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Eddy current probes have been widely and successfully used to 
~surface breaking flaws in metals. It is quite natural to ask if 
the eddy current signal can be used to characterize the flaw, i.e. 
determine its type, length or depth? This paper is a "report in 
progress" on just this question. The basic strategy is to find an 
eddy-current flaw characterization problem simple enough that an 
analytic solution is possible . This analytic solution is then used to 
uncover the elements generic to eddy-current characterization 
(inversion) methods. 

Such a model has been discussed in last year' s report and is now 
reviewed. Namely we compute the change in impedance of a metallic 
half-spac~ that contains an arbitrarily shaped inclusion. The inclusion 
is chosen to have a conductivity nearly the same as the metallic 
half-space, and the applied magnetic field is chosen to be spatially 
uniform with its axis parallel to the metal's surface. Since the 
conductivity is nearly the same everywhere, the induced fields decay 
nearly exponentially into the. metal. Consequently (as was shown) , the 
change in impedance can be written as a Laplace transform of the 
conductivity variation with depth. Conversely it is found that the 
conductivity as a function of depth is determined by an inverse Laplace 
transform of the frequency (time) domain impedance. 

Below we very briefly indicate the analyti c form of the proposed 
inversion algorithm. The algorithm is then re-expressed in a form 
suitable for numerical evaluation . Finally , we present the results of a 
series of tests on the numerically expressed inversion algorithm. These 
tests focus on the following items. (1) How well can the algorithm 
recover various conductivity profile shapes? (2) What is the effect of 
noise on the inversion? (3) Finally, what happens to the inversion 
algorithm if the conductivity of the inclusion is not close to that of 
the host? 

An interesting feature of our approach will be remarked on. The 
inverse problem is formulated in the time-domain. This simplifies the 
inversion problem significantly since it allows the numerical 
implementation of the algorithm through the eigenvalue s and 
eigenfunctions of the Laplace Transform. 
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IMPEDANCE CHANGE DUE TO INCLUSION 

The problem studied is that of a three-dimensional inclusion, 
surface-breaking or buried, within a metallic halfspace. The magnetic 
permeability of the inclusion is assumed to be equal to the permeability 
of the host, ~.. The conductivity of the inclusion is assumed to be 
ao+lHJ(r), where a. is the conductivity of the host. We assume that the 
materials are linear and isotropic. A uniform magnetic field, HAe-•w•, 
arising due to a drive current, I, is applied on the surface of the 
half space. We then make the approximation that ~ « 1 and hence only 

keep first-order terms in ~. This is equivalent to replacing the .. 
perturbed fields by their unperturbed values, the so-called Born 
approximation. Details of the geometry are shown in Fig. 1. 

Under such an approximation, it has been shown in [1] that the 
change in impedance, fiz, due to the inclusion is given by 

H~ k~f"'f"'f"' - 2ik y oz(ko)"" -2 2 oo(r)e • dxdydz. 
f 0 0 _., o _., 

( I ) 

• 1+1 
k. is related to the sk~n depth, 13, by k. = T· In terms of the angular 

( • ~·)1/2 -frequency, w, k0 -(l+i)cw 112 wherec= T . fio(r)denotes the 

conductivity variation within the halfspace and is given by 
fia(r)- 6a(r) e(r). e(r) is the characteristic function and is equal to 

one inside the flaw and zero outside. Denote A(y) = j j fla(r)dxdz as the 

conductivity profile, representing cross-sections of the conductivity 
variation at each depth, y. Then, A(y) is recovered from its Laplace 
transform described by 

f .. e2ik 0 y A( )d = oz(k 0 )[ H~ J- 1 
= G(k ) . 

y y k2 12 2 0 
0 0 0 0 

(2) 

The difficulty in inverting Eq. (2) is that variable k. is complex 
and suitable numerical algorithms are not available. One way to 
circumvent this difficulty is to switch to the time-domain where all 
variables will be real. Taking the time-domain Fourier transform of Eq. 
(1), after some manipulations, we can show that 

where y 2 = u and s = 2c 21t. Since the inversion variable "s" is real, Eq. 
(3) describes a real Laplace transform for which numerical methods have 
been developed. Therefore, Eq. (3) instead of Eq. (2) is used for the 
inversion. 

