously affect
the regression fit. Ignoring the effects of correlation will cause the nonparametric regression
smoother to interpolate the data. This is especially visible in the US birth rate data set.
Without removing autocorrelation there is no clear trend visible in the regression fit. By
using the above described method for model selection the regression fit shows a clear pattern,
i.e., the US joined the second world war after the attack on Pearl Harbor (December 1941),
decreasing birth rate during the entire course of the war and finally increasing birth rate after
the war in Europe and the Pacific was over (mid September 1945).

The relevant MATLAB commands for the beluga data set are given below. Model selection
accounting for correlation is selected first using 'crossval2lpl', the classical leave-one-out
cross-validation second using 'leaveoneout'.

>> load('beluga.mat', 'period', 'nursingtime')

>> model = initlssvm(period, nursingtime, [], [], 'gauss_kernel');
>> model = tunelssvm(model, 'crossval2lpl', {'mse'});

>> plotlssvm(model); hold on;

>> model = tunelssvm(model, 'leaveoneout', {'mse'});

>> model = trainlssvm(model);

>> Yhat = simlssvm(model, period);
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Figure 9: LS-SVM regression estimates for the nursing time of the beluga whale (left panel)
and US birth rate data set (right panel). The green line represents the estimate with tun-
ing parameters determined by classical leave-one-out cross-validation and the red line is the
estimate based on the above described procedure.

>> plot(period, Yhat, 'g-')
>> xlabel('Period'); ylabel('Nursing time (s)')

9. Conclusions

We have demonstrated that several nonparametric regression problems can be handled with
StatLSSVM. This MATLAB-based toolbox can manage standard nonparametric regression,
regression with autocorrelated errors, robust regression, pointwise/uniform confidence inter-
vals and additive models with a few simple lines of code. Currently the toolbox is supported
for MATLAB R2009b or higher.
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