Since measurements of the impedance, fiz(w), are usually 
bandlimited, the impedance data needs to be extrapolated, through its 
low and high frequency asymptotics, to compute the Fourier integrals in 
Eq. (3). By studying Eq. (2), we see that as w-+0, oz~w>-+O(w",w 112 ... ) 

and when w-+oo, oz~w>-+0. The impedance is curvefitted to the 

corresponding orders of win the low and high frequency regimes. The 
contribution to the integrals outside the bandlimits are then estimated 
analytically. 
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Fig. 1. Description of the inversion problem. 

NUMERICAL INVERSION OF THE LAPLACE TRANSFORM 

The Laplace transform of any arbitrary function, A(u), is defined 
by 

i'" e-su A(u)du = G(s), o :$ s < oo 

provided the integral exists. 
integral equation of the first 
ill-posed (unstable). Details 
found in Ref. [3-8]. 

The Laplace transform is a Fredholm 
kind and, as typically happens, is 
addressing this ill-posedness can be 

(4) 

The singular value decomposition (SVD) method has been widely used 
in solving Fredholm integral equations of the first kind. It provides a 
convenient method for treating the ill-posedness. When applied to a 
real Laplace transform, it has been shown that the solution can be 
written in terms of the eigenvalues and eigenfunctions of the transform 
[5]. Analytical expressions for these eigenvalues and eigenfunctions 
are derived in Ref. (5). Using these expressions, we can show that the 
inversion of a Laplace transform described by Eq. (4) can be written as 

l foo u-1/2 -+in f. 
A(u)--Re{ dO 

0 
ds G(s)s - 112 ' m}· 

J{ 0 f(l/2+i0) 
(5) 

n is real and unbounded and provides a continuous set of eigenfunctions 
and eigenvalues for the Laplace transform. f( l/2 + iO) refers to the 
complex Gamma function computed for every value of n. This expression 
is general in that it describes the inversion of the Laplace transform 

of any function, provided J I A(u) I u - 112du exists. The importance of this 

equation lies in the fact that it can be implemented numerically wit hout 
much difficulty or computational costs. 
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The nature of the ill-posedness can be seen by looking at the outer 
integral in Eq. (5). As n~oo.rU+in)~o. Since some amount of noise is 
inevitable (either from computation or from measurement), the outer 
integral in reality can never be computed to its entirety. We are 
forced to truncate the outer integral at a value of n, denoted by n .... 
and to neglect contributions to A(u) from n > n •• ,. This truncation does 
not pose a problem for smoothly varying profiles. In most NDE 
situations, smoothed out reconstructions of the flaw profiles suffice, 
allowing such an approximation to be made. 

A procedure to choose the optimum frequency of truncation, n •• , has 
been outlined by Lewis in [4). Two criteria for choosing the optimum 
frequency are adopted in this paper, one based on finding the minimum 
error and the second the minimum error slope. We first obtain estimates 
for A, A .. (u), from 

l fom u - 112•10 f . 
A .. (u)=;Re{ • dn f(l/2 +in) • dsG(s)s- 112 ' 10} 

for every n .. = n 1 , •••• , nmax· This is then substituted back into the 
forward problem to yield the least square error, R .. , given by 

e6) 

(7 ) 

Here, N denotes the total number of points at which G(s) is measured. 
In the first criterion, en •• ,)!' is chosen as that frequency among 
n.,=n 1 , .. .. nmaxwhich gives the minimum least square error , (R .. )min· In 

the second criterion, all the local minima of R .. are located. en •• ,) " is 
then chosen among these minima to be that at which R., varies the 
slowest. This is argued from the point of view that at the optimum 
frequency, insert ion or deletion of the next frequency component will 
not induce large variations in Aeu). 

The inversion algorithm is tested over the Laplace transform of 
various well known functions. Figures 2 (a) - (c) show results obtained 
for three different functions , namely, 

A (u) ~a= e-su A(u)du = G( s ) 

ue -u 

Gaussian Pulse 

( akn e -<•-•>'t2•'>) 
2 

x' C1 ( 1.1) e erjc(x); x = [2. s-~ 

Rectangular Pulse 
= l,u 1 :=:u:=:u 2 ( e -su1 _ e -su2 )/s 

= 0 , elsewhere 

To see how sensitive the recovered solution, A(u), is to variations in 
G(s), artificial random noise is added proportionately to G(s). TheN 
in Figures 2 (a) - (c) correspond to the noise factors, N = 1% denoting 
1% noise and so on . From the figures, we see that the algorithm is able 
to reconstruct the functions quite well. In the case of the unit square 
pulse, we are not able to reconstruct exactly the abrupt change in 
behavior of the profile at u= l . Instead, the inversion algorithm seems 
to smooth this discontinuity so tha t the function decays slowly . We 
also see that due to the truncation of the higher frequency component s, 
the algorithm is quite stable to noise, even for magnitudes as large as 
10% . 
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APPLICATION OF THE INVERSE METHOD 

In this section, the problem of a metallic layer over a halfspace 
is studied. The layer and the halfspace are assumed to have 
conductivities a 1anda. respectively. The permeabilities of both are the 
same, 1-1.. The layer is assumed to be of thickness 'd' . A uniform 

field, H Ae-1""1, is applied to the top surface of the layer. 

Using Maxwell's equations and by applying appropriate boundary 
conditions at y=o,y=d,andy=oo, the fields within the layer and 
halfspace are obtained. These are then substituted into the reciprocity 
relation in (9] to compute the impedance change caused by the presence 
of the layer. This is given as 

(8) 

where 

The impedance is computed for various ratios of a 11a. for 

frequencies ranging from ~ = 0.1 to5. These are then inverted through Eq. 

(5) to recover the conductivity profile of the layered solid. Figures 3 
(a) - (c) show the profiles reconstructed from the inversion. The 
dashed line in each figure represents the actual profile. Instead of 
truncating at D.01 and neglecting higher frequency contributions, a 

weighting function of the form w(D)= 1/(l+e•<O-n,.,) is used. a here is a 
weighting coefficient. When a= co, w = 1 for n < D.0 , and zero elsewhere, thus 
representing a rectangular window. Each figure shows two reconstructed 
profiles, one with a rectangular window and one with parameter a= 2. I t 
is expected that a= 2 will smooth out the oscillations in the recovered 
profiles and provide a much better reconstruction. 

From Figures 3 (a) - (c), as expected, we see that as the ratio of 
a 1/a 0 increases, the reconstruction of the layer profile worsens 
gradually. The algorithm gives accurate estimates of the profiles for 
disparities in conductivities up to about 10%. Even, beyond that range , 
the reconstructed profiles behave very similar to the actual profiles 
and a reasonable estimate of the depth of the layer can be made . This 
is clearly brought out in Fig. 3 (c) where the conductivity of the layer 
is twice that of the host. 

Impedance values are usually contaminated with noise, filtering in 
from experimental measurements. The sensitivity of the algorithm to 
noise in the impedance hence needs to be studied. Once again, as in t he 
previous section, random noise is added proportionately to the 
impedance. From the results, as shown in Figures 4 (a) and (b), it is 
found that the reconstructed profiles compare well with actual 
solutions, even when the noise is as large as 10% of the computed 
impedance values. It is however seen that the data needs to be smoothed 
prior to inversion to provide meaningful solutions. 
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Fig. 2 . 
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CONCLUSIONS 

In this paper, we report the partial development of an inversion 
algorithm for the characterization of inclusions within a metallic 
halfspace . The algorithm requires the numerical inversion of a Laplace 
transform . The algorithm is tested by using it to reconstruct 
conductivity profiles of a metallic layer over a halfspace. The present 
partial formulation of the problem allows us to recover the flaw's 
conductivity as a function of depth. Work is in progress to extend the 
method so that it will be possible to recover the entire conductivity 
profile of the flaw. 
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